
Chapter 9

Tracking

Steven M. LaValle

University of Oulu

Copyright Steven M. LaValle 2020

Available for downloading at http://lavalle.pl/vr/



Chapter 9

Tracking

Keeping track of motion in the physical world is a crucial part of any VR system.
Tracking was one of the largest obstacles to bringing VR headsets into consumer
electronics, and it will remain a major challenge due to our desire to expand and
improve VR experiences. Highly accurate tracking methods have been mostly
enabled by commodity hardware components, such as inertial measurement units
(IMUs) and cameras, that have plummeted in size and cost due to the smartphone
industry.

Three categories of tracking may appear in VR systems, based on what is
being tracked:

1. The user’s sense organs: Recall from Section 2.1 that sense organs, such
as eyes and ears, have DOFs that are controlled by the body. If a display
is attached to a sense organ, and it should be perceived as in VR as being
attached to the surrounding world, then the position and orientation of the
organ needs to be tracked. The inverse of the tracked transformation is
applied to the stimulus to correctly “undo” these DOFs. Most of the focus
is on head tracking, which is sufficient for visual and aural components of
VR; however, the visual system may further require eye tracking if the ren-
dering and display technology requires compensating for the eye movements
discussed in Section 5.3.

2. The user’s other body parts: If the user would like to see a compelling
representation of his body in the virtual world, then its motion should be
tracked so that it can be reproduced in the matched zone. Perhaps facial
expressions or hand gestures are needed for interaction. Although perfect
matching is ideal for tracking sense organs, it is not required for tracking
other body parts. Small movements in the real world could convert into
larger virtual world motions so that the user exerts less energy. In the
limiting case, the user could simply press a button to change the body
configuration. For example, she might grasp an object in her virtual hand
by a single click.
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3. The rest of the environment: In the real world that surrounds the user,
physical objects may be tracked. For objects that exist in the physical world
but not the virtual world, the system might alert the user to their presence
for safety reasons. Imagine that the user is about to hit a wall, or trip
over a toddler. In some VR applications, the tracked physical objects may
be matched in VR so that the user receives touch feedback while interact-
ing with them. In other applications, such as telepresence, a large part of
the physical world could be “brought into” the virtual world through live
capture.

Section 9.1 covers the easy case of tracking rotations around a single axis
to prepare for Section 9.2, which extends the framework to tracking the 3-DOF
orientation of a 3D rigid body. This relies mainly on the angular velocity readings
of an IMU. The most common use is to track the head that wears a VR headset,
but it may apply to tracking handheld controllers or other devices. Section 9.3
addresses the tracking of position and orientation together, which in most systems
requires line-of-sight visibility between a fixed part of the physical world and the
object being tracked. Section 9.4 discusses the case of tracking multiple bodies
that are attached together by joints. Finally, Section 9.5 covers the case of using
sensors to build a representation of the physical world so that it can be brought
into the virtual world.

9.1 Tracking 2D Orientation

This section explains how the orientation of a rigid body is estimated using an
inertial measurement unit (IMU). The main application is determining the view-
point orientation, Reye from Section 3.4, while the user is wearing a VR headset.
Another application is estimating the orientation of a hand-held controller. For
example, suppose we would like to make a laser pointer that works in the virtual
world, based on a direction indicated by the user. The location of a bright red
dot in the scene would be determined by the estimated orientation of a controller.
More generally, the orientation of any human body part or moving object in the
physical world can be determined if it has an attached IMU.

To estimate orientation, we first consider the 2D case by closely following the
merry-go-round model of Section 8.1.2. The technical issues are easy to visualize
in this case, and extend to the more important case of 3D rotations. Thus, imagine
that we mount a gyroscope on a spinning merry-go-round. Its job is to measure
the angular velocity as the merry-go-round spins. It will be convenient throughout
this chapter to distinguish a true parameter value from an estimate. To accomplish
this, a “hat” will be placed over estimates. Thus, let ω̂ correspond to the estimated
or measured angular velocity, which may not be the same as ω, the true value.

How are ω̂ and ω related? If the gyroscope were functioning perfectly, then
ω̂ would equal ω; however, in the real world this cannot be achieved. The main
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contributor to the discrepancy between ω̂ and ω is calibration error. The quality
of calibration is the largest differentiator between an expensive IMU (thousands
of dollars) and cheap one (a dollar).

We now define a simple model of calibration error. The following sensor map-
ping indicates how the sensor output is related to true angular velocity:

ω̂ = a+ b ω. (9.1)

Above, a and b are called the offset and scale, respectively. They are unknown
constants that interfere with the measurement. If ω were perfectly measured, then
we would have a = 0 and b = 1.

Consider the effect of calibration error. Comparing the measured and true
angular velocities yields:

ω̂ − ω = a+ b ω − ω = a+ ω(b− 1). (9.2)

Now imagine using the sensor to estimate the orientation of the merry-go-
round. We would like to understand the difference between the true orientation θ
and an estimate θ̂ computed using the sensor output. Let d(t) denote a function
of time called the drift error:

d(t) = θ(t)− θ̂(t). (9.3)

Note that d(t) might be negative, which could be forced into being positive by
applying the absolute value to obtain |d(t)|. This will be avoided to simplify the
discussion.

Suppose it is initially given that θ(0) = 0, and to keep it simple, the angular
velocity ω is constant. By integrating (9.2) over time, drift error is

d(t) = (ω̂ − ω)t = (a+ b ω − ω)t = (a+ ω(b− 1))t. (9.4)

Of course, the drift error grows (positively or negatively) as a deviates from 0 or
as b deviates from one; however, note that the second component is proportional
to ω. Ignoring a, this means that the drift error is proportional to the speed of the
merry-go-round. In terms of tracking a VR headset using a gyroscope, this means
that tracking error increases at a faster rate as the head rotates more quickly [27].

At this point, four general problems must be solved to make an effective track-
ing system, even for this simple case:

1. Calibration: If a better sensor is available, then the two can be closely
paired so that the outputs of the worse sensor are transformed to behave as
closely to the better sensor as possible.

2. Integration: The sensor provides measurements at discrete points in time,
resulting in a sampling rate. The orientation is estimated by aggregating or
integrating the measurements.
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3. Registration: The initial orientation must somehow be determined, either
by an additional sensor, or a clever default assumption or start-up procedure.

4. Drift error: As the error grows over time, other sensors are needed to
directly estimate it and compensate for it.

All of these issues remain throughout this chapter for the more complicated set-
tings. The process of combining information from multiple sensor readings is often
called sensor fusion or filtering.

We discuss each of these for the 2D case, before extending the ideas to the 3D
case in Section 9.2.

Calibration You could buy a sensor and start using it with the assumption
that it is already well calibrated. For a cheaper sensor, however, the calibration
is often unreliable. Suppose we have one expensive, well-calibrated sensor that
reports angular velocities with very little error. Let ω̂′ denote its output, to
distinguish it from the forever unknown true value ω. Now suppose that we want
to calibrate a bunch of cheap sensors so that they behave as closely as possible to
the expensive sensor. This could be accomplished by mounting them together on
a movable surface and comparing their outputs. For greater accuracy and control,
the most expensive sensor may be part of a complete mechanical system such as
an expensive turntable, calibration rig, or robot. Let ω̂ denote the output of one
cheap sensor to be calibrated; each cheap sensor must be calibrated separately.

Calibration involves taking many samples, sometimes thousands, and com-
paring ω̂′ to ω̂. A common criterion is the sum of squares error, which is given
by

n
∑

i=1

(ω̂i − ω̂′

i)
2 (9.5)

for n samples of the angular velocity. The task is to determine a transformation
to apply to the cheap sensor outputs ω̂ so that it behaves as closely as possible to
the expensive sensor outputs ω̂′.

Using the error model from (9.1), we can select constants c1 and c2 that opti-
mize the error:

n
∑

i=1

(c1 + c2 ω̂i − ω̂′)2i . (9.6)

This is a classical regression problem referred to as linear least-squares. It is
typically solved by calculating the Moore-Penrose pseudoinverse of an non-square
matrix that contains the sampled data [41].

Once c1 and c2 are calculated, every future sensor reading is transformed as

ω̂cal = c1 + c2 ω̂, (9.7)

in which ω̂ is the original, raw sensor output, and ω̂cal is the calibrated output.
Thus, the calibration produces a kind of invisible wrapper around the cheap sensor
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outputs so that the expensive sensor is simulated. The raw, cheap sensor outputs
are no longer visible to outside processes. The calibrated outputs will therefore
simply be referred to as ω̂ in the remainder of this chapter.

Integration Sensor outputs usually arrive at a regular sampling rate. For ex-
ample, the Oculus Rift gyroscope provides a measurement every 1ms (yielding a
1000Hz sampling rate). Let ω̂[k] refer to the kth sample, which arrives at time
k∆t.

