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Motion Planning for Dynamic Environments

Part IV - Dynamic Environments: Methods

Steven M. LaValle

University of Illinois
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The chicken follows an interesting curve, depending on λ.

Rajeev Sharma, IEEE TRA 1992
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Families:

� Completely predictable environments

� Sensor feedback and collision avoidance

� Planning under bounded motion uncertainty

� Dynamic programming over cost maps

� Information spaces that tolerate uncertainty
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Cfree(t1) Cfree(t2) Cfree(t3)

t3t2t1

xt

yt

qG

t

At each time slice t ∈ T , we must avoid

Cobs(t) = {q ∈ C | A(q) ∩ O(t) 6= ∅}
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� Sampling-based methods

� Combinatorial methods

� Handling robot speed bounds

� Velocity tuning method
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Transitivity issue:

C2

C3

C1

q

t

In ordinary path planning, if C1 and C2 are adjacent and C2 and C3

adjacent, then a path exists from C1 to C3.

However, for dynamic environments it might require time travel.
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Most approaches depend on a metric ρ : C × C → [0,∞).
Must extend into X to ensure that time only increases.

To extend across Z = C × T :

ρZ(x, x
′) =







0 if q = q′

∞ if q 6= q′ and t′ ≤ t

ρ(q, q′) otherwise.

� Sampling-based RRTs extend across Z using ρZ .

Bidirectional is a bit more complicated.

� Sampling-based roadmaps (including PRMs) extend to produce

directed roadmaps.
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Robot velocity: v = (ẋ, ẏ)
Speed bound: |v| ≤ b for some constant b > 0

The velocity v at every point in Z must point within a cone at all times:

(

x(t+∆t)− x(t)
)2

+
(

y(t+∆t)− y(t)
)2

≤ b2(∆t)2.

t

y

Warning: PSPACE-hard in general.
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O(t)

A

t

1

0

s

Workspace State space

Compute a collision-free path: τ : [0, 1] → Cfree.

Design a timing function (or time scaling): σ : T → [0, 1].
This produces a composition φ = τ ◦ σ, which maps from T to Cfree via

[0, 1].
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Because it is a 2D problem, many methods can be used.

Simple grid search: BFS, DFS, Dijkstra, A∗, ...

It is more elegant and efficient to use combinatorial methods.

t

1

0

s

For example, trapezoidal decomposition.
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B

A

vA

vB

� Two rigid bodies A and B moving in R
2.

� They have constant velocities vA and vB .

� If vB is constant, what values of vA cause collision?
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λ(p, v) = {p+ tv | t ≥ 0}

V OA
B(vB) = {vA | λ(pA, vA − vB) ∩ Cobs 6= ∅}

Here, Cobs = B ⊖A (Minkowski difference).

Fiorini, Shiller, 1998.
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What is both bodies react? Oscillation possible.

Suppose that all bodies follow the same strategy.

This can be taken into account for a great advantage.

RV OA
B(vB) = {v′A | 2v′A − vA ∈ V OA

b (vB)}

Choose v′A as the average of its current velocity and a velocity that lies

outside the velocity obstacle.

van den Berg, Lin, Manocha, 2008
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A computed result:

Try it at the next ICRA coffee break...
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� Potential fields, Khatib, 1980

� Vector field histogram, Borenstein, Koren, 1991

� Dynamic window approach, Fox, Burgard, Thrun, 1997

� Nearness diagram, Minguez, Montano, 2004

Many more...
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� Point (or disc) robot moves at constant speed.

� A finite set of point (or disc) obstacles.

� Obstacles have omnidirectional speed bound.

� Problem: Compute time-optimal collision-free trajectory.

van den Berg, Overmars, 2008
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A computed example, shown through configuration-time space:

Can solve problems O(n3 lg n) time.

It is related to shortest-path graphs in the plane (bitangents).

Recently improved to O(n2 lgn) by Maheshwari et al.
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Instead of a crisp Cobs and Cfree, a cost could be associated with each q

(or each neighborhood).
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Let X be any state space.

We can make a state-time space by Z = X × T .

Let U be an action set.

There are K + 1 stages (1, 2, . . . ,K + 1) along the time axis.

Let x′ = f(x, u) be a state transition equation.

Let L denote a stage-additive cost functional,

L =
K
∑

k=1

l(xk, uk) + lK+1(xK+1).

