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Motion Planning for Dynamic Environments

Part III - Dynamic Environments: Modeling Issues

Steven M. LaValle

University of Illinois
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For an infinite sample sequence α : N → X , let αk denote the first k

samples.

Find a metric space X ⊆ Rn and α so that:

1. The dispersion of αk is ∞ for all k.

2. The dispersion of α is 0.

Solution:



Solution to Homework 2

Basic Choices

Fully Predictable

Bounded Uncertainty

Probabilistic Uncertainty

Game Theory

Non-Obstacles

Plan Representations

ICRA 2012 Tutorial - Motion Planning - 14 May 2012 – 2 / 75

For an infinite sample sequence α : N → X , let αk denote the first k

samples.

Find a metric space X ⊆ Rn and α so that:

1. The dispersion of αk is ∞ for all k.

2. The dispersion of α is 0.

Solution: X = R and α is any dense sequence.

Example: An enumeration of Q.

For any finite sample set in R, the dispersion in finite.

R
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A robot moves among static and moving obstacles:

How to model this?

The time axis T = [0, tf ] becomes critical, unlike before.
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A thought experiment

Goal
?

There is an autonomous sliding door.

Where should the robot move?
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Goal Goal

Mode 1 Mode 2

� There is no solution if an adversarial “demon” moves the wall.

� Iterative replanning leads to oscillation.

� If wall position follows a Markov chain, then wait by either potential

opening.
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What might this correspond to in the world?

In a complex environment, what is the concern?

� Stationary obstacles

� Hazardous terrain

� Moving people, animals, vehicles, other robots

Is the environment friendly, hostile, oblivious?
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A state space X should capture all contingencies.

Components of a state x ∈ X :

� The robot C-space C or phase space.

� The C-space or phase space of other controllable robots?

� The C-space or phase space of moving obstacles?

� The C-space or phase space of other agents?

� Possible modes for the environment?

Can a space of states be nicely parametrized?

What components are predictable?

What components are sensable?
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The environment modeling issues return

But now time-critical issues may dominate.

Important to obtain timely updates to the map.

As time becomes critical, what representation is minimally needed?
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What happens if there are unknown regions in the map?

(figures from Tony Stentz)

The environment might seem “dynamic” because a static obstacle is

revealed.

What assumptions are made for the invisible part of the environment?

Optimism, pessimism, or maximum likelihood?
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What is the environment?

Suppose the robot itself is controlled by a stochastic law: p(qk+1|qk, uk)

The obstacle locations in the robot’s frame depend on disturbance in the

robot motion.

Present state Possible futures

Only the robot-centric frame moves, so the outside motions are rigidly

coupled through SE(2) or SE(3).
Think robotic relativity!
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At one extreme, the environment may be completely unpredictable .

Example: Suppose that at any time t any subset O(t) ⊂ R3 is possible.

Is this realistic? Not really. A robot could only panic.

In reality, we at least have partial predictability .
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Consider these cases for a rigid obstacle:

1. It moves along a known trajectory.

2. It moves in any direction with bounded speed.

3. It follows q̇ = f(q, θ) for some unknown θ ∈ Θ.

4. It follows p(qk+1|qk), a stochastic transition model.

5. It follows p(qk+1|qk, θk) for some unknown θk ∈ Θ.

6. It appears according to a Poisson process.

7. An intention-based model.

8. Game-theoretic models
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Let T = [0, tf ] denote a time interval of interest.

Let O(t) ⊂ W denote the obstacle at time t ∈ T .

Assume O(t) is given for all t ∈ T .

Let Z = C × T denote the configuration-time space.

Each (q, t) ∈ Z specifies both A(q) and O(t).
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Cfree(t1) Cfree(t2) Cfree(t3)

t3t2t1

xt

yt

qG

t

At each time slice t ∈ T , we must avoid

Cobs(t) = {q ∈ C | A(q) ∩ O(t) 6= ∅}
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Let

Zobs = {(q, t) ∈ X | A(q) ∩ O(t) 6= ∅},

and Zfree = Z \ Zobs.

Initial state: zinit = (qI , 0).
Goal region Zgoal ⊂ Zfree (a combination of time and configuration).

