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Chapter 8

Motion in Real and Virtual
Worlds

Up to this point, the discussion of movement has been confined to specialized
topics. Section 5.3 covered eye movements and Section 6.2 covered the perception
of motion. The transformations from Chapter 3 indicate how to place bodies and
change viewpoints, but precise mathematical descriptions of motions have not yet
been necessary. We now want to model motions more accurately because the
physics of both real and virtual worlds impact VR experiences. The accelerations
and velocities of moving bodies impact simulations in the VWG and tracking
methods used to capture user motions in the physical world. Therefore, this
chapter provides foundations that will become useful for reading Chapter 9 on
tracking, and Chapter 10 on interfaces.

Section 8.1 introduces fundamental concepts from math and physics, including
velocities, accelerations, and the movement of rigid bodies. Section 8.2 presents
the physiology and perceptual issues from the human vestibular system, which
senses velocities and accelerations. Section 8.3 then describes how motions are
described and produced in a VWG. This includes numerical integration and col-
lision detection. Section 8.4 focuses on vection, which is a source of VR sickness
that arises due to sensory conflict between the visual and vestibular systems: The
eyes may perceive motion while the vestibular system is not fooled. This can be
considered as competition between the physics of the real and virtual worlds.

8.1 Velocities and Accelerations

8.1.1 A one-dimensional world

We start with the simplest case, which is shown in Figure 8.1. Imagine a 1D world
in which motion is only possible in the vertical direction. Let y be the coordinate
of a moving point. Its position at any time t is indicated by y(t), meaning that y
actually defines a function of time. It is now as if y were an animated point, with
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Figure 8.1: A point moving in a one-dimensional world.

an infinite number of frames per second!

Velocity How fast is the point moving? Using calculus, its velocity, v, is defined
as the derivative of y with respect to time:

v =
dy(t)

dt
. (8.1)

Using numerical computations, v is approximately equal to ∆y/∆t, in which ∆t
denotes a small change in time and

∆y = y(t+∆t)− y(t). (8.2)

In other words, ∆y is the change in y from the start to the end of the time change.
The velocity v can be used to estimate the change in y over ∆t as

∆y ≈ v∆t. (8.3)

The approximation quality improves as ∆t becomes smaller and v itself varies less
during the time from t to t+∆t.

We can write v(t) to indicate that velocity may change over time. The position
can be calculated for any time t from the velocity using integration as1

y(t) = y(0) +

∫ t

0

v(s)ds, (8.4)

which assumes that y was known at the starting time t = 0. If v(t) is constant for
all time, represented as v, then y(t) = y(0) + vt. The integral in (8.4) accounts
for v(t) being allowed to vary.

1The parameter s is used instead of t to indicate that it is integrated away, much like the
index in a summation.
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Acceleration The next step is to mathematically describe the change in veloc-
ity, which results in the acceleration, a; this is defined as:

a =
dv(t)

dt
. (8.5)

The form is the same as (8.1), except that y has been replaced by v. Approxima-
tions can similarly be made. For example, ∆v ≈ a∆t.

The acceleration itself can vary over time, resulting in a(t). The following
integral relates acceleration and velocity (compare to (8.4)):

v(t) = v(0) +

∫ t

0

a(s)ds. (8.6)

Since acceleration may vary, you may wonder whether the naming process
continues. It could, with the next derivative called jerk, followed by snap, crackle,
and pop. In most cases, however, these higher-order derivatives are not necessary.
One of the main reasons is that motions from classical physics are sufficiently
characterized through forces and accelerations. For example, Newton’s Second
Law states that F = ma, in which F is the force acting on a point, m is its mass,
and a is the acceleration.

For a simple example that should be familiar, consider acceleration due to
gravity, g = 9.8m/s2. It is as if the ground were accelerating upward by g; hence,
the point accelerates downward relative to the Earth. Using (8.6) to integrate the
acceleration, the velocity over time is v(t) = v(0) − gt. Using (8.4) to integrate
the velocity and supposing v(0) = 0, we obtain

y(t) = y(0)−
1

2
gt2. (8.7)

8.1.2 Motion in a 3D world

A moving point Now consider the motion of a point in a 3D world R
3. Imagine

that a geometric model, as defined in Section 3.1, is moving over time. This causes
each point (x, y, z) on the model to move, resulting a function of time for each
coordinate of each point:

(x(t), y(t), z(t)). (8.8)

The velocity v and acceleration a from Section 8.1.1 must therefore expand to have
three coordinates. The velocity v is replaced by (vx, vy, vz) to indicate velocity
with respect to the x, y, and z coordinates, respectively. The magnitude of v is
called the speed:

√

v2x + v2y + v2z (8.9)

Continuing further, the acceleration also expands to include three components:
(ax, ay, az).

220 S. M. LaValle: Virtual Reality

(a) (b)

Figure 8.2: (a) Consider a merry-go-round that rotates at constant angular ve-
locity ω. (Picture by Seattle Parks and Recreation.) (b) In a top-down view,
the velocity vector, v, for a point on the merry-go-round is tangent to the circle
that contains it; the circle is centered on the axis of rotation and the acceleration
vector, a, points toward its center.

Rigid-body motion Now suppose that a rigid body is moving through R
3. In

this case, all its points move together. How can we easily describe this motion?
Recall from Section 3.2 that translations or rotations may be applied. First,
consider a simple case. Suppose that rotations are prohibited, and the body is
only allowed to translate through space. In this limited setting, knowing the
position over time for one point on the body is sufficient for easily determining
the positions of all points on the body over time. If one point has changed its
position by some (xt, yt, zt), then all points have changed by the same amount.
More importantly, the velocity and acceleration of every point would be identical.

Once rotation is allowed, this simple behavior breaks. As a body rotates, the
points no longer maintain the same velocities and accelerations. This becomes
crucial to understanding VR sickness in Section 8.4 and how tracking methods
estimate positions and orientations from sensors embedded in the world, which
will be discussed in Chapter 9.

Angular velocity To understand the issues, consider the simple case of a spin-
ning merry-go-round, as shown in Figure 8.2(a). Its orientation at every time can
be described by θ(t); see Figure 8.2(b). Let ω denote its angular velocity:

ω =
dθ(t)

dt
. (8.10)

By default, ω has units of radians per second. If ω = 2π, then the rigid body
returns to the same orientation after one second.



