
Chapter 3

The Geometry of Virtual Worlds

Steven M. LaValle

University of Oulu

Copyright Steven M. LaValle 2020

Available for downloading at http://lavalle.pl/vr/

Chapter 3

The Geometry of Virtual Worlds

Section 2.2 introduced the Virtual World Generator (VWG), which maintains the
geometry and physics of the virtual world. This chapter covers the geometry part,
which is needed to make models and move them around. The models could include
the walls of a building, furniture, clouds in the sky, the user’s avatar, and so on.
Section 3.1 covers the basics of how to define consistent, useful models. Section
3.2 explains how to apply mathematical transforms that move them around in
the virtual world. This involves two components: Translation (changing position)
and rotation (changing orientation). Section 3.3 presents the best ways to express
and manipulate 3D rotations, which are the most complicated part of moving
models. Section 3.4 then covers how the virtual world appears if we try to “look”
at it from a particular perspective. This is the geometric component of visual
rendering, which is covered in Chapter 7. Finally, Section 3.5 puts all of the
transformations together, so that you can see how to go from defining a model to
having it appear in the right place on the display.

If you work with high-level engines to build a VR experience, then most of
the concepts from this chapter might not seem necessary. You might need only to
select options from menus and write simple scripts. However, an understanding of
the basic transformations, such as how to express 3D rotations or move a camera
viewpoint, is essential to making the software do what you want. Furthermore,
if you want to build virtual worlds from scratch, or at least want to understand

what is going on under the hood of a software engine, then this chapter is critical.

3.1 Geometric Models

We first need a virtual world to contain the geometric models. For our purposes,
it is enough to have a 3D Euclidean space with Cartesian coordinates. Therefore,
let R

3 denote the virtual world, in which every point is represented as a triple
of real-valued coordinates: (x, y, z). The coordinate axes of our virtual world are
shown in Figure 3.1. We will consistently use right-handed coordinate systems in
this book because they represent the predominant choice throughout physics and

65

66 S. M. LaValle: Virtual Reality

Figure 3.1: Points in the virtual world are given coordinates in a right-handed
coordinate system in which the y axis is pointing upward. The origin (0, 0, 0) lies
at the point where axes intersect. Also shown is a 3D triangle is defined by its
three vertices, each of which is a point in R

3.

engineering; however, left-handed systems appear in some places, with the most
notable being Microsoft’s DirectX graphical rendering library. In these cases, one
of the three axes points in the opposite direction in comparison to its direction
in a right-handed system. This inconsistency can lead to hours of madness when
writing software; therefore, be aware of the differences and their required con-
versions if you mix software or models that use both. If possible, avoid mixing
right-handed and left-handed systems altogether.

Geometric models are made of surfaces or solid regions in R
3 and contain an

infinite number of points. Because representations in a computer must be finite,
models are defined in terms of primitives in which each represents an infinite set
of points. The simplest and most useful primitive is a 3D triangle, as shown in
Figure 3.1. A planar surface patch that corresponds to all points “inside” and on
the boundary of the triangle is fully specified by the coordinates of the triangle
vertices:

((x1, y1, z1), (x2, y2, z2), (x3, y3, z3)). (3.1)

To model a complicated object or body in the virtual world, numerous trian-
gles can be arranged into a mesh, as shown in Figure 3.2. This provokes many
important questions:

1. How do we specify how each triangle “looks” whenever viewed by a user in
VR?

2. How do we make the object “move”?

3. If the object surface is sharply curved, then should we use curved primitives,

3.1. GEOMETRIC MODELS 67

Figure 3.2: A geometric model of a dolphin, formed from a mesh of 3D triangles
(from Wikipedia user Chrschn).

rather than trying to approximate the curved object with tiny triangular
patches?

4. Is the interior of the object part of the model, or does the object consist
only of its surface?

5. Is there an efficient algorithm for determining which triangles are adjacent
to a given triangle along the surface?

6. Should we avoid duplicating vertex coordinates that are common to many
neighboring triangles?

We address these questions in reverse order.

Data structures Consider listing all of the triangles in a file or memory array.
If the triangles form a mesh, then most or all vertices will be shared among
multiple triangles. This is clearly a waste of space. Another issue is that we will
frequently want to perform operations on the model. For example, after moving
an object, can we determine whether it is in collision with another object (covered
in Section 8.3)? A typical low-level task might be to determine which triangles
share a common vertex or edge with a given triangle. This might require linearly
searching through the triangle list to determine whether they share a vertex or
two. If there are millions of triangles, which is not uncommon, then it would cost
too much to perform this operation repeatedly.

For these reasons and more, geometric models are usually encoded in clever
data structures. The choice of the data structure should depend on which oper-
ations will be performed on the model. One of the most useful and common is
the doubly connected edge list, also known as half-edge data structure [2, 10]. See
Figure 3.3. In this and similar data structures, there are three kinds of data ele-
ments: faces, edges, and vertices. These represent two, one, and zero-dimensional

68 S. M. LaValle: Virtual Reality

Figure 3.3: Part of a doubly connected edge list is shown here for a face that
has five edges on its boundary. Each half-edge structure e stores pointers to the
next and previous edges along the face boundary. It also stores a pointer to its
twin half-edge, which is part of the boundary of the adjacent face. (Figure from
Wikipedia author Nico Korn.)

parts, respectively, of the model. In our case, every face element represents a
triangle. Each edge represents the border of one or two triangles, without du-
plication. Each vertex is shared between one or more triangles, again without
duplication. The data structure contains pointers between adjacent faces, edges,
and vertices so that algorithms can quickly traverse the model components in a
way that corresponds to how they are connected together.

Inside vs. outside Now consider the question of whether the object interior
is part of the model (recall Figure 3.2). Suppose the mesh triangles fit together
perfectly so that every edge borders exactly two triangles and no triangles intersect
unless they are adjacent along the surface. In this case, the model forms a complete
barrier between the inside and outside of the object. If we were to hypothetically
fill the inside with a gas, then it could not leak to the outside. This is an example
of a coherent model. Such models are required if the notion of inside or outside
is critical to the VWG. For example, a penny could be inside of the dolphin, but
not intersecting with any of its boundary triangles. Would this ever need to be
detected? If we remove a single triangle, then the hypothetical gas would leak
out. There would no longer be a clear distinction between the inside and outside
of the object, making it difficult to answer the question about the penny and the
dolphin. In the extreme case, we could have a single triangle in space. There is
clearly no natural inside or outside. At an extreme, the model could be as bad
as polygon soup, which is a jumble of triangles that do not fit together nicely and
could even have intersecting interiors. In conclusion, be careful when constructing
models so that the operations you want to perform later will be logically clear.

3.1. GEOMETRIC MODELS 69

If you are using a high-level design tool, such as Blender or Maya, to make your
models, then coherent models will be automatically built.