The orientation θ(t) at time t = k∆t can be estimated by integration as:

θ̂[k] = θ(0) +
k

∑

i=1

ω̂[i]∆t. (9.8)

Each output ω̂[i] causes a rotation of ∆θ[i] = ω̂[i]∆t. It is sometimes more
convenient to write (9.8) in an incremental form, which indicates the update to θ̂
after each new sensor output arrives:

θ̂[k] = ω̂[k]∆t+ θ̂[k − 1]. (9.9)

For the first case, θ̂[0] = θ(0).
If ω(t) varies substantially between θ(k∆t) and θ((k+1)∆t), then it is helpful

to know what ω̂[k] corresponds to. It could be angular velocity at the start of the
interval ∆t, the end of the interval, or an average over the interval. If it is the
start or end, then a trapezoidal approximation to the integral may yield less error
over time [16].

Registration In (9.8), the initial orientation θ(0) was assumed to be known. In
practice, this corresponds to a registration problem, which is the initial alignment
between the real and virtual worlds. To understand the issue, suppose that θ
represents the yaw direction for a VR headset. One possibility is to assign θ(0) =
0, which corresponds to whichever direction the headset is facing when the tracking
system is turned on. This might be when the system is booted. If the headset
has an “on head” sensor, then it could start when the user attaches the headset
to his head. Often times, the forward direction could be unintentionally set in a
bad way. For example, if one person starts a VR demo and hands the headset to
someone else, who is facing another direction, then in VR the user would not be
facing in the intended forward direction. This could be fixed by a simple option
that causes “forward” (and hence θ(t)) to be redefined as whichever direction the
user is facing at present.

An alternative to this entire problem is to declare θ(0) = 0 to correspond to
a direction that is fixed in the physical world. For example, if the user is sitting
at a desk in front of a computer monitor, then the forward direction could be
defined as the yaw angle for which the user and headset are facing the monitor.
Implementing this solution requires a sensor that can measure the yaw orientation
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with respect to the surrounding physical world. For example, with the Oculus Rift,
the user faces a stationary camera, which corresponds to the forward direction.

Drift correction To make a useful tracking system, the drift error (9.3) cannot
be allowed to accumulate. Even if the gyroscope were perfectly calibrated, drift
error would nevertheless grow due to other factors such as quantized output values,
sampling rate limitations, and unmodeled noise. The first problem is to estimate
the drift error, which is usually accomplished with an additional sensor. Practical
examples of this will be given in Section 9.2. For the simple merry-go-round
example, imagine that an overhead camera takes a picture once in a while to
measure the orientation. Let θ̂d[k] denote the estimated orientation from this
single sensor measurement, arriving at stage k.

Because of drift error, there are now two conflicting sources of information: 1)
The orientation θ̂[k] estimated by integrating the gyroscope, and 2) the orienta-
tion θ̂d[k] instantaneously estimated by the camera (or some other, independent
sensor). A classic approach to blending these two sources is a complementary
filter, which mathematically interpolates between the two estimates:

θ̂c[k] = αθ̂d[k] + (1− α)θ̂[k], (9.10)

in which α is a gain parameter that must satisfy 0 < α < 1. Above, θ̂c[k] denotes
the corrected estimate at stage k. Since the gyroscope is usually accurate over
short times but gradually drifts, α is chosen to be close to zero (for example, α =
0.0001). This causes the instantaneous estimate θ̂d[k] to have a gradual impact. At
the other extreme, if α were close to 1, then the estimated orientation could wildly
fluctuate due to errors in θd[k] in each stage. An additional consideration is that if
the sensor output θ̂d[k] arrives at a much lower rate than the gyroscope sampling
rate, then the most recently recorded output is used. For example, a camera image
might produce an orientation estimate at 60Hz, whereas the gyroscope produces
outputs at 1000Hz. In this case, θ̂d[k] would retain the same value for 16 or 17
stages, until a new camera image becomes available.

It is important to select the gain α to be high enough so that the drift is
corrected, but low enough so that the user does not perceive the corrections.
The gain could be selected “optimally” by employing a Kalman filter [5, 17, 21];
however, the optimality only holds if we have a linear stochastic system, which
is not the case in human body tracking. The relationship between Kalman and
complementary filters, for the exact models used in this chapter, appears in [15].

Using simple algebra, the complementary filter formulation in (9.10) can be
reworked to yield the following equivalent expression:

θ̂c[k] = θ̂[k]− αd̂[k] (9.11)

in which

d̂[k] = θ̂d[k]− θ̂[k]. (9.12)
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Figure 9.1: The vibrating MEMS elements respond to Coriolis forces during ro-
tation, which are converted into an electrical signal. (Figure by Fabio Pasolini.)

Above, d̂[k] is just an estimate of the drift error at stage k. Thus, the complemen-
tary filter can alternatively be imagined as applying the negated, signed error, by
a small, proportional amount α, to try to incrementally force it to zero.

9.2 Tracking 3D Orientation

IMUs Recall from Section 2.1 (Figure 2.9) that IMUs have recently gone from
large, heavy mechanical systems to cheap, microscopic MEMS circuits. This pro-
gression was a key enabler to high-quality orientation tracking. The gyroscope
measures angular velocity along three orthogonal axes, to obtain ω̂x, ω̂y, and ω̂z.
For each axis, the sensing elements lie in the perpendicular plane, much like the
semicircular canals in the vestibular organ (Section 8.2). The sensing elements in
each case are micromachined mechanical elements that vibrate and operate like a
tuning fork. If the sensor rotates in its direction of sensitivity, then the elements
experience Coriolis forces, which are converted into electrical signals. These sig-
nals are calibrated to produce an output in degrees or radians per second; see
Figure 9.1.

IMUs usually contain additional sensors that are useful for detecting drift er-
rors. Most commonly, accelerometers measure linear acceleration along three axes
to obtain âx, ây, and âz. The principle of their operation is shown in Figure 9.2.
MEMS magnetometers also appear on many modern IMUs, which measure mag-
netic field strength along the three perpendicular axis. This is often accomplished
by the mechanical motion of a MEMS structure that is subject to Lorentz force
as it conducts inside of a magnetic field.

252 S. M. LaValle: Virtual Reality

(a) (b)

Figure 9.2: (a) A MEMS element for sensing linear acceleration (from [36]). (b)
Due to linear acceleration in one direction, the plates shift and cause a change
in capacitance as measured between the outer plates. (Figure by David Askew,
Mouser Electronics.)

Calibration Recall from Section 9.1 that the sensor outputs are distorted due
to calibration issues. In the one-dimensional angular velocity case, there were
only two parameters, for scale and offset, which appeared in (9.1). In the 3D
setting, this would naturally extend to 3 scale and 3 offset parameters; however,
the situation is worse because there may also be errors due to non-orthogonality of
the MEMS elements. All of these can be accounted for by 12 parameters arranged
in a homogeneous transform matrix:
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(9.13)

There are 12 and not 6 DOFs because the upper left, 3-by-3, matrix is not con-
strained to be a rotation matrix. The j, k, and ℓ parameters correspond to
offset, whereas all others handle scale and non-orthogonality. Following the same
methodology as in Section 9.1, the inverse of this transform can be estimated
by minimizing the least squares error with respect to outputs of a better sensor,
which provides ground truth. The outputs of the MEMS sensor are then adjusted
by applying the estimated homogeneous transform to improve performance (this
is an extension of (9.7) to the 12-parameter case). This general methodology ap-
plies to calibrating gyroscopes and accelerometers. Magnetometers may also be
calibrated in this way, but have further complications such as soft iron bias.

An additional challenge with MEMS sensors is dealing with other subtle de-
pendencies. For example, the outputs are sensitive to the particular temperature
of the MEMS elements. If a VR headset heats up during use, then calibration
parameters are needed for every temperature that might arise in practice. Fortu-
nately, IMUs usually contain a temperature sensor that can be used to associate
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the calibration parameters with the corresponding temperatures. Finally, MEMS
elements may be sensitive to forces acting on the circuit board, which could be
changed, for example, by a dangling connector. Care must be given to isolate
external board forces from the MEMS circuit.

Integration Now consider the problem converting the sequence of gyroscope
outputs into an estimate of the 3D orientation. At each stage k a vector

ω̂[k] = (ω̂x[k], ω̂y[k], ω̂z[k]) (9.14)

arrives from the sensor. In Section 9.1, the sensor output ω̂[k] was converted
to a change ∆θ[k] in orientation. For the 3D case, the change in orientation is
expressed as a quaternion.