8.1. VELOCITIES AND ACCELERATIONS 221

Assuming θ(0) = 0 and ω is constant, the orientation at time t is given by
θ = ωt. To describe the motion of a point on the body, it will be convenient to
use polar coordinates r and θ:

x = r cos θ and y = r sin θ. (8.11)

Substituting θ = ωt yields

x = r cosωt and y = r sinωt. (8.12)

Taking the derivative with respect to time yields2

vx = −rω sinωt and vy = rω cosωt. (8.13)

The velocity is a 2D vector that when placed at the point is tangent to the circle
that contains the point (x, y); see Figure 8.2(b).

This makes intuitive sense because the point is heading in that direction;
however, the direction quickly changes because it must move along a circle. This
change in velocity implies that a nonzero acceleration occurs. The acceleration of
the point (x, y) is obtained by taking the derivative again:

ax = −rω2 cosωt and ay = −rω2 sinωt. (8.14)

The result is a 2D acceleration vector that is pointing toward the center (Figure
8.2(b)), which is the rotation axis. This is called centripetal acceleration. If you
were standing at that point, then you would feel a pull in the opposite direction,
as if nature were attempting to fling you away from the center. This is precisely
how artificial gravity can be achieved in a rotating space station.

3D angular velocity Now consider the rotation of a 3D rigid body. Recall from
Section 3.3 that Euler’s rotation theorem implies that every 3D rotation can be
described as a rotation θ about an axis v = (v1, v2, v3) though the origin. As the
orientation of the body changes over a short period of time ∆t, imagine the axis
that corresponds to the change in rotation. In the case of the merry-go-round,
the axis would be v = (0, 1, 0). More generally, v could be any unit vector.

The 3D angular velocity is therefore expressed as a 3D vector:

(ωx, ωy, ωz), (8.15)

which can be imagined as taking the original ω from the 2D case and multiplying
it by the vector v. This weights the components according to the coordinate axes.
Thus, the components could be considered as ωx = ωv1, ωy = ωv2, and ωz = ωv3.
The ωx, ωy, and ωz components also correspond to the rotation rate in terms of
pitch, roll, and yaw, respectively. We avoided these representations in Section 3.3
due to noncommutativity and kinematic singularities; however, it turns out that
for velocities these problems do not exist [26]. Thus, we can avoid quaternions at
this stage.

2If this is unfamiliar, then look up the derivatives of sines and cosines, and the chain rule,
from standard calculus sources (for example, [27]).
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Angular acceleration If ω is allowed to vary over time, then we must consider
angular acceleration. In the 2D case, this is defined as

α =
dω(t)

dt
. (8.16)

For the 3D case, there are three components, which results in

(αx, αy, αz). (8.17)

These can be interpreted as accelerations of pitch, yaw, and roll angles, respec-
tively.

8.2 The Vestibular System

As mentioned in Section 2.3, the balance sense (or vestibular sense) provides in-
formation to the brain about how the head is oriented or how it is moving in
general. This is accomplished through vestibular organs that measure both linear
and angular accelerations of the head. These organs, together with their associ-
ated neural pathways, will be referred to as the vestibular system. This system
plays a crucial role for bodily functions that involve motion, from ordinary activ-
ity such as walking or running, to activities that require substantial talent and
training, such as gymnastics or ballet dancing. Recall from Section 5.3 that it
also enables eye motions that counteract head movements via the VOR.

The vestibular system is important to VR because it is usually neglected,
which leads to a mismatch of perceptual cues (recall this problem from Section
6.4). In current VR systems, there is no engineered device that renders vestibular
signals to a display that precisely stimulates the vestibular organs to values as
desired. Some possibilities may exist in the future with galvanic vestibular stim-

ulation, which provides electrical stimulation to the organ [8, 7]; however, it may
take many years before such techniques are sufficiently accurate, comfortable, and
generally approved for safe use by the masses. Another possibility is to stimulate
the vestibular system through low-frequency vibrations, which at the very least
provides some distraction.

Physiology Figure 8.4 shows the location of the vestibular organs inside of the
human head. As in the cases of eyes and ears, there are two symmetric organs,
corresponding to the right and left sides. Figure 8.3 shows the physiology of each
vestibular organ. The cochlea handles hearing, which is covered in Section 11.2,
and the remaining parts belong to the vestibular system. The utricle and saccule

measure linear acceleration; together they form the otolith system. When the
head is not tilted, the sensing surface of the utricle mostly lies in the horizontal
plane (or xz plane in our common coordinate systems), whereas the corresponding
surface of the saccule lies in a vertical plane that is aligned in the forward direction
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Figure 8.3: The vestibular organ.

Figure 8.4: The vestibular organs are located behind the ears. (Figure from CNS
Clinic Jordan.)
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Figure 8.5: A depiction of an otolith organ (utricle or saccule), which senses linear
acceleration. (Figure by Lippincott Williams & Wilkins.)

(this is called the sagittal plane, or yz plane). As will be explained shortly, the
utricle senses acceleration components ax and az, and the saccule senses ay and
az (az is redundantly sensed).

The semicircular canals measure angular acceleration. Each canal has a di-
ameter of about 0.2 to 0.3mm, and is bent along a circular arc with a diameter of
about 2 to 3mm. Amazingly, the three canals are roughly perpendicular so that
they independently measure three components of angular velocity. The particular
canal names are anterior canal, posterior canal, and lateral canal. They are not
closely aligned with our usual 3D coordinate coordinate axes. Note from Figure
8.4 that each set of canals is rotated by 45 degrees with respect to the vertical
axis. Thus, the anterior canal of the left ear aligns with the posterior canal of
the right ear. Likewise, the posterior canal of the left ear aligns with the anterior
canal of the right ear. Although not visible in the figure, the lateral canal is also
tilted about 30 away from level. Nevertheless, all three components of angular
acceleration are sensed because the canals are roughly perpendicular.

