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Overview of Part III:

Decision-Theoretic Planning

Planning Under Uncertainty

As in Part II, it also seems appropriate to give two names to Part III. It is officially
called decision-theoretic planning, but it can also be considered as planning under
uncertainty. All of the concepts in Parts I and II avoided models of uncertainties.
Chapter 8 considered plans that can overcome some uncertainties, but there was
no explicit modeling of uncertainty.

In this part, uncertainties generally interfere with two aspects of planning:

1. Predictability: Due to uncertainties, it is not known what will happen in
the future when certain actions are applied. This means that future states
are not necessarily predictable.

2. Sensing: Due to uncertainties, the current state is not necessarily known.
Information regarding the state is obtained from initial conditions, sensors,
and the memory of previously applied actions.

These two kinds of uncertainty are independent in many ways. Each has a different
effect on the planning problem.

Making a single decision Chapter 9 provides an introduction to Part III by
presenting ways to represent uncertainty in the process of making a single de-
cision. The view taken in this chapter is that uncertainty can be modeled as
interference from another decision maker. A special decision maker called nature
will be introduced. The task is to make good decisions, in spite of actions applied
by nature. Either worst-case or probabilistic models can be used to characterize
nature’s decision-making process. Some planning problems might involve multi-
ple rational decision makers. This leads to game theory, which arises from the
uncertainty about how other players will behave when they have conflicting goals.
All of the concepts in Chapter 9 involve making a single decision; therefore, a
state space is generally not necessary because there would only be one application
of the state transition equation. One purpose of the chapter is to introduce and
carefully evaluate the assumptions that are typically made in different forms of
decision theory. This forms the basis of more complicated problems that follow,
especially sequential decision making and control theory.

Uncertainty in predictability Chapter 10 takes the concepts from Chapter
9 and iterates them over multiple stages. This brings in the notions of states and
state transitions, and can be considered as a blending of discrete planning concepts
from Chapter 2 with the uncertainty concepts of Chapter 9. Some coverage of
continuous state spaces and continuous time is also given, which extends ideas
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from Part II. The state transition equation is generally extended to allow future
states to depend on unknown actions taken by nature. In a game-theoretic setting,
the state transitions may even depend on the actions of more than two decision
makers.

For all of the models in Chapter 10, only uncertainty in predictability exists;
the current state is always known. A plan is defined as a function that indicates
the appropriate action to take from any current state. Plans are not formulated
as a sequence of actions because future states are unpredictable, and responses
to the future states may be required at the time they are achieved. Thus, for a
fixed plan, the execution may be different each time: Different actions are applied
and different states are reached. Plans are generally evaluated using worst-case,
expected-case, or game-equilibrium analysis.

Uncertainty in sensing: The information space Chapter 11 introduces
perhaps the most important concept of this book: the information space. If there
is uncertainty in sensing the current state, then the planning problem naturally
lives in an information space. An analogy can be made to the configuration
space and motion planning. Before efforts to unify motion planning by using
configuration space concepts [158, 176, 245], most algorithms were developed on a
case-by-case basis. For example, robot manipulators and mobile robots have very
different characteristics when defined in the world. However, once viewed in the
configuration space, it is easier to consider general algorithms, such as those from
Chapters 5 and 6.

A similar kind of unification should be possible for planning problems that
involve sensing uncertainties (i.e., are unable to determine the current state).
Presently, the methods in the literature are developed mainly around individual
models and problems, as basic motion planning once was. Therefore, it is difficult
to provide a perspective as unified as the techniques in Part II. Nevertheless,
the concepts from Chapter 11 are used to provide a unified introduction to many
planning problems that involve sensing uncertainties in Chapter 12. As in the
case of the configuration space, some effort is required to learn the information
space concepts; however, it will pay great dividends if the investment is made.

Chapter 12 presents several different problems and solutions for planning un-
der sensing uncertainty. The problems include exploring new environments with
robots, playing a pursuit-evasion game with cameras, and manipulating objects
with little or no sensing. The chapter provides many interesting applications of in-
formation space concepts, but it should also leave you with the feeling that much
more remains to be done. Planning in information spaces remains a challeng-
ing research problem throughout much of robotics, control theory, and artificial
intelligence.



Chapter 9

Basic Decision Theory

This chapter serves as a building block for modeling and solving planning problems
that involve more than one decision maker. The focus is on making a single
decision in the presence of other decision makers that may interfere with the
outcome. The planning problems in Chapters 10 to 12 will be viewed as a sequence
of decision-making problems. The ideas presented in this chapter can be viewed as
making a one-stage plan. With respect to Chapter 2, the present chapter reduces
the number of stages down to one and then introduces more sophisticated ways
to model a single stage. Upon returning to multiple stages in Chapter 10, it will
quickly be seen that many algorithms from Chapter 2 extend nicely to incorporate
the decision-theoretic concepts of this chapter.

Since there is no information to carry across stages, there will be no need for
a state space. Instead of designing a plan for a robot, in this chapter we will
refer to designing a strategy for a decision maker (DM). The planning problem
reduces down to a decision-making problem. In later chapters, which describe
sequential decision making, planning terminology will once again be used. It does
not seem appropriate yet in this chapter because making a single decision appears
too degenerate to be referred to as planning.

A consistent theme throughout Part III will be the interaction of multiple
DMs. In addition to the primary DM, which has been referred to as the robot,
there will be one or more other DMs that cannot be predicted or controlled by
the robot. A special DM called nature will be used as a universal way to model
uncertainties. Nature will usually be fictitious in the sense that it is not a true
entity that makes intelligent, rational decisions for its own benefit. The intro-
duction of nature merely serves as a convenient modeling tool to express many
different forms of uncertainty. In some settings, however, the DMs may actually
be intelligent opponents who make decisions out of their own self-interest. This
leads to game theory, in which all decision makers (including the robot) can be
called players.

Section 9.1 provides some basic review and perspective that will help in under-
standing and relating later concepts in the chapter. Section 9.2 covers making a
single decision under uncertainty, which is typically referred to as decision theory.
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Sections 9.3 and 9.4 address game theory, in which two or more DMs make their
decisions simultaneously and have conflicting interests. In zero-sum game theory,
which is covered in Section 9.3, there are two DMs that have diametrically op-
posed interests. In nonzero-sum game theory, covered in Section 9.4, any number
of DMs come together to form a noncooperative game, in which any degree of
conflict or competition is allowable among them. Section 9.5 concludes the chap-
ter by covering justifications and criticisms of the general models formulated in
this chapter. It useful when trying to apply decision-theoretic models to planning
problems in general.

This chapter was written without any strong dependencies on Part II. In fact,
even the concepts from Chapter 2 are not needed because there are no stages or
state spaces. Occasional references to Part II will be given, but these are not vital
to the understanding. Most of the focus in this chapter is on discrete spaces.

9.1 Preliminary Concepts

9.1.1 Optimization

Optimizing a single objective

Before progressing to complicated decision-making models, first consider the sim-
ple case of a single decision maker that must make the best decision. This leads
to a familiar optimization problem, which is formulated as follows.

Formulation 9.1 (Optimization)

1. A nonempty set U called the action space. Each u ∈ U is referred to as an
action.

2. A function L : U → R ∪ {∞} called the cost function.

Compare Formulation 9.1 to Formulation 2.2. State space, X, and state transition
concepts are no longer needed because there is only one decision. Since there is
no state space, there is also no notion of initial and goal states. A strategy simply
consists of selecting the best action.

What does it mean to be the “best” action? If U is finite, then the best action,
u∗ ∈ U is

u∗ = argmin
u∈U

{

L(u)
}

. (9.1)

If U is infinite, then there are different cases. Suppose that U = (−1, 1) and
L(u) = u. Which action produces the lowest cost? We would like to declare that
−1 is the lowest cost, but −1 6∈ U . If we had instead defined U = [−1, 1], then this
would work. However, if U = (−1, 1) and L(u) = u, then there is no action that
produces minimum cost. For any action u ∈ U , a second one, u′ ∈ U , can always
be chosen for which L(u′) < L(u). However, if U = (−1, 1) and L(u) = |u|, then
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(9.1) correctly reports that u = 0 is the best action. There is no problem in this
case because the minimum occurs in the interior, as opposed to on the boundary
of U . In general it is important to be aware that an optimal value may not exist.

There are two ways to fix this frustrating behavior. One is to require that U
is a closed set and is bounded (both were defined in Section 4.1). Since closed
sets include their boundary, this problem will be avoided. The bounded condition
prevents a problem such as optimizing U = R, and L(u) = u. What is the best
u ∈ U? Smaller and smaller values can be chosen for u to produce a lower cost,
even though R is a closed set.

The alternative way to fix this problem is to define and use the notion of an
infimum, denoted by inf. This is defined as the largest lower bound that can be
placed on the cost. In the case of U = (−1, 1) and L(u) = u, this is

inf
u∈(−1,1)

{

L(u)
}

= −1. (9.2)

The only difficulty is that there is no action u ∈ U that produces this cost. The
infimum essentially uses the closure of U to evaluate (9.2). If U happened to be
closed already, then u would be included in U . Unbounded problems can also be
handled. The infimum for the case of U = R and L(u) = u is −∞.

As a general rule, if you are not sure which to use, it is safer to write inf in
the place were you would use min. The infimum happens to yield the minimum
whenever a minimum exists. In addition, it gives a reasonable answer when no
minimum exists. It may look embarrassing, however, to use inf in cases where it
is obviously not needed (i.e., in the case of a finite U).

It is always possible to make an “upside-down” version of an optimization
problem by multiplying L by −1. There is no fundamental change in the result,
but sometimes it is more natural to formulate a problem as one of maximization
instead of minimization. This will be done, for example, in the discussion of utility
theory in Section 9.5.1. In such cases, a reward function, R, is defined instead of
a cost function. The task is to select an action u ∈ U that maximizes the reward.
It will be understood that a maximization problem can easily be converted into a
minimization problem by setting L(u) = −R(u) for all u ∈ U . For maximization
problems, the infimum can be replaced by the supremum, sup, which is the least
upper bound on R(u) over all u ∈ U .

For most problems in this book, the selection of an optimal u ∈ U in a single
decision stage is straightforward; planning problems are instead complicated by
many other aspects. It is important to realize, however, that optimization itself
is an extremely challenging if U and L are complicated. For example, U may be
finite but extremely large, or U may be a high-dimensional (e.g., 1000) subset
of Rn. Also, the cost function may be extremely difficult or even impossible to
express in a simple closed form. If the function is simple enough, then standard
calculus tools based on first and second derivatives may apply. It most real-world
applications, however, more sophisticated techniques are needed. Many involve
a form of gradient descent and therefore only ensure that a local minimum is

440 S. M. LaValle: Planning Algorithms

found. In many cases, sampling-based techniques are needed. In fact, many of
the sampling ideas of Section 5.2, such as dispersion, were developed in the context
of optimization. For some classes of problems, combinatorial solutions may exist.
For example, linear programming involves finding the min or max of a collection
of linear functions, and many combinatorial approaches exist [65, 68, 178, 201].
This optimization problem will appear in Section 9.4.

Given the importance of sampling-based and combinatorial methods in opti-
mization, there are interesting parallels to motion planning. Chapters 5 and 6 each
followed these two philosophies, respectively. Optimal motion planning actually
corresponds to an optimization problem on the space of paths, which is extremely
difficult to characterize. In some special cases, as in Section 6.2.4, it is possible to
find optimal solutions, but in general, such problems are extremely challenging.
Calculus of variations is a general approach for addressing optimization problems
over a space of paths that must satisfy differential constraints [242]; this will be
covered in Section 13.4.1.

Multiobjective optimization

Suppose that there is a collection of cost functions, each of which evaluates an
action. This leads to a generalization of Formulation 9.1 to multiobjective opti-
mization.

Formulation 9.2 (Multiobjective Optimization)

1. A nonempty set U called the action space. Each u ∈ U is referred to as an
action.

2. A vector-valued cost function of the form L : U → R
d for some integer d. If

desired, ∞ may also be allowed for any of the cost components.

A version of this problem was considered in Section 7.7.2, which involved
the optimal coordination of multiple robots. Two actions, u and u′, are called
equivalent if L(u) = L(u′). An action u is said to dominate an action u′ if they
are not equivalent and Li(u) ≤ Li(u

′) for all i such that 1 ≤ i ≤ d. This defines
a partial ordering, ≤, on the set of actions. Note that many actions may be
incomparable. An action is called Pareto optimal if it is not dominated by any
others. This means that it is minimal with respect to the partial ordering.

Example 9.1 (Simple Example of Pareto Optimality) Suppose that U =
{1, 2, 3, 4, 5} and d = 2. The costs are assigned as L(1) = (4, 0), L(2) = (3, 3),
L(3) = (2, 2), L(4) = (5, 7), and L(5) = (9, 0). The actions 2, 4, and 5 can be
eliminated because they are dominated by other actions. For example, (3, 3) is
dominated by (2, 2); hence, action u = 3 is preferable to u = 2. The remaining
two actions, u = 1 and u = 3, are Pareto optimal. �
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Based on this simple example, the notion of Pareto optimality seems mostly
aimed at discarding dominated actions. Although there may be multiple Pareto-
optimal solutions, it at least narrows down U to a collection of the best alterna-
tives.

Example 9.2 (Pennsylvania Turnpike) Imagine driving across the state of
Pennsylvania and being confronted with the Pennsylvania Turnpike, which is a toll
highway that once posted threatening signs about speed limits and the according
fines for speeding. Let U = {50, 51, . . . , 100} represent possible integer speeds,
expressed in miles per hour (mph). A posted sign indicates that the speeding
fines are 1) $50 for being caught driving between 56 and 65 mph, 2) $100 for
being caught between 66 and 75, 3) $200 between 76 and 85, and 4) $500 between
86 and 100. Beyond 100 mph, it is assumed that the penalty includes jail time,
which is so severe that it will not be considered.

The two criteria for a driver are 1) the time to cross the state, and 2) the
amount of money spent on tickets. It is assumed that you will be caught violating
the speed limit. The goal is to minimize both. What are the resulting Pareto-
optimal driving speeds? Compare driving 56 mph to driving 57 mph. Both cost
the same amount of money, but driving 57 mph takes less time. Therefore, 57
mph dominates 56 mph. In fact, 65 mph dominates all speeds down to 56 mph
because the cost is the same, and it reduces the time the most. Based on this
argument, the Pareto-optimal driving speeds are 55, 65, 75, 85, and 100. It is up
to the individual drivers to decide on the particular best action for them; however,
it is clear that no speeds outside of the Pareto-optimal set are sensible. �

The following example illustrates the main frustration with Pareto optimal-
ity. Removing nondominated solutions may not be useful enough. In come cases,
there may even be a continuum of Pareto-optimal solutions. Therefore, the Pareto-
optimal concept is not always useful. Its value depends on the particular applica-
tion.

Example 9.3 (A Continuum of Pareto-Optimal Solutions) Let U = [0, 1]
and d = 2. Let L(u) = (u, 1 − u). In this case, every element of U is Pareto
optimal. This can be seen by noting that a slight reduction in one criterion causes
an increase in the other. Thus, any two actions are incomparable. �

9.1.2 Probability Theory Review

This section reviews some basic probability concepts and introduces notation that
will be used throughout Part III.

442 S. M. LaValle: Planning Algorithms

Probability space A probability space is a three-tuple, (S,F , P ), in which the
three components are

1. Sample space: A nonempty set S called the sample space, which represents
all possible outcomes.

2. Event space: A collection F of subsets of S, called the event space. If S
is discrete, then usually F = pow(S). If S is continuous, then F is usually
a sigma-algebra on S, as defined in Section 5.1.3.

3. Probability function: A function, P : F → R, that assigns probabilities
to the events in F . This will sometimes be referred to as a probability
distribution over S.

The probability function, P , must satisfy several basic axioms:

1. P (E) ≥ 0 for all E ∈ F .

2. P (S) = 1.

3. P (E ∪ F ) = P (E) + P (F ) if E ∩ F = ∅, for all E,F ∈ F .

If S is discrete, then the definition of P over all of F can be inferred from its
definition on single elements of S by using the axioms. It is common in this case
to write P (s) for some s ∈ S, which is slightly abusive because s is not an event.
It technically should be P ({s}) for some {s} ∈ F .

Example 9.4 (Tossing a Die) Consider tossing a six-sided cube or die that has
numbers 1 to 6 painted on its sides. When the die comes to rest, it will always
show one number. In this case, S = {1, 2, 3, 4, 5, 6} is the sample space. The
event space is pow(S), which is all 26 subsets of S. Suppose that the probabil-
ity function is assigned to indicate that all numbers are equally likely. For any
individual s ∈ S, P ({s}) = 1/6. The events include all subsets so that any proba-
bility statement can be formulated. For example, what is the probability that an
even number is obtained? The event E = {2, 4, 6} has probability P (E) = 1/2 of
occurring. �

The third probability axiom looks similar to the last axiom in the definition of
a measure space in Section 5.1.3. In fact, P is technically a special kind of measure
space as mentioned in Example 5.12. If S is continuous, however, this measure
cannot be captured by defining probabilities over the singleton sets. The proba-
bilities of singleton sets are usually zero. Instead, a probability density function,
p : S → R, is used to define the probability measure. The probability function,
P , for any event E ∈ F can then be determined via integration:

P (E) =

∫

E

p(x)dx, (9.3)
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in which x ∈ E is the variable of integration. Intuitively, P indicates the total
probability mass that accumulates over E.

Conditional probability A conditional probability is expressed as P (E|F ) for
any two events E,F ∈ F and is called the “probability of E, given F .” Its
definition is

P (E|F ) = P (E ∩ F )
P (F )

. (9.4)

Two events, E and F , are called independent if and only if P (E∩F ) = P (E)P (F );
otherwise, they are called dependent. An important and sometimes misleading
concept is conditional independence. Consider some third event, G ∈ F . It might
be the case that E and F are dependent, but when G is given, they become inde-
pendent. Thus, P (E∩F ) 6= P (E)P (F ); however, P (E∩F |G) = P (E|G)P (F |G).
Such examples occur frequently in practice. For example, E might indicate some-
one’s height, and F is their reading level. These will generally be dependent
events because children are generally shorter and have a lower reading level. If
we are given the person’s age as an event G, then height is no longer important.
It seems intuitive that there should be no correlation between height and reading
level once the age is given.

The definition of conditional probability, (9.4), imposes the constraint that

P (E ∩ F ) = P (F )P (E|F ) = P (E)P (F |E), (9.5)

which nicely relates P (E|F ) to P (F |E). This results in Bayes’ rule, which is a
convenient way to swap E and F :

P (F |E) = P (E|F )P (F )
P (E)

. (9.6)

The probability distribution, P (F ), is referred to as the prior, and P (F |E) is the
posterior. These terms indicate that the probabilities come before and after E is
considered, respectively.

If all probabilities are conditioned on some event, G ∈ F , then conditional
Bayes’ rule arises, which only differs from (9.6) by placing the condition G on all
probabilities:

P (F |E,G) = P (E|F,G)P (F |G)
P (E|G) . (9.7)

Marginalization Let the events F1, F2, . . . , Fn be any partition of S. The prob-
ability of an event E can be obtained through marginalization as

P (E) =
n∑

i=1

P (E|Fi)P (Fi). (9.8)
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One of the most useful applications of marginalization is in the denominator of
Bayes’ rule. A substitution of (9.8) into the denominator of (9.6) yields

P (F |E) = P (E|F )P (F )
n∑

i=1

P (E|Fi)P (Fi)
. (9.9)

This form is sometimes easier to work with because P (E) appears to be eliminated.

Random variables Assume that a probability space (S,F , P ) is given. A ran-
dom variable1 X is a function that maps S into R. Thus, X assigns a real value
to every element of the sample space. This enables statistics to be conveniently
computed over a probability space. If S is already a subset of R, X may by default
represent the identity function.