Let q(v, θ) be the quaternion obtained by the axis-angle conversion formula
(3.30). Recall from Section 8.1.2 that the instantaneous axis of rotation is the
magnitude of the angular velocity. Thus, if ω̂[k] is the sensor output at stage k,
then the estimated rotation axis is

v̂[k] = ω̂[k]/‖ω̂[k]‖. (9.15)

Furthermore, the estimated amount of rotation that occurs during time ∆t is

∆θ̂[k] = ‖ω̂[k]‖∆t. (9.16)

Using the estimated rotation axis (9.15) and amount (9.16), the orientation change
over time ∆t is estimated to be

∆q̂[k] = q(v̂[k],∆θ̂[k]). (9.17)

Using (9.17) at each stage, the estimated orientation q̂[k] after obtaining the latest
sensor output is calculated incrementally from q̂[k − 1] as

q̂[k] = ∆q̂[k] ∗ q̂[k − 1], (9.18)

in which ∗ denotes quaternion multiplication. This is the 3D generalization of
(9.9), in which simple addition could be used to combine rotations in the 2D case.
In (9.18), quaternion multiplication is needed to aggregate the change in orienta-
tion (simple addition is commutative, which is inappropriate for 3D rotations).

Registration The registration problem for the yaw component is the same as
in Section 9.2. The forward direction may be chosen from the initial orientation
of the rigid body or it could be determined with respect to a fixed direction in the
world. The pitch and roll components should be determined so that they align
with gravity. The virtual world should not appear to be tilted with respect to the
real world (unless that is the desired effect, which is rarely the case).
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Figure 9.3: If “up” is perfectly sensed by an accelerometer that is rotated by θ,
then its output needs to be rotated by θ to view it from the world frame.

Tilt correction The drift error d(t) in (9.3) was a single angle, which could be
positive or negative. If added to the estimate θ̂(t), the true orientation θ(t) would
be obtained. It is similar for the 3D case, but with quaternion algebra. The 3D
drift error is expressed as

d(t) = q(t) ∗ q̂−1(t), (9.19)

which is equal to the identity rotation if q(t) = q̂(t). Furthermore, note that
applying the drift error to the estimate yields q(t) = d(t) ∗ q̂(t).

Since the drift error is a 3D rotation, it could be constructed as the product
of a yaw, pitch, and a roll. Let tilt error refer to the part of the drift error that
corresponds to pitch and roll. This will be detected using an “up” sensor. Let yaw
error refer to the remaining part of the drift error, which will be detecting using
a “compass”. In reality, there do not exist perfect “up” and “compass” sensors,
which will be addressed later.

Suppose that a sensor attached to the rigid body always reports an “up” vector
that is parallel to y axis in the fixed, world coordinate frame. In other words, it
would be parallel to gravity. Since the sensor is mounted to the body, it reports its
values in the coordinate frame of the body. For example, if the body were rolled
90 degrees so that its x axis is pointing straight up, then the “up” vector would
be reported as (0, 0, 1), instead of (0, 1, 0). To fix this, it would be convenient to
transform the sensor output into the world frame. This involves rotating it by
q(t), the body orientation. For our example, this roll rotation would transform
(0, 0, 1) into (0, 1, 0). Figure 9.3 shows a 2D example.

Now suppose that drift error has occurred and that q̂[k] is the estimated orien-
tation. If this transform is applied to the “up” vector, then because of drift error,
it might not be aligned with the y axis, as shown Figure 9.4. The up vector û is
projected into the xz plane to obtain (ûx, 0, ûz). The tilt axis lies in the xz plane
and is constructed as the normal to the projected up vector: t̂ = (ûz, 0,−ûx). Per-
forming a rotation of φ about the axis t̂ would move the up vector into alignment
with the y axis. Thus, the tilt error portion of the drift error is the quaternion
q(t̂, φ̂).

Unfortunately, there is no sensor that directly measures “up”. In practice,
the accelerometer is used to measure the “up” direction because gravity acts on
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(a) (b)

Figure 9.4: (a) Tilt error causes a discrepancy between the y axis and the sensed
up vector that is rotated using the estimate q̂[k] to obtain û. (b) The tilt axis is
normal to û; a rotation of −φ̂ about the tilt axis would bring them into alignment,
thereby eliminating the tilt error.

the sensor, causing the sensation of upward acceleration at roughly 9.8m/s2. The
problem is that it also responds to true linear acceleration of the rigid body, and
this cannot be separated from gravity due to the Einstein equivalence principle. It
measures the vector sum of gravity and true linear acceleration, as shown in Figure
9.5. A simple heuristic is to trust accelerometer outputs as an estimate of the “up”
direction only if its magnitude is close to 9.8m2 [8]. This could correspond to the
common case in which the rigid body is stationary. However, this assumption is
unreliable because downward and lateral linear accelerations can be combined to
provide an output magnitude that is close to 9.8m2, but with a direction that is
far from “up”. Better heuristics may be built from simultaneously considering the
outputs of other sensors or the rate at which “up” appears to change.

Assuming that the accelerometer is producing a reliable estimate of the gravity
direction, the up vector û is calculated from the accelerometer output â by using
(3.34), to obtain

û = q̂[k] ∗ â ∗ q̂[k]−1. (9.20)

Yaw correction The remaining drift error component is detected by a “com-
pass”, which outputs a vector that lies in the world xz plane and always points
“north”. Suppose this is n̂ = (0, 0,−1). Once again, the sensor output occurs
in the coordinate frame of the body, and needs to be transformed by q̂[k]. The
difference between n̂ and the −z axis is the resulting yaw drift error.
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Gravity Measured accel

Head accel

Gravity

Measured accel

Head accel

(a) (b)

Figure 9.5: (a) There is no gravity sensor; the accelerometer measures the vector
sum of apparent acceleration due to gravity and the true acceleration of the body.
(b) A simple heuristic of accepting the reading as gravity only if the magnitude
is approximately 9.8m2 will fail in some cases.

As in the case of the “up” sensor, there is no “compass” in the real world.
Instead, there is a magnetometer, which measures a 3D magnetic field vector:
(m̂x, m̂y, m̂z). Suppose this is used to measure the Earth’s magnetic field. It
turns out that the field vectors do not “point” to the North pole. The Earth’s
magnetic field produces 3D vectors that generally do not lie in the horizontal
plane, resulting in an inclination angle. Thus, the first problem is that the sensor
output must be projected into the xz plane. Residents of Ecuador may enjoy
magnetic field vectors that are nearly horizontal; however, in Finland they are
closer to vertical; see Figure 9.6. If the magnetic field vector is close to vertical,
then the horizontal component may become too small to be useful.

Another issue is that the projected vector in the horizontal plane does not
point north, resulting in a declination angle; this is the deviation from north.
Fortunately, reference to the true north is not important. It only matters that the
sensor output is recorded in the registration stage to provide a fixed yaw reference.

The most significant problem is that the magnetometer measures the vector
sum of all magnetic field sources. In addition to the Earth’s field, a building
generates its own field due to ferromagnetic metals. Furthermore, such materials
usually exist on the circuit board that contains the sensor. For this case, the
field moves with the sensor, generating a constant vector offset. Materials that
serve as a source of magnetic fields are called hard iron. Other materials distort
magnetic fields that pass through them; these are called soft iron. Magnetometer
calibration methods mainly take into account offsets due to hard-iron bias and
eccentricities due to soft-iron bias [12, 20].

After these magnetometer calibrations have been performed, the yaw drift error
can be estimated from most locations with a few degrees of accuracy, which is suf-
ficient to keep yaw errors from gradually accumulating. There are still problems.
If a strong field is placed near the sensor, then the readings become dependent on
small location changes. This could cause the measured direction to change as the
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Figure 9.6: The inclination angle of the Earth’s magnetic field vector varies greatly
over the Earth. (Map developed by NOAA National Centers for Environmental
Information.)

rigid body translates back and forth. Another problem is that in some building
locations, vector sum of the Earth’s magnetic field and the field generated by the
building could be approximately zero (if they are of similar magnitude and point-
ing in opposite directions). In this unfortunate case, the magnetometer cannot
produce useful outputs for yaw drift error detection.

Filtering Using the detected drift error, filtering works in the same way as
described in Section 9.1. The complementary filter (9.10) is upgraded to work with
quaternions. It becomes slightly more complicated to represent the interpolation
in terms of α. Let (v, θ) denote the axis-angle representation of the orientation
d̂[k], which is the estimated drift error (a quaternion value). Let q(v, αθ) represent
the quaternion given by axis v and angle αθ. For a small value of α, this can be
considered as a small step “toward” d̂[k].