Sensing linear acceleration To understand how accelerations are sensed, we
start with the case of the otolith system. Figure 8.5 shows a schematic represen-
tation of an otolith organ, which may be either the utricle or saccule. Mechanore-
ceptors, in the form of hair cells, convert acceleration into neural signals. Each
hair cell has cilia that are embedded in a gelatinous matrix. Heavy weights lie on
top of the matrix so that when acceleration occurs laterally, the shifting weight
applies a shearing force that causes the cilia to bend. The higher the acceleration
magnitude, the larger the bending, and a higher rate of neural impulses become
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Figure 8.6: Because of the Einstein equivalence principle, the otolith organs cannot
distinguish linear acceleration of the head from tilt with respect to gravity. In
either case, the cilia deflect in the same way, sending equivalent signals to the
neural structures.

transmitted. Two dimensions of lateral deflection are possible. For example, in
the case of the utricle, linear acceleration in any direction in the xz plane would
cause the cilia to bend. To distinguish between particular directions inside of
this plane, the cilia are polarized so that each cell is sensitive to one particular
direction. This is accomplished by a thicker, lead hair called the kinocilium, to
which all other hairs of the cell are attached by a ribbon across their tips so that
they all bend together.

One major sensing limitation arises because of a fundamental law from physics:
The Einstein equivalence principle. In addition to the vestibular system, it also
impacts VR tracking systems (see Section 9.2). The problem is gravity. If we
were deep in space, far away from any gravitational forces, then linear accelera-
tions measured by a sensor would correspond to pure accelerations with respect to
a fixed coordinate frame. On the Earth, we also experience force due to gravity,
which feels as if we were on a rocket ship accelerating upward at roughly 9.8m/s2.
The equivalence principle states that the effects of gravity and true linear acceler-
ations on a body are indistinguishable. Figure 8.6 shows the result in terms of the
otolith organs. The same signals are sent to the brain whether the head is tilted
or it is linearly accelerating. If you close your eyes or wear a VR headset, then
you should not be able to distinguish tilt from acceleration. In most settings, we
are not confused because the vestibular signals are accompanied by other stimuli
when accelerating, such as vision and a revving engine.

Sensing angular acceleration The semicircular canals use the same principle
as the otolith organs. They measure acceleration by bending cilia at the end of
hair cells. A viscous fluid moves inside of each canal. A flexible structure called
the cupula blocks one small section of the canal and contains the hair cells; see
Figure 8.7. Compare the rotation of a canal to the merry-go-round. If we were
to place a liquid-filled tube around the periphery of the merry-go-round, then the
fluid would remain fairly stable at a constant angular velocity. However, if angular
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Figure 8.7: The cupula contains a center membrane that houses the cilia. If
angular acceleration occurs that is aligned with the canal direction, then pressure
is applied to the cupula, which causes the cilia to bend and send neural signals.

acceleration is applied, then due to friction between the fluid and the tube (and
also internal fluid viscosity), the fluid would start to travel inside the tube. In
the semicircular canal, the moving fluid applies pressure to the cupula, causing
it to deform and bend the cilia on hair cells inside of it. Note that a constant
angular velocity does not, in principle, cause pressure on the cupula; thus, the
semicircular canals measure angular acceleration as opposed to velocity. Each
canal is polarized in the sense that it responds mainly to rotations about an axis
perpendicular to the plane that contains the entire canal.

Impact on perception Cues from the vestibular system are generally weak in
comparison to other senses, especially vision. For example, a common danger for
a skier buried in an avalanche is that he cannot easily determine which way is up
without visual cues to accompany the perception of gravity from the vestibular
system. Thus, the vestibular system functions well when providing consistent
cues with other systems, including vision and proprioception. Mismatched cues
are problematic. For example, some people may experience vertigo when the
vestibular system is not functioning correctly. In this case, they feel as if the world
around them is spinning or swaying. Common symptoms are nausea, vomiting,
sweating, and difficulties walking. This may even impact eye movements because
of the VOR. Section 8.4 explains a bad side effect that results from mismatched
vestibular and visual cues in VR.



8.3. PHYSICS IN THE VIRTUAL WORLD 227

8.3 Physics in the Virtual World

8.3.1 Tailoring the Physics to the Experience

If we expect to fool our brains into believing that we inhabit the virtual world, then
many of our expectations from the real world should be matched in the virtual
world. We have already seen this in the case of the physics of light (Chapter 4)
applying to visual rendering of virtual worlds (Chapter 7). Motions in the virtual
world should also behave in a familiar way.

This implies that the VWG contains a physics engine that governs the mo-
tions of bodies in the virtual world by following principles from the physical world.
Forces acting on bodies, gravity, fluid flows, and collisions between bodies should
be handled in perceptually convincing ways. Physics engines arise throughout en-
gineering and physics in the context of any simulation. In video games, computer
graphics, and film, these engines perform operations that are very close to our
needs for VR. This is why popular game engines such as Unity 3D and Unreal
Engine have been quickly adapted for use in VR. As stated in Section 2.2, we have
not yet arrived at an era in which general and widely adopted VR engines exist;
therefore, modern game engines are worth understanding and utilizing at present.

To determine what kind of physics engine needs to be borrowed, adapted, or
constructed from scratch, one should think about the desired VR experience and
determine the kinds of motions that will arise. Some common, generic questions
are:

• Will the matched zone remain fixed, or will the user need to be moved by
locomotion? If locomotion is needed, then will the user walk, run, swim,
drive cars, or fly spaceships?

• Will the user interact with objects? If so, then what kind of interaction
is needed? Possibilities include carrying weapons, opening doors, tossing
objects, pouring drinks, operating machinery, drawing pictures, and assem-
bling structures.

• Will multiple users be sharing the same virtual space? If so, then how will
their motions be coordinated or constrained?

• Will the virtual world contain entities that appear to move autonomously,
such as robots, animals, or humans?

• Will the user be immersed in a familiar or exotic setting? A familiar setting
could be a home, classroom, park, or city streets. An exotic setting might
be scuba diving, lunar exploration, or traveling through blood vessels.

In addition to the physics engine, these questions will also guide the design of the
interface, which is addressed in Chapter 10.
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Based on the answers to the questions above, the physics engine design may be
simple and efficient, or completely overwhelming. As mentioned in Section 7.4, a
key challenge is to keep the virtual world frequently updated so that interactions
between users and objects are well synchronized and renderers provide a low-
latency projection onto displays.

Note that the goal may not always be to perfectly match what would happen
in the physical world. In a familiar setting, we might expect significant matching;
however, in exotic settings, it often becomes more important to make a com-
fortable experience, rather than matching reality perfectly. Even in the case of
simulating oneself walking around in the world, we often want to deviate from
real-world physics because of vection, which causes VR sickness (see Section 8.4).