Why triangles? Continuing upward through the questions above, triangles are
used because they are the simplest for algorithms to handle, especially if imple-
mented in hardware. GPU implementations tend to be biased toward smaller
representations so that a compact list of instructions can be applied to numerous
model parts in parallel. It is certainly possible to use more complicated primi-
tives, such as quadrilaterals, splines, and semi-algebraic surfaces [3, 4, 9]. This
could lead to smaller model sizes, but often comes at the expense of greater com-
putational cost for handling each primitive. For example, it is much harder to
determine whether two spline surfaces are colliding, in comparison to two 3D
triangles.

Stationary vs. movable models There will be two kinds of models in the
virtual world, which is embedded in R

3:

• Stationary models, which keep the same coordinates forever. Typical exam-
ples are streets, floors, and buildings.

• Movable models, which can be transformed into various positions and orien-
tations. Examples include vehicles, avatars, and small furniture.

Motion can be caused in a number of ways. Using a tracking system (Chapter 9),
the model might move to match the user’s motions. Alternatively, the user might
operate a controller to move objects in the virtual world, including a representation
of himself. Finally, objects might move on their own according to the laws of
physics in the virtual world. Section 3.2 will cover the mathematical operations
that move models to the their desired places, and Chapter 8 will describe velocities,
accelerations, and other physical aspects of motion.

Choosing coordinate axes One often neglected point is the choice of coordi-
nates for the models, in terms of their placement and scale. If these are defined
cleverly at the outset, then many tedious complications can be avoided. If the
virtual world is supposed to correspond to familiar environments from the real
world, then the axis scaling should match common units. For example, (1, 0, 0)
should mean one meter to the right of (0, 0, 0). It is also wise to put the origin
(0, 0, 0) in a convenient location. Commonly, y = 0 corresponds to the floor of a
building or sea level of a terrain. The location of x = 0 and z = 0 could be in the
center of the virtual world so that it nicely divides into quadrants based on sign.
Another common choice is to place it in the upper left when viewing the world
from above so that all x and z coordinates are nonnegative. For movable models,
the location of the origin and the axis directions become extremely important be-
cause they affect how the model is rotated. This should become clear in Sections
3.2 and 3.3 as we present rotations.

70 S. M. LaValle: Virtual Reality

Viewing the models Of course, one of the most important aspects of VR is
how the models are going to “look” when viewed on a display. This problem is
divided into two parts. The first part involves determining where the points in
the virtual world should appear on the display. This is accomplished by viewing
transformations in Section 3.4, which are combined with other transformations in
Section 3.5 to produce the final result. The second part involves how each part
of the model should appear after taking into account lighting sources and surface
properties that are defined in the virtual world. This is the rendering problem,
which is covered in Chapter 7.

3.2 Changing Position and Orientation

Suppose that a movable model has been defined as a mesh of triangles. To move it,
we apply a single transformation to every vertex of every triangle. This section first
considers the simple case of translation, followed by the considerably complicated
case of rotations. By combining translation and rotation, the model can be placed
anywhere, and at any orientation in the virtual world R

3.

Translations Consider the following 3D triangle,

((x1, y1, z1), (x2, y2, z2), (x3, y3, z3)), (3.2)

in which its vertex coordinates are expressed as generic constants.
Let xt, yt, and zt be the amount we would like to change the triangle’s position,

along the x, y, and z axes, respectively. The operation of changing position is
called translation, and it is given by

(x1, y1, z1) 7→ (x1 + xt, y1 + yt, z1 + zt)
(x2, y2, z2) 7→ (x2 + xt, y2 + yt, z2 + zt)
(x3, y3, z3) 7→ (x3 + xt, y3 + yt, z3 + zt),

(3.3)

in which a 7→ b denotes that a becomes replaced by b after the transformation
is applied. Applying (3.3) to every triangle in a model will translate all of it to
the desired location. If the triangles are arranged in a mesh, then it is sufficient
to apply the transformation to the vertices alone. All of the triangles will retain
their size and shape.

Relativity Before the transformations become too complicated, we want to
caution you about interpreting them correctly. Figures 3.4(a) and 3.4(b) show
an example in which a triangle is translated by xt = −8 and yt = −7. The
vertex coordinates are the same in Figures 3.4(b) and 3.4(c). Figure 3.4(b) shows
the case we are intended to cover so far: The triangle is interpreted as having
moved in the virtual world. However, Figure 3.4(c) shows another possibility:
The coordinates of the virtual world have been reassigned so that the triangle is

3.2. CHANGING POSITION AND ORIENTATION 71

(a) Original object (b) Object moves (c) Origin moves

Figure 3.4: Every transformation has two possible interpretations, even though
the math is the same. Here is a 2D example, in which a triangle is defined in (a).
We could translate the triangle by xt = −8 and yt = −7 to obtain the result in
(b). If we instead wanted to hold the triangle fixed but move the origin up by 8
in the x direction and 7 in the y direction, then the coordinates of the triangle
vertices change the exact same way, as shown in (c).

closer to the origin. This is equivalent to having moved the entire world, with
the triangle being the only part that does not move. In this case, the translation
is applied to the coordinate axes, but they are negated. When we apply more
general transformations, this extends so that transforming the coordinate axes
results in an inverse of the transformation that would correspondingly move the
model. Negation is simply the inverse in the case of translation.

Thus, we have a kind of “relativity”: Did the object move, or did the whole
world move around it? This idea will become important in Section 3.4 when we
want to change viewpoints. If we were standing at the origin, looking at the
triangle, then the result would appear the same in either case; however, if the
origin moves, then we would move with it. A deep perceptual problem lies here as
well. If we perceive ourselves as having moved, then VR sickness might increase,
even though it was the object that moved. In other words, our brains make their
best guess as to which type of motion occurred, and sometimes get it wrong.

Getting ready for rotations How do we make the wheels roll on a car? Or
turn a table over onto its side? To accomplish these, we need to change the
model’s orientation in the virtual world. The operation that changes the orien-
tation is called rotation. Unfortunately, rotations in three dimensions are much
more complicated than translations, leading to countless frustrations for engineers
and developers. To improve the clarity of 3D rotation concepts, we first start with
a simpler problem: 2D linear transformations.

Consider a 2D virtual world, in which points have coordinates (x, y). You can
imagine this as a vertical plane in our original, 3D virtual world. Now consider a

72 S. M. LaValle: Virtual Reality

generic two-by-two matrix

M =

[

m11 m12

m21 m22

]

(3.4)

in which each of the four entries could be any real number. We will look at what
happens when this matrix is multiplied by the point (x, y), when it is written as
a column vector.

Performing the multiplication, we obtain
[

m11 m12

m21 m22

] [

x
y

]

=

[

x′

y′

]

, (3.5)

in which (x′, y′) is the transformed point. Using simple algebra, the matrix mul-
tiplication yields

x′ = m11x+m12y
y′ = m21x+m22y.