Expectation The expectation or expected value of a random variable X is de-
noted by E[X]. It can be considered as a kind of weighted average for X, in which
the weights are obtained from the probability distribution. If S is discrete, then

E[X] =
∑

s∈S

X(s)P (s). (9.10)

If S is continuous, then2

E[X] =

∫

S

X(s)p(s)ds. (9.11)

One can then define conditional expectation, which applies a given condition to
the probability distribution. For example, if S is discrete and an event F is given,
then

E[X|F ] =
∑

s∈S

X(s)P (s|F ). (9.12)

Example 9.5 (Tossing Dice) Returning to Example 9.4, the elements of S are
already real numbers. Hence, a random variableX can be defined by simply letting
X(s) = s. Using (9.11), the expected value, E[X], is 3.5. Note that the expected
value is not necessarily a value that is “expected” in practice. It is impossible
to actually obtain 3.5, even though it is not contained in S. Suppose that the
expected value of X is desired only over trials that result in numbers greater
then 3. This can be described by the event F = {4, 5, 6}. Using conditional
expectation, (9.12), the expected value is E[X|F ] = 5.

1This is a terrible name, which often causes confusion. A random variable is not “random,”
nor is it a “variable.” It is simply a function, X : S → R. To make matters worse, a capital
letter is usually used to denote it, whereas lowercase letters are usually used to denote functions.

2Using the language of measure theory, both definitions are just special cases of the Lebesgue
integral. Measure theory nicely unifies discrete and continuous probability theory, thereby avoid-
ing the specification of separate cases. See [103, 148, 239].
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Now consider tossing two dice in succession. Each element s ∈ S is expressed
as s = (i, j) in which i, j ∈ {1, 2, 3, 4, 5, 6}. Since S 6⊂ R, the random variable
needs to be slightly more interesting. One common approach is to count the sum
of the dice, which yields X(s) = i+ j for any s ∈ S. In this case, E[X] = 7. �

9.1.3 Randomized Strategies

Up until now, any actions taken in a plan have been deterministic. The plans in
Chapter 2 specified actions with complete certainty. Formulation 9.1 was solved
by specifying the best action. It can be viewed as a strategy that trivially makes
the same decision every time.

In some applications, the decision maker may not want to be predictable. To
achieve this, randomization can be incorporated into the strategy. If U is discrete,
a randomized strategy, w, is specified by a probability distribution, P (u), over U .
Let W denote the set of all possible randomized strategies. When the strategy
is applied, an action u ∈ U is chosen by sampling according to the probability
distribution, P (u). We now have to make a clear distinction between defining the
strategy and applying the strategy. So far, the two have been equivalent; however,
a randomized strategy must be executed to determine the resulting action. If the
strategy is executed repeatedly, it is assumed that each trial is independent of
the actions obtained in previous trials. In other words, P (uk|ui) = P (uk), in
which P (uk|ui) represents the probability that the strategy chooses action uk in
trial k, given that ui was chosen in trial i for some i < k. If U is continuous,
then a randomized strategy may be specified by a probability density function,
p(u). In decision-theory and game-theory literature, deterministic and randomized
strategies are often referred to as pure and mixed, respectively.

Example 9.6 (Basing Decisions on a Coin Toss) Let U = {a, b}. A ran-
domized strategy w can be defined as

1. Flip a fair coin, which has two possible outcomes: heads (H) or tails (T).

2. If the outcome is H, choose a; otherwise, choose b.

Since the coin is fair, w is defined by assigning P (a) = P (b) = 1/2. Each time the
strategy is applied, it not known what action will be chosen. Over many trials,
however, it converges to choosing a half of the time. �

A deterministic strategy can always be viewed as a special case of a random-
ized strategy, if you are not bothered by events that have probability zero. A
deterministic strategy, ui ∈ U , can be simulated by a random strategy by assign-
ing P (u) = 1 if u = ui, and P (u) = 0 otherwise. Only with probability zero can
different actions be chosen (possible, but not probable!).
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Imagine using a randomized strategy to solve a problem expressed using For-
mulation 9.1. The first difficulty appears to be that the cost cannot be predicted.
If the strategy is applied numerous times, then we can define the average cost. As
the number of times tends to infinity, this average would converge to the expected
cost, denoted by L̄(w), if L is treated as a random variable (in addition to the
cost function). If U is discrete, the expected cost of a randomized strategy w is

L̄(w) =
∑

u∈U

L(u)P (u) =
∑

u∈U

L(u)wi, (9.13)

in which wi is the component of w corresponding to the particular u ∈ U .
An interesting question is whether there exists some w ∈ W such that L̄(w) <

L(u), for all u ∈ U . In other words, do there exist randomized strategies that are
better than all deterministic strategies, using Formulation 9.1? The answer is no
because the best strategy is always to assign probability one to the action, u∗, that
minimizes L. This is equivalent to using a deterministic strategy. If there are two
or more actions that obtain the optimal cost, then a randomized strategy could
arbitrarily distribute all of the probability mass between these. However, there
would be no further reduction in cost. Therefore, randomization seems pointless
in this context, unless there are other considerations.

One important example in which a randomized strategy is of critical impor-
tance is when making decisions in competition with an intelligent adversary. If the
problem is repeated many times, an opponent could easily learn any deterministic
strategy. Randomization can be used to weaken the prediction capabilities of an
opponent. This idea will be used in Section 9.3 to obtain better ways to play
zero-sum games.

Following is an example that illustrates the advantage of randomization when
repeatedly playing against an intelligent opponent.

Example 9.7 (Matching Pennies) Consider a game in which two players re-
peatedly play a simple game of placing pennies on the table. In each trial, the
players must place their coins simultaneously with either heads (H) facing up or
tails (T) facing up. Let a two-letter string denote the outcome. If the outcome is
HH or TT (the players choose the same), then Player 1 pays Player 2 one Peso; if
the outcome is HT or TH, then Player 2 pays Player 1 one Peso. What happens
if Player 1 uses a deterministic strategy? If Player 2 can determine the strategy,
then he can choose his strategy so that he always wins the game. However, if
Player 1 chooses the best randomized strategy, then he can expect at best to
break even on average. What randomized strategy achieves this?

A generalization of this to three actions is the famous game of Rock-Paper-
Scissors [286]. If you want to design a computer program that repeatedly plays
this game against smart opponents, it seems best to incorporate randomization.
�
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9.2 A Game Against Nature

9.2.1 Modeling Nature

For the first time in this book, uncertainty will be directly modeled. There are
two DMs:

Robot: This is the name given to the primary DM throughout the book.
So far, there has been only one DM. Now that there are two, the name is
more important because it will be used to distinguish the DMs from each
other.

Nature: This DM is a mysterious force that is unpredictable to the robot.
It has its own set of actions, and it can choose them in a way that interferes
with the achievements of the robot. Nature can be considered as a synthetic
DM that is constructed for the purposes of modeling uncertainty in the
decision-making or planning process.

Imagine that the robot and nature each make a decision. Each has a set
of actions to choose from. Suppose that the cost depends on which actions are
chosen by each. The cost still represents the effect of the outcome on the robot;
however, the robot must now take into account the influence of nature on the cost.
Since nature is unpredictable, the robot must formulate a model of its behavior.
Assume that the robot has a set, U , of actions, as before. It is now assumed that
nature also has a set of actions. This is referred to as the nature action space and
is denoted by Θ. A nature action is denoted as θ ∈ Θ. It now seems appropriate
to call U the robot action space; however, for convenience, it will often be referred
to as the action space, in which the robot is implied.

This leads to the following formulation, which extends Formulation 9.1.

Formulation 9.3 (A Game Against Nature)

1. A nonempty set U called the (robot) action space. Each u ∈ U is referred
to as an action.

2. A nonempty set Θ called the nature action space. Each θ ∈ Θ is referred to
as a nature action.

3. A function L : U ×Θ → R ∪ {∞}, called the cost function.

The cost function, L, now depends on u ∈ U and θ ∈ Θ. If U and Θ are finite,
then it is convenient to specify L as a |U | × |Θ| matrix called the cost matrix.

Example 9.8 (A Simple Game Against Nature) Suppose that U and Θ each
contain three actions. This results in nine possible outcomes, which can be spec-
ified by the following cost matrix:
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Θ

U

1 −1 0
−1 2 −2
2 −1 1

The robot action, u ∈ U , selects a row, and the nature action, θ ∈ Θ, selects a
column. The resulting cost, L(u, θ), is given by the corresponding matrix entry. �

In Formulation 9.3, it appears that both DMs act at the same time; nature
does not know the robot action before deciding. In many contexts, nature may
know the robot action. In this case, a different nature action space can be defined
for every u ∈ U . This generalizes Formulation 9.3 to obtain:

Formulation 9.4 (Nature Knows the Robot Action)

1. A nonempty set U called the action space. Each u ∈ U is referred to as an
action.

2. For each u ∈ U , a nonempty set Θ(u) called the nature action space.

3. A function L : U ×Θ → R ∪ {∞}, called the cost function.

If the robot chooses an action u ∈ U , then nature chooses from Θ(u).

9.2.2 Nondeterministic vs. Probabilistic Models

What is the best decision for the robot, given that it is engaged in a game against
nature? This depends on what information the robot has regarding how nature
chooses its actions. It will always be assumed that the robot does not know the
precise nature action to be chosen; otherwise, it is pointless to define nature. Two
alternative models that the robot can use for nature will be considered. From the
robot’s perspective, the possible models are

Nondeterministic: I have no idea what nature will do.

Probabilistic: I have been observing nature and gathering statistics.

Under both models, it is assumed that the robot knows Θ in Formulation 9.3 or
Θ(u) for all u ∈ U in Formulation 9.4. The nondeterministic and probabilistic
terminology are borrowed from Erdmann [92]. In some literature, the term pos-
sibilistic is used instead of nondeterministic. This is an excellent term, but it is
unfortunately too similar to probabilistic in English.

Assume first that Formulation 9.3 is used and that U and Θ are finite. Under
the nondeterministic model, there is no additional information. One reasonable
approach in this case is to make a decision by assuming the worst. It can even be
imagined that nature knows what action the robot will take, and it will spitefully
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choose a nature action that drives the cost as high as possible. This pessimistic
view is sometimes humorously referred to as Murphy’s Law (“If anything can go
wrong, it will.”) [33] or Sod’s Law. In this case, the best action, u∗ ∈ U , is
selected as

u∗ = argmin
u∈U

{

max
θ∈Θ

{

L(u, θ)
}}

. (9.14)

The action u∗ is the lowest cost choice using worst-case analysis. This is sometimes
referred to as a minimax solution because of the min and max in (9.14). If U or
Θ is infinite, then the min or max may not exist and should be replaced by inf or
sup, respectively.

Worst-case analysis may seem too pessimistic in some applications. Perhaps
the assumption that all actions in Θ are equally likely may be preferable. This
can be handled as a special case of the probabilistic model, which is described
next.

Under the probabilistic model, it is assumed that the robot has gathered
enough data to reliably estimate P (θ) (or p(θ) if Θ is continuous). In this case, it
is imagined that nature applies a randomized strategy, as defined in Section 9.1.3.
It assumed that the applied nature actions have been observed over many trials,
and in the future they will continue to be chosen in the same manner, as predicted
by the distribution P (θ). Instead of worst-case analysis, expected-case analysis is
used. This optimizes the average cost to be received over numerous independent
trials. In this case, the best action, u∗ ∈ U , is

u∗ = argmin
u∈U

{

Eθ

[

L(u, θ)
]}

, (9.15)

in which Eθ indicates that the expectation is taken according to the probability
distribution (or density) over θ. Since Θ and P (θ) together form a probability
space, L(u, θ) can be considered as a random variable for each value of u (it assigns
a real value to each element of the sample space).3 Using P (θ), the expectation
in (9.15) can be expressed as

Eθ[L(u, θ)] =
∑

θ∈Θ

L(u, θ)P (θ). (9.16)

Example 9.9 (Nondeterministic vs. Probabilistic) Return to Example 9.8.
Let U = {u1, u2, u3} represent the robot actions, and let Θ = {θ1, θ2, θ3} represent
the nature actions.

Under the nondeterministic model of nature, u∗ = u1, which results in L(u∗, θ) =
1 in the worst case using (9.14). Under the probabilistic model, let P (θ1) = 1/5,
P (θ2) = 1/5, and P (θ3) = 3/5. To find the optimal action, (9.15) can be used.

3Alternatively, a random variable may be defined over U × Θ, and conditional expectation
would be taken, in which u is given.
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This involves computing the expected cost for each action:

Eθ[L(u1, θ)] = (1)1/5 + (−1)1/5 + (0)3/5 = 0

Eθ[L(u2, θ)] = (−1)1/5 + (2)1/5 + (−2)3/5 = −1

Eθ[L(u3, θ)] = (2)1/5 + (−1)1/5 + (1)3/5 = 4/5.

(9.17)

The best action is u∗ = u2, which produces the lowest expected cost, −1.
If the probability distribution had instead been P = [1/10 4/5 1/10], then

u∗ = u1 would have been obtained. Hence the best decision depends on P (θ); if
this information is statistically valid, then it enables more informed decisions to
be made. If such information is not available, then the nondeterministic model
may be more suitable.

It is possible, however, to assign P (θ) as a uniform distribution in the absence
of data. This means that all nature actions are equally likely; however, conclu-
sions based on this are dangerous; see Section 9.5. �

In Formulation 9.4, the nature action space Θ(u) depends on u ∈ U , the robot
action. Under the nondeterministic model, (9.14) simply becomes

u∗ = argmin
u∈U

{

max
θ∈Θ(u)

L(u, θ)
}

. (9.18)

Unfortunately, these problems do not have a nice matrix representation because
the size of Θ(u) can vary for different u ∈ U . In the probabilistic case, P (θ) is
replaced by a conditional probability distribution P (θ|u). Estimating this distri-
bution requires observing numerous independent trials for each possible u ∈ U .
The behavior of nature can now depend on the robot action; however, nature is
still characterized by a randomized strategy. It does not adapt its strategy across
multiple trials. The expectation in (9.16) now becomes

Eθ

[

L(u, θ)
]

=
∑

θ∈Θ(u)

L(u, θ)P (θ|u), (9.19)

which replaces P (θ) by P (θ|u).

Regret It is important to note that the models presented here are not the only
accepted ways to make good decisions. In game theory, the key idea is to minimize
“regret.” This is the feeling you get after making a bad decision and wishing that
you could change it after the game is finished. Suppose that after you choose
some u ∈ U , you are told which θ ∈ Θ was applied by nature. The regret is the
amount of cost that you could have saved by picking a different action, given the
nature action that was applied.

For each combination of u ∈ U and θ ∈ Θ, the regret, T , is defined as

T (u, θ) = max
u′∈U

{

L(u, θ)− L(u′, θ)
}

. (9.20)
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For Formulation 9.3, if U and Θ are finite, then a |Θ| × |U | regret matrix can be
defined.

Suppose that minimizing regret is the primary concern, as opposed to the
actual cost received. Under the nondeterministic model, the action that minimizes
the worst-case regret is

u∗ = argmin
u∈U

{

max
θ∈Θ

{

T (u, θ)
}}

. (9.21)

In the probabilistic model, the action that minimizes the expected regret is

u∗ = argmin
u∈U

{

Eθ

[

T (u, θ)
]}

. (9.22)

The only difference with respect to (9.14) and (9.15) is that L has been replaced
by T . In Section 9.3.2, regret will be discussed in more detail because it forms
the basis of optimality concepts in game theory.

Example 9.10 (Regret Matrix) The regret matrix for Example 9.8 is

Θ

U

2 0 2
0 3 0
3 0 3

Using the nondeterministic model, u∗ = u1, which results in a worst-case regret of
2 using (9.21). Under the probabilistic model, let P (θ1) = P (θ2) = P (θ3) = 1/3.
In this case, u∗ = u1, which yields the optimal expected regret, calculated as 1
using (9.22).

9.2.3 Making Use of Observations

Formulations 9.3 and 9.4 do not allow the robot to receive any information (other
than L) prior to making its decision. Now suppose that the robot has a sensor
that it can check just prior to choosing the best action. This sensor provides
an observation or measurement that contains information about which nature
action might be chosen. In some contexts, the nature action can be imagined
as a kind of state that has already been selected. The observation then provides
information about this. For example, nature might select the current temperature
in Bangkok. An observation could correspond to a thermometer in Bangkok that
takes a reading.

Formulating the problem Let Y denote the observation space, which is the
set of all possible observations, y ∈ Y . For convenience, suppose that Y , U , and Θ
are all discrete. It will be assumed as part of the model that some constraints on
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θ are known once y is given. Under the nondeterministic model a set Y (θ) ⊆ Y
is specified for every θ ∈ Θ. The set Y (θ) indicates the possible observations,
given that the nature action is θ. Under the probabilistic model a conditional
probability distribution, P (y|θ), is specified. Examples of sensing models will
be given in Section 9.2.4. Many others appear in Sections 11.1.1 and 11.5.1,
although they are expressed with respect to a state space X that reduces to Θ in
this section. As before, the probabilistic case also requires a prior distribution,
P (Θ), to be given. This results in the following formulation.

Formulation 9.5 (A Game Against Nature with an Observation)

1. A finite, nonempty set U called the action space. Each u ∈ U is referred to
as an action.

2. A finite, nonempty set Θ called the nature action space.

3. A finite, nonempty set Y called the observation space.

4. A set Y (θ) ⊆ Y or probability distribution P (y|θ) specified for every θ ∈ Θ.
This indicates which observations are possible or probable, respectively, if
θ is the nature action. In the probabilistic case a prior, P (θ), must also be
specified.

5. A function L : U ×Θ → R ∪ {∞}, called the cost function.

Consider solving Formulation 9.5. A strategy is now more complicated than
simply specifying an action because we want to completely characterize the be-
havior of the robot before the observation has been received. This is accomplished
by defining a strategy as a function, π : Y → U . For each possible observation,
y ∈ Y , the strategy provides an action. We now want to search the space of
possible strategies to find the one that makes the best decisions over all possible
observations. In this section, Y is actually a special case of an information space,
which is the main topic of Chapters 11 and 12. Eventually, a strategy (or plan)
will be conditioned on an information state, which generalizes an observation.

Optimal strategies Now consider finding the optimal strategy, denoted by π∗,
under the nondeterministic model. The sets Y (θ) for each θ ∈ Θ must be used
to determine which nature actions are possible for each observation, y ∈ Y . Let
Θ(y) denote this, which is obtained as

Θ(y) = {θ ∈ Θ | y ∈ Y (θ)}. (9.23)

The optimal strategy, π∗, is defined by setting

π∗(y) = argmin
u∈U

{

max
θ∈Θ(y)

{

L(u, θ)
}}

, (9.24)
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for each y ∈ Y . Compare this to (9.14), in which the maximum was taken over
all Θ. The advantage of having the observation, y, is that the set is restricted to
Θ(y) ⊆ Θ.

Under the probabilistic model, an operation analogous to (9.23) must be per-
formed. This involves computing P (θ|y) from P (y|θ) to determine the information
that y contains regarding θ. Using Bayes’ rule, (9.9), with marginalization on the
denominator, the result is

P (θ|y) = P (y|θ)P (θ)
∑

θ∈Θ

P (y|θ)P (θ)
. (9.25)

To see the connection between the nondeterministic and probabilistic cases, define
a probability distribution, P (y|θ), that is nonzero only if y ∈ Y (θ) and use a
uniform distribution for P (θ). In this case, (9.25) assigns nonzero probability
to precisely the elements of Θ(y) as given in (9.23). Thus, (9.25) is just the
probabilistic version of (9.23). The optimal strategy, π∗, is specified for each
y ∈ Y as

π∗(y) = argmin
u∈U

{

Eθ

[

L(u, θ)
∣
∣
∣ y
]}

= argmin
u∈U

{
∑

θ∈Θ

L(u, θ)P (θ|y)
}

. (9.26)

This differs from (9.15) and (9.16) by replacing P (θ) with P (θ|y). For each u, the
expectation in (9.26) is called the conditional Bayes’ risk. The optimal strategy,
π∗, always selects the strategy that minimizes this risk. Note that P (θ|y) in (9.26)
can be expressed using (9.25), for which the denominator (9.26) represents P (y)
and does not depend on u; therefore, it does not affect the optimization. Due to
this, P (y|θ)P (θ) can be used in the place of P (θ|y) in (9.26), and the same π∗ will
be obtained. If the spaces are continuous, then probability densities are used in
the place of all probability distributions, and the method otherwise remains the
same.