Problem: Compute a continuous trajectory

τ : T → Zfree

so that τ(0) = zinit and τ(t) ∈ Zgoal for some t ∈ T .

Note: A trajectory is a time-parametrized path.

More challenging case: The robot has a maximum speed bound

Even more challenging: Robot motion is specified as a nonlinear system
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Let one moving obstacle be called a body.

The body moves with a maximum speed bound: ‖v‖ ≤ c.

C

T

Using bounded uncertainty models, we once again reason in

configuration-time space Z .

This is called a reachable set computation.

Determine a safe q ∈ Cfree(t) for every future t.

Find a trajectory τ : T → Zfree.
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Could overapproximate Cobs(t): Conservative bounds fine, but lose

completeness.

What should happen if sensors can tell current obstacle locations during

execution?

� If there was a solution from the initial time, then on-line information

is not necessary.

� The problem may initially appear unsolvable, but on-line information

could make it solvable.

� It is tempting to try a replanning approach.
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Suppose that the moving body is a point.

Its possible future positions can be calculated by the continuous Dijkstra

algorithm (Hershberger, Suri, 1995; Mitchell 1996)

V (x)

way points
x



Reachable Set Computations

Basic Choices

Fully Predictable

Bounded Uncertainty

Probabilistic Uncertainty

Game Theory

Non-Obstacles

Plan Representations

ICRA 2012 Tutorial - Motion Planning - 14 May 2012 – 22 / 75

What if the the body is a polygon?

If it translates with bounded speed, then continuous Dijkstra could be used

in C-space.

But not too realistic.

More generally, suppose the body moves according to a control law:

ẋb = f(xb, ub),

in which xb is its state and ub ∈ Ub is the input being applied to it.
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The obstacle has its own configuration space Cb.

Each state xb in the state space Xb represents

xb = (qb, q̇b)

in which qb ∈ Cb is the configuration and q̇b is the velocity.

Each input ub could represent an unknown control signal or disturbance.

From a given ũb : [0, t] → Ub and initial state xb(0), the state at time t is

given by

xb(t) = xb(0) +

∫ t

0

f(xb(t
′), ub(t

′))dt′.
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Problem: Determine all possible xb(t) if ũb is not given!

Let R(x, t) denote the time-limited reachable set from initial state x and

at time t.

A state xb ∈ R(x, t) if and only if there exists a control ũb which upon

integration from state x causes the system to arrive at xb at time t.

From R(x, t) we could obtain the set of possible O(t) due to the body.

From this we need to compute Cobs(t) for the robot’s perspective.
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Reachable sets for the Dubins car:

From Patsko, Turova, 2008.
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It is a key problem in system verification.

Make sure the right behavior is obtained for all inputs.

� For linear systems: Incremental Minkowski sums and zonotopes

� For nonlinear systems: Hamilton-Jacobi PDE computations

� Also possible: Monte Carlo simulation

See works of Oded Maler (Verimag), Claire Tomlin (Berkeley), Ian Mitchel

(UBC),

Note: Verification is “anti-planning”:

Try to prove that there does not exist a path.
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Alternative, from the robot’s perspective.

Robot control system:

ẋ = f(x, u)

in which x = (q, q̇) and u ∈ U is the input set.

Suppose the obstacles are static (not necessary).

Let Xobs denote the set of states x = (q, q̇) for which q ∈ Cobs.

The region of inevitable collision is

Xric = {x(0) ∈ X | for any ũ , ∃t > 0 such that x(t) ∈ Xobs}.
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q
q̇ = 0

q̇ < 0

q̇ > 0

q̇ Xric

Xric

Xric

Xobs

Xric

Computation methods for safe planning: Fraichard, Asama, 2004; Bekris,

Kavraki, 2008; Chan, Kuffner, Zucker, 2008.
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Rather than bounded uncertainty, suppose that a density

p(x′b | xb)

is known.

xb is the body state at time t

x′b is the body state at time t+∆t

Where might the body go next?

� Simple diffusion models

� Brownian motions

� Could calculate with particle filters
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Perhaps a model can be learned from data.

(from Chiara Fulgenzi, INRIA)

Intentions become important to reduce model complexity.