(3.6)

Using notation as in (3.3), M is a transformation for which (x, y) 7→ (x′, y′).

Applying the 2D matrix to points Suppose we place two points (1, 0) and
(0, 1) in the plane. They lie on the x and y axes, respectively, at one unit of
distance from the origin (0, 0). Using vector spaces, these two points would be the
standard unit basis vectors (sometimes written as ı̂ and ̂). Watch what happens
if we substitute them into (3.5):

[

m11 m12

m21 m22

] [

1
0

]

=

[

m11

m21

]

(3.7)

and
[

m11 m12

m21 m22

] [

0
1

]

=

[

m12

m22

]

. (3.8)

These special points simply select the column vectors on M . What does this
mean? If M is applied to transform a model, then each column of M indicates
precisely how each coordinate axis is changed.

Figure 3.5 illustrates the effect of applying various matrices M to a model.
Starting with the upper right, the identity matrix does not cause the coordinates
to change: (x, y) 7→ (x, y). The second example causes a flip as if a mirror were
placed at the y axis. In this case, (x, y) 7→ (−x, y). The second row shows
examples of scaling. The matrix on the left produces (x, y) 7→ (2x, 2y), which
doubles the size. The matrix on the right only stretches the model in the y
direction, causing an aspect ratio distortion. In the third row, it might seem that
the matrix on the left produces a mirror image with respect to both x and y
axes. This is true, except that the mirror image of a mirror image restores the
original. Thus, this corresponds to the case of a 180-degree (π radians) rotation,
rather than a mirror image. The matrix on the right produces a shear along the
x direction: (x, y) 7→ (x+ y, y). The amount of displacement is proportional to y.

3.2. CHANGING POSITION AND ORIENTATION 73

[

1 0
0 1

] [

−1 0
0 1

]

Identity Mirror

[

2 0
0 2

] [

1 0
0 2

]

Scale Stretch

[

−1 0
0 −1

] [

1 1
0 1

]

Rotate 180 x-shear

[

1 0
1 1

] [

1 1
1 1

]

y-shear Singular

Figure 3.5: Eight different matrices applied to transform a square face. These
examples nicely cover all of the possible cases, in a qualitative sense.

74 S. M. LaValle: Virtual Reality

In the bottom row, the matrix on the left shows a skew in the y direction. The
final matrix might at first appear to cause more skewing, but it is degenerate.
The two-dimensional shape collapses into a single dimension when M is applied:
(x, y) 7→ (x + y, x + y). This corresponds to the case of a singular matrix, which
means that its columns are not linearly independent (they are in fact identical).
A matrix is singular if and only if its determinant is zero.

Only some matrices produce rotations The examples in Figure 3.5 span
the main qualitative differences between various two-by-two matrices M . Two of
them were rotation matrices: the identity matrix, which is 0 degrees of rotation,
and the 180-degree rotation matrix. Among the set of all possible M , which ones
are valid rotations? We must ensure that the model does not become distorted.
This is achieved by ensuring that M satisfies the following rules:

1. No stretching of axes.

2. No shearing.

3. No mirror images.

If none of these rules is violated, then the result is a rotation.
To satisfy the first rule, the columns of M must have unit length:

m2

11 +m2

21 = 1 and m2

12 +m2

22 = 1. (3.9)

The scaling and shearing transformations in Figure 3.5 violated this.
To satisfy the second rule, the coordinate axes must remain perpendicular.

Otherwise, shearing occurs. Since the columns of M indicate how axes are trans-
formed, the rule implies that their inner (dot) product is zero:

m11m12 +m21m22 = 0. (3.10)

The shearing transformations in Figure 3.5 violate this rule, which clearly causes
right angles in the model to be destroyed.

Satisfying the third rule requires that the determinant of M is positive. After
satisfying the first two rules, the only possible remaining determinants are 1 (the
normal case) and −1 (the mirror-image case). Thus, the rule implies that:

det

[

m11 m12

m21 m22

]

= m11m22 −m12m21 = 1. (3.11)

The mirror image example in Figure 3.5 results in detM = −1.
The first constraint (3.9) indicates that each column must be chosen so that

its components lie on a unit circle, centered at the origin. In standard planar
coordinates, we commonly write the equation of this circle as x2 + y2 = 1. Recall

3.2. CHANGING POSITION AND ORIENTATION 75

Figure 3.6: For a circle with unit radius, centered at the origin, a single parameter
θ reaches all xy points along the circle as it ranges from θ = 0 to θ = 2π.

the common parameterization of the unit circle in terms of an angle θ that ranges
from 0 to 2π radians (see Figure 3.6):

x = cos θ and y = sin θ. (3.12)

Instead of x and y, we use the notation of the matrix components. Let m11 =
cos θ and m21 = sin θ. Substituting this into M from (3.4) yields

[

cos θ − sin θ
sin θ cos θ

]

, (3.13)

in which m12 and m22 were uniquely determined by applying (3.10) and (3.11).
By allowing θ to range from 0 to 2π, the full range of all allowable rotations is
generated.

Think about degrees of freedom. Originally, we could chose all four components
of M independently, resulting in 4 DOFs. The constraints in (3.9) each removed
a DOF. Another DOF was removed by (3.10). Note that (3.11) does not reduce
the DOFs; it instead eliminates exactly half of the possible transformations: The
ones that are mirror flips and rotations together. The result is one DOF, which
was nicely parameterized by the angle θ. Furthermore, we were lucky that set of
all possible 2D rotations can be nicely interpreted as points along a unit circle.

The 3D case Now we try to describe the set of all 3D rotations by following the
same general template as the 2D case. The matrix from (3.4) is extended from
2D to 3D, resulting in 9 components:

M =





m11 m12 m13

m21 m22 m23

m31 m32 m33



 . (3.14)

76 S. M. LaValle: Virtual Reality

Figure 3.7: Any three-dimensional rotation can be described as a sequence of yaw,
pitch, and roll rotations.

Thus, we start with 9 DOFs and want to determine what matrices remain as valid
rotations. Follow the same three rules from the 2D case. The columns must have
unit length. For example, m2

11+m2
21+m2

31 = 1. This means that the components
of each column must lie on a unit sphere. Thus, the unit-length rule reduces the
DOFs from 9 to 6. By following the second rule to ensure perpendicular axes
result, the pairwise inner products of the columns must be zero. For example, by
choosing the first two columns, the constraint is

m11m12 +m21m22 +m31m32 = 0. (3.15)

We must also apply the rule to the remaining pairs: The second and third columns,
and then the first and third columns. Each of these cases eliminates a DOF,
resulting in only 3 remaining DOFs. To avoid mirror images, the constraint
detM = 1 is applied, which does not reduce the DOFs.

Finally, we arrive at a set of matrices that must satisfy the algebraic con-
straints; however, they unfortunately do not fall onto a nice circle or sphere. We
only know that there are 3 degrees of rotational freedom, which implies that it
should be possible to pick three independent parameters for a 3D rotation, and
then derive all 9 elements of (3.14) from them.