Nature acts twice A convenient, alternative formulation can be given by al-
lowing nature to act twice:

1. First, a nature action, θ ∈ Θ, is chosen but is unknown to the robot.

2. Following this, a nature observation action is chosen to interfere with the
robot’s ability to sense θ.

Let ψ denote a nature observation action, which is chosen from a nature obser-
vation action space, Ψ(θ). A sensor mapping, h, can now be defined that yields
y = h(θ, ψ) for each θ ∈ Θ and ψ ∈ Ψ(θ). Thus, for each of the two kinds of
nature actions, θ ∈ Θ and ψ ∈ Ψ, an observation, y = h(θ, ψ), is given. This
yields an alternative way to express Formulation 9.5:
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Formulation 9.6 (Nature Interferes with the Observation)

1. A nonempty, finite set U called the action space.

2. A nonempty, finite set Θ called the nature action space.

3. A nonempty, finite set Y called the observation space.

4. For each θ ∈ Θ, a nonempty set Ψ(θ) called the nature observation action
space.

5. A sensor mapping h : Θ×Ψ → Y .

6. A function L : U ×Θ → R ∪ {∞} called the cost function.

This nicely unifies the nondeterministic and probabilistic models with a single
function h. To express a nondeterministic model, it is assumed that any ψ ∈ Ψ(θ)
is possible. Using h,

Θ(y) = {θ ∈ Θ | ∃ψ ∈ Ψ(θ) such that y = h(θ, ψ)}. (9.27)

For a probabilistic model, a distribution P (ψ|θ) is specified (often, this may reduce
to P (ψ)). Suppose that when the domain of h is restricted to some θ ∈ Θ, then it
forms an injective mapping from Ψ to Y . In other words, every nature observation
action leads to a unique observation, assuming θ is fixed. Using P (ψ) and h, P (y|θ)
is derived as

P (y|θ) =
{
P (ψ|θ) for the unique ψ such that y = h(θ, ψ).
0 if no such ψ exists.

(9.28)

If the injective assumption is lifted, then P (ψ|θ) is replaced by a sum over all ψ
for which y = h(θ, ψ). In Formulation 9.6, the only difference between the nonde-
terministic and probabilistic models is the characterization of ψ, which represents
a kind of measurement interference. A strategy still takes the form π : Θ → U .
A hybrid model is even possible in which one nature action is modeled nondeter-
ministically and the other probabilistically.

Receiving multiple observations Another extension of Formulation 9.5 is to
allow multiple observations, y1, y2, . . ., yn, before making a decision. Each yi is
assumed to belong to an observation space, Yi. A strategy, π, now depends on all
observations:

π : Y1 × Y2 × · · · × Yn → U. (9.29)

Under the nondeterministic model, Yi(θ) is specified for each i and θ ∈ Θ. The
set Θ(y) is replaced by

Θ(y1) ∩Θ(y2) ∩ · · · ∩Θ(yn) (9.30)
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in (9.24) to obtain the optimal action, π∗(y1, . . . , yn).
Under the probabilistic model, P (yi|θ) is specified instead. It is often assumed

that the observations are conditionally independent given θ. This means for any
yi, θ, and yj such that i 6= j, P (yi|θ, yj) = P (yi|θ). The condition P (θ|y) in (9.26)
is replaced by P (θ|y1, . . . , yn). Applying Bayes’ rule, and using the conditional
independence of the yi’s given θ, yields

P (θ|y1, . . . , yn) =
P (y1|θ)P (y2|θ) · · ·P (yn|θ)P (θ)

P (y1, . . . , yn)
. (9.31)

The denominator can be treated as a constant factor that does not affect the
optimization. Therefore, it does not need to be explicitly computed unless the
optimal expected cost is needed in addition to the optimal action.

Conditional independence allows a dramatic simplification that avoids the full
specification of P (y|θ). Sometimes the conditional independence assumption is
used when it is incorrect, just to exploit this simplification. Therefore, a method
that uses conditional independence of observations is often called naive Bayes.

9.2.4 Examples of Optimal Decision Making

The framework presented so far characterizes statistical decision theory, which
covers a broad range of applications and research issues. Virtually any context in
which a decision must be made automatically, by a machine or a person following
specified rules, is a candidate for using these concepts. In Chapters 10 through
12, this decision problem will be repeatedly embedded into complicated planning
problems. Planning will be viewed as a sequential decision-making process that
iteratively modifies states in a state space. Most often, each decision step will
be simpler than what usually arises in common applications of decision theory.
This is because planning problems are complicated by many other factors. If
the decision step in a particular application is already too hard to solve, then an
extension to planning appears hopeless.

It is nevertheless important to recognize the challenges in general that arise
when modeling and solving decision problems under the framework of this section.
Some examples are presented here to help illustrate its enormous power and scope.

Pattern classification

An active field over the past several decades in computer vision and machine
learning has been pattern classification [73, 82, 193]. The general problem involves
using a set of data to perform classifications. For example, in computer vision, the
data correspond to information extracted from an image. These indicate observed
features of an object that are used by a vision system to try to classify the object
(e.g., “I am looking at a bowl of Vietnamese noodle soup”).

The presentation here represents a highly idealized version of pattern clas-
sification. We will assume that all of the appropriate model details, including
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the required probability distributions, are available. In some contexts, these can
be obtained by gathering statistics over large data sets. In many applications,
however, obtaining such data is expensive or inaccessible, and classification tech-
niques must be developed in lieu of good information. Some problems are even
unsupervised, which means that the set of possible classes must also be discov-
ered automatically. Due to issues such as these, pattern classification remains a
challenging research field.

The general model is that nature first determines the class, then observations
are obtained regarding the class, and finally the robot action attempts to guess
the correct class based on the observations. The problem fits under Formulation
9.5. Let Θ denote a finite set of classes. Since the robot must guess the class,
U = Θ. A simple cost function is defined to measure the mismatch between u
and θ:

L(u, θ) =

{

0 if u = θ (correct classification

1 if u 6= θ (incorrect classification) .
(9.32)

The nondeterministic model yields a cost of 1 if it is possible that a classification
error can be made using action u. Under the probabilistic model, the expectation
of (9.32) gives the probability that a classification error will be made given an
action u.

The next part of the formulation considers information that is used to make
the classification decision. Let Y denote a feature space, in which each y ∈ Y is
called a feature or feature vector (often y ∈ R

n). The feature in this context is just
an observation, as given in Formulation 9.5. The best classifier or classification
rule is a strategy π : Y → U that provides the smallest classification error in the
worst case or expected case, depending on the model.

A Bayesian classifier The probabilistic approach is most common in pattern
classification. This results in a Bayesian classifier. Here it is assumed that P (y|θ)
and P (θ) are given. The distribution of features for a given class is indicated by
P (y|θ). The overall frequency of class occurrences is given by P (θ). If large, pre-
classified data sets are available, then these distributions can be reliably learned.
The feature space is often continuous, which results in a density p(y|θ), even
though P (θ) remains a discrete probability distribution. An optimal classifier, π∗,
is designed according to (9.26). It performs classification by receiving a feature
vector, y, and then declaring that the class is u = π∗(y). The expected cost using
(9.32) is the probability of error.

Example 9.11 (Optical Character Recognition) An example of classifica-
tion is given by a simplified optical character recognition (OCR) problem. Sup-
pose that a camera creates a digital image of a page of text. Segmentation is first
performed to determine the location of each letter. Following this, the individ-
ual letters must be classified correctly. Let Θ = {A,B,C,D,E, F,G,H}, which
would ordinarily include all of the letters of the alphabet.
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Shape 0 A E F H
1 B C D G

Ends 0 B D
1
2 A C G
3 F E
4 H

Holes 0 C E F G H
1 A D
2 B

Figure 9.1: A mapping from letters to feature values.

Suppose that there are three different image processing algorithms:

Shape extractor: This returns s = 0 if the letter is composed of straight
edges only, and s = 1 if it contains at least one curve.

End counter: This returns e, the number of segment ends. For example,
O has none and X has four.

Hole counter: This returns h, the number of holes enclosed by the char-
acter. For example, X has none and O has one.

The feature vector is y = (s, e, h). The values that should be reported under ideal
conditions are shown in Figure 9.1. These indicate Θ(s), Θ(e), and Θ(h). The
intersection of these yields Θ(y) for any combination of s, e, and h.

Imagine doing classification under the nondeterministic model, with the as-
sumption that the features always provide correct information. For y = (0, 2, 1),
the only possible letter is A. For y = (1, 0, 2), the only letter is B. If each
(s, e, h) is consistent with only one or no letters, then a perfect classifier can be
constructed. Unfortunately, (0, 3, 0) is consistent with both E and F . In the worst
case, the cost of using (9.32) is 1.

One way to fix this is to introduce a new feature. Suppose that an image
processing algorithm is used to detect corners. These are places at which two
segments meet at a right (90 degrees) angle. Let c denote the number of corners,
and let the new feature vector be y = (s, e, h, c). The new algorithm nicely
distinguishes E from F , for which c = 2 and c = 1, respectively. Now all letters
can be correctly classified without errors.

Of course, in practice, the image processing algorithms occasionally make mis-
takes. A Bayesian classifier can be designed to maximize the probability of suc-
cess. Assume conditional independence of the observations, which means that the
classifier can be considered naive. Suppose that the four image processing algo-
rithms are run over a training data set and the results are recorded. In each case,
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the correct classification is determined by hand to obtain probabilities P (s|θ),
P (e|θ), P (h|θ), and P (c|θ). For example, suppose that the hole counter receives
the letter A as input. After running the algorithm over many occurrences of A
in text, it may be determined that P (h = 1| θ = A) = 0.9, which is the cor-
rect answer. With smaller probabilities, perhaps P (h = 0| θ = A) = 0.09 and
P (h = 2| θ = A) = 0.01. Assuming that the output of each image processing al-
gorithm is independent given the input letter, a joint probability can be assigned
as

P (y|θ) = P (s, e, h, c| θ) = P (s|θ)P (e|θ)P (h|θ)P (c|θ). (9.33)

The value of the prior P (θ) can be obtained by running the classifier over large
amounts of hand-classified text and recording the relative numbers of occurrences
of each letter. It is interesting to note that some context-specific information can
be incorporated. If the text is known to be written in Spanish, then P (θ) should
be different than from text written in English. Tailoring P (θ) to the type of text
that will appear improves the performance of the resulting classifier.

The classifier makes its decisions by choosing the action that minimizes the
probability of error. This error is proportional to

∑

θ∈Θ

P (s|θ)P (e|θ)P (h|θ)P (c|θ)P (θ), (9.34)

by neglecting the constant P (y) in the denominator of Bayes’ rule in (9.26). �

Parameter estimation

Another important application of the decision-making framework of this section is
parameter estimation [21, 70]. In this case, nature selects a parameter, θ ∈ Θ, and
Θ represents a parameter space. Through one or more independent trials, some
observations are obtained. Each observation should ideally be a direct measure-
ment of Θ, but imperfections in the measurement process distort the observation.
Usually, Θ ⊆ Y , and in many cases, Y = Θ. The robot action is to guess the
parameter that was chosen by nature. Hence, U = Θ. In most applications, all of
the spaces are continuous subsets of Rn. The cost function is designed to increase
as the error, ‖u− θ‖, becomes larger.

Example 9.12 (Parameter Estimation) Suppose that U = Y = Θ = R. Na-
ture therefore chooses a real-valued parameter, which is estimated. The cost of
making a mistake is

L(u, θ) = (u− θ)2. (9.35)

Suppose that a Bayesian approach is taken. The prior probability density p(θ)
is given as uniform over an interval [a, b] ⊂ R. An observation is received, but it
is noisy. The noise can be modeled as a second action of nature, as described in
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Section 9.2.3. This leads to a density p(y|θ). Suppose that the noise is modeled
with a Gaussian, which results in

p(y|θ) = 1√
2πσ2

e−(y−θ)2/2σ2

, (9.36)

in which the mean is θ and the standard deviation is σ.
The optimal parameter estimate based on y is obtained by selecting u ∈ R to

minimize
∫

∞

−∞

L(u, θ)p(θ|y)dθ, (9.37)

in which

p(θ|y) = p(y|θ)p(θ)
p(y)

, (9.38)

by Bayes’ rule. The term p(y) does not depend on θ, and it can therefore be ignored
in the optimization. Using the prior density, p(θ) = 0 outside of [a, b]; hence, the
domain of integration can be restricted to [a, b]. The value of p(θ) = 1/(b− a) is
also a constant that can be ignored in the optimization. Using (9.36), this means
that u is selected to optimize

∫ b

a

L(u, θ)p(y|θ)dθ, (9.39)

which can be expressed in terms of the standard error function, erf(x) (the integral
from 0 to a constant, of a Gaussian density over an interval).

If a sequence, y1, . . ., yk, of independent observations is obtained, then (9.39)
is replaced by

∫ b

a

L(u, θ)p(y1|θ) · · · p(yk|θ)dθ. (9.40)

�

9.3 Two-Player Zero-Sum Games

Section 9.2 involved one real decision maker (DM), the robot, playing against a
fictitious DM called nature. Now suppose that the second DM is a clever opponent
that makes decisions in the same way that the robot would. This leads to a
symmetric situation in which two decision makers simultaneously make a decision,
without knowing how the other will act. It is assumed in this section that the
DMs have diametrically opposing interests. They are two players engaged in a
game in which a loss for one player is a gain for the other, and vice versa. This
results in the most basic form of game theory, which is referred to as a zero-sum
game.
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9.3.1 Game Formulation

Suppose there are two players, P1 and P2, that each have to make a decision. Each
has a finite set of actions, U and V , respectively. The set V can be viewed as
the “replacement” of Θ from Formulation 9.3 by a set of actions chosen by a true
opponent. Each player has a cost function, which is denoted as Li : U × V → R

for i = 1, 2. An important constraint for zero-sum games is

L1(u, v) = −L2(u, v), (9.41)

which means that a cost for one player is a reward for the other. This is the basis
of the term zero sum, which means that the two costs can be added to obtain
zero. In zero-sum games the interests of the players are completely opposed. In
Section 9.4 this constraint will be lifted to obtain more general games.

In light of (9.41) it is pointless to represent two cost functions. Instead, the
superscript will be dropped, and L will refer to the cost, L1, of P1. The goal of
P1 is to minimize L. Due to (9.41), the goal of P2 is to maximize L. Thus, L can
be considered as a reward for P2, but a cost for P1.

A formulation can now be given:

Formulation 9.7 (A Zero-Sum Game)

1. Two players, P1 and P2.

2. A nonempty, finite set U called the action space for P1. For convenience in
describing examples, assume that U is a set of consecutive integers from 1
to |U |. Each u ∈ U is referred to as an action of P1.

3. A nonempty, finite set V called the action space for P2. Assume that V is
a set of consecutive integers from 1 to |V |. Each v ∈ V is referred to as an
action of P2.

4. A function L : U × V → R∪ {−∞,∞} called the cost function for P1. This
also serves as a reward function for P2 because of (9.41).

Before discussing what it means to solve a zero-sum game, some additional
assumptions are needed. Assume that the players know each other’s cost functions.
This implies that the motivation of the opponent is completely understood. The
other assumption is that the players are rational, which means that they will try
to obtain the best cost whenever possible. P1 will not choose an action that leads
to higher cost when a lower cost action is available. Likewise, P2 will not choose
an action that leads to lower cost. Finally, it is assumed that both players make
their decisions simultaneously. There is no information regarding the decision of
P1 that can be exploited by P2, and vice versa.

Formulation 9.7 is often referred to as a matrix game because L can be ex-
pressed with a cost matrix, as was done in Section 9.2. Here the matrix indicates
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costs for P1 and P2, instead of the robot and nature. All of the required in-
formation from Formulation 9.7 is specified by a single matrix; therefore, it is a
convenient form for expressing zero-sum games.

Example 9.13 (Matrix Representation of a Zero-Sum Game) Suppose that
U , the action set for P1, contains three actions and V contains four actions. There
should be 3× 4 = 12 values in the specification of the cost function, L. This can
be expressed as a cost matrix,

V

U
1 3 3 2
0 -1 2 1
-2 2 0 1

, (9.42)

in which each row corresponds to some u ∈ U , and each column corresponds to
some v ∈ V . Each entry yields L(u, v), which is the cost for P1. This representa-
tion is similar to that shown in Example 9.8, except that the nature action space,
Θ, is replaced by V . The cost for P2 is −L(u, v). �

9.3.2 Deterministic Strategies

What constitutes a good solution to Formulation 9.7? Consider the game from
the perspective of P1. It seems reasonable to apply worst-case analysis when
trying to account for the action that will be taken by P2. This results in a choice
that is equivalent to assuming that P2 is nature acting under the nondeterministic
model, as considered in Section 9.2.2. For a matrix game, this is computed by first
determining the maximum cost over each row. Selecting the action that produces
the minimum among these represents the lowest cost that P1 can guarantee for
itself. Let this selection be referred to as a security strategy for P1.

For the matrix game in (9.42), the security strategy is illustrated as

V

U
1 3 3 2 → 3
0 -1 2 1 → 2
-2 2 0 1 → 2

, (9.43)

in which u = 2 and u = 3 are the best actions. Each yields a cost no worse than
2, regardless of the action chosen by P2.

This can be formalized using the existing notation. A security strategy, u∗, for
P1 is defined in general as

u∗ = argmin
u∈U

{

max
v∈V

{

L(u, v)
}}

. (9.44)
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There may be multiple security strategies that satisfy the argmin; however, this
does not cause trouble, as will be explained shortly. Let the resulting worst-case
cost be denoted by L

∗
, and let it be called the upper value of the game. This is

defined as

L
∗
= max

v∈V

{

L(u∗, v)
}

. (9.45)

Now swap roles, and consider the game from the perspective of P2, which
would like to maximize L. It can also use worst-case analysis, which means that
it would like to select an action that guarantees a high cost, in spite of the action
of P1 to potentially reduce it. A security strategy, v∗, for P2 is defined as

v∗ = argmax
v∈V

{

min
u∈U

{

L(u, v)
}}

. (9.46)

Note the symmetry with respect to (9.44). There may be multiple security strate-
gies for P2. A security strategy v∗ is just an “upside-down” version of the worst-
case analysis applied in Section 9.2.2. The lower value, L∗, is defined as

L∗ = min
u∈U

{

L(u, v∗)
}

. (9.47)

Returning to the matrix game in (9.42), the last column is selected by applying
(9.46):

V

U

1 3 3 2
0 -1 2 1
-2 2 0 1
↓ ↓ ↓ ↓
-2 -1 0 1

. (9.48)

An interesting relationship between the upper and lower values is that L∗ ≤ L
∗

for any game using Formulation 9.7. This is shown by observing that

L∗ = min
u∈U

{

L(u, v∗)
}

≤ L(u∗, v∗) ≤ max
v∈V

{

L(u∗, v)
}

= L
∗
, (9.49)

in which L(u∗, v∗) is the cost received when the players apply their respective
security strategies. If the game is played by rational DMs, then the resulting cost
always lies between L∗ and L

∗
.

Regret Suppose that the players apply security strategies, u∗ = 2 and v∗ = 4.
This results in a cost of L(2, 4) = 1. How do the players feel after the outcome?
P1 may feel satisfied because given that P2 selected v∗ = 4, it received the lowest
cost possible. On the other hand, P2 may regret its decision in light of the action
chosen by P1. If it had known that u = 2 would be chosen, then it could have
picked v = 2 to receive cost L(2, 2) = 2, which is better than L(2, 4) = 1. If the
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≥

≤ L∗ ≤

≥

Figure 9.2: A saddle point can be detected in a matrix by finding a value L∗ that
is lowest among all elements in its column and greatest among all elements in its
row.

game were to be repeated, then P2 would want to change its strategy in hopes of
tricking P1 to obtain a higher reward.

Is there a way to keep both players satisfied? Any time there is a gap between
L∗ and L

∗
, there is regret for one or both players. If r1 and r2 denote the amount

of regret experienced by P1 and P2, respectively, then the total regret is

r1 + r2 = L
∗ − L∗. (9.50)

Thus, the only way to satisfy both players is to obtain upper and lower values
such that L∗ = L

∗
. These are properties of the game, however, and they are not

up to the players to decide. For some games, the values are equal, but for many
L∗ < L

∗
. Fortunately, by using randomized strategies, the upper and lower values

always coincide; this is covered in Section 9.3.3.