The remainder of this section covers some fundamental aspects that commonly
arise: 1) numerical simulation of physical systems, 2) the control of systems using
human input, and 3) collision detection, which determines whether bodies are
interfering with each other.

8.3.2 Numerical simulation

The state of the virtual world Imagine a virtual world that contains many
moving rigid bodies. For each body, think about its degrees of freedom (DOFs),
which corresponds to the number of independent parameters needed to uniquely
determine its position and orientation. We would like to know the complete list of
parameters needed to put every body in its proper place in a single time instant.
A specification of values for all of these parameters is defined as the state of the
virtual world.

The job of the physics engine can then be described as calculating the virtual
world state for every time instant or “snapshot” of the virtual world that would
be needed by a rendering system. Once the state is determined, the mathematical
transforms of Chapter 3 are used to place the bodies correctly in the world and
calculate how they should appear on displays.

Degrees of freedom How many parameters are there in a virtual world model?
As discussed in Section 3.2, a free-floating body has 6 DOFs which implies 6
parameters to place it anywhere. In many cases, DOFs are lost due to constraints.
For example, a ball that rolls on the ground has only 5 DOFs because it can achieve
any 2D position along the ground and also have any 3D orientation. It might be
sufficient to describe a car with 3 DOFs by specifying the position along the ground
(two parameters) and the direction it is facing (one parameter); see Figure 8.8(a).
However, if the car is allowed to fly through the air while performing stunts or
crashing, then all 6 DOFs are needed.

For many models, rigid bodies are attached together in a way that allows
relative motions. This is called multibody kinematics [16, 26]. For example, a
car usually has 4 wheels which can roll to provide one rotational DOF per wheel
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(a) (b)

Figure 8.8: (a) A virtual car (Cheetah) that appears in the game Grand Theft
Auto; how many degrees of freedom should it have? (b) A human skeleton, with
rigid bodies connected via joints, commonly underlies the motions of an avatar.
(Figure from SoftKinetic).

. Furthermore, the front wheels can be steered to provide an additional DOF.
Steering usually turns the front wheels in unison, which implies that one DOF
is sufficient to describe both wheels. If the car has a complicated suspension
system, then it cannot be treated as a single rigid body, which would add many
more DOFs.

Similarly, an animated character can be made by attaching rigid bodies to
form a skeleton; see Figure 8.8(b). Each rigid body in the skeleton is attached
to one or more other bodies by a joint. For example, a simple human character
can be formed by attaching arms, legs, and a neck to a rigid torso. The upper
left arm is attached to the torso by a shoulder joint. The lower part of the arm is
attached by an elbow joint, and so on. Some joints allow more DOFs than others.
For example, the shoulder joint has 3 DOFs because it can yaw, pitch, and roll
with respect to the torso, but an elbow joint has only one DOF.

To fully model the flexibility of the human body, 244 DOFs are needed, which
are controlled by 630 muscles [31]. In many settings, this would be too much detail,
which might lead to high computational complexity and difficult implementation.
Furthermore, one should always beware of the uncanny valley (mentioned in Sec-
tion 1.1), in which more realism might lead to increased perceived creepiness of
the character. Thus, having more DOFs is not clearly better, and it is up to a VR
content creator to determine how much mobility is needed to bring a character to
life, in a way that is compelling for a targeted purpose.

In the extreme case, rigid bodies are not sufficient to model the world. We
might want to see waves rippling realistically across a lake, or hair gently flowing
in the breeze. In these general settings, nonrigid models are used, in which case
the state can be considered as a continuous function. For example, a function of
the form y = f(x, z) could describe the surface of the water. Without making
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some limiting simplifications, the result could effectively be an infinite number
of DOFs. Motions in this setting are typically described using partial differential

equations (PDEs), which are integrated numerically to obtain the state at a desired
time. Usually, the computational cost is high enough to prohibit their use in
interactive VR experiences, unless shortcuts are taken by precomputing motions
or dramatically simplifying the model.

Differential equations We now introduce some basic differential equations to
model motions. The resulting description is often called a dynamical system. The
first step is to describe rigid body velocities in terms of state. Returning to models
that involve one or more rigid bodies, the state corresponds to a finite number of
parameters. Let

x = (x1, x2, . . . , xn) (8.18)

denote an n-dimensional state vector. If each xi corresponds to a position or
orientation parameter for a rigid body, then the state vector puts all bodies in
their place. Let

ẋi =
dxi

dt
(8.19)

represent the time derivative, or velocity, for each parameter.
To obtain the state at any time t, the velocities need to be integrated over

time. Following (8.4), the integration of each state variable determines the value
at time t:

xi(t) = xi(0) +

∫ t

0

ẋi(s)ds, (8.20)

in which xi(0) is the value of xi at time t = 0.
Two main problems arise with (8.20):

1. The integral almost always must be evaluated numerically.

2. The velocity ẋi(t) must be specified at each time t.

Sampling rate For the first problem, time is discretized into steps, in which
∆t is the step size or sampling rate. For example, ∆t might be 1ms, in which case
the state can be calculated for times t = 0, 0.001, 0.002, . . ., in terms of seconds.
This can be considered as a kind of frame rate for the physics engine. Each ∆t
corresponds to the production of a new frame.

As mentioned in Section 7.4, the VWG should synchronize the production of
virtual world frames with rendering processes so that the world is not caught in
an intermediate state with some variables updated to the new time and others
stuck at the previous time. This is a kind of tearing in the virtual world. This
does not, however, imply that the frame rates are the same between renderers
and the physics engine. Typically, the frame rate for the physics engine is much
higher to improve numerical accuracy.
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Using the sampling rate ∆t, (8.20) is approximated as

xi((k + 1)∆t) ≈ xi(0) +
k

∑

j=1

ẋi(j∆t)∆t, (8.21)

for each state variable xi.
It is simpler to view (8.21) one step at a time. Let xi[k] denote xi(k∆t), which

is the state at time t = k∆t. The following is an update law that expresses the
new state xi[k + 1] in terms of the old state xi[k]:

xi[k + 1] ≈ xi[k] + ẋi(k∆t)∆t, (8.22)

which starts with xi[0] = xi(0).