Yaw, pitch, and roll One of the simplest ways to parameterize 3D rotations is
to construct them from “2D-like” transformations, as shown in Figure 3.7. First
consider a rotation about the z-axis. Let roll be a counterclockwise rotation of γ
about the z-axis. The rotation matrix is given by

Rz(γ) =





cos γ − sin γ 0
sin γ cos γ 0
0 0 1



 . (3.16)

The upper left of the matrix looks exactly like the 2D rotation matrix (3.13),
except that θ is replaced by γ. This causes yaw to behave exactly like 2D rotation

3.2. CHANGING POSITION AND ORIENTATION 77

in the xy plane. The remainder of Rz(γ) looks like the identity matrix, which
causes z to remain unchanged after a roll.

Similarly, let pitch be a counterclockwise rotation of β about the x-axis:

Rx(β) =





1 0 0
0 cos β − sin β
0 sin β cos β



 . (3.17)

In this case, points are rotated with respect to y and z while the x coordinate is
left unchanged.

Finally, let yaw be a counterclockwise rotation of α about the y-axis:

Ry(α) =





cosα 0 sinα
0 1 0

− sinα 0 cosα



 . (3.18)

In this case, rotation occurs with respect to x and z while leaving y unchanged.

Combining rotations Each of (3.16), (3.17), and (3.18) provides a single DOF
of rotations. The yaw, pitch, and roll rotations can be combined sequentially to
attain any possible 3D rotation:

R(α, β, γ) = Ry(α)Rx(β)Rz(γ). (3.19)

In this case, the ranges of α and γ are from 0 to 2π; however, the pitch β need
only range from −π/2 to π/2 while nevertheless reaching all possible 3D rotations.

Be extra careful when combining rotations in a sequence because the opera-
tions are not commutative. For example, a yaw by π/2 followed by a pitch by
π/2 does not produce the same result as the pitch followed by the yaw. You can
easily check this by substituting π/2 into (3.17) and (3.18), and observing how the
result depends on the order of matrix multiplication. The 2D case is commutative
because the rotation axis is always the same, allowing the rotation angles to addi-
tively combine. Having the wrong matrix ordering is one of the most frustrating
problems when writing software for VR.

Matrix multiplications are “backwards” Which operation is getting ap-
plied to the model first when we apply a product of matrices? Consider rotating a
point p = (x, y, z). We have two rotation matrices R and Q. If we rotate p using
R, we obtain p′ = Rp. If we then apply Q, we get p′′ = Qp′. Now suppose that
we instead want to first combine the two rotations and then apply them to p to
get p′′. Programmers are often temped to combine them as RQ because we read
from left to right and also write sequences in this way. However, it is backwards
for linear algebra because Rp is already acting from the left side. Thus, it “reads”
from right to left.1 We therefore must combine the rotations as QR to obtain
p′′ = QRp. Later in this chapter, we will be chaining together several matrix
transforms. Read them from right to left to understand what they are doing!

1Perhaps coders who speak Arabic or Hebrew are not confused about this.

78 S. M. LaValle: Virtual Reality

Translation and rotation in one matrix It would be convenient to apply
both rotation and translation together in a single operation. Suppose we want to
apply a rotation matrix R, and follow it with a translation by (xt, yt, zt). Alge-
braically, this is





x′

y′

z′



 = R





x
y
z



+





xt

yt
zt



 . (3.20)

Although there is no way to form a single 3 by 3 matrix to accomplish both
operations, it can be done by increasing the matrix dimensions by one. Consider
the following 4 by 4 homogeneous transformation matrix:

Trb =











xt

R yt
zt

0 0 0 1











, (3.21)

in which R fills the upper left three rows and columns. The notation Trb is used
to denote that the matrix is a rigid body transform, meaning that it does not
distort objects. A homogeneous transform matrix could include other kinds of
transforms, which will appear in Section 3.5.

The same result as in (3.20) can be obtained by performing multiplication with
(3.23) as follows:











xt

R yt
zt

0 0 0 1



















x
y
z
1









=









x′

y′

z′

1









. (3.22)

Because of the extra dimension, we extended the point (x, y, z) by one dimension,
to obtain (x, y, z, 1). Note that (3.23) represents rotation followed by translation,
not the other way around. Translation and rotation do not commute; therefore,
this is an important point.

Inverting transforms We frequently want to invert (or undo) transformations.
For a translation (xt, yt, zt), we simply apply the negation (−xt,−yt,−zt). For a
general matrix transform M , we apply the matrix inverse M−1 (if it exists). This
is often complicated to calculate. Fortunately, inverses are much simpler for our
cases of interest. In the case of a rotation matrix R, the inverse is equal to the
transpose R−1 = RT .2 To invert the homogeneous transform matrix (3.23), it is

2Recall that to transpose a square matrix, we simply swap the i and j indices, which turns
columns into rows.

3.2. CHANGING POSITION AND ORIENTATION 79

(a) (b) (c)

Figure 3.8: (a) A rigid model that is contained in a one-by-one square. (b) The
result after rotation by π/4 (45 degrees), followed with translation by xt = 2. (c)
The result after reversing the order: Translation by xt = 2, followed with rotation
by π/4.

tempting to write










−xt

RT −yt
−zt

0 0 0 1











. (3.23)

This will undo both the translation and the rotation; however, the order is wrong.
Remember that these operations are not commutative, which implies that order
must be correctly handled. See Figure 3.8. The algebra for very general matrices
(part of noncommutative group theory) works out so that the inverse of a product
of matrices reverses their order:

(ABC)−1 = C−1B−1A−1. (3.24)

This can be seen by putting the inverse next to the original product:

ABCC−1B−1A−1. (3.25)

In this way, C cancels with its inverse, followed by B and its inverse, and finally
A and its inverse. If the order were wrong, then these cancellations would not
occur.

The matrix Trb (from 3.23) applies the rotation first, followed by translation.
Applying (??) undoes the rotation first and then translation, without reversing
the order. Thus, the inverse of Trb is











0
RT 0

0

0 0 0 1



















1 0 0 −xt

0 1 0 −yt
0 0 1 −zt
0 0 0 1









. (3.26)

80 S. M. LaValle: Virtual Reality

The matrix on the right first undoes the translation (with no rotation). After
that, the matrix on the left undoes the rotation (with no translation).

3.3 Axis-Angle Representations of Rotation

As observed in Section 3.2, 3D rotation is complicated for several reasons: 1) Nine
matrix entries are specified in terms of only three independent parameters, and
with no simple parameterization, 2) the axis of rotation is not the same every time,
and 3) the operations are noncommutative, implying that the order of matrices is
crucial. None of these problems existed for the 2D case.