Saddle points If L∗ = L
∗
, the security strategies are called a saddle point, and

L∗ = L∗ = L
∗
is called the value of the game. If this occurs, the order of the max

and min can be swapped without changing the value:

L∗ = min
u∈U

{

max
v∈V

{

L(u, v)
}}

= max
v∈V

{

min
u∈U

{

L(u, v)
}}

. (9.51)

A saddle point is sometimes referred to as an equilibrium because the players
have no incentive to change their choices (because there is no regret). A saddle
point is defined as any u∗ ∈ U and v∗ ∈ V such that

L(u∗, v) ≤ L(u∗, v∗) ≤ L(u, v∗) (9.52)

for all u ∈ U and v ∈ V . Note that L∗ = L(u∗, v∗). When looking at a matrix
game, a saddle point is found by finding the simple pattern shown in Figure 9.2.
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≥ ≥
≤ L∗ ≤ L∗ ≤

≥ ≥
≤ L∗ ≤ L∗ ≤

≥ ≥

Figure 9.3: A matrix could have more than one saddle point, which may seem
to lead to a coordination problem between the players. Fortunately, there is no
problem, because the same value will be received regardless of which saddle point
is selected by each player.

Example 9.14 (A Deterministic Saddle Point) Here is a matrix game that
has a saddle point:

V

U
3 3 5
1 -1 7
0 -2 4

. (9.53)

By applying (9.52) (or using Figure 9.2), the saddle point is obtained when u = 3
and v = 3. The result is that L∗ = 4. In this case, neither player has regret
after the game is finished. P1 is satisfied because 4 is the lowest cost it could have
received, given that P2 chose the third column. Likewise, 4 is the highest cost
that P2 could have received, given that P1 chose the bottom row. �

What if there are multiple saddle points in the same game? This may appear
to be a problem because the players have no way to coordinate their decisions.
What if P1 tries to achieve one saddle point while P2 tries to achieve another? It
turns out that if there is more than one saddle point, then there must at least be
four, as shown in Figure 9.3. As soon as we try to make two “+” patterns like
the one shown in Figure 9.2, they intersect, and four saddle points are created.
Similar behavior occurs as more saddle points are added.

Example 9.15 (Multiple Saddle Points) This game has multiple saddle points
and follows the pattern in Figure 9.3:

V

U

4 3 5 1 2
-1 0 -2 0 -1
-4 1 4 3 5
-3 0 -1 0 -2
3 2 -7 3 8

. (9.54)

Let (i, j) denote the pair of choices for P1 and P2, respectively. Both (2, 2) and
(4, 4) are saddle points with value V = 0. What if P1 chooses u = 2 and P2 chooses
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v = 4? This is not a problem because (2, 4) is also a saddle point. Likewise, (4, 2)
is another saddle point. In general, no problems are caused by the existence of
multiple saddle points because the resulting cost is independent of which saddle
point is attempted by each player. �

9.3.3 Randomized Strategies

The fact that some zero-sum games do not have a saddle point is disappointing
because regret is unavoidable in these cases. Suppose we slightly change the rules.
Assume that the same game is repeatedly played by P1 and P2 over numerous
trials. If they use a deterministic strategy, they will choose the same actions every
time, resulting in the same costs. They may instead switch between alternative
security strategies, which causes fluctuations in the costs. What happens if they
each implement a randomized strategy? Using the idea from Section 9.1.3, each
strategy is specified as a probability distribution over the actions. In the limit,
as the number of times the game is played tends to infinity, an expected cost is
obtained. One of the most famous results in game theory is that on the space of
randomized strategies, a saddle point always exists for any zero-sum matrix game;
however, expected costs must be used. Thus, if randomization is used, there will
be no regrets. In an individual trial, regret may be possible; however, as the costs
are averaged over all trials, both players will be satisfied.

Extending the formulation

Since a game under Formulation 9.7 can be nicely expressed as a matrix, it is
tempting to use linear algebra to conveniently express expected costs. Let |U | = m
and |V | = n. As in Section 9.1.3, a randomized strategy for P1 can be represented
as an m-dimensional vector,

w = [w1 w2 . . . wm]. (9.55)

The probability axioms of Section 9.1.2 must be satisfied: 1) wi ≥ 0 for all
i ∈ {1, . . . ,m}, and 2) w1 + · · · + wm = 1. If w is considered as a point in R

m,
then the two constraints imply that it must lie on an (m−1)-dimensional simplex
(recall Section 6.3.1). If m = 3, this means that w lies in a triangular subset of
R

3. Similarly, let z represent a randomized strategy for P2 as an n-dimensional
vector,

z = [z1 z2 . . . zn]
T , (9.56)

that also satisfies the probability axioms. In (9.56), T denotes transpose, which
yields a column vector that satisfies the dimensional constraints required for an
upcoming matrix multiplication.
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Let L̄(w, z) denote the expected cost that will be received if P1 plays w and
P2 plays z. This can be computed as

L̄(w, z) =
m∑

i=1

n∑

j=1

L(i, j)wizj. (9.57)

Note that the cost, L(i, j), makes use of the assumption in Formulation 9.7 that the
actions are consecutive integers. The expected cost can be alternatively expressed
using the cost matrix, A. In this case

L̄(w, z) = wAz, (9.58)

in which the product wAz yields a scalar value that is precisely (9.57). To see
this, first consider the product Az. This yields an m-dimensional vector in which
the ith element is the expected cost that P1 would receive if it tries u = i. Thus, it
appears that P1 views P2 as a nature player under the probabilistic model. Once
w and Az are multiplied, a scalar value is obtained, which averages the costs in
the vector Az according the probabilities of w.

Let W and Z denote the set of all randomized strategies for P1 and P2, re-
spectively. These spaces include strategies that are equivalent to the deterministic
strategies considered in Section 9.3.2 by assigning probability one to a single ac-
tion. Thus, W and Z can be considered as expansions of the set of possible
strategies in comparison to what was available in the deterministic setting. Using
W and Z, randomized security strategies for P1 and P2 are defined as

w∗ = argmin
w∈W

{

max
z∈Z

{

L̄(w, z)
}}

(9.59)

and

z∗ = argmax
z∈Z

{

min
w∈W

{

L̄(w, z)
}}

, (9.60)

respectively. These should be compared to (9.44) and (9.46). The differences are
that the space of strategies has been expanded, and expected cost is now used.

The randomized upper value is defined as

L∗
= max

z∈Z

{

L̄(w∗, z)
}

, (9.61)

and the randomized lower value is

L∗ = min
w∈W

{

L̄(w, z∗)
}

. (9.62)

SinceW and Z include the deterministic security strategies, L∗ ≤ L
∗
and L∗ ≥ L∗.

These inequalities imply that the randomized security strategies may have some
hope in closing the gap between the two values in general.
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The most fundamental result in zero-sum game theory was shown by von
Neumann [284, 285], and it states that L∗ = L∗

for any game in Formulation 9.7.
This yields the randomized value L∗ = L∗ = L∗

for the game. This means that
there will never be expected regret if the players stay with their security strategies.
If the players apply their randomized security strategies, then a randomized saddle
point is obtained. This saddle point cannot be seen as a simple pattern in the
matrix A because it instead exists over W and Z.

The guaranteed existence of a randomized saddle point is an important re-
sult because it demonstrates the value of randomization when making decisions
against an intelligent opponent. In Example 9.7, it was intuitively argued that
randomization seems to help when playing against an intelligent adversary. When
playing the game repeatedly with a deterministic strategy, the other player could
learn the strategy and win every time. Once a randomized strategy is used, the
players will not experience regret.

Computation of randomized saddle points

So far it has been established that a randomized saddle point always exists, but
how can one be found? Two key observations enable a combinatorial solution to
the problem:

1. The security strategy for each player can be found by considering only de-
terministic strategies for the opposing player.

2. If the strategy for the other player is fixed, then the expected cost is a linear
function of the undetermined probabilities.

First consider the problem of determining the security strategy for P1. The first
observation means that (9.59) does not need to consider randomized strategies for
P2. Inside of the argmin, w is fixed. What randomized strategy, z ∈ Z, maximizes
L̄(w, z) = wAz? If w is fixed, then wA can be treated as a constant n-dimensional
vector, s. This means L̄(w, z) = s · z, in which · is the inner (dot) product. Now
the task is to select z to maximize s ·z. This involves selecting the largest element
of s; suppose this is si. The maximum cost over all z ∈ Z is obtained by placing
all of the probability mass at action i. Thus, the strategy zi = 1 and zj = 0 for
i 6= j gives the highest cost, and it is deterministic.

Using the first observation, for each w ∈ W , only n possible responses by P2

need to be considered. These are the n deterministic strategies, each of which
assigns zi = 1 for a unique i ∈ {1, . . . , n}.

Now consider the second observation. The expected cost, L̄(w, z) = wAz, is
a linear function of w, if z is fixed. Since z only needs to be fixed at n different
values due to the first observation, w is selected at the point at which the smallest
maximum value among the n linear functions occurs. This is the minimum value
of the upper envelope of the collection of linear functions. Such envelopes were
mentioned in Section 6.5.2. Example 9.16 will illustrate this. The domain for
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this optimization can conveniently be set as a triangle in R
m−1. Even though

W ⊂ R
m, the last coordinate, wm, is not needed because it is always wm =

1− (w1+ · · ·+wm−1). The resulting optimization falls under linear programming,
for which many combinatorial algorithms exist [65, 68, 178, 201].

In the explanation above, there is nothing particular to P1 when trying to find
its security strategy. The same method can be applied to determine the security
strategy for P2; however, every minimization is replaced by a maximization, and
vice versa. In summary, the min in (9.60) needs only to consider the deterministic
strategies in W . If w becomes fixed, then L̄(w, z) = wAz is once again a linear
function, but this time it is linear in z. The best randomized action is chosen by
finding the point z ∈ Z that gives the highest minimum value among m linear
functions. This is the minimum value of the lower envelope of the collection of
linear functions. The optimization occurs over Rn−1 because the last coordinate,
zn, is obtained directly from zn = 1− (z1 + · · ·+ zn−1).

This computation method is best understood through an example.

Example 9.16 (Computing a Randomized Saddle Point) The simplest case
is when both players have only two actions. Let the cost matrix be defined as

V

U
3 0
-1 1

. (9.63)

Consider computing the security strategy for P1. Note that W and Z are only
one-dimensional subsets of R2. A randomized strategy for P1 is w = [w1 w2],
with w1 ≥ 0, w2 ≥ 0, and w1 + w2 = 1. Therefore, the domain over which
the optimization is performed is w1 ∈ [0, 1] because w2 can always be derived
as w2 = 1 − w1. Using the first observation above, only the two deterministic
strategies for P2 need to be considered. When considered as linear functions of
w, these are

(3)w1 + (−1)(1− w1) = 4w1 − 1 (9.64)

for z1 = 1 and

(0)w1 + (1)(1− w1) = 1− w1 (9.65)

for z2 = 1. The lines are plotted in Figure 9.4a. The security strategy is deter-
mined by the minimum point along the upper envelope shown in the figure. This
is indicated by the thickened line, and it is always a piecewise-linear function in
general. The lowest point occurs at w1 = 2/5, and the resulting value is L∗ = 3/5.
Therefore, w∗ = [2/5 3/5].

A similar procedure can be used to obtain z∗. The lines that correspond to
the deterministic strategies of P1 are shown in Figure 9.4b. The security strategy
is obtained by finding the maximum value along the lower envelope of the lines,
which is shown as the thickened line in the figure. This results in z∗ = [1/5 4/5]T ,
and once again, the value is observed as L∗ = 3/5 (this must coincide with the
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Figure 9.4: (a) Computing the randomized security strategy, w∗, for P1. (b)
Computing the randomized security strategy, z∗, for P2.

previous one because the randomized upper and lower values are the same!). �

This procedure appears quite simple if there are only two actions per player.
If n = m = 100, then the upper and lower envelopes are piecewise-linear func-
tions in R

99. This may be computationally impractical because all existing linear
programming algorithms have running time at least exponential in dimension [68].

9.4 Nonzero-Sum Games

This section parallels the development of Section 9.3, except that the more general
case of nonzero-sum games is considered. This enables games with any desired
degree of conflict to be modeled. Some decisions may even benefit all players. One
of the main applications of the subject is in economics, where it helps to explain
the behavior of businesses in competition.

The saddle-point solution will be replaced by the Nash equilibrium, which again
is based on eliminating regret. Since the players do not necessarily oppose each
other, it is possible to model a game that involves any number of players. For
nonzero games, new difficulties arise, such as the nonuniqueness of Nash equilibria
and the computation of randomized Nash equilibria does not generally fit into
linear programming.
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9.4.1 Two-Player Games

To help make the connection to Section 9.3 smoother, two-player games will be
considered first. This case is also easier to understand because the notation is
simpler. The ideas are then extended without difficulty from two players to many
players. The game is formulated as follows.

Formulation 9.8 (A Two-Player Nonzero-Sum Game)

1. The same components as in Formulation 9.7, except the cost function.

2. A function, L1 : U × V → R ∪ {∞}, called the cost function for P1.

3. A function, L2 : U × V → R ∪ {∞}, called the cost function for P2.

The only difference with respect to Formulation 9.7 is that now there are two,
independent cost functions, L1 and L2, one for each player. Each player would
like to minimize its cost. There is no maximization in this problem; that appeared
in zero-sum games because P2 had opposing interests from P1. A zero-sum game
can be modeled under Formulation 9.7 by setting L1 = L and L2 = −L.

Paralleling Section 9.3, first consider applying deterministic strategies to solve
the game. As before, one possibility is that a player can apply its security strategy.
To accomplish this, it does not even need to look at the cost function of the other
player. It seems somewhat inappropriate, however, to neglect the consideration of
both cost functions when making a decision. In most cases, the security strategy
results in regret, which makes it inappropriate for nonzero-sum games.

A strategy that avoids regret will now be given. A pair (u∗, v∗) of actions is
defined to be a Nash equilibrium if

L1(u
∗, v∗) = min

u∈U

{

L1(u, v
∗)
}

(9.66)

and
L2(u

∗, v∗) = min
v∈V

{

L2(u
∗, v)

}

. (9.67)

These expressions imply that neither P1 nor P2 has regret. Equation (9.66) indi-
cates that P1 is satisfied with its action, u∗, given the action, v∗, chosen by P2.
P1 cannot reduce its cost any further by changing its action. Likewise, (9.67)
indicates that P2 is satisfied with its action v∗.

The game in Formulation 9.8 can be completely represented using two cost
matrices. Let A and B denote the cost matrices for P1 and P2, respectively.
Recall that Figure 9.2 showed a pattern for detecting a saddle point. A Nash
equilibrium can be detected as shown in Figure 9.5. Think about the relationship
between the two. If A = −B, then B can be negated and superimposed on top
of A. This will yield the pattern in Figure 9.2 (each ≥ becomes ≤ because of
negation). The values L∗

a and L∗
b coincide in this case. This observation implies

that if A = −B, then the Nash equilibrium is actually the same concept as a
saddle point. It applies, however, to much more general games.
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A:

≥

L∗
a

≥

B: ≥ L∗
b ≥

Figure 9.5: A Nash equilibrium can be detected in a pair of matrices by finding
some (i, j) such that L∗

a = L1(i, j) is the lowest among all elements in column j
of A, and L∗

b = L2(i, j) is the lowest among all elements in row i of B. Compare
this with Figure 9.2.

Example 9.17 (A Deterministic Nash Equlibrium) Consider the game spec-
ified by the cost matrices A and B:

A :

V

U
9 4 7
6 -1 5
1 4 2

B :

V

U
2 1 6
5 0 2
2 2 5

. (9.68)

By applying (9.66) and (9.67), or by using the patterns in Figure 9.5, it can be
seen that u = 3 and v = 1 is a Nash equilibrium. The resulting costs are L1 = 1
and L2 = 2. Another Nash equilibrium appears at u = 2 and v = 2. This yields
costs L1 = −1 and L2 = 0, which is better for both players.

For zero-sum games, the existence of multiple saddle points did not cause any
problem; however, for nonzero-sum games, there are great troubles. In the ex-
ample shown here, one Nash equilibrium is clearly better than the other for both
players. Therefore, it may seem reasonable that a rational DM would choose the
better one. The issue of multiple Nash equilibria will be discussed next. �

Dealing with multiple Nash equilibria

Example 9.17 was somewhat disheartening due to the existence of multiple Nash
equilibria. In general, there could be any number of equilibria. How can each
player know which one to play? If they each choose a different one, they are not
guaranteed to fall into another equilibrium as in the case of saddle points of zero-
sum games. Many of the equilibria can be eliminated by using Pareto optimality,
which was explained in Section 9.1.1 and also appeared in Section 7.7.2 as a way
to optimally coordinate multiple robots. The idea is to formulate the selection as
a multi-objective optimization problem, which fits into Formulation 9.2.

Consider two-dimensional vectors of the form (xi, yi), in which x and y repre-
sent the costs L1 and L2 obtained under the implementation of a Nash equilibrium
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denoted by πi. For two different equilibria π1 and π2, the cost vectors (x1, y1) and
(x2, y2) are obtained. In Example 9.17, these were (1, 2) and (−1, 0). In general,
π1 is said to be better than π2 if x1 ≤ x2, y1 ≤ y2, and at least one of the inequal-
ities is strict. In Example 9.17, the equilibrium that produces (−1, 0) is clearly
better than obtaining (1, 2) because both players benefit.

The definition of “better” induces a partial ordering on the space of Nash
equilibria. It is only partial because some vectors are incomparable. Consider, for
example, (−1, 1) and (1,−1). The first one is preferable to P1, and the second
is preferred by P2. In game theory, the Nash equilibria that are minimal with
respect to this partial ordering are called admissible. They could alternatively be
called Pareto optimal.

The best situation is when a game has one Nash equilibrium. If there are
multiple Nash equilibria, then there is some hope that only one of them is admis-
sible. In this case, it is hoped that the rational players are intelligent enough to
figure out that any nonadmissible equilibria should be discarded. Unfortunately,
there are many games that have multiple admissible Nash equilibria. In this case,
analysis of the game indicates that the players must communicate or collaborate
in some way to eliminate the possibility of regret. Otherwise, regret is unavoid-
able in the worst case. It is also possible that there are no Nash equilibria, but,
fortunately, by allowing randomized strategies, a randomized Nash equilibrium is
always guaranteed to exist. This will be covered after the following two examples.

Example 9.18 (The Battle of the Sexes) Consider a game specified by the
cost matrices A and B:

A :

V

U
-2 0
0 -1

B :

V

U
-1 0
0 -2

. (9.69)

This is a famous game called the “Battle of the Sexes.” Suppose that a man and
a woman have a relationship, and they each have different preferences on how to
spend the evening. The man prefers to go shopping, and the woman prefers to
watch a football match. The game involves selecting one of these two activities.
The best case for either one is to do what they prefer while still remaining to-
gether. The worst case is to select different activities, which separates the couple.
This game is somewhat unrealistic because in most situations some cooperation
between them is expected.

Both u = v = 1 and u = v = 2 are Nash equilibria, which yield cost vectors
(−2,−1) and (−1,−2), respectively. Neither solution is better than the other;
therefore, they are both admissible. There is no way to avoid the possibility of
regret unless the players cooperate (you probably already knew this). �

The following is one of the most famous nonzero-sum games.
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Example 9.19 (The Prisoner’s Dilemma) The following game is very simple
to express, yet it illustrates many interesting issues. Imagine that a heinous crime
has been committed by two people. The authorities know they are guilty, but
they do not have enough evidence to convict them. Therefore, they develop a
plan to try to trick the suspects. Each suspect (or player) is placed in an isolated
prison cell and given two choices. Each player can cooperate with the authorities,
u = 1 or v = 1, or refuse, u = 2 or v = 2. By cooperating, the player admits
guilt and turns over evidence to the authorities. By refusing, the player claims
innocence and refuses to help the authorities.