Runge-Kutta integration The approximation used in (8.21) is known as Euler
integration. It is the simplest approximation, but does not perform well enough
in many practical settings. One of the most common improvements is the fourth-
order Runge-Kutta integration method, which expresses the new state as

xi[k + 1] ≈ xi[k] +
∆t

6
(w1 + 2w2 + 2w3 + w4), (8.23)

in which

w1 = f(ẋi(k∆t))

w2 = f(ẋi(k∆t+ 1

2
∆t) + 1

2
∆t w1)

w3 = f(ẋi(k∆t+ 1

2
∆t) + 1

2
∆t w2)

w4 = f(ẋi(k∆t+∆t) + ∆t w3).

(8.24)

Although this is more expensive than Euler integration, the improved accuracy is
usually worthwhile in practice. Many other methods exist, with varying perfor-
mance depending on the particular ways in which ẋ is expressed and varies over
time [13].

Time-invariant dynamical systems The second problem from (8.20) is to
determine an expression for ẋ(t). This is where the laws of physics, such as the
acceleration of rigid bodies due to applied forces and gravity. The most common
case is time-invariant dynamical systems, in which ẋ depends only on the current
state and not the particular time. This means each component xi is expressed as

ẋi = fi(x1, x2, . . . , xn), (8.25)

for some given vector-valued function f = (f1, . . . , fn). This can be written in
compressed form by using x and ẋ to represent n-dimensional vectors:

ẋ = f(x). (8.26)
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The expression above is often called the state transition equation because it indi-
cates the state’s rate of change.

Here is a simple, one-dimensional example of a state transition equation:

ẋ = 2x− 1. (8.27)

This is called a linear differential equation. The velocity ẋ roughly doubles with
the value of x. Fortunately, linear problems can be fully solved “on paper”. The
solution to (8.27) is of the general form

x(t) =
1

2
+ ce2t, (8.28)

in which c is a constant that depends on the given value for x(0).

The phase space Unfortunately, motions are usually described in terms of ac-
celerations (and sometimes higher-order derivatives), which need to be integrated
twice. This leads to higher-order differential equations, which are difficult to
work with. For this reason, phase space representations were developed in physics
and engineering. In this case, the velocities of the state variables are themselves
treated as state variables. That way, the accelerations become the velocities of
the velocity variables.

For example, suppose that a position x1 is acted upon by gravity, which gen-
erates an acceleration a = −9.8m/s2. This leads to a second variable x2, which is
defined as the velocity of x1. Thus, by definition, ẋ1 = x2. Furthermore, ẋ2 = a
because the derivative of velocity is acceleration. Both of these equations fit the
form of (8.25). Generally, the number of states increases to incorporate accelera-
tions (or even higher-order derivatives), but the resulting dynamics are expressed
in the form (8.25), which is easier to work with.

Handling user input Now consider the case in which a user commands an
object to move. Examples include driving a car, flying a spaceship, or walking an
avatar around. This introduces some new parameters, called the controls, actions,
or inputs to the dynamical system. Differential equations that include these new
parameters are called control systems [4].

Let u = (u1, u2, . . . , um) be a vector of controls. The state transition equation
in (8.26) is simply extended to include u:

ẋ = f(x, u). (8.29)

Figure 8.9 shows a useful example, which involves driving a car. The control
us determines the speed of the car. For example, us = 1 drives forward, and
us = −1 drives in reverse. Setting us = 10 drives forward at a much faster rate.
The control uφ determines how the front wheels are steered. The state vector
is (x, z, θ), which corresponds to the position and orientation of the car in the
horizontal, xz plane.
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Figure 8.9: A top-down view of a simple, steerable car. Its position and orientation
are given by (x, y, θ). The parameter ρ is the minimum turning radius, which
depends on the maximum allowable steering angle φ. This model can also be used
to “steer” human avatars, by placing the viewpoint above the center of the rear
axle.

The state transition equation is:

ẋ = us cos θ

ż = us sin θ

θ̇ =
us

L
tan uφ.

(8.30)

Using Runge-Kutta integration, or a similar numerical method, the future states
can be calculated for the car, given that controls us and uφ are applied over time.

This model can also be used to steer the virtual walking of a VR user from
first-person perspective. The viewpoint then changes according to (x, z, θ), while
the height y remains fixed. For the model in (8.30), the car must drive forward or
backward to change its orientation. By changing the third component to θ = uω,
the user could instead specify the angular velocity directly. This would cause the
user to rotate in place, as if on a merry-go-round. Many more examples like these
appear in Chapter 13 of [16], including bodies that are controlled via accelerations.

It is sometimes helpful conceptually to define the motions in terms of discrete
points in time, called stages. Using numerical integration of (8.29), we can think
about applying a control u over time ∆t to obtain a new state x[k + 1]:

x[k + 1] = F (x[k], u[k]). (8.31)

The function F is obtained by integrating (8.29) over ∆t. Thus, if the state is
x[k], and u[k] is applied, then F calculates x[k+1] as the state at the next stage.
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(a) Collision free (b) In collision (c) Not sure

Figure 8.10: Three interesting cases for collision detection (these are 2D examples).
The last case may or not cause collision, depending on the model.

8.3.3 Collision detection

One of the greatest challenges in building a physics engine is handling collisions
between bodies. Standard laws of motion from physics or engineering usually do
not take into account such interactions. Therefore, specialized algorithms are used
to detect when such collisions occur and respond appropriately. Collision detection
methods and corresponding software are plentiful because of widespread needs in
computer graphics simulations and video games, and also for motion planning of
robots.

Solid or boundary model? Figure 8.10 shows one the first difficulties with
collision detection, in terms of two triangles in a 2D world. The first two cases
(Figures 8.10(a) and 8.10(b)) show obvious cases; however, the third case, Figure
8.10(c), could be ambiguous. If one triangle is wholly inside of another, then is
this a collision? If we interpret the outer triangle as a solid model, then yes. If
the outer triangle is only the boundary edges, and is meant to have an empty
interior, then the answer is no. This is why emphasis was placed on having a
coherent model in Section 3.1; otherwise, the boundary might not be established
well enough to distinguish the inside from the outside.