The complementary filter in terms of quaternions becomes

q̂c[k] = q(v,−αθ) ∗ q̂[k], (9.21)

which is similar in form to (9.12). The simple subtraction from the 2D case has
been replaced above by multiplying an inverse quaternion from the left. The
estimated drift error d̂[k] is obtained by multiplying the estimated tilt and yaw
errors. Alternatively, they could contribute separately to the complementary filter,
with different gains for each, and even combined with drift error estimates from
more sources [29].
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Yaw Pitch Roll Error
+ + + None
- + + L/R mix, flipped x
+ - + L/R mix, flipped y
+ + - L/R mix, flipped z
+ - - Inverse and L/R mix, flipped x
- + - Inverse and L/R mix, flipped y
- - + Inverse and L/R mix, flipped z
- - - Inverse

Figure 9.7: A table to help debug common viewpoint transform errors. Each +
means that the virtual world appears to move the correct way when performing
the yaw, pitch, or roll. Each − means it moves in the opposite way. The first
case is correct. All others are bugs. “L/R mix” means that left and right-handed
coordinate systems are getting mixed; the axis that was flipped is indicated.

Setting the viewpoint The viewpoint is set using the estimated orientation
q̂[k], although it might need to be adjusted to account for alternative timings,
for the purpose of prediction or image warping, as discussed in Section 7.4. Let
q̂(t) denote the estimated orientation for time t. In terms of the transformations
from Section 3.4, we have just estimated Reye. To calculate the correct viewpoint,
the inverse is needed. Thus, q̂−1(t) would correctly transform models to take the
estimated viewpoint into account.

A debugging tip Programmers often make mistakes when connecting the tracked
orientation to the viewpoint. Figure 9.7 shows a table of the common mistakes.
To determine whether the transform has been correctly applied, one should put
on the headset and try rotating about the three canonical axes: A pure yaw, a
pure pitch, and a pure roll. Let + denote that the world is moving correctly with
respect to a head rotation. Let − denote that it seems to move in the opposite
direction. Figure 9.7 shows a table of the eight possible outcomes and the most
likely cause of each problem.

A head model The translation part of the head motion has not been addressed.
Ideally, the head should be the same height in the virtual world as in the real world.
This can be handled by the translation part of the Teye matrix (3.36).

We must also account for the fact that as the head rotates, the eyes change
their positions. For example, in a yaw head movement (nodding “no”), the pupils
displace a few centimeters in the x direction. More accurately, they travel along
a circular arc in a horizontal plane. To more closely mimic the real world, the
movements of the eyes through space can be simulated by changing the center of
rotation according to a fictitious head model [1]. This trick is needed until Section
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Figure 9.8: To obtain a head model, the rotation center is moved so that orientation
changes induce a plausible translation of the eyes. The height h is along the y
axis, and the protrusion p is along the z axis (which leads a negative number).

9.3, where position is instead estimated from more sensors.
Recall from Section 3.5 that the cyclopean viewpoint was first considered and

then modified to handle left and right eyes by applying horizontal offsets by insert-
ing Tleft (3.50) and Tright (3.52). In a similar way, offsets in the y and z directions
can be added to account for displacement that would come from a rotating head.
The result is to insert the following before or after Tright and Tleft:

Thead =









1 0 0 0
0 1 0 h
0 0 1 p
0 0 0 1









, (9.22)

in which h is a height parameter and p is a protrusion parameter. See Figure 9.8.
The idea is to choose h and p that would correspond to the center of rotation
of the head. The parameter h is the distance from the rotation center to the
eye height, along the y axis. A typical value is h = 0.15m. The protrusion p
is the distance from the rotation center to the cyclopean eye. A typical value is
p = −0.10m, which is negative because it extends opposite to the z axis. Using
a fake head model approximates the eye locations as the user rotates her head;
however, it is far from perfect. If the torso moves, then this model completely
breaks, resulting in a large mismatch between the real and virtual world head
motions. Nevertheless, this head model is currently used in popular headsets,
such as Samsung Gear VR.

An issue also exists with the y height of the head center. The user may
be seated in the real world, but standing in the virtual world. This mismatch
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might be uncomfortable. The brain knows that the body is seated because of
proprioception, regardless of the visual stimuli provided by VR. If the user is
standing, then the head-center height could be set so that the eyes are at the
same height as in the real world. This issue even exists for the case of full six-
DOF tracking, which is covered next; the user might be sitting, and a vertical
offset is added to make him appear to be standing in VR.

9.3 Tracking Position and Orientation

This section covers tracking of all 6 DOFs for a moving rigid body, with the most
important case being head tracking. For convenience, we will refer to the position
and orientation of a body as its pose. Six-DOF tracking enables Teye from 3.4 to
be fully derived from sensor data, rather than inventing positions from a plausible
head model, as in (9.22). By estimating the position, the powerful depth cue of
parallax becomes much stronger as the user moves her head from side to side. She
could even approach a small object and look at it from any viewpoint, such as
from above, below, or the sides. The methods in this section are also useful for
tracking hands in space or objects that are manipulated during a VR experience.

Why not just integrate the accelerometer? It seems natural to try to ac-
complish 6-DOF tracking with an IMU alone. Recall from Figure 9.5 that the
accelerometer measures the vector sum of true linear acceleration and accelera-
tion due to gravity. If the gravity component is subtracted away from the output,
as is heuristically accomplished for tilt correction, then it seems that the remaining
part is pure body acceleration. Why not simply integrate this acceleration twice
to obtain position estimates? The trouble is that the drift error rate is much larger
than in the case of a gyroscope. A simple calibration error leads to linearly grow-
ing drift error in the gyroscope case because it is the result of a single integration.
After a double integration, a calibration error leads to quadratically growing drift
error. This becomes unbearable in practice after a fraction of a second. Further-
more, the true body acceleration cannot be accurately extracted, especially when
the body quickly rotates. Finally, as drift accumulates, what sensors can be used
to estimate the positional drift error? The IMU alone cannot help. Note that it
cannot even distinguish motions at constant velocity, including zero motion; this
is the same as our vestibular organs. Despite its shortcomings, modern IMUs re-
main an important part of 6-DOF tracking systems because of their high sampling
rates and ability to accurately handle the rotational component.

Make your own waves The IMU-based approach to tracking was passive in
the sense that it relied on sources of information that already exist in the envi-
ronment. Instead, an active approach can be taken by transmitting waves into
the environment. Since humans operate in the same environment, waves that are
perceptible, such as light and sound, are not preferred. Instead, common energy
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Figure 9.9: The principle of trilateration enables the detector location to be de-
termined from estimates of distances to known emitter. A 2D example is shown:
(a) from a single emitter, the detector could be anywhere along a circle; (b) using
three emitters, the position is uniquely determined.

sources in active tracking systems include infrared, ultrasound, and electromag-
netic fields.

Consider transmitting an ultrasound pulse (above 20, 000 Hz) from a speaker
and using a microphone to listen for its arrival. This is an example of an emitter-
detector pair: The speaker is the emitter, and the microphone is the detector.
If time measurement is synchronized between source and destination, then the
time of arrival (TOA or time of flight) can be calculated. This is the time that
it took for the pulse to travel the distance d between the emitter and detector.
Based on the known propagation speed in the medium (330 m/s for ultrasound),
the distance d̂ is estimated. One frustrating limitation of ultrasound systems is
reverberation between surfaces, causing the pulse to be received multiple times at
each detector.

When functioning correctly, the position of the detector could then be nar-
rowed down to a sphere of radius d̂, centered at the transmitter; see Figure 9.9(a).
By using two transmitters and one microphone, the position is narrowed down
to the intersection of two spheres, resulting in a circle (assuming the transmitter
locations are known). With three transmitters, the position is narrowed down to
two points, and with four or more transmitters, the position is uniquely deter-
mined.1 The emitter and detector roles could easily be reversed so that the object
being tracked carries the emitter, and several receivers are placed around it. The
method of combining these measurements to determine position is called trilater-
ation. If electromagnetic waves, such as radio, light, or infrared, are used instead
of ultrasound, then trilateration could still be applied even though the impossible

1Global positioning systems (GPS) work in this way, but using radio signals, the Earth
surface constraint, and at least one more satellite eliminate time synchronization errors.
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(a) (b)

Figure 9.10: (a) A magnetic dipole offers a field that varies its magnitude and
direction as the position changes (figure by Wikipedia user Geek3). (b) The
Razer Hydra, a game controller system that generates a weak magnetic field
using a base station, enabling it to track the controller positions (figure by
http://www.GamingShogun.com/).

to measure the propagation time directly. If the transmitter amplitude is known
then distance can be estimated based on power degradation, rather than TOA.
Alternatively, a time-varying signal can be emitted and its reflected phase shift
can be estimated when the received signal is superimposed onto the transmitted
signal.

If the detectors do not know the precise time that the pulse started, then they
could compare differences in arrival times between themselves; this is called time
difference of arrival (TDOA). The set of possible locations is a hyperboloid instead
of a sphere. Nevertheless, the hyperboloid sheets can be intersected for multiple
emitter-detector pairs to obtain the method of multilateration. This was used in
the Decca Navigation System in World War II to locate ships and aircraft. This
principle is also used by our ears to localize the source of sounds, which will be
covered in Section 11.3.