The cost Li represents the number of years that the player will be sentenced
to prison. The cost matrices are assigned as

A :

V

U
8 0
30 2

B :

V

U
8 30
0 2

. (9.70)

The motivation is that both players receive 8 years if they both cooperate, which is
the sentence for being convicted of the crime and being rewarded for cooperating
with the authorities. If they both refuse, then they receive 2 years because the
authorities have insufficient evidence for a longer term. The interesting cases
occur if one refuses and the other cooperates. The one who refuses is in big
trouble because the evidence provided by the other will be used against him. The
one who cooperates gets to go free (the cost is 0); however, the other is convicted
on the evidence and spends 30 years in prison.

What should the players do? What would you do? If they could make a
coordinated decision, then it seems that a good choice would be for both to refuse,
which results in costs (2, 2). In this case, however, there would be regret because
each player would think that he had a chance to go free (receiving cost 0 by
refusing). If they were to play the game a second time, they might be inclined to
change their decisions.

The Nash equilibrium for this problem is for both of them to cooperate, which
results in (8, 8). Thus, they pay a price for not being able to communicate and
coordinate their strategy. This solution is also a security strategy for the players,
because it achieves the lowest cost using worst-case analysis. �

Randomized Nash equilibria

What happens if a game has no Nash equilibrium over the space of deterministic
strategies? Once again the problem can be alleviated by expanding the strategy
space to include randomized strategies. In Section 9.3.3 it was explained that
every zero-sum game under Formulation 9.7 has a randomized saddle point on the
space of randomized strategies. It was shown by Nash that every nonzero-sum
game under Formulation 9.8 has a randomized Nash equilibrium [200]. This is a
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nice result; however, there are a couple of concerns. There may still exist other
admissible equilibria, which means that there is no reliable way to avoid regret
unless the players collaborate. The other concern is that randomized Nash equi-
libria unfortunately cannot be computed using the linear programming approach
of Section 9.3.3. The required optimization is instead a form of nonlinear pro-
gramming [24, 178, 201], which does not necessarily admit a nice, combinatorial
solution.

Recall the definition of randomized strategies from Section 9.3.3. For a pair
(w, z) of randomized strategies, the expected costs, L̄1(w, z) and L̄2(w, z), can be
computed using (9.57). A pair (w∗, z∗) of strategies is said to be a randomized
Nash equilibrium if

L̄1(w∗, z∗) = min
w∈W

{

L̄1(w, z∗)
}

(9.71)

and

L̄2(w∗, z∗) = min
z∈Z

{

L̄2(w∗, z)
}

. (9.72)

In game-theory literature, this is usually referred to as a mixed Nash equilibrium.
Note that (9.71) and (9.72) are just generalizations of (9.66) and (9.67) from the
space of deterministic strategies to the space of randomized strategies.

Using the cost matrices A and B, the Nash equilibrium conditions can be
written as

w∗Az∗ = min
w∈W

{

wAz∗
}

(9.73)

and

w∗Bz∗ = min
z∈Z

{

w∗Bz
}

. (9.74)

Unfortunately, the computation of randomized Nash equilibria is considerably
more challenging than computing saddle points. The main difficulty is that Nash
equilibria are not necessarily security strategies. By using security strategies, it is
possible to decouple the decisions of the players into separate linear programming
problems, as was seen in Example 9.16. For the randomized Nash equilibrium, the
optimization between the players remains coupled. The resulting optimization is
often referred to as the linear complementarity problem. This can be formulated
as a nonlinear programming problem [178, 201], which means that it is a nonlinear
optimization that involves both equality and inequality constraints on the domain
(in this particular case, a bilinear programming problem is obtained [9]).

Example 9.20 (Finding a Randomized Nash Equilibrium) To get an idea
of the kind of optimization that is required, recall Example 9.18. A randomized
Nash equilibrium that is distinct from the two deterministic equilibria can be
found. Using the cost matrices from Example 9.18, the expected cost for P1 given
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randomized strategies w and z is

L̄1(w, z) = wAz

=
(
w1 w2

)
(
−2 0
0 −1

)(
z1
z2

)

=− 2w1z1 − w2z2

=− 3w1z1 + w1 + z1,

(9.75)

in which the final step uses the fact that w2 = 1− w1 and z2 = 1− z1. Similarly,
the expected cost for P2 is

L̄2(w, z) = wBz

=
(
w1 w2

)
(
−1 0
0 −2

)(
z1
z2

)

=− w1z1 − 2w2z2

=− 3w1z1 + 2w1 + 2z1.

(9.76)

If z is fixed, then the final equation in (9.75) is linear in w; likewise, if w is
fixed, then (9.76) is linear in z. In the case of computing saddle points for zero-
sum games, we were allowed to make this assumption; however, it is not possible
here. We must choose (w∗, z∗) to simultaneously optimize (9.75) while z = z∗ and
(9.76) while w = w∗.

It turns out that this problem is simple enough to solve with calculus. Using
the classical optimization method of taking derivatives, a candidate solution can
be found by computing

∂L̄1(w1, z1)

∂w1

= 1− 3z1 (9.77)

and
∂L̄2(w1, z1)

∂z1
= 2− 3w1. (9.78)

Extrema occur when both of these simultaneously become 0. Solving 1− 3z1 = 0
and 2− 3w1 = 0 yields (w∗, z∗) = (2/3, 1/3), which is a randomized Nash equilib-
rium. The deterministic Nash equilibria are not detected by this method because
they occur on the boundary of W and Z, where the derivative is not defined. �

The computation method in Example 9.20 did not appear too difficult because
there were only two actions per player, and half of the matrix costs were 0. In gen-
eral, two complicated equations must be solved simultaneously. The expressions,
however, are always second-degree polynomials. Furthermore, they each become
linear with respect to the other variables if w or z is held fixed.
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Summary of possible solutions The solution possibilities to remember for a
nonzero-sum game under Formulation 9.8 are as follows.

1. There may be multiple, admissible (deterministic) Nash equilibria.

2. There may be no (deterministic) Nash equilibria.

3. There is always at least one randomized Nash equilibrium.

9.4.2 More Than Two Players

The ideas of Section 9.4.1 easily generalize to any number of players. The main
difficulty is that complicated notation makes the concepts appear more difficult.
Keep in mind, however, that there are no fundamental differences. A nonzero-sum
game with n players is formulated as follows.

Formulation 9.9 (An n-Player Nonzero-Sum Game)

1. A set of n players, P1, P2, . . ., Pn.

2. For each player Pi, a finite, nonempty set U i called the action space for Pi.
For convenience, assume that each U i is a set of consecutive integers from 1
to |U i|. Each ui ∈ U i is referred to as an action of Pi.

3. For each player Pi, a function, Li : U
1 × U2 × · · · × Un → R ∪ {∞} called

the cost function for Pi.

A matrix formulation of the costs is no longer possible because there are too many
dimensions. For example, if n = 3 and |U i| = 2 for each player, then Li(u

1, u2, u3)
is specified by a 2 × 2 × 2 cube of 8 entries. Three of these cubes are needed to
specify the game. Thus, it may be helpful to just think of Li as a multivariate
function and avoid using matrices.4

The Nash equilibrium idea generalizes by requiring that each Pi experiences
no regret, given the actions chosen by the other n − 1 players. Formally, a set
(u1∗, . . . , un∗) of actions is said to be a (deterministic) Nash equilibrium if

Li(u
1∗, . . . , ui∗, . . . , un∗) = min

ui∈U i

{

Li(u
1∗, . . . , u(i−1)∗, ui, u(i+1)∗, . . . , un∗)

}

(9.79)

for every i ∈ {1, . . . , n}.
For n > 2, any of the situations summarized at the end of Section 9.4.1 can

occur. There may be no deterministic Nash equilibria or multiple Nash equilib-
ria. The definition of an admissible Nash equilibrium is extended by defining the
notion of better over n-dimensional cost vectors. Once again, the minimal vectors

4If you enjoy working with tensors, these could be used to capture n-player cost functions
[30].



9.4. NONZERO-SUM GAMES 477

with respect to the resulting partial ordering are considered admissible (or Pareto
optimal). Unfortunately, multiple admissible Nash equilibria may still exist.

It turns out that for any game under Formulation 9.9, there exists a randomized
Nash equilibrium. Let zi denote a randomized strategy for Pi. The expected cost
for each Pi can be expressed as

L̄i(z1, z2, . . . , zn) =

m1∑

i1=1

m2∑

i2=1

· · ·
mn∑

in=1

Li(i1, i2, . . . , in)z
1
i1
z2i2 · · · znin . (9.80)

Let Zi denote the space of randomized strategies for Pi. An assignment,
(z1∗, . . . , zn∗), of randomized strategies to all of the players is called a randomized
Nash equilibrium if

L̄i(z1∗, . . . , zi∗, . . . , zn∗) = min
zi∈Zi

{

L̄i(z1∗, . . . , z(i−1)∗, zi, z(i+1)∗, . . . , zn∗)
}

(9.81)

for all i ∈ {1, . . . , n}.
As might be expected, computing a randomized Nash equilibrium for n > 2

is even more challenging than for n = 2. The method of Example 9.20 can be
generalized to n-player games; however, the expressions become even more com-
plicated. There are n equations, each of which appears linear if the randomized
strategies are fixed for the other n−1 players. The result is a collection of n-degree
polynomials over which n optimization problems must be solved simultaneously.

Example 9.21 (A Three-Player Nonzero-Sum Game) Suppose there are three
players, P1, P2, and P3, each of which has two actions, 1 and 2. A deterministic
strategy is specified by a vector such as (1, 2, 1), which indicates u1 = 1, u2 = 2,
and u3 = 1.

Now some costs will be defined. For convenience, let

L(i, j, k) =
(

L1(i, j, k), L2(i, j, k), L3(i, j, k)
)

(9.82)

for each i, j, k ∈ {1, 2}. Let the costs be

L(1, 1, 1) = (1, 1,−2) L(1, 1, 2) = (−4, 3, 1)

L(1, 2, 1) = (2,−4, 2) L(1, 2, 2) = (−5,−5, 10) (9.83)

L(2, 1, 1) = (3,−2,−1) L(2, 1, 2) = (−6,−6, 12)

L(2, 2, 1) = (2, 2,−4) L(2, 2, 2) = (−2, 3,−1).

There are two deterministic Nash equilibria, which yield the costs (2,−4, 2) and
(3,−2,−1). These can be verified using (9.79). Each player is satisfied with the
outcome given the actions chosen by the other players. Unfortunately, both Nash
equilibria are both admissible. Therefore, some collaboration would be needed
between the players to ensure that no regret will occur. �
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9.5 Decision Theory Under Scrutiny

Numerous models for decision making were introduced in this chapter. These
provide a foundation for planning under uncertainty, which is the main focus of
Part III. Before constructing planning models with this foundation, it is important
to critically assess how appropriate it may be in applications. You may have had
many questions while reading Sections 9.1 to 9.4. How are the costs determined?
Why should we believe that optimizing the expected cost is the right thing to do?
What happens if prior probability distributions are not available? Is worst-case
analysis too conservative? Can we be sure that players in a game will follow
the assumed rational behavior? Is it realistic that players know each other’s
cost functions? The purpose of this section is to help shed some light on these
questions. A building is only as good as its foundation. Any mistakes made by
misunderstanding the limitations of decision theory will ultimately work their way
into planning formulations that are constructed from them.

9.5.1 Utility Theory and Rationality

This section provides some justification for using cost functions and then minimiz-
ing their expected value under Formulations 9.3 and 9.4. The resulting framework
is called utility theory, which is usually formulated using rewards instead of costs.
As stated in Section 9.1.1, a cost can be converted into a reward by multiplying by
−1 and then swapping each maximization with minimization. We will therefore
talk about a reward R with the intuition that a higher reward is better.

Comparing rewards

Imagine assigning reward values to various outcomes of a decision-making pro-
cess. In some applications numerical values may come naturally. For example,
the reward might be the amount of money earned in a financial investment. In
robotics applications, one could negate time to execute a task or the amount of en-
ergy consumed. For example, the reward could indicate the amount of remaining
battery life after a mobile robot builds a map.

In some applications the source of rewards may be subjective. For example,
what is the reward for washing dishes, in comparison to sweeping the floor? Each
person would probably assign different rewards, which may even vary from day
to day. It may be based on their enjoyment or misery in performing the task,
the amount of time each task would take, the perceptions of others, and so on.
If decision theory is used to automate the decision process for a human “client,”
then it is best to consult carefully with the client to make sure you know their
preferences. In this situation, it may be possible to sort their preferences and then
assign rewards that are consistent with the ordering.

Once the rewards are assigned, consider making a decision under Formulation
9.1, which does not involve nature. Each outcome corresponds directly to an
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action, u ∈ U . If the rewards are given by R : U → R, then the cost, L, can be
defined as L(u) = −R(u) for every u ∈ U . Satisfying the client is then a matter
of choosing u to minimize L.

Now consider a game against nature. The decision now involves comparing
probability distributions over the outcomes. The space of all probability distri-
butions may be enormous, but this is simplified by using expectation to map
each probability distribution (or density) to a real value. The concern should be
whether this projection of distributions onto real numbers will fail to reflect the
true preferences of the client. The following example illustrates the effect of this.

Example 9.22 (Do You Like to Gamble?) Suppose you are given three choices:

1. You can have 1000 Euros.

2. We will toss an unbiased coin, and if the result is heads, then you will receive
2000 Euros. Otherwise, you receive nothing.

3. With probability 2/3, you can have 3000 Euros; however, with probability
1/3, you have to give me 3000 Euros.

The expected reward for each of these choices is 1000 Euros, but would you really
consider these to be equivalent? Your love or disdain for gambling is not being
taken into account by the expectation. How should such an issue be considered
in games against nature? �

To begin to fix this problem, it is helpful to consider another scenario. Many
people would probably agree that having more money is preferable (if having too
much worries you, then you can always give away the surplus to your favorite char-
ities). What is interesting, however, is that being wealthy decreases the perceived
value of money. This is illustrated in the next example.

Example 9.23 (Reality Television) Suppose you are lucky enough to appear
on a popular reality television program. The point of the show is to test how far
you will go in making a fool out of yourself, or perhaps even torturing yourself,
to earn some money. You are asked to do some unpleasant task (such as eating
cockroaches, or holding your head under water for a long time, and so on.). Let
u1 be the action to agree to do the task, and let u2 mean that you decline the
opportunity. The prizes are expressed in U.S. dollars. Imagine that you are a
starving student on a tight budget.

Below are several possible scenarios that could be presented on the television
program. Consider how you would react to each one.

1. Suppose that u1 earns you $1 and u2 earns you nothing. Purely optimizing
the reward would lead to choosing u1, which means performing the unpleas-
ant task. However, is this worth $1? The problem so far is that we are not
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taking into account the amount of discomfort in completing a task. Perhaps
it might make sense to make a reward function that shifts the dollar values
by subtracting the amount for which you would be just barely willing to
perform the task.

2. Suppose that u1 earns you $10,000 and u2 earns you nothing. $10,000 is
assumed to be an enormous amount of money, clearly worth enduring any
torture inflicted by the television program. Thus, u1 is preferable.

3. Now imagine that the television host first gives you $10 million just for
appearing on the program. Are you still willing to perform the unpleasant
task for an extra $10,000? Probably not. What is happening here? Your
sense of value assigned to money seems to decrease as you get more of it,
right? It would not be too interesting to watch the program if the contestants
were all wealthy oil executives.

4. Suppose that you have performed the task and are about to win the prize.
Just to add to the drama, the host offers you a gambling opportunity. You
can select action u1 and receive $10,000, or be a gambler by selecting u2
and have probability 1/2 of winning $25,000 by the tossing of a fair coin.
In terms of the expected reward, the clear choice is u2. However, you just
completed the unpleasant task and expect to earn money. The risk of losing
it all may be intolerable. Different people will have different preferences in
this situation.

5. Now suppose once again that you performed the task. This time your choices
are u1, to receive $100, or u2, to have probability 1/2 of receiving $250 by
tossing a fair coin. The host is kind enough, though, to let you play 100
times. In this case, the expected totals for the two actions are $10,000 and
$12,500, respectively. This time it seems clear that the best choice is to gam-
ble. After 100 independent trials, we would expect that, with extremely high
probability, over $10,000 would be earned. Thus, reasoning by expected-case
analysis seems valid if we are allowed numerous, independent trials. In this
case, with high probability a value close to the expected reward should be
received.

�

Based on these examples, it seems that the client or evaluator of the decision-
making system must indicate preferences between probability distributions over
outcomes. There is a formal way to ensure that once these preferences are assigned,
a cost function can be designed for which its expectation faithfully reflects the
preferences over distributions. This results in utility theory, which involves the
following steps:
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1. Require that the client is rational when assigning preferences. This notion
is defined through axioms.

2. If the preferences are assigned in a way that is consistent with the axioms,
then a utility function is guaranteed to exist. When expected utility is
optimized, the preferences match exactly those of the client.

3. The cost function can be derived from the utility function.

The client must specify preferences among probability distributions of out-
comes. Suppose that Formulation 9.2 is used. For convenience, assume that U and
Θ are finite. Let X denote a state space based on outcomes.5 Let f : U ×Θ → X
denote a mapping that assigns a state to every outcome. A simple example is to
declare that X = U × Θ and make f the identity map. This makes the outcome
space and state space coincide. It may be convenient, though, to use f to collapse
the space of outcomes down to a smaller set. If two outcomes map to the same
state using f , then it means that the outcomes are indistinguishable as far as
rewards or costs are concerned.

Let z denote a probability distribution over X, and let Z denote the set of all
probability distributions over X. Every z ∈ Z is represented as an n-dimensional
vector of probabilities in which n = |X|; hence, it is considered as an element of Rn.
This makes it convenient to “blend” two probability distributions. For example,
let α ∈ (0, 1) be a constant, and let z1 and z2 be any two probability distributions.
Using scalar multiplication, a new probability distribution, αz1 + (1 − α)z2, is
obtained, which is a blend of z1 and z2. Conveniently, there is no need to normalize
the result. It is assumed that z1 and z2 initially have unit magnitude. The blend
has magnitude α + (1− α) = 1.

The modeler of the decision process must consult the client to represent pref-
erences among elements of Z. Let z1 ≺ z2 mean that z2 is strictly preferred over
z1. Let z1 ≈ z2 mean that z1 and z2 are equivalent in preference. Let z1 � z2 mean
that either z1 ≺ z2 or z1 ≈ z2. The following example illustrates the assignment
of preferences.

Example 9.24 (Indicating Preferences) Suppose that U = Θ = {1, 2}, which
leads to four possible outcomes: (1, 1), (1, 2), (2, 1), and (2, 2). Imagine that na-
ture represents a machine that generates 1 or 2 according to a probability distri-
bution. The action is to guess the number that will be generated by the machine.
If you pick the same number, then you win that number of gold pieces. If you do
not pick the same number, then you win nothing, but also lose nothing.

Consider the construction of the state space X by using f . The outcomes
(2, 1) and (1, 2) are identical concerning any conceivable reward. Therefore, these
should map to the same state. The other two outcomes are distinct. The state
space therefore needs only three elements and can be defined as X = {0, 1, 2}.

5In most utility theory literature, this is referred to as a reward space, R [21].
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Let f(2, 1) = f(1, 2) = 0, f(1, 1) = 1, and f(2, 2) = 2. Thus, the last two states
indicate that some gold will be earned.

The set Z of probability distributions over X is now considered. Each z ∈ Z is
a three-dimensional vector. As an example, z1 = [1/2 1/4 1/4] indicates that the
state will be 0 with probability 1/2, 1 with probability 1/4, and 2 with probability
1/4. Suppose z2 = [1/3 1/3 1/3]. Which distribution would you prefer? It seems
in this case that z2 is uniformly better than z1 because there is a greater chance
of winning gold. Thus, we declare z1 ≺ z2. The distribution z3 = [1 0 0] seems
to be the worst imaginable. Hence, we can safely declare z3 ≺ z1 and z1 ≺ z2.

The procedure of determining the preferences can become quite tedious for
complicated problems. In the current example, Z is a 2D subset of R3. This
subset can be partitioned into a finite set of regions over which the client may be
able to clearly indicate preferences. One of the major criticisms of this framework
is the impracticality of determining preferences over Z [237].