Distance functions Many collision detection methods benefit from maintaining
a distance function, which keeps track of how far the bodies are from colliding. For
example, let A and B denote the set of all points occupied in R

3 by two different
models. If they are in collision, then their intersection A∩B is not empty. If they
are not in collision, then the Hausdorff distance between A and B is the Euclidean
distance between the closest pair of points, taking one from A and one from B.3

3This assumes models contain all of the points on their boundary and that they have finite
extent; otherwise, topological difficulties arise [12, 16]
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Let d(A,B) denote this distance. If A and B intersect, then d(A,B) = 0 because
any point in A ∩ B will yield zero distance. If A and B do not intersect, then
d(A,B) > 0, which implies that they are not in collision (in other words, collision
free).

If d(A,B) is large, then A and B are mostly likely to be collision free in the near
future, even if one or both are moving. This leads to a family of collision detection
methods called incremental distance computation, which assumes that between
successive calls to the algorithm, the bodies move only a small amount. Under this
assumption the algorithm achieves “almost constant time” performance for the
case of convex polyhedral bodies [19, 21]. Nonconvex bodies can be decomposed
into convex components.

A concept related to distance is penetration depth, which indicates how far one
model is poking into another [20]. This is useful for setting a threshold on how
much interference between the two bodies is allowed. For example, the user might
be able to poke his head two centimeters into a wall, but beyond that, an action
should be taken.

Simple collision tests At the lowest level, collision detection usually requires
testing a pair of model primitives to determine whether they intersect. In the
case of models formed from 3D triangles, then we need a method that determines
whether two triangles intersect. This is similar to the ray-triangle intersection test
that was needed for visual rendering in Section 7.1, and involves basic tools from
analytic geometry, such as cross products and plane equations. Efficient methods
are given in [11, 23].

Broad and narrow phases Suppose that a virtual world has been defined with
millions of triangles. If two complicated, nonconvex bodies are to be checked for
collision, then the computational cost may be high. For this complicated situation,
collision detection often becomes a two-phase process:

1. Broad Phase: In the broad phase, the task is to avoid performing expen-
sive computations for bodies that are far away from each other. Simple
bounding boxes can be placed around each of the bodies, and simple tests
can be performed to avoid costly collision checking unless the boxes inter-
sect. Hashing schemes can be employed in some cases to greatly reduce the
number of pairs of boxes that have to be tested for intersect [22].

2. Narrow Phase: In the narrow phase individual pairs of model parts are
each checked carefully for collision. This involves the expensive tests, such
as triangle-triangle intersection.

In the broad phase, hierarchical methods generally decompose each body into
a tree. Each vertex in the tree represents a bounding region that contains some
subset of the body. The bounding region of the root vertex contains the whole
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(a) (b) (c) (d)

Figure 8.11: Four different kinds of bounding regions: (a) sphere, (b) axis-aligned
bounding box (AABB), (c) oriented bounding box (OBB), and (d) convex hull.
Each usually provides a tighter approximation than the previous one but is more
expensive to test for intersection with others.

Figure 8.12: The large circle shows the bounding region for a vertex that covers
an L-shaped body. After performing a split along the dashed line, two smaller
circles are used to cover the two halves of the body. Each circle corresponds to a
child vertex.

body. Two opposing criteria that guide the selection of the type of bounding
region:

1. The region should fit the intended model points as tightly as possible.

2. The intersection test for two regions should be as efficient as possible.

Several popular choices are shown in Figure 8.11, for the case of an L-shaped
body. Hierarchical methods are also useful for quickly eliminating many triangles
from consideration in visual rendering, as mentioned in Section 7.1.

The tree is constructed for a body, A (or alternatively, B) recursively as fol-
lows. For each vertex, consider the set X of all points in A that are contained in
the bounding region. Two child vertices are constructed by defining two smaller
bounding regions whose union covers X. The split is made so that the portion
covered by each child is of similar size. If the geometric model consists of primi-
tives such as triangles, then a split could be made to separate the triangles into
two sets of roughly the same number of triangles. A bounding region is then
computed for each of the children. Figure 8.12 shows an example of a split for the
case of an L-shaped body. Children are generated recursively by making splits
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until very simple sets are obtained. For example, in the case of triangles in space,
a split is made unless the vertex represents a single triangle. In this case, it is
easy to test for the intersection of two triangles.

Consider the problem of determining whether bodies A and B are in collision.
Suppose that the trees Ta and Tb have been constructed for A and B, respectively.
If the bounding regions of the root vertices of Ta and Tb do not intersect, then it
is known that Ta and Tb are not in collision without performing any additional
computation. If the bounding regions do intersect, then the bounding regions of
the children of Ta are compared to the bounding region of Tb. If either of these
intersect, then the bounding region of Tb is replaced with the bounding regions
of its children, and the process continues recursively. As long as the bounding
regions intersect, lower levels of the trees are traversed, until eventually the leaves
are reached. At the leaves the algorithm tests the individual triangles for collision,
instead of bounding regions. Note that as the trees are traversed, if a bounding
region from the vertex v1 of Ta does not intersect the bounding region from a
vertex, v2, of Tb, then no children of v1 have to be compared to children of v2.
Usually, this dramatically reduces the number of comparisons, relative to a naive
approach that tests all pairs of triangles for intersection.

Mismatched obstacles in VR Although collision detection is a standard,
well-solved problem, VR once again poses unusual challenges. One of the main
difficulties is the matched zone, in which the real and virtual worlds share the
same space. This leads to three interesting cases:

1. Real obstacle only: In this case, an obstacle exists in the real world,
but not in the virtual world. This is potentially dangerous! For example,
you could move your arm and knock over a real, hot cup of coffee that
is not represented in the virtual world. If you were walking with a VR
headset, then imagine what would happen if a set of real downward stairs
were not represented. At the very least, the boundary of the matched zone
should be rendered if the user gets close to it. This mismatch motivated the
introduction of the Chaperone system in the HTC Vive headset, in which
an outward-facing camera is used to detect and render real objects that may
obstruct user motion.

2. Virtual obstacle only: This case is not dangerous, but can be extremely
frustrating. The user could poke her head through a wall in VR without
feeling any response in the real world. This should not be allowed in most
cases. The VWG could simply stop moving the viewpoint in the virtual
world as the virtual wall is contacted; however, this generates a mismatch
between the real and virtual motions, which could be uncomfortable for the
user. It remains a difficult challenge to keep users comfortable while trying
to guide them away from interference with virtual obstacles.
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3. Real and virtual obstacle: If obstacles are matched in both real and
virtual worlds, then the effect is perceptually powerful. For example, you
might stand on a slightly raised platform in the real world while the virtual
world shows you standing on a building rooftop. If the roof and platform
edges align perfectly, then you could feel the edge with your feet. Would
you be afraid to step over the edge? A simpler case is to render a virtual
chair that matches the real chair that a user might be sitting in.