Kinematic singularities An even worse problem arises when using yaw, pitch,
roll angles (and related Euler-angle variants). Even though they start off being
intuitively pleasing, the representation becomes degenerate, leading to kinematic

singularities that are nearly impossible to visualize. An example will be presented
shortly. To prepare for this, recall how we represent locations on the Earth. These
are points in R

3, but are represented with longitude and latitude coordinates. Just
like the limits of yaw and pitch, longitude ranges from 0 to 2π and latitude only
ranges from −π/2 to π/2. (Longitude is usually expressed as 0 to 180 degrees west
or east, which is equivalent.) As we travel anywhere on the Earth, the latitude
and longitude coordinates behave very much like xy coordinates; however, we
tend to stay away from the poles. Near the North Pole, the latitude behaves
normally, but the longitude could vary a large amount while corresponding to a
tiny distance traveled. Recall how a wall map of the world looks near the poles:
Greenland is enormous and Antarctica wraps across the entire bottom (assuming
it uses a projection that keeps longitude lines straight). The poles themselves are
the kinematic singularities: At these special points, you can vary longitude, but
the location on the Earth is not changing. One of two DOFs seems to be lost.

The same problem occurs with 3D rotations, but it is harder to visualize due to
the extra dimension. If the pitch angle is held at β = π/2, then a kind of “North
Pole” is reached in which α and γ vary independently but cause only one DOF (in
the case of latitude and longitude, it was one parameter varying but causing zero
DOFs). Here is how it looks when combining the yaw, pitch, and roll matrices:





cosα 0 sinα
0 1 0

− sinα 0 cosα









1 0 0
0 0 −1
0 1 0









cos γ − sin γ 0
sin γ cos γ 0
0 0 1



 =





cos(α− γ) sin(α− γ) 0
0 0 −1

− sin(α− γ) cos(α− γ) 0



 .

(3.27)

The second matrix above corresponds to pitch (3.17) with β = π/2. The result
on the right is obtained by performing matrix multiplication and applying a sub-
traction trigonometric identity. You should observe that the resulting matrix is a
function of both α and γ, but there is one DOF because only the difference α− γ
affects the resulting rotation. In the video game industry there has been some

3.3. AXIS-ANGLE REPRESENTATIONS OF ROTATION 81

Figure 3.9: Euler’s rotation theorem states that every 3D rotation can be consid-
ered as a rotation by an angle θ about an axis through the origin, given by the
unit direction vector v = (v1, v2, v3).

back-and-forth battles about whether this problem is crucial. In an FPS game,
the avatar is usually not allowed to pitch his head all the way to ±π/2, thereby
avoiding this problem. In VR, it happens all the time that a user could pitch her
head straight up or down. The kinematic singularity often causes the viewpoint to
spin uncontrollably. This phenomenon also occurs when sensing and controlling a
spacecraft’s orientation using mechanical gimbals; the result is called gimbal lock.

The problems can be easily solved with axis-angle representations of rotation.
They are harder to learn than yaw, pitch, and roll; however, it is a worthwhile
investment because it avoids these problems. Furthermore, many well-written soft-
ware libraries and game engines work directly with these representations. Thus,
to use them effectively, you should understand what they are doing.

The most important insight to solving the kinematic singularity problems is
Euler’s rotation theorem (1775), shown in Figure 3.9. Even though the rotation
axis may change after rotations are combined, Euler showed that any 3D rotation
can be expressed as a rotation θ about some axis that pokes through the origin.
This matches the three DOFs for rotation: It takes two parameters to specify the
direction of an axis and one parameter for θ. The only trouble is that conver-
sions back and forth between rotation matrices and the axis-angle representation
are somewhat inconvenient. This motivates the introduction of a mathematical
object that is close to the axis-angle representation, closely mimics the algebra
of 3D rotations, and can even be applied directly to rotate models. The perfect
representation: Quaternions.

Two-to-one problem Before getting to quaternions, it is important point out
one annoying problem with Euler’s rotation theorem. As shown in Figure 3.10, it
does not claim that the axis-angle representation is unique. In fact, for every 3D

82 S. M. LaValle: Virtual Reality

Figure 3.10: There are two ways to encode the same rotation in terms of axis and
angle, using either v or −v.

rotation other than the identity, there are exactly two representations. This is due
to the fact that the axis could “point” in either direction. We could insist that
the axis always point in one direction, such as positive y, but this does not fully
solve the problem because of the boundary cases (horizontal axes). Quaternions,
which are coming next, nicely handle all problems with 3D rotations except this
one, which is unavoidable.

Quaternions were introduced in 1843 by William Rowan Hamilton. When see-
ing them the first time, most people have difficulty understanding their peculiar
algebra. Therefore, we will instead focus on precisely which quaternions corre-
spond to which rotations. After that, we will introduce some limited quaternion
algebra. The algebra is much less important for developing VR systems, unless
you want to implement your own 3D rotation library. The correspondence between
quaternions and 3D rotations, however, is crucial.

A quaternion h is a 4D vector:

q = (a, b, c, d), (3.28)

in which a, b, c, and d can take on real values. Thus, q can be considered as a
point in R

4. It turns out that we will only use unit quaternions, which means that

a2 + b2 + c2 + d2 = 1 (3.29)

must always hold. This should remind you of the equation of a unit sphere (x2 +
y2 + z2 = 1), but it is one dimension higher. A sphere is a 2D surface, whereas
the set of all unit quaternions is a 3D “hypersurface”, more formally known as a
manifold [1, 5]. We will use the space of unit quaternions to represent the space
of all 3D rotations. Both have 3 DOFs, which seems reasonable.

Let (v, θ) be an axis-angle representation of a 3D rotation, as depicted in
Figure 3.9. Let this be represented by the following quaternion:

q =

(

cos
θ

2
, v1 sin

θ

2
, v2 sin

θ

2
, v3 sin

θ

2

)

. (3.30)

3.3. AXIS-ANGLE REPRESENTATIONS OF ROTATION 83

Quaternion Axis-Angle Description
(1, 0, 0, 0) (undefined, 0) Identity rotation
(0, 1, 0, 0) ((1, 0, 0), π) Pitch by π
(0, 0, 1, 0) ((0, 1, 0), π) Yaw by π
(0, 0, 0, 1) ((0, 0, 1), π) Roll by π
(1√

2
, 1√

2
, 0, 0) ((1, 0, 0), π/2) Pitch by π/2

(1√
2
, 0, 1√

2
, 0) ((0, 1, 0), π/2) Yaw by π/2

(1√
2
, 0, 0, 1√

2
) ((0, 0, 1), π/2) Roll by π/2

Figure 3.11: For these cases, you should be able to look at the quaternion and
quickly picture the axis and angle of the corresponding 3D rotation.

Figure 3.12: Simple relationships between equivalent quaternions and their in-
verses.