After the preferences are determined, is there a way to ensure that a real-value
function on X exists for which the expected value exactly reflects the preferences?
If the axioms of rationality are satisfied by the assignment of preferences, then
the answer is yes. These axioms are covered next. �

Axioms of rationality

To meet the goal of designing a utility function, it turns out that the preferences
must follow rules called the axioms of rationality. They are sensible statements of
consistency among the preferences. As long as these are followed, then a utility
function is guaranteed to exist (detailed arguments appear in [70, 237]). The
decision maker is considered rational if the following axioms are followed when
defining ≺ and ≈:6

1. If z1, z2 ∈ Z, then either z1 � z2 or z2 � z1.
“You must be able to make up your mind.”

2. If z1 � z2 and z2 � z3, then z1 � z3.
“Preferences must be transitive.”

3. If z1 ≺ z2, then
αz1 + (1− α)z3 ≺ αz2 + (1− α)z3, (9.84)

for any z3 ∈ Z and α ∈ (0, 1).
“Evenly blending in a new distribution does not alter preference.”

4. If z1 ≺ z2 ≺ z3, then there exists some α ∈ (0, 1) and β ∈ (0, 1) such that

αz1 + (1− α)z3 ≺ z2 (9.85)

6Alternative axiom systems exist [70, 240].
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and
z2 ≺ βz1 + (1− β)z3. (9.86)

“There is no heaven or hell.”

Each axiom has an intuitive interpretation that makes practical sense. The first
one simply indicates that the preference direction can always be inferred for a pair
of distributions. The second axiom indicates that preferences must be transitive.7

The last two axioms are somewhat more complicated. In the third axiom, z2 is
strictly preferred to z1. An attempt is made to cause confusion by blending in a
third distribution, z3. If the same “amount” of z3 is blended into both z1 and z2,
then the preference should not be affected. The final axiom involves z1, z2, and
z3, each of which is strictly better than its predecessor. The first equation, (9.85),
indicates that if z2 is strictly better than z1, then a tiny amount of z3 can be
blended into z1, with z2 remaining preferable. If z3 had been like “heaven” (i.e.,
infinite reward), then this would not be possible. Similarly, (9.86) indicates that
a tiny amount of z1 can be blended into z3, and the result remains better than z2.
This means that z1 cannot be “hell,” which would have infinite negative reward.8

Constructing a utility function

If the preferences have been determined in a way consistent with the axioms, then
it can be shown that a utility function always exists. This means that there exists
a function U : X → R such that, for all z1, z2 ∈ Z,

z1 ≺ z2 if and only if Ez1 [U ] < Ez2 [U ], (9.87)

in which Ezi denotes the expected value of U , which is being treated as a random
variable under the probability distribution zi. The existence of U implies that it
is safe to determine the best action by maximizing the expected utility.

A reward function can be defined using a utility function, U , as R(u, θ) =
U(f(u, θ)). The utility function can be converted to a cost function as L(u, θ) =
−R(u, θ) = −U(f(u, θ)). Minimizing the expected cost, as was recommended
under Formulations 9.3 and 9.4 with probabilistic uncertainty, now seems justified
under the assumption that U was constructed correctly to preserve preferences.

Unfortunately, establishing the existence of a utility function does not produce
a systematic way to construct it. In most circumstances, one is forced to design U
by a trial-and-error process that involves repeatedly checking the preferences. In
the vast majority of applications, people create utility and cost functions without
regard to the implications discussed in this section. Thus, undesirable conclusions

7For some reasonable problems, however, transitivity is not desirable. See the Candorcet and
Simpson paradoxes in [237].

8Some axiom systems allow infinite rewards, which lead to utility and cost functions with
infinite values, but this is not considered here.
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U(x)

x

Figure 9.6: The utility of new amounts of money decreases as the total accumu-
lation of wealth increases. The utility function may even bounded.

may be reached in practice. Therefore, it is important not to be too confident
about the quality of an optimal decision rule.

Note that if worst-case analysis had been used, then most of the problems
discussed here could have been avoided. Worst-case analysis, however, has its
weaknesses, which will be discussed in Section 9.5.3.

Example 9.25 (The Utility of Money) We conclude the section by depicting
a utility function that is often applied to money. Suppose that the state space
X = R, which corresponds to the amount of U.S. dollars earned. The utility
of money applied by most people indicates that the value of new increments of
money decreases as the total accumulated wealth increases. The utility function
may even be bounded. Imagine there is some maximum dollar amount, such as
$10100, after which additional money has no value. A typical utility curve is shown
in Figure 9.6 [21]. �

9.5.2 Concerns Regarding the Probabilistic Model

Section 9.5.1 addressed the source of cost functions and the validity of taking
their expectations. This section raises concerns over the validity of the probability
distributions used in Section 9.2. The two main topics are criticisms of Bayesian
methods in general and problems with constructing probability distributions.

Bayesians vs. frequentists

For the past century and a half, there has been a fundamental debate among
statisticians on the meaning of probabilities. Virtually everyone is satisfied with
the axioms of probability, but beyond this, what is their meaning when making
inferences? The two main camps are the frequentists and the Bayesians. A form
of Bayes’ rule was published in 1763 after the death of Bayes [16]. During most of
the nineteenth century Bayesian analysis tended to dominate literature; however,
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during the twentieth century, the frequentist philosophy became more popular as
a more rigorous interpretation of probabilities. In recent years, the credibility of
Bayesian methods has been on the rise again.

As seen so far, a Bayesian interprets probabilities as the degree of belief in
a hypothesis. Under this philosophy, it is perfectly valid to begin with a prior
distribution, gather a few observations, and then make decisions based on the
resulting posterior distribution from applying Bayes’ rule.

From a frequentist perspective, Bayesian analysis makes far too liberal use
of probabilities. The frequentist believes that probabilities are only defined as
the quantities obtained in the limit after the number of independent trials tends
to infinity. For example, if an unbiased coin is tossed over numerous trials, the
probability 1/2 represents the value to which the ratio between heads and the total
number of trials will converge as the number of trials tends to infinity. On the
other hand, a Bayesian might say that the probability that the next trial results
in heads is 1/2. To a frequentist, this interpretation of probability is too strong.

Frequentists have developed a version of decision theory based on their philos-
ophy; comparisons between the two appear in [237]. As an example, a frequentist
would advocate optimizing the following frequentist risk to obtain a decision rule:

R(θ, π) =

∫

y

L(π(y), θ)P (y|θ)dy, (9.88)

in which π represents the strategy, π : Y → U . The frequentist risk averages over
all data, rather than making a decision based on a single observation, as advocated
by Bayesians in (9.26). The probability P (y|θ) is assumed to be obtained in
the limit as the number of independent data trials tends to infinity. The main
drawback in using (9.88) is that the optimization depends on θ. The resulting
best decision rule must depend on θ, which is unknown. In some limited cases, it
may be possible to select some π that optimizes (9.88) for all θ, but this rarely
occurs. Thus, the frequentist risk can be viewed as a constraint on the desirability
of strategies, but it usually is not powerful enough to select a single one. This
problem is reminiscent of Pareto optimality, which was discussed in Section 9.1.1.
The frequentist approach attempts to be more conservative and rigorous, with the
result being that weaker statements are made regarding decisions.

The source of prior distributions

Suppose that the Bayesian method has been adopted. The most widespread con-
cern in all Bayesian analyses is the source of the prior distribution. In Section
9.2, this is represented as P (θ) (or p(θ)), which represents a distribution (or den-
sity) over the nature action space. The best way to obtain P (θ) is by estimating
the distribution over numerous independent trials. This brings its definition into
alignment with frequentist views. This was possible with Example 9.11, in which
P (θ) could be reliably estimated from the frequency of occurrence of letters across
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numerous pages of text. The distribution could even be adapted to a particular
language or theme.

In most applications that use decision theory, however, it is impossible or too
costly to perform such experiments. What should be done in this case? If a prior
distribution is simply “made up,” then the resulting posterior probabilities may
be suspect. In fact, it may be invalid to call them probabilities at all. Sometimes
the term subjective probabilities is used in this case. Nevertheless, this is com-
monly done because there are few other options. One of these options is to resort
to frequentist decision theory, but, as mentioned, it does not work with single
observations.

Fortunately, as the number of observations increases, the influence of the prior
on the Bayesian posterior distributions diminishes. If there is only one observation,
or even none as in Formulation 9.3, then the prior becomes very influential. If
there is little or no information regarding P (θ), the distribution should be designed
as carefully as possible. It should also be understood that whatever conclusions
are made with this assumption, they are biased by the prior. Suppose this model
is used as the basis of a planning approach. You might feel satisfied computing the
“optimal” plan, but this notion of optimality could still depend on some arbitrary
initial bias due to the assignment of prior values.

If there is no information available, then it seems reasonable that P (θ) should
be as uniform as possible over Θ. This was referred to by Laplace as the “principle
of insufficient reason” [156]. If there is no reason to believe that one element is
more likely than another, then they should be assigned equal values. This can
also be justified by using Shannon’s entropy measure from information theory
[6, 62, 246]. In the discrete case, this is

−
∑

θ∈Θ

P (θ) lgP (θ), (9.89)

and in the continuous case it is

−
∫

Θ

p(θ) lg p(θ)dθ. (9.90)

This entropy measure was developed in the context of communication systems
to estimate the minimum number of bits needed to encode messages delivered
through a noisy medium. It generally indicates the amount of uncertainty associ-
ated with the distribution. A larger value of entropy implies a greater amount of
uncertainty.

It turns out that the entropy function is maximized when P (θ) is a uniform
distribution, which seems to justify the principle of insufficient reason. This can be
considered as a noninformative prior. The idea is even applied quite frequently
when Θ = R, which leads to an improper prior. The density function cannot
maintain a constant, nonzero value over all of R because its integral would be
infinite. Since the decisions made in Section 9.2 do not depend on any normalizing
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factors, a constant value can be assigned for p(θ) and the decisions are not affected
by the fact that the prior is improper.

The main difficulty with applying the entropy argument in the selection of a
prior is that Θ itself may be chosen in a number of arbitrary ways. Uniform as-
signments to different choices of Θ ultimately yield different information regarding
the priors. Consider the following example.

Example 9.26 (A Problem with Noninformative Priors) Consider a deci-
sion about what activities to do based on the weather. Imagine that there is
absolutely no information about what kind of weather is possible. One possible
assignment is Θ = {p, c}, in which p means “precipitation” and c means “clear.”
Maximizing (9.89) suggests assigning P (p) = P (c) = 1/2.

After thinking more carefully, perhaps we would like to distinguish between dif-
ferent kinds of precipitation. A better set of nature actions would be Θ = {r, s, c},
in which c still means “clear,” but precipitation p has been divided into r for “rain”
and s for “snow.” Now maximizing (9.89) assigns probability 1/3 to each nature
action. This is clearly different from the original assignment. Now that we distin-
guish between different kinds of precipitation, it seems that precipitation is much
more likely to occur. Does our preference to distinguish between different forms
of precipitation really affect the weather? �

Example 9.27 (Noninformitive Priors for Continuous Spaces) Similar trou-
bles can result in continuous spaces. Recall the parameter estimation problem
described in Example 9.12. Suppose instead that the task is to estimate a line
based on some data points that were supposed to fall on the line but missed due
to noise in the measurement process.

What initial probability density should be assigned to Θ, the set of all lines?
Suppose that the line lives in Z = R

2. The line equation can be expressed as

θ1z1 + θ2z2 + θ3 = 0. (9.91)

The problem is that if the parameter vector, θ = [θ1 θ2 θ3], is multiplied by
a scalar constant, then the same line is obtained. Thus, even though θ ∈ R

3, a
constraint must be added. Suppose we require that

θ21 + θ22 + θ13 = 1 (9.92)

and θ1 ≥ 0. This mostly fixes the problem and ensures that each parameter value
corresponds to a unique line (except for some duplicate cases at θ1 = 0, but these
can be safely neglected here). Thus, the parameter space is the upper half of a
sphere, S2. The maximum-entropy prior suggests assigning a uniform probability
density to Θ. This may feel like the right thing to do, but this notion of uniformity
is biased by the particular constraint applied to the parameter space to ensure
uniqueness. There are many other choices. For example, we could replace (9.92)
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by constraints that force the points to lie on the upper half of the surface of cube,
instead of a sphere. A uniform probability density assigned in this new parameter
space certainly differs from one over the sphere.

In some settings, there is a natural representation of the parameter space that
is invariant to certain transformations. Section 5.1.4 introduced the notion of
Haar measure. If the Haar measure is used as a noninformative prior, then a
meaningful notion of uniformity may be obtained. For example, suppose that
the parameter space is SO(3). Uniform probability mass over the space of unit
quaternions, as suggested in Example 5.14, is an excellent choice for a noninfor-
mative prior because it is consistent with the Haar measure, which is invariant to
group operations applied to the events. Unfortunately, a Haar measure does not
exist for most spaces that arise in practice.9 �

Incorrect assumptions on conditional distributions

One final concern is that many times even the distribution P (y|θ) is incorrectly
estimated because it is assumed arbitrarily to belong to a family of distributions.
For example, it is often very easy to work with Gaussian densities. Therefore, it
is tempting to assume that p(y|θ) is Gaussian. Experiments can be performed to
estimate the mean and variance parameters. Even though some best fit will be
found, it does not necessarily imply that a Gaussian is a good representation. Con-
clusions based on this model may be incorrect, especially if the true distribution
has a different shape, such as having a larger tail or being multimodal. In many
cases, nonparametric methods may be needed to avoid such biases. Such methods
do not assume a particular family of distributions. For example, imagine estimat-
ing a probability distribution by making a histogram that records the frequency
of y occurrences for a fixed value of θ. The histogram can then be normalized
to contain a representation of the probability distribution without assuming an
initial form.

9.5.3 Concerns Regarding the Nondeterministic Model

Given all of the problems with probabilistic modeling, it is tempting to abandon
the whole framework and work strictly with the nondeterministic model. This only
requires specifying Θ, without indicating anything about the relative likelihoods
of various actions. Therefore, most of the complicated issues presented in Sections
9.5.1 and 9.5.2 vanish. Unfortunately, this advantage comes at a substantial price.
Making decisions with worst-case analysis under the nondeterministic model has
its own shortcomings. After considering the trade-offs, you can decide which is
most appropriate for a particular application of interest.

9A locally compact topological group is required [103, 239].
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The first difficulty is to ensure that Θ is sufficiently large to cover all possi-
bilities. Consider Formulation 9.6, in which nature acts twice. Through a nature
observation action space, Ψ(θ), interference is caused in the measurement process.
Suppose that Θ = R and h(θ, ψ) = θ + ψ. In this case, Ψ(θ) can be interpreted
as the measurement error. What is the maximum amount of error that can oc-
cur? Perhaps a sonar is measuring the distance from the robot to a wall. Based
on the sensor specifications, it may be possible to construct a nice bound on the
error. Occasionally, however, the error may be larger than this bound. Sonars
sometimes fail to hear the required echo to compute the distance. In this case the
reported distance is ∞. Due to reflections, extremely large errors can sometimes
occur. Although such errors may be infrequent, if we want guaranteed perfor-
mance, then large or even infinite errors should be included in Ψ(θ). The problem
is that worst-case reasoning could always conclude that the sensor is useless by
reporting ∞. Any statistically valid information that could be gained from the
sensor would be ignored. Under the probabilistic model, it is easy to make Ψ(θ)
quite large and then assign very small probabilities to larger errors. The prob-
lem with nondeterministic uncertainty is that Ψ(θ) needs to be smaller to make
appropriate decisions; however, theoretically “guaranteed” performance may not
truly be guaranteed in practice.

Once a nondeterministic model is formulated, the optimal decision rule may
produce results that seem absurd for the intended application. The problem is
that the DM cannot tolerate any risk. An action is applied only if the result can
be guaranteed. The hope of doing better than the worst case is not taken into
account. Consider the following example:

Example 9.28 (A Problem with Conservative Decision Making) Suppose
that a friend offers you the choice of either a check for 1000 Euros or 1 Euro in
cash. With the check, you must take it to the bank, and there is a small chance
that your friend will have insufficient funds in the account. In this case, you will
receive nothing. If you select the 1 Euro in cash, then you are guaranteed to earn
something.

The following cost matrix reflects the outcomes (ignoring utility theory):

U

Θ
1 1000
1 0

. (9.93)

Using probabilistic analysis, we might conclude that it is best to take the check.
Perhaps the friend is even known to be very wealthy and responsible with bank-
ing accounts. This information, however, cannot be taken into account in the
decision-making process. Using worst-case analysis, the optimal action is to take
the 1 Euro in cash. You may not feel too good about it, though. Imagine the
regret if you later learn that the account had sufficient funds to cash the check
for 1000 Euros. �
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Thus, it is important to remember the price that one must pay for wanting re-
sults that are absolutely guaranteed. The probabilistic model offers the flexibility
of incorporating statistical information. Sometimes the probabilistic model can
be viewed as a generalization of the nondeterministic model. If it is assumed that
nature acts after the robot, then the nature action can take this into account, as
incorporated into Formulation 9.4. In the nondeterministic case, Θ(u) is speci-
fied, and in the probabilistic case, P (θ|u) is specified. The distribution P (θ|u)
can be designed so that nature selects with very high probability the θ ∈ Θ that
maximizes L(u, θ). In Example 9.28, this would mean that the probability that
the check would bounce (resulting in no earnings) would by very high, such as
0.999999. In this case, even the optimal action under the probabilistic model is
to select the 1 Euro in cash. For virtually any decision problem that is modeled
using worst-case analysis, it is possible to work backward and derive possible pri-
ors for which the same decision would be made using probabilistic analysis. In
Example 9.4, it seemed as if the decision was based on assuming that with very
high probability, the check would bounce, even though there were no probabilistic
models.

This means that worst-case analysis under the nondeterministic model can be
considered as a special case of a probabilistic model in which the prior distribution
assigns high probabilities to the worst-case outcomes. The justification for this
could be criticized in the same way that other prior assignments are criticized in
Bayesian analysis. What is the basis of this particular assignment?

9.5.4 Concerns Regarding Game Theory

One of the most basic limitations of game theory is that each player must know the
cost functions of the other players. As established in Section 9.5.1, it is even quite
difficult to determine an appropriate cost function for a single decision maker. It
is even more difficult to determine costs and motivations of other players. In most
practical settings this information is not available. One possibility is to model
uncertainty associated with knowledge of the cost function of another player.
Bayesian analysis could be used to reason about the cost based on observations of
actions chosen by the player. Issues of assigning priors once again arise. One of
the greatest difficulties in allowing uncertainties in the cost functions is that a kind
of “infinite reflection” occurs [111]. For example, if I am playing a game, does the
other player know my cost function? I may be uncertain about this. Furthermore,
does the other player know that I do not completely know its cost function? This
kind of second-guessing can occur indefinitely, leading to a nightmare of nested
reasoning and assignments of prior distributions.10

The existence of saddle points or Nash equilibria was assured by using ran-

10Readers familiar with the movie The Princess Bride may remember the humorous dialog
between Vizzini and the Dread Pirate Roberts about which goblet contains the deadly Iocane
powder.
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domized strategies. Mathematically, this appears to be a clean solution to a frus-
trating problem; however, it also represents a substantial change to the model.
Many games are played just once. For the expected-case results to converge, the
game must be played an infinite number of times. If a game is played once, or
only a few times, then the players are very likely to experience regret, even though
the theory based on expected-case analysis indicates that regret is eliminated.

Another issue is that intelligent human players may fundamentally alter their
strategies after playing a game several times. It is very difficult for humans to
simulate a randomized strategy (assuming they even want to, which is unlikely).
There are even international tournaments in which the players repeatedly engage
in classic games such as Rock-Paper-Scissors or the Prisoner’s Dilemma. For an
interesting discussion of a tournament in which people designed programs that
repeatedly compete on the Prisoner’s Dilemma, see [268]. It was observed that
even some cooperation often occurs after many iterations, which secures greater
rewards for both players, even though they cannot communicate. A famous strat-
egy arose in this context called Tit-for-Tat (written by Anatol Rapoport), which
in each stage repeated the action chosen by the other player in the last stage. The
approach is simple yet surprisingly successful.