Finally, some methods could track position by emitting a complicated field that
varies over the tracking area. For example, by creating a magnetic dipole, perhaps
coded with a signal to distinguish it from background fields, the position and
orientation of a body in the field could be estimated in the field; see Figure 9.10(a).
This principle was used for video games in the Razer Hydra tracking system in a
base station that generated a magnetic field; see Figure 9.10(b). One drawback
is that the field may become unpredictably warped in each environment, causing
straight-line motions to be estimated as curved. Note that the requirements are
the opposite of what was needed to use a magnetometer for yaw correction in
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Figure 9.11: The real world contains special features, which are determined to lie
along a line segment that connects to the focal point via perspective projection.

Section 9.2; in that setting the field needed to be constant over the tracking area.
For estimating position, the field should vary greatly across different locations.

The power of visibility The most powerful paradigm for 6-DOF tracking is
visibility. The idea is to identify special parts of the physical world called features
and calculate their positions along a line-of-sight ray to a known location. Figure
9.11 shows an example inspired by a camera, but other hardware could be used.
One crucial aspect for tracking is distinguishability. If all features appear to be the
same, then it may become difficult to determine and maintain “which is which”
during the tracking process. Each feature should be assigned a unique label that
is invariant over time, as rigid bodies in the world move. Confusing features with
each other could cause catastrophically bad estimates to be made regarding the
body pose.

The most common sensor used to detect features is a digital camera. Detecting,
labeling, and tracking features are common tasks in computer vision or image
processing. There are two options for features:

1. Natural: The features are automatically discovered, assigned labels, and
maintained during the tracking process.

2. Artificial: The features are engineered and placed into the environment so
that they can be easily detected, matched to preassigned labels, and tracked.

Natural features are advantageous because there are no setup costs. The environ-
ment does not need to be engineered. Unfortunately, they are also much more
unreliable. Using a camera, this is considered to be a hard computer vision prob-
lem because it may be as challenging as it is for the human visual system. For
some objects, textures, and lighting conditions, it could work well, but it is ex-
tremely hard to make it work reliably for all possible settings. Imagine trying to
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Figure 9.12: A sample QR code, which could be printed and used as an artificial
feature. (Picture from Wikipedia.)

find and track features on an empty, white wall. Therefore, artificial features are
much more common in products.

For artificial features, one of the simplest solutions is to print a special tag
onto the object to be tracked. For example, one could print bright red dots onto
the object and then scan for their appearance as red blobs in the image. To
solve the distinguishability problem, multiple colors, such as red, green, blue, and
yellow dots, might be needed. Trouble may occur if these colors exist naturally in
other parts of the image. A more reliable method is to design a specific tag that
is clearly distinct from the rest of the image. Such tags can be coded to contain
large amounts of information, including a unique identification number. One of
the most common coded tags is the QR code, an example of which is shown in
Figure 9.12.

The features described so far are called passive because they do not emit
energy. The hope is that sufficient light is in the world so that enough reflects
off of the feature and enters the camera sensor. A more reliable alternative is to
engineer active features that emit their own light. For example, colored LEDs
can be mounted on the surface of a headset or controller. This comes at the
expense of requiring a power source and increasing overall object cost and weight.
Furthermore, its industrial design may be compromised because it might light up
like a Christmas tree.

Cloaking with infrared Fortunately, all of these tricks can be moved to the
infrared (IR) part of the spectrum so that features are visible to cameras, but not
to humans. Patterns can be painted onto objects that highly reflect IR energy.
Alternatively, IR LEDs can be mounted onto devices. This is the case for the
Oculus Rift headset, and the IR LEDs are even hidden behind plastic that is
transparent for IR energy, but appears black to humans; see Figure 9.13.

In some settings, it might be difficult to mount LEDs on the objects, as in
the case of tracking the subtle motions of an entire human body. This is called
MOCAP or motion capture, which is described in Section 9.4. In MOCAP sys-
tems, powerful IR LEDs are positioned around the camera so that they illuminate
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Figure 9.13: The Oculus Rift headset contains IR LEDs hidden behind IR-
transparent plastic. (Photo from www.ifixit.com.)

retroreflective markers that are placed in the scene. Each marker can be imagined
as a spherical mirror in the IR part of the spectrum. One unfortunate drawback is
that the range is limited because IR energy must travel from the camera location
to the target and back again. Since energy dissipates quadratically as a function
of distance, doubling the distance results on one-fourth of the energy level arriving
at the camera.

At this point, it is natural to wonder why an entire image is being captured
if the resulting image processing problem is trivial. The main reason is the pro-
liferation of low-cost digital cameras and image processing software. Why not
simply design an emitter-detector pair that produces a binary reading, indicating
whether the visibility beam is occluded? This is precisely how the detection beam
works in an automatic garage door system to ensure the door does not close on
someone: An IR LED emits energy to a detection photodiode, which is essentially
a switch that activates when it receives a sufficient level of energy for its target
wavelength (in this case IR). To reduce the amount of energy dissipation, mirrors
or lenses could be used to focus the energy.

Even better, an IR laser can be aimed directly at the detector. The next task
is to use lenses and moving mirrors so that every detector that is visible from a
fixed location will become illuminated at some point. The beam can be spread
from a dot to a line using a lens, and then the line is moved through space using
a spinning mirror. This is the basis of the lighthouse tracking system for the HTC
Vive headset, which is covered later in this section.

The Perspective-n-Point (PnP) problem A moving rigid body needs to be
“pinned down” using n observed features. This is called the Perspective-n-Point
(or PnP) problem. We can borrow much of the math from Chapter 3; however,
here we consider the placement of bodies in the real world, rather than the virtual
world. Furthermore, we have an inverse problem, which is to determine the body
placement based on points in the image. Up until now, the opposite problem was
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Figure 9.14: Each feature that is visible eliminates 2 DOFs. On the left, a single
feature is visible, and the resulting rigid body has only 4 DOFs remaining. On the
right, two features are visible, resulting in only 2 DOFs. This can be visualized
as follows. The edge that touches both segments can be moved back and forth
while preserving its length if some rotation is also applied. Rotation about an
axis common to the edge provides the second DOF.

considered. For visual rendering in Chapter 7, an image was produced based on
the known body placement in the (virtual) world.

The features could be placed on the body or in the surrounding world, depend-
ing on the sensing method. Suppose for now that they are on the body. Each
feature corresponds to a point p = (x, y, z) with coordinates defined in the frame
of the body. Let Trb be a homogeneous transformation matrix that contains the
pose parameters, which are assumed to be unknown. Applying the transform Trb

to the point p as in (3.22) could place it anywhere in the real would. Recall the
chain of transformations (3.41), which furthermore determines where each point
on the body would appear in an image. The matrix Teye held the camera pose,
whereas Tvp and Tcan contained the perspective projection and transformed the
projected point into image coordinates.

Now suppose that a feature has been observed to be at location (i, j) in image
coordinates. If Trb is unknown, but all other transforms are given, then there
would be six independent parameters to estimate, corresponding to the 6 DOFs.
Observing (i, j) provides two independent constraints on the chain of transforms
(3.41), one i and one for j. The rigid body therefore loses 2 DOFs, as shown in
Figure 9.14. This was the P1P problem because n, the number of features, was
one.

The P2P problem corresponds to observing two features in the image and
results in four constraints. In this case, each constraint eliminates two DOFs,
resulting in only two remaining DOFs; see Figure 9.14. Continuing further, if three
features are observed, then for the P3P problem, zero DOFs remain (except for
the case in which collinear features are chosen on the body). It may seem that the
problem is completely solved; however, zero DOFs allows for a multiple solutions
(they are isolated points in the space of solutions). The P3P problem corresponds
to trying to place a given triangle into a pyramid formed by rays so that each
triangle vertex touches a different ray. This can be generally accomplished in
four ways, which are hard to visualize. Imagine trying to slice a tall, thin pyramid
(simplex) made of cheese so that four different slices have the exact same triangular
size and shape. The cases of P4P and P5P also result in ambiguous solutions.
Finally, in the case of P6P, unique solutions are always obtained if no four features
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Figure 9.15: Two cases for camera placement: (a) A world-fixed camera is sta-
tionary, and the motions of objects relative to it are estimated using features on
the objects. (b) An object-fixed camera is frequently under motion and features
are ideally fixed to the world coordinate frame.

are coplanar. All of the mathematical details are worked out in [43].