8.4 Mismatched Motion and Vection

Vection was mentioned in Section 2.3 as an illusion of self motion that is caused
by varying visual stimuli. In other words, the brain is tricked into believing that
the head is moving based on what is seen, even though no motion actually occurs.
Figure 2.20 showed the haunted swing illusion, which convinced people that were
swinging upside down; however, the room was moving while they were stationary.
Vection is also commonly induced in VR by moving the user’s viewpoint while
there is no corresponding motion in the real world.

Vection is a prime example of mismatched cues, which were discussed in Section
6.4. Whereas the McGurk effect has no harmful side effects, vection unfortunately
leads many people to experience sickness symptoms, such as dizziness, nausea, and
occasionally even vomiting. Thus, it should be used very sparingly, if at all, for
VR experiences. Furthermore, if it is used, attempts should be made to alter the
content so that the side effects are minimized. Industry leaders often proclaim
that their latest VR headset has beaten the VR sickness problem; however, this
neglects the following counterintuitive behavior:

If a headset is better in terms of spatial resolution, frame
rate, tracking accuracy, field of view, and latency, then the
potential is higher for making people sick through vection
and other mismatched cues.

Put simply and intuitively, if the headset more accurately mimics reality, then
the sensory cues are stronger, and our perceptual systems become more confident
about mismatched cues. It may even have the ability to emulate poorer headsets,
resulting in a way to comparatively assess side effects of earlier VR systems. In
some cases, the mismatch of cues may be harmless (although possibly leading to a
decreased sense of presence). In other cases, the mismatches may lead to greater
fatigue as the brain works harder to resolve minor conflicts. In the worst case, VR
sickness emerges, with vection being the largest culprit based on VR experiences
being made today. One of the worst cases is the straightforward adaptation of
first-person shooter games to VR, in which the vection occurs almost all the time
as the avatar explores the hostile environment.
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Figure 8.13: The optical flow of features in an image due to motion in the world.
These were computed automatically using image processing algorithms. (Image by
Andreas Geiger, from Max Planck Institute for Intelligent Systems in Tübingen.)

(a) (b)

Figure 8.14: Example vector fields: (a) A constant vector field, for which every
vector is (−1, 0), regardless of the location. (b) In this vector field, (x, y) 7→

(x + y, x + y), the vectors point away from the diagonal line from (−1, 1) to
(1,−1), and their length is proportional to the distance from it.
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Optical flow Recall from Section 6.2, that the human visual system has neural
structures dedicated to detecting the motion of visual features in the field of view;
see Figure 8.13. It is actually the images of these features that move across the
retina. It is therefore useful to have a mathematical concept that describes the
velocities of moving points over a surface. We therefore define a vector field, which
assigns a velocity vector at every point along a surface. If the surface is the xy
plane, then a velocity vector

(vx, vy) =

(

dx

dt
,
dy

dt

)

(8.32)

is assigned at every point (x, y). For example,

(x, y) 7→ (−1, 0) (8.33)

is a constant vector field, which assigns vx = −1 and vy = 0 everywhere; see Figure
8.14(a). The vector field

(x, y) 7→ (x+ y, x+ y) (8.34)

is non-constant, and assigns vx = vy = x + y at each point (x, y); see Figure
8.14(b). For this vector field, the velocity direction is always diagonal, but the
length of the vector (speed) depends on x+ y.

To most accurately describe the motion of features along the retina, the vector
field should be defined over a spherical surface that corresponds to the locations
of the photoreceptors. Instead, we will describe vector fields over a square region,
with the understanding that it should be transformed onto a sphere for greater
accuracy.

Types of vection Vection can be caused by any combination of angular and
linear velocities of the viewpoint in the virtual world. To characterize the effects of
different kinds of motions effectively, it is convenient to decompose the viewpoint
velocities into the three linear components, vx, vy, and vz, and three angular
components, ωx, ωy, and ωz. Therefore, we consider the optical flow for each of
these six cases (see Figure 8.15):

1. Yaw vection: If the viewpoint is rotated counterclockwise about the y
axis (positive ωy), then all visual features move from right to left at the
same velocity, as shown in Figure 8.15(a). Equivalently, the virtual world
is rotating clockwise around the user; however, self motion in the opposite
direction is perceived. This causes the user to feel as if she is riding a
merry-go-round (recall Figure 8.2).

2. Pitch vection: By rotating the viewpoint counterclockwise about the x axis
(positive ωx), all features move downward at the same velocity, as shown in
Figure 8.15(b).
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(a) yaw (b) pitch

(c) roll (d) lateral

(e) vertical (f) forward/backward

Figure 8.15: Six different types of optical flows, based on six degrees of freedom
for motion of a rigid body. Each of these is a contributing component of vection.
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3. Roll vection: Rotating the viewpoint counterclockwise about z, the optical
axis (positive ωz), causes the features to rotate clockwise around the center
of the image, as shown in Figure 8.15(c). The velocity of each feature is
tangent to the circle that contains it, and the speed is proportional to the
distance from the feature to the image center.

4. Lateral vection: In this case, the viewpoint is translated to the right,
corresponding to positive vx. As a result, the features move horizontally;
however, there is an important distinction with respect to yaw vection: Fea-
tures that correspond to closer objects move more quickly than those from
distant objects. Figure 8.15(d) depicts the field by assuming vertical position
of the feature corresponds to its depth (lower in the depth field is closer).
This is a reappearance of parallax, which in this case gives the illusion of
lateral motion and distinguishes it from yaw motion.

5. Vertical vection: The viewpoint is translated upward, corresponding to
positive vx, and resulting in downward flow as shown i Figure 8.15(e). Once
again, parallax causes the speed of features to depend on the distance of the
corresponding object. This enables vertical vection to be distinguished from
pitch vection.