The task or goal can be expressed in terms of L.
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A feedback plan is represented as π : X → U

Let G∗

k(xk) denote the optimal cost to go from xk at stage k (optimized

over all possible π).

xk

Stage k + 1

Stage k

Possible next states

Bellman’s dynamic programming equation:

G∗

k(xk) = min
uk∈U(xk)

{

l(xk, uk) +G∗

k+1(xk+1)
}
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Bellman’s dynamic programming equation:

G∗

k(xk) = min
uk∈U(xk)

{

l(xk, uk) +G∗

k+1(xk+1)
}

.

Algorithm:

� Initially, G∗

K+1 is known (from lK+1(xK+1)).

� Compute G∗

K from G∗

K+1.

� Compute G∗

K−1 from G∗

K .

�

...
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But X and U are usually continuous spaces.

A finite subset of U can be sampled in Bellman’s equation.

Interpolation (this is the 1D case) over X :

G∗

k+1(x) ≈ αG∗

k+1(si) + (1− α)G∗

k+1(si+1)
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Stochastic version not difficult.

Let p(xk+1|xk, uk) be a probabilistic state transition equation.

Bellman’s equation becomes:

G∗

k(xk) = min
uk∈U(xk)

{

l(xk, uk) +
∑

xk+1

G∗

k+1(xk+1)p(xk+1|xk, uk)
}

.

Optimizes the expected cost-to-go.

In the stationary case, there are Dijkstra-like versions.

See Planning Algorithms: Sections 2.3.2, 8.5.5, 10.6
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Recall the hybrid system formulation.

m = 4

m = 1 m = 2

m = 3

m = 4

m = 3

m = 2

m = 1

C

C

C

C

Modes Layers

Doors may open or close according to a Markov chain.
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The optimal cost-to-go and feedback plan.
0 20 40 60 80 100

XG

0 20 40 60 80 100

XG

Cost-to-go, open mode Cost-to-go, closed mode

XG XG

Vector field, open mode Vector field, closed mode
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Observer
Target

Visibility Region

Trajectory: known or unknown

� A robot must follow a moving target with a camera.

� How to move the robot to maintain visibility as much as possible?

� Optimize the total robot motion.

� Predictable and partially predictable target cases

LaValle, Gonzalez-Banos, Becker, Latombe, 1997
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Optimal robot trajectories computed using value iteration:

For unpredictable target, move robot to maximize the target’s minimum

time to escape.
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D-Star: Stentz, 1994

D-Star Lite: Koenig, Likhachev, 2002

Consider A∗ search on a weighted grid graph.

Execution of the plan causes new information to be learned.

Enhance A∗ to allow edge costs to increase or decrease.
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Let

rhs(q) = min
q′∈Succ(q)

{c(q, q′) + g(q′)}

For the optimal cost-to-go function, Bellman’s equation should be satisfied

everywhere:

g(q) = rhs(q)

(Also, g(qG) = 0.)

If it is not, then fix it!
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Let h(q, q′) be a heuristic underestimate of the optimal cost from q to q′.

Keep search queue sorted by key value:

min(g(q), rhs(s)) + h(qI , s)

If vertices have equal key value, then select one with smallest

min(g(q), rhs(s)).

When edges costs change, affected nodes are placed on the search

queue.

Iterations continue until all affected nodes are fixed, and Bellman is happy

again.
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Consider the following loop:

1. Plan a sequence of actions

2. Take the first action

3. Receive new information from sensors

4. Go to 1



Sliding Window

Completely predictable

Sensor Feedback

Bounded Uncertainty

Dynamic Programming

Dynamic Replanning

Information Spaces

ICRA 2012 Tutorial - Motion Planning - 14 May 2012 – 37 / 64

That was the usual sense-plan-act loop.

Related ideas:

� Receding horizon control

� Model predictive control

� Dynamic replanning

� Partial motion planning

� Anytime planning
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� Construct a partial plan toward the goal within allotted time.

� Compute Xric (inevitable collision states).

� Ensure that paths are safe by avoiding Xric.

� While executing, construct the next partial plan.

Fraichard, Asama, 2004; Petti, Fraichard, 2005
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Probabilistic RRTs

� Use partial planning paradigm.

� Build a probabilistic “cost map” that biases RRT growth into lower

collision probabilities.

� Use HMM prediction models learned from other moving bodies.