The PnP problem has been described in the ideal case of having perfect coor-
dinate assignments to the feature points on the body and the perfect observation
of those through the imaging process. In practice, small errors are made due to
factors such as sensor noise, image quantization, and manufacturing tolerances.
This results in ambiguities and errors in the estimated pose, which could deviate
substantially from the correct answer [33]. Therefore, many more features may
be used in practice to improve accuracy. Furthermore, a calibration procedure,
such as bundle adjustment [14, 32, 38], may be applied before the device is used
so that the feature point locations can be more accurately assigned before pose
estimation is performed. Robustness may be improved by employing RANSAC
[9].

Camera-based implementation The visibility problem may be solved using
a camera in two general ways, as indicated in Figure 9.15. Consider the camera
frame, which is analogous to the eye frame from Figure 3.14 in Chapter 3. A
world-fixed camera is usually stationary, meaning that the camera frame does not
move relative to the world. A single transformation may be used to convert an
object pose as estimated from the camera frame into a convenient world frame.
For example, in the case of the Oculus Rift headset, the head pose could be
converted to a world frame in which the −z direction is pointing at the camera,
y is “up”, and the position is in the center of the camera’s tracking region or
a suitable default based on the user’s initial head position. For an object-fixed
camera, the estimated pose, derived from features that remain fixed in the world,
is the transformation from the camera frame to the world frame. This case would
be obtained, for example, if QR codes were placed on the walls.

As in the case of an IMU, calibration is important for improving sensing ac-
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curacy. The following homogeneous transformation matrix can be applied to the
image produced by a camera:





αx γ u0

0 αy v0
0 0 1



 (9.23)

The five variables appearing in the matrix are called intrinsic parameters of the
camera. The αx and αy parameters handle scaling, γ handles shearing, and u0

and v0 handle offset of the optical axis. These parameters are typically estimated
by taking images of an object for which all dimensions and distances have been
carefully measured, and performing least-squares estimation to select the param-
eters that reduce the sum-of-squares error (as described in Section 9.1). For a
wide-angle lens, further calibration may be needed to overcome optical distor-
tions (recall Section 7.3).

Now suppose that a feature has been observed in the image, perhaps using
some form of blob detection to extract the pixels that correspond to it from the
rest of the image [32, 35]. This is easiest for a global shutter camera because
all pixels will correspond to the same instant of time. In the case of a rolling
shutter, the image may need to be transformed to undo the effects of motion
(recall Figure 4.33). The location of the observed feature is calculated as a statistic
of the blob pixel locations. Most commonly, the average over all blob pixels is
used, resulting in non-integer image coordinates. Many issues affect performance:
1) quantization errors arise due to image coordinates for each blob pixel being
integers; 2) if the feature does not cover enough pixels, then the quantization
errors are worse; 3) changes in lighting conditions may make it difficult to extract
the feature, especially in the case of natural features; 4) at some angles, two or
more features may become close in the image, making it difficult to separate their
corresponding blobs; 5) as various features enter or leave the camera view, the
resulting estimated pose may jump. Furthermore, errors tend to be larger along
the direction of the optical axis.

Laser-based implementation By designing a special emitter-detector pair,
the visibility problem can be accurately solved over great distances. This was
accomplished by the lighthouse tracking system of the 2016 HTC Vive headset,
and the Minnesota scanner from 1989 [34]. Figure 9.16 shows the lighthouse
tracking hardware for the HTC Vive. The operation of a camera is effectively
simulated, as shown in Figure 9.17(a).

If the base station were a camera, then the sweeping vertical stripe would
correspond to estimating the row of the pixel that corresponds to the feature;
see Figure 9.17(a). Likewise, the sweeping horizontal stripe corresponds to the
pixel column. The rotation rate of the spinning drum is known and is analogous
to the camera frame rate. The precise timing is recorded as the beam hits each
photodiode.
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Figure 9.16: The laser-based tracking approach used in the HTC Vive headset:
(a) A base station contains spinning drums that emit horizontal and vertical
sheets of IR light. An array of IR LEDs appears in the upper left, which provide
a synchronization flash (photographer Ben Lang, publisher: Road to VR). (b)
Photodiodes in pockets on the front of the headset detect the incident IR light
(photo by Maurizio Pesce, CC BY 2.0).

Think about polar coordinates (distance and angle) relative to the base station.
Using the angular velocity of the sweep and the relative timing differences, the
angle between the features as “observed” from the base station can be easily
estimated. Although the angle between features is easily determined, their angles
relative to some fixed direction from the base station must be determined. This is
accomplished by an array of IR LEDs that are pulsed on simultaneously so that all
photodiodes detect the flash (visible in Figure 9.16(a)). This could correspond, for
example, to the instant of time at which each beam is at the 0 orientation. Based
on the time from the flash until the beam hits a photodiode, and the known angular
velocity, the angle of the observed feature is determined. To reduce temporal drift
error, the flash may be periodically used during operation.

As in the case of the camera, the distances from the base station to the features
are not known, but can be determined by solving the PnP problem. Multiple base
stations can be used as well, in a way that is comparable to using multiple cameras
or multiple eyes to infer depth. The result is accurate tracking over a large area,
as shown in Figure 9.17(b).

Filtering As in Section 9.2, outputs from sensors are combined over time by a
filtering method to maintain the estimate. In the current setting, the pose can
be maintained by combining both visibility information and outputs of an IMU.
For the orientation component of the pose, the complementary filter from (9.10)
could be used. The camera provides an additional source for detecting orientation
drift error. The camera optical axis is a straightforward reference for yaw error
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(a) (b)

Figure 9.17: (a) This is a 2D view of the angular sweep of the IR stripe in the
laser-based tracking approach (as in HTC Vive). This could correspond to a top-
down view, in which a vertical stripe spins with a yaw rotation about the base.
In this case, the angular locations in the horizontal direction are observed, similar
to column coordinates of a camera image. This could also correspond to a side
view, in which case the vertical stripe spins with a pitch rotation and the angular
locations in the vertical direction are observed. As the beam hits the features,
which are photodiodes, the direction is known because of the spinning rate and
time since the synchronization flash. (b) By putting two base stations on top of
poles at the corners of the tracking area, a large region can be accurately tracked
for a headset and controllers. (Drawing by Chris Stobing.)

estimation detection, which makes it a clear replacement for the magnetometer.
If the camera tilt is known, then the camera can also provide accurate tilt error
estimation.

The IMU was crucial for obtaining highly accurate orientation tracking be-
cause of accurate, high-frequency estimates of angular velocity provided by the
gyroscope. If the frame rate for a camera or lighthouse system is very high,
then sufficient sensor data may exist for accurate position tracking; however, it is
preferable to directly measure derivatives. Unfortunately, IMUs do not measure
linear velocity. However, the output of the linear accelerometer could be used
as suggested in the beginning of this section. Suppose that the accelerometer
estimates the body acceleration as

â[k] = (âx[k], ây[k], âz[k]) (9.24)

in the world frame (this assumes the gravity component has been subtracted from
the accelerometer output).

By numerical integration, the velocity v̂[k] can be estimated from â[k]. The po-
sition p̂[k] is estimated by integrating the velocity estimate. The update equations
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using simple Euler integration are

v̂[k] = â[k]∆t+ v̂[k − 1]
p̂[k] = v̂[k]∆t+ p̂[k − 1].

(9.25)

Note that each equation actually handles three components, x, y, and z, at the
same time. The accuracy of the second equation can be further improved by
adding 1

2
â[k]∆t2 to the right side.

As stated earlier, double integration of the acceleration leads to rapidly growing
position drift error, denoted by d̂p[k] . The error detected from PnP solutions

provide an estimate of d̂p[k], but perhaps at a much lower rate than the IMU
produces observations. For example, a camera might take pictures at 60 FPS and
the IMU might report accelerations at 1000 FPS.

The complementary filter from (9.10) can be extended to the case of double
integration to obtain

pc[k] = p̂[k]− αpd̂p[k]

vc[k] = v̂[k]− αvd̂p[k].
(9.26)

Above, pc[k] and vc[k] are the corrected position and velocity, respectively, which
are each calculated by a complementary filter. The estimates p̂[k] and v̂[k] are cal-
culated using (9.25). The parameters αp and αv control the amount of importance
given to the drift error estimate in comparison to IMU updates.

Equation (9.26) is actually equivalent to a Kalman filter, which is the opti-
mal filter (providing the most accurate estimates possible) for the case of a linear
dynamical system with Gaussian noise, and sensors that also suffer from Gaus-
sian noise. Let ω2

d represent the variance of the estimated Gaussian noise in the
dynamical system, and let ω2

s represent the sensor noise variance. The comple-
mentary filter (9.26) is equivalent to the Kalman filter if the parameters are chosen
as αp =

√

2ωd/ωs and αv = ωd/ωs [15]. A large variety of alternative filtering
methods exist; however, the impact of using different filtering methods is usually
small relative to calibration, sensor error models, and dynamical system mod-
els that are particular to the setup. Furthermore, the performance requirements
are mainly perceptually based, which could be different than the classical criteria
around which filtering methods were designed [26].