Could learn a Hidden Markov Model (HMM) that captures positions,

velocities, and intentions of obstacles.

Could develop sampling-based (particle) representations of future

obstacle trajectories.
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Perhaps the body is another robot and its intentions are known.

Might nevertheless have to use stochastic models to predict the future

behavior.

(from Zhou, Chirikjian, 2003)
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Could have continuous layers and switching between discrete modes.

m = 4

m = 1 m = 2

m = 3

m = 4

m = 3

m = 2

m = 1

C

C

C

C

Modes Layers

In each layer, the obstacle region is different.

A Markov chain models the mode transitions: P (m′|m)
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Examples of modes:

� Doors may open or close

� An obstacle may appear or disappear

� A hazardous situation may emerge: rain falling, giant vehicle

approaching

� Sudden task change
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So far, the obstacle or body motions did not depend on the robot.

Generally have two or more “players” with one transition equation.

Here’s suppose there are two players (the “robot” and “obstacle”)

In continuous time, the state x includes both player configurations (and

possibly velocities).

Player 1 chooses actions u ∈ U and Player 2 chooses v ∈ V .

In continuous time, a differential game is obtained:

ẋ = f(x, u, v).
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In discrete time, a sequential game is obtained:

xk+1 = f(xk, uk, vk).

If Player 1 is the robot, then it must choose uk in each iteration to ensure

that no collision occurs.

Also, could optimize objectives, such as reaching the goal in few steps.
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A car-like robot vs. omnidirectional human (Isaacs, 1951)

ẋ1 = s1 cos θ1 ẋ2 = s2 cos v

ẏ1 = s1 sin θ1 ẏ2 = s2 sin v

θ̇1 =
s1

L
tanuφ

See also: Homicidal diff. drive robot, Ruiz, Murrieta-Cid, ICRA 2012
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Are the models correct for other players?

For planning in dynamic environments, we need to know:

Under what conditions can collision be avoided?

Unfortunately, this returns to reachable set computations.

Perfect characterizations exist only for simple cases.

Additional obstacles complicate everything.

In some cases, a simpler model may help dramatically.



Visibility-Based Pursuit-Evasion Model

Basic Choices

Fully Predictable

Bounded Uncertainty

Probabilistic Uncertainty

Game Theory

Non-Obstacles

Plan Representations

ICRA 2012 Tutorial - Motion Planning - 14 May 2012 – 40 / 75

� A 2D environment, possibly curved

� Unpredictable point “evaders” move with unbounded speed

� Point “pursuers” use visibility sensors to find all evaders

Introduced by Suzuki, Yamashita, 1992.
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Keep track of bodies out of view–in the shadows.

How many are there? What kinds are there?
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� Law of the jungle: Smaller bodies move out of the way.

(what if they become trapped?)

� Multiple robot coordination, but limited communication.

(protocols may become important)

� Fully cooperative setting: Pareto optimal coordination.

A

2

A

1
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What is the cost of collision?

Perhaps it is an optimization task, as opposed to feasibility.
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Obstacle avoidance might not be the primary objective.

� Manipulate objects in the environment

� Rendezvous with other robots

� Maintain visibility of moving obstacles

� Search and destroy moving obstacles

� Count the number of moving obstacles

Can imagine a relation over pairs of bodies: collide, not collide, see, not

see, and so on.
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If obstacles are not completely predictable, then sensors may provide

improved information during execution.

Off-line: The plan is computed before the robot is placed into the

environment. There is time to plan carefully.

On-line: A plan is requested during execution, based on new

information. Planning time is critical.

Dynamic replanning

Anytime planning

Partial planning

Receding horizon control
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1. Time feedback

2. Configuration/state feedback

3. Receding horizon model

4. Information feedback
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This plan specifies the configuration q(t) at every time t ∈ T :

π : T → Zfree

Problems with π:

� Need to determine obstacle reachable sets to obtain Zfree.

� What if the robot cannot be perfectly controlled?

� What if new information about obstacles is sensed?
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Specify a velocity or action at every configuration:

π : Cfree → U

Could obtain u = π(q) as the gradient of an energy function.