Think of q as a data structure that encodes the 3D rotation. It is easy to recover
(v, θ) from q:

θ = 2 cos−1 a and v =
1√

1− a2
(b, c, d). (3.31)

If a = 1, then (3.31) breaks; however, this corresponds to the case of the identity
rotation.

You now have the mappings (v, θ) 7→ q and q 7→ (v, θ). To test your un-
derstanding, Figure 3.11 shows some simple examples, which commonly occur
in practice. Furthermore, Figure 3.12 shows some simple relationships between
quaternions and their corresponding rotations. The horizontal arrows indicate
that q and −q represent the same rotation. This is true because of the double
representation issue shown in Figure 3.10. Applying (3.30) to both cases es-
tablishes their equivalence. The vertical arrows correspond to inverse rotations.
These hold because reversing the direction of the axis causes the rotation to be
reversed (rotation by θ becomes rotation by 2π − θ).

How do we apply the quaternion h = (a, b, c, d) to rotate the model? One way
is to use the following conversion into a 3D rotation matrix:

R(h) =





2(a2 + b2)− 1 2(bc− ad) 2(bd+ ac)
2(bc+ ad) 2(a2 + c2)− 1 2(cd− ab)
2(bd− ac) 2(cd+ ab) 2(a2 + d2)− 1



 . (3.32)

84 S. M. LaValle: Virtual Reality

A more efficient way exists which avoids converting into a rotation matrix. To
accomplish this, we need to define quaternion multiplication. For any two quater-
nions, q1 and q2, let q1 ∗ q2 denote the product, which is defined as

a3 = a1a2 − b1b2 − c1c2 − d1d2

b3 = a1b2 + a2b1 + c1d2 − c2d1

c3 = a1c2 + a2c1 + b2d1 − b1d2

d3 = a1d2 + a2d1 + b1c2 − b2c1.

(3.33)

In other words, q3 = q1 ∗ q2 as defined in (3.33).
Here is a way to rotate the point (x, y, z) using the rotation represented by

h. Let p = (0, x, y, z), which is done to give the point the same dimensions as
a quaternion. Perhaps surprisingly, the point is rotated by applying quaternion
multiplication as

p′ = q ∗ p ∗ q−1, (3.34)

in which q−1 = (a,−b,−c,−d) (recall from Figure 3.12). The rotated point is
(x′, y′, z′), which is taken from the result p′ = (0, x′, y′, z′).

Here is a simple example for the point (1, 0, 0). Let p = (0, 1, 0, 0) and consider
executing a yaw rotation by π. According to Figure 3.11, the corresponding
quaternion is (1√

2
, 0, 1√

2
, 0). The inverse is q−1 = (1√

2
, 0,− 1√

2
, 0). After tediously

applying (3.33) to calculate (3.34), the result is p′ = (0, 0, 1, 0). Thus, the rotated
point is (0, 1, 0), which is a correct yaw by π/2.

3.4 Viewing Transformations

This section describes how to transform the models in the virtual world so that
they appear on a virtual screen. The main purpose is to set the foundation for
graphical rendering, which adds effects due to lighting, material properties, and
quantization. Ultimately, the result appears on the physical display. One side
effect of these transforms is that they also explain how cameras form images, at
least the idealized mathematics of the process. Think of this section as describing a
virtual camera that is placed in the virtual world. What should the virtual picture,
taken by that camera, look like? To make VR work correctly, the “camera” should
actually be one of two virtual human eyes that are placed into the virtual world.
Thus, what should a virtual eye see, based on its position and orientation in the
virtual world? Rather than determine precisely what would appear on the retina,
which should become clear after Section 4.4, here we merely calculate where the
model vertices would appear on a flat, rectangular screen in the virtual world. See
Figure 3.13.

An eye’s view Figure 3.14 shows a virtual eye that is looking down the negative
z axis. It is placed in this way so that from the eye’s perspective, x increases to

3.4. VIEWING TRANSFORMATIONS 85

Figure 3.13: If we placed a virtual eye or camera into the virtual world, what
would it see? Section 3.4 provides transformations that place objects from the
virtual world onto a virtual screen, based on the particular viewpoint of a virtual
eye. A flat rectangular shape is chosen for engineering and historical reasons, even
though it does not match the shape of our retinas.

Figure 3.14: Consider an eye that is looking down the z axis in the negative
direction. The origin of the model is the point at which light enters the eye.

86 S. M. LaValle: Virtual Reality

the right and y is upward. This corresponds to familiar Cartesian coordinates.
The alternatives would be: 1) to face the eye in the positive z direction, which
makes the xy coordinates appear backwards, or 2) reverse the z axis, which would
unfortunately lead to a left-handed coordinate system. Thus, we have made an
odd choice that avoids worse complications.

Suppose that the eye is an object model that we want to place into the virtual
world R

3 at some position e = (e1, e2, e3) and orientation given by the matrix

Reye =





x̂1 ŷ1 ẑ1
x̂2 ŷ2 ẑ2
x̂3 ŷ3 ẑ3



 . (3.35)

If the eyeball in Figure 3.14 were made of triangles, then rotation by Reye and
translation by e would be applied to all vertices to place it in R

3.
This does not, however, solve the problem of how the virtual world should

appear to the eye. Rather than moving the eye in the virtual world, we need to
move all of the models in the virtual world to the eye’s frame of reference. This
means that we need to apply the inverse transformation. The inverse rotation is
RT

eye, the transpose of Reye. The inverse of e is −e. Applying (3.26) results in the
appropriate transform:

Teye =









x̂1 x̂2 x̂3 0
ŷ1 ŷ2 ŷ3 0
ẑ1 ẑ2 ẑ3 0
0 0 0 1

















1 0 0 −e1
0 1 0 −e2
0 0 1 −e3
0 0 0 1









. (3.36)

Note that Reye, as shown in (3.35), has been transposed and placed into the left
matrix above. Also, the order of translation and rotation have been swapped,
which is required for the inverse, as mentioned in Section 3.2.

Following Figure 3.4, there are two possible interpretations of (3.36). As
stated, this could correspond to moving all of the virtual world models (corre-
sponding to Figure 3.4(b)). A more appropriate interpretation in the current
setting is that the virtual world’s coordinate frame is being moved so that it
matches the eye’s frame from Figure 3.14. This corresponds to the case of Figure
3.4(c), which was not the appropriate interpretation in Section 3.2.

Starting from a look-at For VR, the position and orientation of the eye in
the virtual world are given by a tracking system and possibly controller inputs.
By contrast, in computer graphics, it is common to start with a description of
where the eye is located and which way it is looking. This is called a look-at, and
has the following components:

1. Position of the eye: e

2. Central looking direction of the eye: ĉ

3.4. VIEWING TRANSFORMATIONS 87

Figure 3.15: The vector from the eye position e to a point p that it is looking at
is normalized to form ĉ in (3.37).