Once the filter is running, its pose estimates can be used to aid the PnP
problem. The PnP problem can be solved incrementally by perturbing the pose
estimated by the filter, using the most recent accelerometer outputs, so that the
observed features are perfectly matched. Small adjustments can be made to the
pose so that the sum-of-squares error is reduced to an acceptable level. In most
case, this improves reliability when there are so few features visible that the PnP
problem has ambiguous solutions. Without determining the pose incrementally,
a catastrophic jump to another PnP solution might occur.
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9.4 Tracking Attached Bodies

Many tracking problems involve estimating the motion of one body relative to
another attached, moving body. For example, an eye rotates inside of its socket,
which is part of the skull. Although the eye may have six DOFs when treated
as a rigid body in space, its position and orientation are sufficiently characterized
with two or three parameters once the head pose is given. Other examples include
the head relative to the torso, a hand relative to the wrist, and the tip of a finger
relative to its middle bone. The entire human body can even be arranged into a
tree of attached bodies, based on a skeleton. Furthermore, bodies may be attached
in a similar way for other organisms, such as dogs or monkeys, and machinery,
such as robots or cars. In the case of a car, the wheels rotate relative to the
body. In all of these case, the result is a multibody system. The mathematical
characterization of the poses of bodies relative to each other is called multibody
kinematics, and the full determination of their velocities and accelerations is called
multibody dynamics.

Eye tracking Eye tracking systems been used by vision scientists for over a
century to study eye movements. Three main uses for VR are: 1) To accomplish
foveated rendering, as mentioned in Section 5.4, so that high-resolution rendering
need only be performed for the part of the image that lands on the fovea. 2) To
study human behavior by recording tracking data so that insights may be gained
into VR sickness, attention, and effectiveness of experiences. 3) To render the
eye orientations in VR so that social interaction may be improved by offering
eye-contact and indicating someone’s focus of attention; see Section 10.4.

Three general categories of eye-tracking approaches have been developed [7,
40]. The first is electro-oculography (EOG), which obtains measurements from sev-
eral electrodes placed on the facial skin around each eye. The recorded potentials
correspond to eye muscle activity, from which the eye orientation relative to the
head is determined through filtering. The second approach uses a contact lens,
which contains a tiny magnetic coil that causes a potential change in a surround-
ing electromagnetic field. The third approach is called video oculography (VOG),
which shines IR light onto the eye and senses its corneal reflection using a camera
or photodiodes. The reflection is based on Purkinje images, as shown in Figure
9.18. Because of its low cost and minimal invasiveness, this is the most commonly
used method today. The contact lens approach is the most accurate; however, it
is also the most uncomfortable.

Forward kinematics Suppose that an eye tracking method has estimated the
eye orientation relative to the human skull and it needs to be placed accordingly
in the virtual world. This transformation must involve a combination of the head
and eye transforms. For a more complicated problem, consider placing the right
index finger in the world by using pose of the torso along with all of the angles
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(a) (b)

Figure 9.18: (a) The first and sometimes the fourth Purkinje images of an IR
light source are used for eye tracking. (Copyright by 2012 Gneo et al.; license
BioMed Central Ltd.) (b) The first Purkinje image generates a bright reflection
as shown. (Picture from Massimo Gneo, Maurizio Schmid, Silvia Conforto, and
Tomasso D’Alessio.)

formed between bones at each joint. To understand how these and other related
problems are solved, it is helpful to first consider 2D examples.

Each body of a multibody system is called a link, and a pair of bodies are
attached at a joint, which allows one or more DOFs of motion between them.
Figure 9.19 shows two common ways that one planar body might move while
attached to another. The revolute joint is most common and characterizes the
motion allowed by a human elbow.

Consider defining a chain of m links, B1 to Bm, and determining the location
of a point on the last link. The points on each link are defined using coordinates of

Revolute Prismatic

Figure 9.19: Two types of 2D joints: A revolute joint allows one link to rotate
with respect to the other, and a prismatic joint allows one link to translate with
respect to the other.
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Figure 9.20: The body frame of each Bi, for 1 < i < m, is based on the joints
that connect Bi to Bi−1 and Bi+1.

its own body frame. In this frame, the body appears as shown for Bi−1 in Figure
9.20, with the origin at the joint that connects Bi−1 to Bi−2 and the xi−1 axis
pointing through the joint that connects Bi−1 to Bi. To move the points on Bi to
the proper location in the body frame of Bi−1, the homogeneous transform

Ti =





cos θi − sin θi ai−1

sin θi cos θi 0
0 0 1



 . (9.27)

is applied. This rotates Bi by θi, and then translates it along the x axis by ai−1.
For a revolute joint, θi is a variable, and ai−1 is a constant. For a prismatic joint,
θi is constant and ai−1 is a variable.

Points on Bi are moved into the body frame for B1 by applying the product
T2 · · ·Ti. A three-link example is shown in Figure 9.21. To move the first link B1

into the world frame, a general 2D homogeneous transform can be applied:

T1 =





cos θi − sin θi xt

sin θi cos θi yt
0 0 1



 . (9.28)

This transform is simply added to the matrix product to move each Bi by applying
T1T2 · · ·Ti.

A chain of 3D links is handled in the same way conceptually, but the algebra
becomes more complicated. See Section 3.3 of [22] for more details. Figure 9.22
shows six different kinds of joints that are obtained by allowing a pair of 3D
links to slide against each other. Each link is assigned a convenient coordinate
frame based on the joints. Each homogeneous transform Ti contains a mixture of
constants and variables in which the variables correspond to the freedom allowed
by the joint. The most common assignment scheme is called Denavit-Hartenberg
parameters [13]. In some settings, it might be preferable to replace each Ti by
a parameterized quaternion that rotates the body, followed by a simple addition
that translates the body.
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(a) A three-link chain (b) B3 in its body frame

(c) T3 puts B3 in B2’s body frame (d) T2T3 puts B3 in B1’s body frame

Figure 9.21: Applying the transformation T2T3 to the model of B3. If T1 is the
identity matrix, then this yields the location in the virtual world of points in B3.
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Revolute Prismatic Screw
1 DOF 1 DOF 1 DOF

Cylindrical Spherical Planar
2 DOFs 3 DOFs 3 DOFs

Figure 9.22: Types of 3D joints arising from the 2D surface contact between two
bodies.

A tree of links may also be considered; a common example is a human torso
serving as the root, with a head, two arms, and two legs being chains that extend
from it. The human hand is another example. Coordinate frames in this case are
often assigned using Kleinfinger-Khalil parameters [19].

Constraints and inverse kinematics Recall the PnP problem from Section
9.3, which involved calculating the pose of a body based on some observed con-
straints. A similar problem is to determine the joint parameters for a chain of
bodies by considering the constraints on the bodies. A common example is to
calculate the poses of the arm links by using only the pose of the hand. This is
generally called the inverse kinematics problem (see [2] and Section 4.4 of [22]).
As in the case of PnP, the number of solutions may be infinite, finite, one, or
zero. Some 2D examples are shown in Figure 9.23. Generally, if the last link is
constrained, then the freedom of motion for the intermediate links increases as the
number of links increases. The Chebychev-Grübler-Kutzbach criterion gives the
number of DOFs, assuming the links are not in some special, singular configura-
tions [3]. A common problem in animating video game characters is to maintain
a kinematic constraint, such as the hand grasping a doorknob, even though the
torso or door is moving. In this case, iterative optimization is often applied to
perturb each joint parameter until the error is sufficiently reduced. The error
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(a) (b)

Figure 9.23: (a) The orientations of both links can be inferred from the position of
the fixed point; however, there is a second solution if the angles are not restricted.
(b) In the case of three links, a one-dimensional family of solutions exists when
the end is fixed. This can be visualized by pushing down on the top joint, which
would cause B1 to rotate counter-clockwise. This is equivalent to the classical
four-bar mechanism, which was used to drive the wheels of a steam engine (the
fourth “link” is simply the fixed background).

would measure the distance between the hand and the doorknob in our example.

Motion capture systems Tracking systems for attached bodies use kinematic
constraints to improve their accuracy. The most common application is tracking
the human body, for which the skeleton is well-understood in terms of links and
joints [44]. Such motion capture systems have been an important technology
for the movie industry as the motions of real actors are brought into a virtual
world for animation. Figure 9.24 illustrates the operation. Features, of the same
kind as introduced in Section 9.3, are placed over the body and are visible to
cameras mounted around the capture studio. The same options exist for visibility,
with the most common approach over the past decade being to use cameras with
surrounding IR LEDs and placing retroreflective markers on the actor.