Potential functions, navigation functions, Lyapunov functions

Possible systems: q̇ = u or q̇ = f(q, u).

Compute a collision-free vector field:

xgoal
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xgoal
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Moving into the phase space is common.

x = (q, q̇)

q̈ = u or ẋ = f(x, u).

A state-feedback control law:

π : X → U

Note that the state must be accurately sensed at all times.

This includes obstacle velocities.

Maybe a Kalman filter can be used.
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Dynamic replanning; receding horizon control; model predictive control.

Consider an infinite horizon problem.

Transition model: xk+1 = f(xk, uk).
Cost functional:

∞
∑

i=1

l(xi)

Example:

l(xi) =







0 if xi ∈ XG

∞ if xi ∈ Xobs

d(xi) otherwise.

in which d(xi) is an underestimate of the distance (number of steps) to

XG.

Key difficulty: Xobs may change in the future.
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Consider a window size of n steps.

Let k be the current stage.

Choose (u∗k, u
∗

k+1
, . . . , u∗k+n) to optimize

k+n
∑

i=k

l(xi)

Apply u∗k to obtain xk+1 = f(xk, u
∗

k).
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Consider a window size of n steps.

Let k be the current stage.

Choose (u∗k, u
∗

k+1
, . . . , u∗k+n) to optimize

k+n
∑

i=k

l(xi)

Apply u∗k to obtain xk+1 = f(xk, u
∗

k).
Xobs may have changed.

Choose (u∗k+1
, u∗k+2

, . . . , u∗k+n+1
) to optimize

k+n+1
∑

i=k+1

l(xi)

Apply u∗k+1
to obtain xk+2 = f(xk+1, u

∗

k+1
).
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Consider a window size of n steps.

Let k be the current stage.

Choose (u∗k, u
∗

k+1
, . . . , u∗k+n) to optimize

k+n
∑

i=k

l(xi)

Apply u∗k to obtain xk+1 = f(xk, u
∗

k).
Xobs may have changed.

Choose (u∗k+1
, u∗k+2

, . . . , u∗k+n+1
) to optimize

k+n+1
∑

i=k+1

l(xi)

Apply u∗k+1
to obtain xk+2 = f(xk+1, u

∗

k+1
).

Xobs may have changed.
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Questions:

� Does this lead to globally optimal solutions?

� Does this even produce stable robot motions?

Goal Goal

Mode 1 Mode 2



Information Feedback

Basic Choices

Fully Predictable

Bounded Uncertainty

Probabilistic Uncertainty

Game Theory

Non-Obstacles

Plan Representations

ICRA 2012 Tutorial - Motion Planning - 14 May 2012 – 56 / 75

� In many (most?) settings, the obstacle region O(t) is not completely

known.

� Even geometric representations of portions may be difficult.

� Also, is the robot configuration always known?

� Information comes from sensors, before and during execution.

� What representations can be reliably, efficiently maintained?

� Given the task, what representations are appropriate? What

information is necessary?

� Can performance guarantees be made in spite of missing

information?
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� Localization only: Set of possible configurations

� Mapping only: Set of possible environments

� Both: Set of configuration-environment pairs

Let Z be any set of sets.

Each Z ∈ Z is a “map” .

Each z ∈ Z is the configuration or “place” in the map.

Unknown configuration and map yields a state space as:

All (z, Z) such that z ∈ Z and Z ∈ Z .
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There is a giant state space: X ⊂ C × E
E is the set of all environments.

Given a set of k possible maps:

E = {E1, E2, . . . , Ek}

For example, could be given 5 maps:

E = {E1, E2, E3, E4, E5}

X is all (q, Ei) in which (qx, qy) ∈ Ei and Ei ∈ E .

Recall the common structure.
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Given an infinite map family, E , of environments.

Examples:

� The set of all connected, bounded polygonal subsets that have no interior
holes (formally, they are simply connected).

� The previous set expanded to include all cases in which the polygonal
region has a finite number of polygonal holes.

� All subsets of R2 that have a finite number of points removed.

� All subsets of R2 that can be obtained by removing a finite collection of
nonoverlapping discs.

� All subsets of R2 obtained by removing a finite collection of
nonoverlapping convex sets.