In the case of nonzero-sum games, it is particularly disheartening that multiple
Nash equilibria may exist. Suppose there is only one admissible equilibrium among
several Nash equilibria. Does it really seem plausible that an adversary would
think very carefully about the various Nash equilibria and pick the admissible
one? Perhaps some players are conservative and even play security strategies,
which completely destroys the assumptions of minimizing regret. If there are
multiple admissible Nash equilibria, it appears that regret is unavoidable unless
there is some collaboration between players. This result is unfortunate if such
collaboration is impossible.

Further Reading

Section 9.1 covered very basic concepts, which can be found in numerous books and
on the Internet. For more on Pareto optimality, see [243, 265, 283, 302]. Section 9.2
is inspired mainly by decision theory books. An excellent introduction is [21]. Other
sources include [70, 73, 184, 237]. The “game against nature” view is based mainly on
[31]. Pattern classification, which is an important form of decision theory, is covered
in [3, 73, 82, 193]. Bayesian networks [222] are a popular representation in artificial
intelligence research and often provide compact encodings of information for complicated
decision-making problems.

Further reading on the game theory concepts of Sections 9.3 and 9.4 can be found in
many books (e.g., [9, 210]). A fun book that has many examples and intuitions is [268].
For games that have infinite action sets, see [9]. The computation of randomized Nash
equilibria remains a topic of active research. A survey of methods appears in [191]; see
also [147, 192]. The coupled polynomial equations that appear in computing randomized
Nash equilibria may seem to suggest applying algorithms from computational algebraic
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geometry, as were needed in Section 6.4 to solve this kind of problem in combinatorial
motion planning. An approach that uses such tools is given in [67]. Contrary to the
noncooperative games defined in Section 9.4, cooperative game theory investigates ways
in which various players can form coalitions to improve their rewards [223].

Parts of Section 9.5 were inspired by [21]. Utility theory appears in most decision
theory books (e.g., [21]) and in some artificial intelligence books (e.g., [240]). An in-
depth discussion of Bayesian vs. frequentist issues appears in [237]. For a thorough
introduction to constructing cost models for decision making, see [145].

Exercises

1. Suppose that a single-stage two-objective decision-making problem is defined in
which there are two objectives and a continuous set of actions, U = [−10, 10].
The cost vector is L = [u2 u− 1]. Determine the set of Pareto-optimal actions.

2. Let

Θ

U

−1 3 2 −1

−1 0 7 −1

1 5 5 −2

define the cost for each combination of choices by the decision maker and nature.
Let nature’s randomized strategy be [1/5 2/5 1/10 3/10].

(a) Use nondeterministic reasoning to find the minimax decision and worst-case
cost.

(b) Use probabilistic reasoning to find the best expected-case decision and ex-
pected cost.

3. Many reasonable decision rules are possible, other than those considered in this
chapter.

(a) Exercise 2(a) reflects extreme pessimism. Suppose instead that extreme
optimism is used. Select the choice that optimizes the best-case cost for the
matrix in Exercise 2.

(b) One approach is to develop a coefficient of optimism, α ∈ [0, 1], which allows
one to interpolate between the two extreme scenarios. Thus, a decision,
u ∈ U , is chosen by minimizing

α max
θ∈Θ

{

L(u, θ)
}

+ (1− α) min
θ∈Θ

{

L(u, θ)
}

. (9.94)

Determine the optimal decision for this scenario under all possible choices
for α ∈ [0, 1]. Give your answer as a list of choices, each with a specified
range of α.
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4. Suppose that after making a decision, you observe the choice made by nature. How
does the cost that you received compare with the best cost that could have been
obtained if you chose something else, given this choice by nature? This difference
in costs can be considered as regret or minimum “Doh!”11 Psychologists have
argued that some people make choices based on minimizing regret. It reflects
how badly you wish you had done something else after making the decision.

(a) Develop an expression for the worst-case regret, and use it to make a mini-
max regret decision using the matrix from Exercise 2.

(b) Develop an expression for the expected regret, and use it to make a minimum
expected regret decision.

5. Using the matrix from Exercise 2, consider the set of all probability distributions
for nature. Characterize the set of all distributions for which the minimax decision
and the best expected decision results in the same choice. This indicates how to
provide reverse justification for priors.

6. Consider a Bayesian decision-theory scenario with cost function L. Show that the
decision rule never changes if L(u, θ) is replaced by aL(u, θ) + b, for any a > 0
and b ∈ R.

7. Suppose that there are two classes, Ω = {ω1, ω2}, with P (ω1) = P (ω2) =
1
2 . The

observation space, Y , is R. Recall from probability theory that the normal (or
Gaussian) probability density function is

p(y) =
1

σ
√
2π

e−(y−µ)2/2σ2

, (9.95)

in which µ denotes the mean and σ2 denotes the variance. Suppose that p(y|ω1)
is a normal density in which µ = 0 and σ2 = 1. Suppose that p(y|ω2) is a
normal density in which µ = 6 and σ2 = 4. Find the optimal classification rule,
γ : Y → Ω. You are welcome to solve the problem numerically (by computer) or
graphically (by careful function plotting). Carefully explain how you arrived at
the answer in any case.

8. Let

Θ

U

2 −2 −2 1

−1 −2 −2 6

4 0 −3 4

give the cost for each combination of choices by the decision maker and nature.
Let nature’s randomized strategy be [1/4 1/2 1/8 1/8].

(a) Use nondeterministic reasoning to find the minimax decision and worst-case
cost.

11In 2001, the Homer Simpson term“Doh!” was added to the Oxford English Dictionary as
an expression of regret.
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(b) Use probabilistic reasoning to find the best expected-case decision and ex-
pected cost.

(c) Characterize the set of all probability distributions for which the minimax
decision and the best expected decision results in the same choice.

9. In a constant-sum game, the costs for any u ∈ U and v ∈ V add to yield

L1(u, v) + L2(u, v) = c (9.96)

for some constant c that is independent of u and v. Show that any constant-sum
game can be transformed into a zero-sum game, and that saddle point solutions
can be found using techniques for the zero-sum formulation.

10. Formalize Example 9.7 as a zero-sum game, and compute security strategies for
the players. What is the expected value of the game?

11. Suppose that for two zero-sum games, there exists some nonzero c ∈ R for which
the cost matrix of one game is obtained by multiplying all entries by c in the cost
matrix of the other. Prove that these two games must have the same deterministic
and randomized saddle points.

12. In the same spirit as Exercise 11, prove that two zero-sum games have the same
deterministic and randomized saddle points if c is added to all matrix entries.

13. Prove that multiple Nash equilibria of a nonzero-sum game specified by matrices
A and B are interchangeable if (A,B) as a game yields the same Nash equilibria
as the game (A,−A).

14. Analyze the game of Rock-Paper-Scissors for three players. For each player, assign
a cost of 1 for losing, 0 for a tie, and −1 for winning. Specify the cost functions.
Is it possible to avoid regret? Does it have a deterministic Nash equilibrium? Can
you find a randomized Nash equilibrium?

15. Compute the randomized equilibrium point for the following zero-sum game:

V

U
0 -1

-1 2

. (9.97)

Indicate the randomized strategies for the players and the resulting expected value
of the game.

Implementations

16. Consider estimating the value of an unknown parameter, θ ∈ R. The prior prob-
ability density is a normal,

p(θ) =
1

σ
√
2π

e−(θ−µ)2/2σ2

, (9.98)
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with µ = 0 and σ = 4. Suppose that a sequence, y1, y2, . . ., yk, of k observations
is made and that each p(yi|θ) is a normal density with µ = θ and σ = 9. Suppose
that u represents your guess of the parameter value. The task is select u to
minimize the expectation of the cost, L(u, θ) = (u− θ)2. Suppose that the “true”
value of θ is 4. Determine the u∗, the minimal action with respect to the expected
cost after observing: yi = 4 for every i ∈ {1, . . . , k}.

(a) Determine u∗ for k = 1.

(b) Determine u∗ for k = 10.

(c) Determine u∗ for k = 1000.

This experiment is not very realistic because the observations should be generated
by sampling from the normal density, p(yi|θ). Repeat the exercise using values
drawn with the normal density, instead of yk = 4, for each k.

17. Implement an algorithm that computes a randomized saddle point for zero-sum
games. Assume that one player has no more than two actions and the other may
have any finite number of actions.

18. Suppose that a K-stage decision-making problem is defined using multiple objec-
tives. There is a finite state space X and a finite action set U(x) for each x ∈ X.
A state transition equation, xk+1 = f(xk, uk), gives the next state from a current
state and input. There are N cost functionals of the form

Li(u1, . . . , uK) =
K∑

k=1

l(xk, uk) + lF (xF ), (9.99)

in which F = K+1. Assume that lF (xF ) = ∞ if xF ∈ Xgoal (for some goal region
Xgoal ⊂ X) and lF (xF ) = 0 otherwise. Assume that there is no termination action
(which simplifies the problem). Develop a value-iteration approach that finds the
complete set of Pareto-optimal plans efficiently as possible. If two or more plans
produce the same cost vector, then only one representative needs to be returned.
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Chapter 10

Sequential Decision Theory

Chapter 9 essentially took a break from planning by indicating how to make a sin-
gle decision in the presence of uncertainty. In this chapter, we return to planning
by formulating a sequence of decision problems. This is achieved by extending
the discrete planning concepts from Chapter 2 to incorporate the effects of mul-
tiple decision makers. The most important new decision maker is nature, which
causes unpredictable outcomes when actions are applied during the execution of
a plan. State spaces and state transition equations reappear in this chapter; how-
ever, in contrast to Chapter 2, additional decision makers interfere with the state
transitions. As a result of this effect, a plan needs to incorporate state feedback,
which enables it to choose an action based on the current state. When the plan is
determined, it is not known what future states will arise. Therefore, feedback is
required, as opposed to specifying a plan as a sequence of actions, which sufficed
in Chapter 2. This was only possible because actions were predictable.

Keep in mind throughout this chapter that the current state is always known.
The only uncertainty that exists is with respect to predicting future states. Chap-
ters 11 and 12 will address the important and challenging case in which the current
state is not known. This requires defining sensing models that attempt to measure
the state. The main result is that planning occurs in an information space, as op-
posed to the state space. Most of the ideas of this chapter extend into information
spaces when uncertainties in prediction and in the current state exist together.

The problems considered in this chapter have a wide range of applicability.
Most of the ideas were developed in the context of stochastic control theory
[23, 151, 153]. The concepts can be useful for modeling problems in mobile
robotics because future states are usually unpredictable and can sometimes be
modeled probabilistically [301] or using worst-case analysis [159]. Many other
applications exist throughout engineering, operations research, and economics.
Examples include process scheduling, gambling strategies, and investment plan-
ning.

As usual, the focus here is mainly on arriving in a goal state. Both non-
deterministic and probabilistic forms of uncertainty will be considered. In the
nondeterministic case, the task is to find plans that are guaranteed to work in
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spite of nature. In some cases, a plan can be computed that has optimal worst-
case performance while achieving the goal. In the probabilistic case, the task is
to find a plan that yields optimal expected-case performance. Even though the
outcome is not predictable in a single-plan execution, the idea is to reduce the
average cost, if the plan is executed numerous times on the same problem.

10.1 Introducing Sequential Games Against Na-

ture

This section extends many ideas from Chapter 2 to the case in which nature in-
terferes with the outcome of actions. Section 10.1.1 defines the planning problem
in this context, which is a direct extension of Section 2.1. Due to unpredictabil-
ity, forward projections and backprojections are introduced in Section 10.1.2 to
characterize possible future and past states, respectively. Forward projections
characterize the future states that will be obtained under the application of a
plan or a sequence of actions. In Chapter 2 this concept was not needed because
the sequence of future states could always be derived from a plan and initial state.
Section 10.1.3 defines the notion of a plan and uses forward projections to indicate
how its execution may differ every time the plan is applied.

10.1.1 Model Definition

The formulation presented in this section is an extension of Formulation 2.3 that
incorporates the effects of nature at every stage. Let X denote a discrete state
space, and let U(x) denote the set of actions available to the decision maker (or
robot) from state x ∈ X. At each stage k it is assumed that a nature action θk is
chosen from a set Θ(xk, uk). This can be considered as a multi-stage generalization
of Formulation 9.4, which introduced Θ(u). Now Θ may depend on the state in
addition to the action because both xk and uk are available in the current setting.
This implies that nature acts with the knowledge of the action selected by the
decision maker. It is always assumed that during stage k, the decision maker does
not know the particular nature action that will be chosen. It does, however, know
the set Θ(xk, uk) for all xk ∈ X and uk ∈ U(xk).

As in Section 9.2, there are two alternative nature models: nondeterministic
or probabilistic. If the nondeterministic model is used, then it is only known that
nature will make a choice from Θ(xk, uk). In this case, making decisions using
worst-case analysis is appropriate.

If the probabilistic model is used, then a probability distribution over Θ(xk, uk)
is specified as part of the model. The most important assumption to keep in
mind for this case is that nature is Markovian. In general, this means that the
probability depends only on local information. In most applications, this locality
is with respect to time. In our formulation, it means that the distribution over
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Θ(xk, uk) depends only on information obtained at the current stage. In other
settings, Markovian could mean a dependency on a small number of stages, or
even a local dependency in terms of spatial relationships, as in a Markov random
field [59, 109].

To make the Markov assumption more precise, the state and action histories
as defined in Section 8.2.1 will be used again here. Let

x̃k = (x1, x2, . . . , xk) (10.1)

and
ũk = (u1, u2, . . . , uk). (10.2)

These represent all information that is available up to stage k. Without the
Markov assumption, it could be possible that the probability distribution for na-
ture is conditioned on all of x̃k and ũk, to obtain P (θk|x̃k, ũk). The Markov
assumption declares that for all θk ∈ Θ(xk, uk),

P (θk|x̃k, ũk) = P (θk|xk, uk), (10.3)

which drops all history except the current state and action. Once these two are
known, there is no extra information regarding the nature action that could be
gained from any portion of the histories.

The effect of nature is defined in the state transition equation, which produces
a new state, xk+1, once xk, uk, and θk are given:

xk+1 = f(xk, uk, θk). (10.4)

From the perspective of the decision maker, θk is not given. Therefore, it can only
infer that a particular set of states will result from applying uk and xk:

Xk+1(xk, uk) = {xk+1 ∈ X | ∃θk ∈ Θ(xk, uk) such that xk+1 = f(xk, uk, θk)}.
(10.5)

In (10.5), the notationXk+1(xk, uk) indicates a set of possible values for xk+1, given
xk and uk. The notationXk(·) will generally be used to indicate the possible values
for xk that can be derived using the information that appears in the argument.

In the probabilistic case, a probability distribution over X can be derived
for stage k + 1, under the application of uk from xk. As part of the problem,
P (θk|xk, uk) is given. Using the state transition equation, xk+1 = f(xk, uk, θk),

P (xk+1|xk, uk) =
∑

θk∈Θ′

P (θk|xk, uk) (10.6)

can be derived, in which

Θ′ = {θk ∈ Θ(xk, uk) | xk+1 = f(xk, uk, θk)}. (10.7)

The calculation of P (xk+1|xk, uk) simply involves accumulating all of the proba-
bility mass that could lead to xk+1 from the application of various nature actions.

Putting these parts of the model together and adding some of the components
from Formulation 2.3, leads to the following formulation:
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Formulation 10.1 (Discrete Planning with Nature)

1. A nonempty state space X which is a finite or countably infinite set of states.

2. For each state, x ∈ X, a finite, nonempty action space U(x). It is assumed
that U contains a special termination action, which has the same effect as
the one defined in Formulation 2.3.

3. A finite, nonempty nature action space Θ(x, u) for each x ∈ X and u ∈ U(x).

4. A state transition function f that produces a state, f(x, u, θ), for every
x ∈ X, u ∈ U , and θ ∈ Θ(x, u).

5. A set of stages, each denoted by k, that begins at k = 1 and continues
indefinitely. Alternatively, there may be a fixed, maximum stage k = K +
1 = F .

6. An initial state xI ∈ X. For some problems, this may not be specified, in
which case a solution plan must be found from all initial states.

7. A goal set XG ⊂ X.

8. A stage-additive cost functional L. Let θ̃K denote the history of nature ac-
tions up to stage K. The cost functional may be applied to any combination
of state, action, and nature histories to yield

L(x̃F , ũK , θ̃K) =
K∑

k=1

l(xk, uk, θk) + lF (xF ), (10.8)

in which F = K + 1. If the termination action uT is applied at some stage
k, then for all i ≥ k, ui = uT , xi = xk, and l(xi, uT , θi) = 0.

Using Formulation 10.1, either a feasible or optimal planning problem can be
defined. To obtain a feasible planning problem, let l(xk, uk, θk) = 0 for all xk ∈ X,
uk ∈ U , and θk ∈ Θk(uk). Furthermore, let

lF (xF ) =

{
0 if xF ∈ XG

∞ otherwise.
(10.9)

To obtain an optimal planning problem, in general l(xk, uk, θk) may assume any
nonnegative, finite value if xk 6∈ XG. For problems that involve probabilistic
uncertainty, it is sometimes appropriate to assign a high, finite value for lF (xF ) if
xF 6∈ XG, as opposed to assigning an infinite cost for failing to achieve the goal.

Note that in each stage, the cost term is generally allowed to depend on the
nature action θk. If probabilistic uncertainty is used, then Formulation 10.1 is
often referred to as a controlled Markov process orMarkov decision process (MDP).
If the actions are removed from the formulation, then it is simply referred to
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as a Markov process. In most statistical literature, the name Markov chain is
used instead of Markov process when there are discrete stages (as opposed to
continuous-time Markov processes). Thus, the terms controlled Markov chain and
Markov decision chain may be preferable.

In some applications, it may be convenient to avoid the explicit characteriza-
tion of nature. Suppose that l(xk, uk, θk) = l(xk, uk). If nondeterministic uncer-
tainty is used, then Xk+1(xk, uk) can be specified for all xk ∈ X and uk ∈ U(xk) as
a substitute for the state transition equation; this avoids having to refer to nature.
The application of an action uk from a state xk directly leads to a specified subset
of X. If probabilistic uncertainty is used, then P (xk+1|xk, uk) can be directly de-
fined as the alternative to the state transition equation. This yields a probability
distribution over X, if uk is applied from some xk, once again avoiding explicit
reference to nature. Most of the time we will use a state transition equation that
refers to nature; however, it is important to keep these alternatives in mind. They
arise in many related books and research articles.

As used throughout Chapter 2, a directed state transition graph is sometimes
convenient for expressing the planning problem. The same idea can be applied
in the current setting. As in Section 2.1, X is the vertex set; however, the edge
definition must change to reflect nature. A directed edge exists from state x to x′ if
there exists some u ∈ U(x) and θ ∈ Θ(x, u) such that x′ = f(x, u, θ). A weighted
graph can be made by associating the cost term l(xk, uk, θk) with each edge. In
the case of a probabilistic model, the probability of the transition occurring may
also be associated with each edge.

Note that both the decision maker and nature are needed to determine which
vertex will be reached. As the decision maker contemplates applying an action u
from the state x, it sees that there may be several outgoing edges due to nature. If
a different action is contemplated, then this set of possible outgoing edges changes.
Once nature applies its action, then the particular edge is traversed to arrive at
the new state; however, this is not completely controlled by the decision maker.

Example 10.1 (Traversing the Number Line) Let X = Z, U = {−2, 2, uT},
and Θ = {−1, 0, 1}. The action sets of the decision maker and nature are the same
for all states. For the state transition equation, xk+1 = f(xk, uk, θk) = xk+uk+θk.
For each stage, unit cost is received. Hence l(x, u, θ) = 1 for all x, θ, and u 6= uT .
The initial state is xI = 100, and the goal set is XG = {−1, 0, 1}.

Consider executing a sequence of actions, (−2,−2, . . . ,−2), under the non-
deterministic uncertainty model. This means that we attempt to move left two
units in each stage. After the first −2 is applied, the set of possible next states is
{97, 98, 99}. Nature may slow down the progress to be only one unit per stage, or
it may speed up the progress so that XG is three units closer per stage. Note that
after 100 stages, the goal is guaranteed to be achieved, in spite of any possible
actions of nature. Once XG is reached, uT should be applied. If the problem is
changed so that XG = {0}, it becomes impossible to guarantee that the goal will
be reached because nature may cause the goal to be overshot.
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XG

xI

Figure 10.1: A grid-based shortest path problem with interference from nature.