Fulgenzi, Spalanzani, and Laugier, 2009
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Kuffner, 2004

Run A∗ or Dijkstra but with reduced neighborhood structure.

Computation times around 10ms.
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A few other replanning works:

� Leven, Hutchinson, 2002

� Jaillet, Simeon, 2004

� Kallmann, Bargmann, Mataric 2004

� Vannoy, Xiao 2006

� Bekris, Kavraki, 2007

� Nabbe, Hebert, 2007

� Bekris, 2010
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Appearing throughout compute science, an any-time algorithm has

properties:

� May be terminated at any time

� The solution it produces gradually improves over time

This seems ideally suited for on-line planning and execution.
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Ferguson, Stentz, 2006
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� Grow RRT in the usual way

� When a new vertex xnew is added, try to connect to other RRT

vertices within radius ρ.

� Among all paths to the root from xnew, add a new RRT edge only

for the shortest one.

� If possible to reduce cost for other vertices within radius ρ by

connecting to xnew, then disconnect them from their parents and

connect them through xnew.

� The radius ρ is prescribed through careful percolation theory

analysis (related to dispersion).

� RRT* yields asymptotically optimal paths through Cfree.

Karaman, Frazzoli, IJRR 2011
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Backwards A*:

� Sort queue by: g(q) + h(qI , q)

� g(q) is the optimal cost-to-come from qG.

� h(qI , q) is the guaranteed underestimate of the optimal cost from

qI to q.
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Anytime A*:

� Sort queue by: g(q) + γh(qI , q)

� γ ≥ 1 is an inflation factor

� It causes non-optimality, but no worse than a factor of γ.

� Approach: Generate a quick solution for large γ, and then gradually

decrease it.
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Anytime D*:

� Use g(q) + γh(qI , q) in D* lite

� Optimality factor for computed paths remains γ.

� Likhachev, Ferguson, Gordon, Stentz, Thrun, 2005



Anytime D*

ICRA 2012 Tutorial - Motion Planning - 14 May 2012 – 53 / 64

Example:
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Recall simple model: Evader moves on a continuous path.

An exact cell decomposition method can solve it.

Guibas et al. 1999
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Identify all unique situations that can occur:

An information state is identified by (x, S) in which

x = the position of the pursuer

S = set of possible evader positions

The set of all information states forms an information space.

Many closed-path motions retain the same information state.
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Environment Inflections

Bitangents Cell Decomposition
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Two types of imperfect state information:

1. Environment: Obstacles, cost map, moving body configurations

2. Robot: The localization problem

These generally force plan feedback to occur over an information space:

π : I → U
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What does ι ∈ I look like? Possibilities:

� A partial map with robot localized

� A full map with a pdf over robot configurations

� A topological map with robot localized

In the most general setting, we may obtain either a set

F (ũk−1, ỹk) ⊆ X

or a pdf

p(xk | ũk−1, ỹk)

over whatever X state space is needed.

The state x ∈ X may encode robot configuration, map, other bodies.
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State: x ∈ X encodes configuration and velocities of robot and bodies.

Stochastic transition law: p(xk+1|xk, uk)
Disturbed sensor mapping: p(yk|xk)

� Receding horizon approach

� Partially closed loop: Estimate future sensor readings

� Compute information feedback strategies

DuToit, Burdick, 2012
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There are many other approaches to planning in belief space:

� Roy, Burgard, Fox, Thrun, 1998

� Pineau, Gordon, 2005

� Kurniawati, Hsu, Lee, 2008

� Prentice, Roy, 2009

� Hauser, 2010

� Platt, Kaelbling, Lozano-Perez, Tedrake, 2012

This list is very incomplete...
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C

T

C

T

Static Predictable

C

T

C

T

Bounded Uncertainty Probabilistic Uncertainty
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� Model: predictable, bounded uncertainty, probabilistic

� Sensor feedback vs. dynamic replanning vs. computing optimal

strategy

� The power of dynamic programming

� In which information space should the robot live?

� There are NP-hard problems everywhere. We have yet to really

understand what makes some problems simpler.

� Which method to use? Need demo, robust experimental system,

theoretical guarantees?
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Let A be a rigid, polygonal (or semi-algebraic) robot.

Let µ(A) denote the area of A.

1

1

A

What is the largest robot, in terms of µ(A), that can fit through the

corridor?
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