To obtain a unique pose for each body part, it might seem that six features are
needed (recall P6P from Section 9.3); however, many fewer are sufficient because
of kinematic constraints. Additional features may nevertheless be used if the goal
is to also capture skin motion as it moves along the skeleton. This is especially
important for facial movement. Many new MOCAP technologies are currently
under development. For example, a system developed by Noitom captures human
body movement solely by placing IMUs on the body. Some systems capture
motion by cameras alone, as in the case of Leap Motion (see Figure 9.25) for hand

278 S. M. LaValle: Virtual Reality

Figure 9.24: With a motion capture (MOCAP) system, artificial features are
placed around the body of a human actor. The motions are extracted and matched
to a kinematic model. Each rigid body in the model has an associated geometric
model that is rendered to produce the final animated character. (Picture from
Wikipedia user Hipocrite.)

tracking, and systems by Microsoft and 8i for full-body tracking by extracting
contours against a green screen. Solutions based on modern depth sensors may
also become prevalent in the near future. One challenge is to make highly accurate
and reliable systems for low cost and installation effort.

9.5 3D Scanning of Environments

Up until now, this chapter has described how to use sensors to track the motions of
one or more rigid bodies. By contrast, this section describes how sensors are used
to build geometric models of rigid bodies. These could be movable or stationary
models, as introduced in Section 3.1. A movable model typically corresponds to
an object that is being manipulated by the user, such as a sword, hammer, or
coffee cup. These models are often built from a 3D scanner, which images the
object from many viewpoints in a controlled way. The object may be placed on a
surface that is surrounded by cameras and other sensors, or it could be placed on a
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(a) (b)

Figure 9.25: (a) The hand model used by Leap Motion tracking. (b) The tracked
model superimposed in an image of the actual hands. (Figures by Leap Motion.)

turntable that rotates the object so that it is observed from numerous viewpoints.
Alternatively, the sensors may move around while the object remains stationary;
see Figure 9.26(a).

SLAM A 3D scanner is useful for smaller objects, with surrounding sensors
facing inward. For larger objects and stationary models, the sensors are usually
inside facing out; see Figure 9.26(b). A common example of a stationary model
is the inside of a building. Scanning such models is becoming increasingly im-
portant for surveying and forensics. This is also the classical robotics problem of
mapping, in which a robot carrying sensors builds a 2D or 3D representation of
its world for the purposes of navigation and collision avoidance. Robots usually
need to estimate their locations based on sensors, which is called the localization
problem. Robot localization and tracking bodies for VR are fundamentally the
same problems, with the main distinction being that known motion commands
are given to robots, but the corresponding human intent is not directly given.
Robots often need to solve mapping and localization problems at the same time,
which results in the simultaneous localization and mapping problem; the acronym
SLAM is widely used. Due to the similarity of localization, mapping, and VR
tracking problems, deep connections exist between robotics and VR. Therefore,
many mathematical models, algorithms, and sensing technologies overlap.

Consider the possible uses of a large, stationary model for VR. It could be
captured to provide a virtual world in which the user is placed at the current
time or a later time. Image data could be combined with the 3D coordinates
of the model, to produce a photorealistic model (recall Figure 2.14 from Section
2.2). This is achieved by texture mapping image patches onto the triangles of the
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(a) (b)

Figure 9.26: (a) The Afinia ES360 scanner, which produces a 3D model of an
object while it spins on a turntable. (b) The Focus3D X 330 Laser Scanner, from
FARO Technologies, is an outward-facing scanner for building accurate 3D models
of large environments; it includes a GPS receiver to help fuse individual scans into
a coherent map.

model.

Live capture of the current location Rather than capturing a world in which
to transport the user, sensors could alternatively be used to capture the physical
world where the user is currently experiencing VR. This allows obstacles in the
matched zone to be rendered in the virtual world, which might be useful for safety
or to improve interactivity. For safety, the boundaries of the matched zone could
be rendered to indicate that the user is about to reach the limit. Hazards such as
a hot cup of coffee or a pet walking across the matched zone could be indicated.
Interactivity can be improved by bringing fixed objects from the physical world
into the virtual world. For example, if the user is sitting in front of a desk, then
the desk can be drawn in the virtual world. If she touches the virtual desk, she
will feel the real desk pushing back. This is a relatively easy way to provide touch
feedback in VR.

Are panoramas sufficient? Before embarking on the process of creating a
large, detailed map of a surrounding 3D world, it is important to consider whether
it is necessary. As mentioned in Section 7.5, panoramic images and videos are be-
coming increasingly simple to capture. In some applications, it might be sufficient
to build an experience in which the user is transported between panoramas that
were captured from many locations that are close to each other.
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Figure 9.27: By using two cameras, stereo vision enables the location of a feature
in the 3D world to be determined by intersecting the corresponding visibility ray
from each camera. To accomplish this, the camera calibration parameters and
relative poses must be known. Similarly, one camera could be replaced by a laser
that illuminates the feature so that it is visible to the remaining camera. In either
case, the principle is to intersect two visibility rays to obtain the result.

The main ingredients Building a 3D model from sensor data involves three
important steps:

1. Extracting a 3D point cloud from a fixed location.

2. Combining point clouds from multiple locations.

3. Converting a point cloud into a mesh of triangles.

For the first step, a sensor is placed at a fixed position and orientation while
3D points are extracted. This could be accomplished in a number of ways. In
theory, any of the depth cues from Section 6.1 can be applied to camera images to
extract 3D points. Variations in focus, texture, and shading are commonly used
in computer vision as monocular cues. If two cameras are facing the same scene
and their relative positions and orientations are known, then binocular cues are
used to determine depth. By identifying the same natural feature in both images,
the corresponding visibility rays from each image are intersected to identify a
point in space; see Figure 9.27. As in Section 9.3, the choice between natural and
artificial features exists. A single camera and an IR projector or laser scanner
may be used in combination so that depth is extracted by identifying where the
lit point appears in the image. This is the basis of the Microsoft Kinect sensor
(recall Figure 2.10 from Section 2.1). The resulting collection of 3D points is often
called a point cloud.

In the second step, the problem is to merge scans from multiple locations.
If the relative position and orientation of the scanner between scans is known,
then the problem is solved. In the case of the object scanner shown in Figure
9.26(a), this was achieved by rotating the object on a turntable so that the position
remains fixed and the orientation is precisely known for each scan. Suppose the
sensor is instead carried by a robot, such as a drone. The robot usually maintains
its own estimate of its pose for purposes of collision avoidance and determining
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whether its task is achieved. This is also useful for determining the pose that
corresponds to the time at which the scan was performed. Typically, the pose
estimates are not accurate enough, which leads to an optimization problem in
which the estimated pose is varied until the data between overlapping scans nicely
aligns. The estimation-maximization (EM) algorithm is typically used in this case,
which incrementally adjusts the pose in a way that yields the maximum likelihood
explanation of the data in a statistical sense. If the sensor is carried by a human,
then extra sensors may be included with the scanning device, as in the case of
GPS for the scanner in Figure 9.26(b); otherwise, the problem of fusing data from
multiple scans could become too difficult.

In the third stage, a large point cloud has been obtained and the problem is
to generate a clean geometric model. Many difficulties exist. The point density
may vary greatly, especially where two or more overlapping scans were made. In
this case, some points may be discarded. Another problem is that outliers may
exist, which correspond to isolated points that are far from their correct location.
Methods are needed to detect and reject outliers. Yet another problem is that
large holes or gaps in the data may exist. Once the data has been sufficiently
cleaned, surfaces are typically fit to the data, from which triangular meshes are
formed. Each of these problems is a research area in itself. To gain some famil-
iarity, consider experimenting with the open-source Point Cloud Library, which
was developed to handle the operations that arise in the second and third stages.
Once a triangular mesh is obtained, texture mapping may also be performed if
image data is also available. One of the greatest challenges for VR is that the
resulting models often contain numerous flaws which are much more noticeable in
VR than on a computer screen.

Further Reading

In addition to academic papers such as [10], some of the most useful coverage for IMU
calibration appears in corporate white papers, such as [31]. For magnetometer calibra-
tion, see [12, 20, 24, 39]. Oculus Rift 3D orientation tracking is covered in [25, 23, 24, 27].
To fully understand vision-based tracking methods, see vision books [14, 28, 35]. Many
approaches to PnP apear in research literature, such as [43, 45]. An excellent, but older,
survey of tracking methods for VR/AR is [42]. One of the most highly cited works is
[18]. See [30] for integration of IMU and visual data for tracking.

Eye tracking is surveyed in [7, 40]. Human body tracking is covered in [46]. To
fully understand kinematic constraints and solutions to inverse kiematics problems, see
[2, 4, 6]. SLAM from a robotics perspective is thoroughly presented in [37]. A recent
survey of SLAM based on computer vision appears in [11]. Filtering or sensor fusion in
the larger context can be characterized in terms of information spaces (see Chapter 11
of [22]).
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