3. Up direction: û.

Both ĉ and û are unit vectors. The first direction ĉ corresponds to the center of
the view. Whatever ĉ is pointing at should end up in the center of the display.
If we want this to be a particular point p in R

3 (see Figure 3.15), then ĉ can be
calculated as

ĉ =
p− e

‖p− e‖ , (3.37)

in which ‖ · ‖ denotes the length of a vector. The result is just the vector from e
to p, but normalized.

The second direction û indicates which way is up. Imagine holding a camera
out as if you are about to take a photo and then performing a roll rotation. You
can make level ground appear to be slanted or even upside down in the picture.
Thus, û indicates the up direction for the virtual camera or eye.

We now construct the resulting transform Teye from (3.36). The translation
components are already determined by e, which was given in the look-at. We need
only to determine the rotation Reye, as expressed in (3.35). Recall from Section
3.2 that the matrix columns indicate how the coordinate axes are transformed by
the matrix (refer to (3.7) and (3.8)). This simplifies the problem of determining
Reye. Each column vector is calculated as

ẑ = −ĉ

x̂ = û× ẑ

ŷ = ẑ × x̂.

(3.38)

The minus sign appears for calculating ẑ because the eye is looking down the
negative z axis. The x̂ direction is calculated using the standard cross product ẑ.
For the third equation, we could use ŷ = û; however, ẑ × x̂ will cleverly correct
cases in which û generally points upward but is not perpendicular to ĉ. The unit
vectors from (3.38) are substituted into (3.35) to obtain Reye. Thus, we have all
the required information to construct Teye.

Orthographic projection Let (x, y, z) denote the coordinates of any point,
after Teye has been applied. What would happen if we took all points and directly

88 S. M. LaValle: Virtual Reality

Figure 3.16: Starting with any point (x, y, z), a line through the origin can be
formed using a parameter λ. It is the set of all points of the form (λx, λy, λz)
for any real value λ. For example, λ = 1/2 corresponds to the midpoint between
(x, y, z) and (0, 0, 0) along the line.

projected them into the vertical xy plane by forcing each z coordinate to be 0?
In other words, (x, y, z) 7→ (x, y, 0), which is called orthographic projection. If
we imagine the xy plane as a virtual display of the models, then there would be
several problems:

1. A jumble of objects would be superimposed, rather than hiding parts of a
model that are in front of another.

2. The display would extend infinitely in all directions (except z). If the display
is a small rectangle in the xy plane, then the model parts that are outside
of its range can be eliminated.

3. Objects that are closer should appear larger than those further away. This
happens in the real world. Recall from Section 1.3 (Figure 1.23(c)) paintings
that correctly handle perspective.

The first two problems are important graphics operations that are deferred until
Chapter 7. The third problem is addressed next.

Perspective projection Instead of using orthographic projection, we define a
perspective projection. For each point (x, y, z), consider a line through the origin.
This is the set of all points with coordinates

(λx, λy, λz), (3.39)

in which λ can be any real number. In other words λ is a parameter that reaches
all points on the line that contains both (x, y, z) and (0, 0, 0). See Figure 3.16.

Now we can place a planar “movie screen” anywhere in the virtual world and
see where all of the lines pierce it. To keep the math simple, we pick the z = −1

3.5. CHAINING THE TRANSFORMATIONS 89

Figure 3.17: An illustration of perspective projection. The model vertices are
projected onto a virtual screen by drawing lines through them and the origin
(0, 0, 0). The “image” of the points on the virtual screen corresponds to the
intersections of the line with the screen.

plane to place our virtual screen directly in front of the eye; see Figure 3.17. Using
the third component of (3.39), we have λz = −1, implying that λ = −1/z. Using
the first two components of (3.39), the coordinates for the points on the screen
are calculated as x′ = −x/z and y′ = −y/z. Note that since x and y are scaled
by the same amount z for each axis, their aspect ratio is preserved on the screen.

More generally, suppose the vertical screen is placed at some location d along
the z axis. In this case, we obtain more general expressions for the location of a
point on the screen:

x′ = dx/z

y′ = dy/z.
(3.40)

This was obtained by solving d = λz for λ and substituting it into (3.39).
This is all we need to project the points onto a virtual screen, while respecting

the scaling properties of objects at various distances. Getting this right in VR
helps in the perception of depth and scale, which are covered in Section 6.1. In
Section 3.5, we will adapt (3.40) using transformation matrices. Furthermore,
only points that lie within a zone in front of the eye will be projected onto the
virtual screen. Points that are too close, too far, or in outside the normal field of
view will not be rendered on the virtual screen; this is addressed in Section 3.5
and Chapter 7.

3.5 Chaining the Transformations

This section links all of the transformations of this chapter together while also
slightly adjusting their form to match what is currently used in the VR and com-

90 S. M. LaValle: Virtual Reality

Figure 3.18: The viewing frustum.

puter graphics industries. Some of the matrices appearing in this section may seem
unnecessarily complicated. The reason is that the expressions are motivated by al-
gorithm and hardware issues, rather than mathematical simplicity. In particular,
there is a bias toward putting every transformation into a 4 by 4 homogeneous
transform matrix, even in the case of perspective projection which is not even
linear (recall (3.40)). In this way, an efficient matrix multiplication algorithm can
be iterated over the chain of matrices to produce the result.

The chain generally appears as follows:

T = TvpTcanTeyeTrb. (3.41)

When T is applied to a point (x, y, z, 1), the location of the point on the screen is
produced. Remember that these matrix multiplications are not commutative, and
the operations are applied from right to left. The first matrix Trb is the rigid body
transform (3.23) applied to points on a movable model. For each rigid object in the
model, Trb remains the same; however, different objects will generally be placed
in various positions and orientations. For example, the wheel of a virtual car will
move differently than the avatar’s head. After Trb is applied, Teye transforms the
virtual world into the coordinate frame of the eye, according to (3.36). At a fixed
instant in time, this and all remaining transformation matrices are the same for
all points in the virtual world. Here we assume that the eye is positioned at the
midpoint between the two virtual human eyes, leading to a cyclopean viewpoint.
Later in this section, we will extend it to the case of left and right eyes so that
stereo viewpoints can be constructed.

Canonical view transform The next transformation, Tcan performs the per-
spective projection as described in Section 3.4; however, we must explain how it
is unnaturally forced into a 4 by 4 matrix. We also want the result to be in a
canonical form that appears to be unitless, which is again motivated by industrial
needs. Therefore, Tcan is called the canonical view transform. Figure 3.18 shows a
viewing frustum, which is based on the four corners of a rectangular virtual screen.

3.5. CHAINING THE TRANSFORMATIONS 91

At z = n and z = f lie a near plane and far plane, respectively. Note that z < 0
for these cases because the z axis points in the opposite direction. The virtual
screen is contained in the near plane. The perspective projection should place all
of the points inside of the frustum onto a virtual screen that is centered in the
near plane. This implies d = n using (3.40).