6. Forward/backward vection: If the viewpoint is translated along the op-
tical axis away from the scene (positive vz), then the features flow inward
toward the image center, as shown in Figure 8.15(f). Their speed depends
on both their distance from the image center and the distance of their cor-
responding objects in the virtual world. The resulting illusion is backward
motion. Translation in the negative z direction results in perceived forward
motion (as in the case of the Millennium Falcon spaceship after its jump to
hyperspace in the Star Wars movies).

The first two are sometimes called circular vection, and the last three are known
as linear vection. Since our eyes are drawn toward moving features, changing the
viewpoint may trigger smooth pursuit eye movements (recall from Section 5.3).
In this case, the optical flows shown in Figure 8.15 would not correspond to the
motions of the features on the retina. Thus, our characterization so far ignores eye
movements, which are often designed to counteract optical flow and provide stable
images on the retina. Nevertheless, due the proprioception, the brain is aware of
these eye rotations, which results in an equivalent perception of self motion.

All forms of vection cause perceived velocity, but the perception of acceleration
is more complicated. First consider pure rotation of the viewpoint. Angular
acceleration is perceived if the rotation rate of yaw, pitch, and roll vection are
varied. Linear acceleration is also perceived, even in the case of yaw, pitch, or
roll vection at constant angular velocity. This is due to the merry-go-round effect,
which was shown in Figure 8.2(b).
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Now consider pure linear vection (no rotation). Any linear acceleration of
the viewpoint will be perceived as an acceleration. However, if the viewpoint
moves at constant velocity, then this is the only form of vection in which there is
no perceived acceleration. In a VR headset, the user may nevertheless perceive
accelerations due to optical distortions or other imperfections in the rendering and
display.

Vestibular mismatch We have not yet considered the effect of each of these
six cases in terms of their mismatch with vestibular cues. If the user is not moving
relative to the Earth, then only gravity should be sensed by the vestibular organ
(in particular, the otolith organs). Suppose the user is facing forward without any
tilt. In this case, any perceived acceleration from vection would cause a mismatch.
For example, yaw vection should cause a perceived constant acceleration toward
the rotation center (recall Figure 8.2(b)), which mismatches the vestibular gravity
cue. As another example, downward vertical vection should cause the user to feel
like he is falling, but the vestibular cue would indicate otherwise.

For cases of yaw, pitch, and roll vection at constant angular velocity, there may
not be a conflict with rotation sensed by the vestibular organ because the semi-
circular canals measure angular accelerations. Thus, the angular velocity of the
viewpoint must change to cause mismatch with this part of the vestibular system.
Sickness may nevertheless arise due to mismatch of perceived linear accelerations,
as sensed by the otolith organs.

If the head is actually moving, then the vestibular organ is stimulated. This
case is more complicated to understand because vestibular cues that correspond
to linear and angular accelerations in the real world are combined with visual
cues that indicate different accelerations. In some cases, these cues may be more
consistent, and in other cases, they may diverge further.

Factors that affect sensitivity The intensity of vection is affected by many
factors:

• Percentage of field of view: If only a small part of the visual field is
moving, then people tend to perceive that it is caused by a moving object.
However, if most of the visual field is moving, then they perceive them-

selves as moving. The human visual system actually includes neurons with
receptive fields that cover a large fraction of the retina for the purpose of
detecting self motion [5]. As VR headsets have increased their field of view,
they project onto a larger region of the retina, thereby strengthening vection
cues.

• Distance from center view: Recall from Section 5.1 that the photore-
ceptors are not uniformly distributed, with the highest density being at the
innermost part of the fovea. Thus, detection may seem stronger near the
center. However, in the cases of yaw and forward/backward vection, the
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optical flow vectors are stronger at the periphery, which indicates that de-
tection may be stronger at the periphery. Sensitivity to the optical flow may
therefore be strongest somewhere between the center view and the periphery,
depending on the viewpoint velocities, distances to objects, photoreceptor
densities, and neural detection mechanisms.

• Exposure time: The perception of self motion due to vection increases
with the time of exposure to the optical flow. If the period of exposure is
very brief, such as a few milliseconds, then no vection may occur.

• Spatial frequency: If the virtual world is complicated, with many small
structures or textures, then the number of visual features will be greatly
increased and the optical flow becomes a stronger signal. As the VR headset
display resolution increases, higher spatial frequencies can be generated.

• Contrast: With higher levels of contrast, the optical flow signal is stronger
because the features are more readily detected. Therefore, vection typically
occurs with greater intensity.

• Other sensory cues: Recall from Section 6.4 that a perceptual phe-
nomenon depends on the combination of many cues. Vection can be en-
hanced by providing additional consistent cues. For example, forward vec-
tion could be accompanied by a fan blowing in the user’s face, a rumbling
engine, and the sounds of stationary objects in the virtual world racing by.
Likewise, vection can be weakened by providing cues that are consistent
with the real world, where no corresponding motion is occurring.

• Prior knowledge: Just by knowing beforehand what kind of motion should
be perceived will affect the onset of vection. This induces a prior bias that
might take longer to overcome if the bias is against self motion, but less
time to overcome if it is consistent with self motion. The prior bias could be
from someone telling the user what is going to happen, or it could simply
by from an accumulation of similar visual experiences through the user’s
lifetime. Furthermore, the user might expect the motion as the result of an
action taken, such as turning the steering wheel of a virtual car.

• Attention: If the user is distracted by another activity, such as aiming a
virtual weapon or selecting a menu option, then vection and its side effects
may be mitigated.

• Prior training or adaptation: With enough exposure, the body may
learn to distinguish vection from true motion to the point that vection
becomes comfortable. Thus, many users can be trained to overcome VR
sickness through repeated, prolonged exposure.
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Due to all of these factors, and the imperfections of modern VR headsets, it
becomes extremely difficult to characterize the potency of vection and its resulting
side effects on user comfort.

Further Reading

For basic concepts of vectors fields, velocities, and dynamical systems, see [2]. Modeling
and analysis of mechanical dynamical systems appears in [24]. The specific problem
of human body movement is covered in [29, 30]. See [10] for an overview of game
engines, including issues such as simulated physics and collision detection. For coverage
of particular collision detection algorithms, see [9, 20].

A nice introduction to the vestibular system, including its response as a dynamical
system is [15]. Vection and visually induced motion sickness are thoroughly surveyed in
[14], which includes an extensive collection of references for further reading. Some key
articles that address sensitivities to vection include [1, 3, 6, 17, 18, 25, 28].
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