� A collection of piecewise-analytic subsets of R2.

� The set of all bitmap representations.
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There is a giant state space: X ⊂ C × E

Let Y be an observation space

A sensor mapping is:

h : X → Y

When x ∈ X , the sensor instantaneously observes y = h(x) ∈ Y .

Could make a noisy sensor version: p(y|x)

We might even want the state-time space: Z = X × T
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The amount of state uncertainty due to a sensor

h : X → Y

The preimage of an observation y is

h−1(y) = {x ∈ X | y = h(x)}

Think about the uncertainty being handled here!
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Suppose X and h : X → Y are given.

The set of all preimages partitions X

X

There is one preimage for every y ∈ Y .

Let Π(h) be the partition X that is induced by h.
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� n point bodies move in R2.

� X = R2n

� Y = {0, 1, . . . , n}

� The sensor mapping h : X → Y counts how many points lie a

fixed detection region V .

V V V VV

For n = 4, there are 5 equivalence classes in Π(h).
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A plan could be represented as

π : Y → U

Choose the action based only the sensor reading.

Think about swarms, distributed robots, emergent behavior.

Behavior-based robotics.
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If sensor feedback is sufficient for the task, great!

If not, then how much memory is needed? How to encode?

What is there to remember?

Action history:

ũk = (u1, . . . , uk)

Sensor observation history:

ỹk = (y1, . . . , yk)
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Let I be any set, and call it an information space.

Let ι0 be called the initial I-state.

Transition function (filter):

ιk = φ(ιk−1, yk, uk−1)

Using the filtering, the system “lives” in I .

The entire world is not reconstructed (unless it is needed).
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An information-feedback plan:

π : I → U

State feedback: I-space is I = X and plan is π : X → U

Open loop: I = N and π : N → U

π can be written as (u1, u2, u3, . . .)

Sensor feedback: I = Y and π : Y → U

History feedback: I = Ihist and π : Ihist → U



Information Space Examples

Basic Choices

Fully Predictable

Bounded Uncertainty

Probabilistic Uncertainty

Game Theory

Non-Obstacles

Plan Representations

ICRA 2012 Tutorial - Motion Planning - 14 May 2012 – 68 / 75

Belief feedback: I = Iprob and π : Iprob → U

Each element of Iprob is a pdf of the form p(xk|ũk−1, ỹk).

Transitions are accomplished by Bayesian filtering.

Often called Partially Observable Markov Decision Processes (POMDPs).

Set feedback: I = Indet and π : Indet → U

Each element of Indet is a set of the form F (ũk−1, ỹk) ⊆ X .

Transitions are accomplished by nondeterministic filtering.
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More possibilities for I :

� A space of location-topological map pairs

� Relative coordinates of a target to be tracked

� A space of gap navigation trees

� A space of configuration-multiresolution bitmap pairs
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Based on the task, an overall approach that leads to planning:

1. Design the system, which includes the environment, bodies, and

sensors.

2. Define the models, which provide the state space X , the sensor

mapping h, and the state transition function f .

3. Select an I-space I for which a filter φ can be practically computed.

4. Take the desired goal, expressed over X , and convert it into an

expression over I .

5. Compute a plan π over I that achieves the goal in terms of I .

Really, all steps should be considered together.
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Goal Goal

Mode 1 Mode 2

� There is no solution if an adversary moves the wall.

� Receding horizon model leads to oscillation.

� If wall follows a Markov chain, then wait by either potential opening.
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� Works in a demo

� Works in a simulated demo

� Works robustly, reliably in a deployed system

� Theorems imply that it works for the model

� Both theorems imply correctness and it works in a system

Feasibility vs. optimality
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� Calculating forward projections (forecasts)

� Do other bodies respond to your motion?

� Hard vs. soft obstacles, other interactions?

� Limitations of replanning

� What kind of information feedback?
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How should the chicken cross the road?

qG

γ

Emergency dash path

qI

Environment has two modes: SAFE and DANGER

The chicken moves at constant speed.

Initially SAFE, but DANGER may occur with Poisson arrival parameter λ.

What strategy minimizes the expected distance traveled by the chicken?
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