We now want to reproduce (3.40) using a matrix. Consider the result of
applying the following matrix multiplication:









n 0 0 0
0 n 0 0
0 0 n 0
0 0 1 0

















x
y
z
1









=









nx
ny
nz
z









. (3.42)

In the first two coordinates, we obtain the numerator of (3.40). The nonlinear
part of (3.40) is the 1/z factor. To handle this, the fourth coordinate is used
to represent z, rather than 1 as in the case of Trb. From this point onward, the
resulting 4D vector is interpreted as a 3D vector that is scaled by dividing out its
fourth component. For example, (v1, v2, v3, v4) is interpreted as

(v1/v4, v2/v4, v3/v4). (3.43)

Thus, the result from (3.42) is interpreted as

(nx/z, ny/z, n), (3.44)

in which the first two coordinates match (3.42) with d = n, and the third coordi-
nate is the location of the virtual screen along the z axis.

Keeping track of depth for later use The following matrix is commonly
used in computer graphics, and will be used here in our chain:

Tp =









n 0 0 0
0 n 0 0
0 0 n+ f −fn
0 0 1 0









. (3.45)

It is identical to the matrix in (3.42) except in how it transforms the z coordinate.
For purposes of placing points on the virtual screen, it is unnecessary because we
already know they are all placed at z = n. The z coordinate is therefore co-opted
for another purpose: Keeping track of the distance of each point from the eye so
that graphics algorithms can determine which objects are in front of other objects.
The matrix Tp calculates the third coordinate as

(n+ f)z − fn (3.46)

When divided by z, (3.46) does not preserve the exact distance, but the graphics
methods (some of which are covered in Chapter 7) require only that the distance

92 S. M. LaValle: Virtual Reality

Figure 3.19: The rectangular region formed by the corners of the viewing frustum,
after they are transformed by Tp. The coordinates of the selected opposite corners
provide the six parameters, ℓ, r, b, t, n, and f , which used in Tst.

ordering is preserved. In other words, if point p is further from the eye than
point q, then it remains further after the transformation, even if the distances are
distorted. It does, however, preserve the distance in two special cases: z = n and
z = f . This can be seen by substituting these into (3.46) and dividing by z.

Additional translation and scaling After Tp is applied, the 8 corners of the
frustum are transformed into the corners of a rectangular box, shown in Figure
3.19. The following performs a simple translation of the box along the z axis and
some rescaling so that it is centered at the origin and the coordinates of its corners
are (±1,±1,±1):

Tst =









2

r−ℓ
0 0 − r+ℓ

r−ℓ

0 2

t−b
0 − t+b

t−b

0 0 2

n−f
−n+f

n−f

0 0 0 1









. (3.47)

If the frustum is perfectly centered in the xy plane, then the first two components
of the last column become 0. Finally, we define the canonical view transform Tcan

from (3.41) as

Tcan = TstTp. (3.48)

Viewport transform The last transform to be applied in the chain (3.41) is
the viewport transform Tvp. After Tcan has been applied, the x and y coordinates
each range from −1 to 1. One last step is required to bring the projected points to
the coordinates used to index pixels on a physical display. Let m be the number
of horizontal pixels and n be the number of vertical pixels. For example, n = 1080
and m = 1920 for a 1080p display. Suppose that the display is indexed with rows
running from 0 to n − 1 and columns from 0 to m − 1. Furthermore, (0, 0) is in

3.5. CHAINING THE TRANSFORMATIONS i

the lower left corner. In this case, the viewport transform is

Tvp =









m
2

0 0 m−1

2

0 n
2

0 n−1

2

0 0 1 0
0 0 0 1









. (3.49)

Left and right eyes We now address how the transformation chain (3.41) is
altered for stereoscopic viewing. Let t denote the distance between the left and
right eyes. Its value in the real world varies across people, and its average is
around t = 0.064 meters. To handle the left eye view, we need to simply shift
the cyclopean (center) eye horizontally to the left. Recall from Section 3.4 that
the inverse actually gets applied. The models need to be shifted to the right.
Therefore, let

Tleft =









1 0 0 t
2

0 1 0 0
0 0 1 0
0 0 0 1









, (3.50)

which corresponds to a right shift of the models, when viewed from the eye. This
transform is placed after Teye to adjust its output. The appropriate modification
to (3.41) is:

T = TvpTcanTleftTeyeTrb. (3.51)

By symmetry, the right eye is similarly handled by replacing Tleft in (3.51) with

Tright =









1 0 0 − t
2

0 1 0 0
0 0 1 0
0 0 0 1









. (3.52)

This concludes the explanation of the entire chain of transformations to place
and move models in the virtual world and then have them appear in the right
place on a display. After reading Chapter 4, it will become clear that one final
transformation may be needed after the entire chain has been applied. This is
done to compensate for nonlinear optical distortions that occur due to wide-angle
lenses in VR headsets.

Further Reading

Most of the matrix transforms appear in standard computer graphics texts. The pre-
sentation in this chapter closely follows [8]. For more details on quaternions and their
associated algebraic properties, see [6]. Robotics texts usually cover 3D transformations
for both rigid bodies and chains of bodies, and also consider kinematic singularities; see
[7, 11].

ii S. M. LaValle: Virtual Reality

Bibliography

[1] W. M. Boothby. An Introduction to Differentiable Manifolds and Riemannian

Geometry. Revised 2nd Ed. Academic, New York, 2003.

[2] M. de Berg, M. van Kreveld, M. Overmars, and O. Schwarzkopf. Compu-

tational Geometry: Algorithms and Applications, 2nd Ed. Springer-Verlag,
Berlin, 2000.

[3] J. Gallier. Curves and Surfaces in Geometric Modeling. Morgan Kaufmann,
San Francisco, CA, 2000.

[4] C. M. Hoffmann. Geometric and Solid Modeling. Morgan Kaufmann, San
Francisco, CA, 1989.

[5] C. L. Kinsey. Topology of Surfaces. Springer-Verlag, Berlin, 1993.

[6] J. B. Kuipers. Quaternions and Rotation Sequences. Princeton University
Press, Princeton, NJ, 1999.

[7] S. M. LaValle. Planning Algorithms. Cambridge University Press, Cambridge,
U.K., 2006. Available at http://planning.cs.uiuc.edu/.

[8] S. Marschner and P. Shirley. Fundamentals of Computer Graphics, 4th Ed.

CRC Press, Boca Raton, FL, 2015.

[9] M. E. Mortenson. Geometric Modeling, 2nd Ed. Wiley, Hoboken, NJ, 1997.

[10] D. E. Muller and F. P. Preparata. Finding the intersection of two convex
polyhedra. Theoretical Computer Science, 7:217–236, 1978.

[11] M. W. Spong, S. Hutchinson, and M. Vidyasagar. Robot Modeling and Con-

trol. Wiley, Hoboken, NJ, 2005.

iii