Now let U = {−1, 1, uT} and Θ = {−2,−1, 0, 1, 2}. Under nondeterministic
uncertainty, the problem can no longer be solved because nature is now pow-
erful enough to move the state completely in the wrong direction in the worst
case. A reasonable probabilistic version of the problem can, however, be defined
and solved. Suppose that P (θ) = 1/5 for each θ ∈ Θ. The transition prob-
abilities can be defined from P (θ). For example, if xk = 100 and uk = −1,
then P (xk+1|xk, uk) = 1/5 if 97 ≤ xk ≤ 101, and P (xk+1|xk, uk) = 0 otherwise.
With the probabilistic formulation, there is a nonzero probability that the goal,
XG = {−1, 0, 1}, will be reached, even though in the worst-case reaching the goal
is not guaranteed. �

Example 10.2 (Moving on a Grid) A grid-based robot planning model can
be made. A simple example is shown in Figure 10.1. The state space is a subset
of a 15 × 15 integer grid in the plane. A state is represented as (i, j), in which
1 ≤ i, j ≤ 15; however, the points in the center region (shown in Figure 10.1) are
not included in X.

Let A = {0, 1, 2, 3, 4} be a set of actions, which denote “stay,” “right,” “up,”
“left,” and “down,” respectively. Let U = A ∪ uT . For each x ∈ X, let U(x)
contain uT and whichever actions are applicable from x (some are not applicable
along the boundaries).

Let Θ(x, u) represent the set of all actions in A that are applicable after per-
forming the move implied by u. For example, if x = (2, 2) and u = 3, then the
robot is attempting to move to (1, 2). From this state, there are three neighboring
states, each of which corresponds to an action of nature. Thus, Θ(x, u) in this
case is {0, 1, 2, 4}. The action θ = 3 does not appear because there is no state
to the left of (1, 2). Suppose that the probabilistic model is used, and that every
nature action is equally likely.

The state transition function f is formed by adding the effect of both uk and
θk. For example, if xk = (i, j), uk = 1, and θk = 2, then xk+1 = (i+1, j+1). If θk
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had been 3, then the two actions would cancel and xk+1 = (i, j). Without nature,
it would have been assumed that θk = 0. As always, the state never changes once
uT is applied, regardless of nature’s actions.

For the cost functional, let l(xk, uk) = 1 (unless uk = uT ; in this case,
l(xk, uT ) = 0). For the final stage, let lF (xF ) = 0 if xF ∈ XG; otherwise, let
lF (xF ) = ∞. A reasonable task is to get the robot to terminate in XG in the
minimum expected number of stages. A feedback plan is needed, which will be
introduced in Section 10.1.3, and the optimal plan for this problem can be effi-
ciently computed using the methods of Section 10.2.1.

This example can be easily generalized to moving through a complicated
labyrinth in two or more dimensions. If the grid resolution is high, then an ap-
proximation to motion planning is obtained. Rather than forcing motions in only
four directions, it may be preferable to allow any direction. This case is covered
in Section 10.6, which addresses planning in continuous state spaces. �

10.1.2 Forward Projections and Backprojections

A forward projection is a useful concept for characterizing the behavior of plans
during execution. Before uncertainties were considered, a plan was executed ex-
actly as expected. When a sequence of actions was applied to an initial state, the
resulting sequence of states could be computed using the state transition equation.
Now that the state transitions are unpredictable, we would like to imagine what
states are possible several stages into the future. In the case of nondeterministic
uncertainty, this involves computing a set of possible future states, given a current
state and plan. In the probabilistic case, a probability distribution over states is
computed instead.

Nondeterministic forward projections To facilitate the notation, suppose
in this section that U(x) = U for all x ∈ X. In Section 10.1.3 this will be lifted.

Suppose that the initial state, x1 = xI , is known. If the action u1 ∈ U is
applied, then the set of possible next states is

X2(x1, u1) = {x2 ∈ X | ∃θ1 ∈ Θ(x1, u1) such that x2 = f(x1, u1, θ1)}, (10.10)

which is just a special version of (10.5). Now suppose that an action u2 ∈ U will
be applied. The forward projection must determine which states could be reached
from x1 by applying u1 followed by u2. This can be expressed as

X3(x1, u1, u2) = {x3 ∈ X | ∃θ1 ∈ Θ(x1, u1) and ∃θ2 ∈ Θ(x2, u2)

such that x2 = f(x1, u1, θ1) and x3 = f(x2, u2, θ2)}.
(10.11)

This idea can be repeated for any number of iterations but becomes quite cum-
bersome in the current notation. It is helpful to formulate the forward projection
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recursively. Suppose that an action history ũk is fixed. Let Xk+1(Xk, uk) denote
the forward projection at stage k + 1, given that Xk is the forward projection at
stage k. This can be computed as

Xk+1(Xk, uk) = {xk+1 ∈ X | ∃xk ∈ Xk and ∃θk ∈ Θ(xk, uk)

such that xk+1 = f(xk, uk, θk)}.
(10.12)

This may be applied any number of times to compute Xk+1 from an initial con-
dition X1 = {x1}.

Example 10.3 (Nondeterministic Forward Projections) Recall the first model
given in Example 10.1, in which U = {−2, 2, uT} and Θ = {−1, 0, 1}. Sup-
pose that x1 = 0, and u = 2 is applied. The one-stage forward projection is
X2(0, 2) = {1, 2, 3}. If u = 2 is applied again, the two-stage forward projection is
X3(0, 2, 2) = {2, 3, 4, 5, 6}. Repeating this process, the k-stage forward projection
is {k, . . . , 3k}. �

Probabilistic forward projections The probabilistic forward projection can
be considered as a Markov process because the “decision” part is removed once
the actions are given. Suppose that xk is given and uk is applied. What is the
probability distribution over xk+1? This was already specified in (10.6) and is the
one-stage forward projection. Now consider the two-stage probabilistic forward
projection, P (xk+2|xk, uk, uk+1). This can be computed by marginalization as

P (xk+2|xk, uk, uk+1) =
∑

xk+1∈X

P (xk+2|xk+1, uk+1)P (xk+1|xk, uk). (10.13)

Computing further forward projections requires nested summations, which marginal-
ize all of the intermediate states. For example, the three-stage forward projection
is

P (xk+3|xk, uk,uk+1, uk+2) =
∑

xk+1∈X

∑

xk+2∈X

P (xk+3|xk+2, uk+2)P (xk+2|xk+1, uk+1)P (xk+1|xk, uk).

(10.14)

A convenient expression of the probabilistic forward projections can be obtained
by borrowing nice algebraic properties from linear algebra. For each action u ∈ U ,
let its state transition matrixMu be an n×n matrix, for n = |X|, of probabilities.
The matrix is defined as

Mu =








m1,1 m1,2 · · · m1,n

m2,1 m2,2 · · · m2,n
...

...
...

mn,1 mn,2 · · · mn,n







, (10.15)
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in which
mi,j = P (xk+1 = i | xk = j, u). (10.16)

For each j, the jth column of Mu must sum to one and can be interpreted as the
probability distribution over X that is obtained if uk is applied from state xk = j.

Let v denote an n-dimensional column vector that represents any probability
distribution over X. The product Muv yields a column vector that represents
the probability distribution over X that is obtained after starting with v and
applying u. The matrix multiplication performs n inner products, each of which
is a marginalization as shown in (10.13). The forward projection at any stage, k,
can now be expressed using a product of k− 1 state transition matrices. Suppose
that ũk−1 is fixed. Let v = [0 0 · · · 0 1 0 · · · 0], which indicates that x1 is known
(with probability one). The forward projection can be computed as

v′ =Muk−1
Muk−2

· · ·Mu2Mu1v. (10.17)

The ith element of v′ is P (xk = i | x1, ũk−1).

Example 10.4 (Probabilistic Forward Projections) Once again, use the first
model from Example 10.1; however, now assign probability 1/3 to each nature ac-
tion. Assume that, initially, x1 = 0, and u = 2 is applied in every stage. The
one-stage forward projection yields probabilities

[1/3 1/3 1/3] (10.18)

over the sequence of states (1, 2, 3). The two-stage forward projection yields

[1/9 2/9 3/9 2/9 1/9] (10.19)

over (2, 3, 4, 5, 6). �

Backprojections Sometimes it is helpful to define the set of possible previous
states from which one or more current states could be obtained. For example, they
will become useful in defining graph-based planning algorithms in Section 10.2.3.
This involves maintaining a backprojection, which is a counterpart to the forward
projection that runs in the opposite direction. Backprojections were considered
in Section 8.5.2 to keep track of the active states in a Dijkstra-like algorithm over
continuous state spaces. In the current setting, backprojections need to address
uncertainty.

Consider the case of nondeterministic uncertainty. Let a state x ∈ X be given.
Under a fixed action u, what previous states, x′ ∈ X, could possibly lead to x?
This depends only on the possible choices of nature and is expressed as

WB(x, u) = {x′ ∈ X | ∃θ ∈ Θ(x′, u) such that x = f(x′, u, θ)}. (10.20)
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The notation WB(x, u) refers to the weak backprojection of x under u, and gives
the set of all states from which x may possibly be reached in one stage.

The backprojection is called “weak” because it does not guarantee that x is
reached, which is a stronger condition. By guaranteeing that x is reached, a strong
backprojection of x under u is defined as

SB(x, u) = {x′ ∈ X | ∀θ ∈ Θ(x′, u), x = f(x′, u, θ)}. (10.21)

The difference between (10.20) and (10.21) is either there exists an action of nature
that enables x to be reached, or x is reached for all actions of nature. Note that
SB(x, u) ⊆ WB(x, u). In many cases, SB(x, u) = ∅, and WB(x, u) is rarely empty.
The backprojection that was introduced in (8.66) of Section 8.5.2 did not involve
uncertainty; hence, the distinction between weak and strong backprojections did
not arise.

Two useful generalizations will now be made: 1) A backprojection can be
defined from a set of states; 2) the action does not need to be fixed. Instead of a
fixed state, x, consider a set S ⊆ X of states. What are the states from which an
element of S could possibly be reached in one stage under the application of u?
This is the weak backprojection of S under u:

WB(S, u) = {x′ ∈ X | ∃θ ∈ Θ(x′, u) such that f(x′, u, θ) ∈ S}, (10.22)

which can also be expressed as

WB(S, u) =
⋃

x∈S

WB(x, u). (10.23)

Similarly, the strong backprojection of S under u is defined as

SB(S, u) = {x′ ∈ X | ∀θ ∈ Θ(x′, u), f(x′, u, θ) ∈ S}. (10.24)

Note that SB(S, u) cannot be formed by the union of SB(x, u) over all x ∈ S.
Another observation is that for each xk ∈ SB(S, uk), we have Xk+1(xk, uk) ⊆ S.

Now the dependency on u will be removed. This yields a backprojection of a
set S. These are states from which there exists an action that possibly reaches S.
The weak backprojection of S is

WB(S) = {x′ ∈ X | ∃u ∈ U(x) such that x ∈ WB(S, u)}, (10.25)

and the strong backprojection of S is

SB(S) = {x′ ∈ X | ∃u ∈ U(x) such that x ∈ SB(S, u)}. (10.26)

Note that SB(S) ⊆ WB(S).
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Example 10.5 (Backprojections) Once again, consider the model from the
first part of Example 10.1. The backprojection WB(0, 2) represents the set of all
states from which u = 2 can be applied and x = 0 is possibly reached; the result
is WB(0, 2) = {−3,−2,−1}. The state 0 cannot be reached with certainty from
any state in WB(0, 2). Therefore, SB(0, 2) = ∅.

Now consider backprojections from the goal, XG = {−1, 0, 1}, under the action
u = 2. The weak backprojection is

WB(XG, 2) = WB(−1, 2) ∪WB(0, 2) ∪WB(1, 2) = {−4,−3,−2,−1, 0}. (10.27)

The strong backprojection is SB(XG, 2) = {−2}. From any of the other states
in WB(XG, 2), nature could cause the goal to be missed. Note that SB(XG, 2)
cannot be constructed by taking the union of SB(x, 2) over every x ∈ XG.

Finally, consider backprojections that do not depend on an action. These are
WB(XG) = {−4,−3, . . . , 4} and SB(XG) = XG. In the latter case, all states in
XG lie in SB(XG) because uT can be applied. Without allowing uT , we would
obtain SB(XG) = {−2, 2}. �

Other kinds of backprojections are possible, but we will not define them. One
possibility is to make backprojections over multiple stages, as was done for forward
projections. Another possibility is to define them for the probabilistic case. This
is considerably more complicated. An example of a probabilistic backprojection
is to find the set of all states from which a state in S will be reached with at least
probability p.

10.1.3 A Plan and Its Execution

In Chapter 2, a plan was specified by a sequence of actions. This was possible
because the effect of actions was completely predictable. Throughout most of Part
II, a plan was specified as a path, which is a continuous-stage version of the action
sequence. Section 8.2.1 introduced plans that are expressed as a function on the
state space. This was optional because uncertainty was not explicitly modeled
(except perhaps in the initial state).

As a result of unpredictability caused by nature, it is now important to separate
the definition of a plan from its execution. The same plan may be executed many
times from the same initial state; however, because of nature, different future
states will be obtained. This requires the use of feedback in the form of a plan
that maps states to actions.

Defining a plan Let a (feedback) plan for Formulation 10.1 be defined as a
function π : X → U that produces an action π(x) ∈ U(x), for each x ∈ X.
Although the future state may not be known due to nature, if π is given, then it
will at least be known what action will be taken from any future state. In other
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works, π has been called a feedback policy, feedback control law, reactive plan [101],
and conditional plan.

For some problems, particularly when K is fixed at some finite value, a stage-
dependent plan may be necessary. This enables a different action to be chosen for
every stage, even from the same state. Let K denote the set {1, . . . , K} of stages.
A stage-dependent plan is defined as π : X ×K → U . Thus, an action is given by
u = π(x, k). Note that the definition of a K-step plan, which was given Section
2.3, is a special case of the current definition. In that setting, the action depended
only on the stage because future states were always predictable. Here they are
no longer predictable and must be included in the domain of π. Unless otherwise
mentioned, it will be assumed by default that π is not stage-dependent.

Note that once π is formulated, the state transitions appear to be a function
of only the current state and nature. The next state is given by f(x, π(x), θ). The
same is true for the cost term, l(x, π(x), θ).

Forward projections under a fixed plan Forward projections can now be
defined under the constraint that a particular plan is executed. The specific
expression of actions is replaced by π. Each time an action is needed from a state
x ∈ X, it is obtained as π(x). In this formulation, a different U(x) may be used
for each x ∈ X, assuming that π is correctly defined to use whatever actions are
actually available in U(x) for each x ∈ X.

First we will consider the nondeterministic case. Suppose that the initial
state x1 and a plan π are known. This means that u1 = π(x1), which can be
substituted into (10.10) to compute the one-stage forward projection. To compute
the two-stage forward projection, u2 is determined from π(x2) for use in (10.11).
A recursive formulation of the nondeterministic forward projection under a fixed
plan is

Xk+1(x1, π) = {xk+1 ∈ X | ∃θk ∈ Θ(xk, π(xk)) such that

xk ∈ Xk(x1, π) and xk+1 = f(xk, π(xk), θk)}.
(10.28)

The probabilistic forward projection in (10.10) can be adapted to use π, which
results in

P (xk+2|xk, π) =
∑

xk+1∈X

P (xk+2|xk+1, π(xk+1))P (xk+1|xk, π(xk)). (10.29)

The basic idea can be applied k − 1 times to compute P (xk|x1, π).
A state transition matrix can be used once again to express the probabilistic

forward projection. In (10.15), all columns correspond to the application of the
action u. Let Mπ, be the forward projection due to a fixed plan π. Each column
of Mπ may represent a different action because each column represents a different
state xk. Each entry of Mπ is

mi,j = P (xk+1 = i | xk = j, π(xk)). (10.30)
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The resulting Mπ defines a Markov process that is induced under the application
of the plan π.

Graph representations of a plan The game against nature involves two de-
cision makers: nature and the robot. Once the plan is formulated, the decisions of
the robot become fixed, which leaves nature as the only remaining decision maker.
Using this interpretation, a directed graph can be defined in the same way as in
Section 2.1, except nature actions are used instead of the robot’s actions. It can
even be imagined that nature itself faces a discrete feasible planning problem as in
Formulation 2.1, in which Θ(x, π(x)) replaces U(x), and there is no goal set. Let
Gπ denote a plan-based state transition graph, which arises under the constraint
that π is executed. The vertex set of Gπ is X. A directed edge in Gπ exists from x
to x′ if there exists some θ ∈ Θ(x, π(x)) such that x′ = f(x, π(x), θ). Thus, from
each vertex in Gπ, the set of outgoing edges represents all possible transitions to
next states that are possible, given that the action is applied according to π. In
the case of probabilistic uncertainty, Gπ becomes a weighted graph in which each
edge is assigned the probability P (x′|x, π(x), θ). In this case, Gπ corresponds to
the graph representation commonly used to depict a Markov chain.

A nondeterministic forward projection can easily be derived from Gπ by fol-
lowing the edges outward from the current state. The outward edges lead to the
states of the one-stage forward projection. The outward edges of these states
lead to the two-stage forward projection, and so on. The probabilistic forward
projection can also be derived from Gπ.

The cost of a feedback plan Consider the cost-to-go of executing a plan π
from a state x1 ∈ X. The resulting cost depends on the sequences of states that
are visited, actions that are applied by the plan, and the applied nature actions.
In Chapter 2 this was obtained by adding the cost terms, but now there is a
dependency on nature. Both worst-case and expected-case analyses are possible,
which generalize the treatment of Section 9.2 to state spaces and multiple stages.

Let H(π, x1) denote the set of state-action-nature histories that could arise
from π when applied using x1 as the initial state. The cost-to-go, Gπ(x1), under
a given plan π from x1 can be measured using worst-case analysis as

Gπ(x1) = max
(x̃,ũ,θ̃)∈H(π,x1)

{

L(x̃, ũ, θ̃)
}

, (10.31)

which is the maximum cost over all possible trajectories from x1 under the plan
π. If any of these fail to terminate in the goal, then the cost becomes infinity. In
(10.31), x̃, ũ, and θ̃ are infinite histories, although their influence on the cost is
expected to terminate early due to the application of uT .

An optimal plan using worst-case analysis is any plan for which Gπ(x1) is
minimized over all possible plans (all ways to assign actions to the states). In
the case of feasible planning, there are usually numerous equivalent alternatives.
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Sometimes the task may be only to find a feasible plan, which means that all
trajectories must reach the goal, but the cost does not need to be optimized.

Using probabilistic uncertainty, the cost of a plan can be measured using
expected-case analysis as

Gπ(x1) = EH(π,x1)

[

L(x̃, ũ, θ̃)
]

, (10.32)

in which E denotes the mathematical expectation taken over H(π, x1) (i.e., the
plan is evaluated in terms of a weighted sum, in which each term has a weight for
the probability of a state-action-nature history and its associated cost, L(x̃, ũ, θ̃)).
This can also be interpreted as the expected cost over trajectories from x1. If
any of these have nonzero probability and fail to terminate in the goal, then
Gπ(x1) = ∞. In the probabilistic setting, the task is usually to find a plan that
minimizes Gπ(x1).

An interesting question now emerges: Can the same plan, π, be optimal from
every initial state x1 ∈ X, or do we need to potentially find a different optimal
plan for each initial state? Fortunately, a single plan will suffice to be optimal
over all initial states. Why? This behavior was also observed in Section 8.2.1. If
π is optimal from some x1, then it must also be optimal from every other state
that is potentially visited by executing π from x1. Let x denote some visited state.
If π was not optimal from x, then a better plan would exist, and the goal could
be reached from x with lower cost. This contradicts the optimality of π because
solutions must travel through x. Let π∗ denote a plan that is optimal from every
initial state.

10.2 Algorithms for Computing Feedback Plans

10.2.1 Value Iteration

Fortunately, the value iteration method of Section 2.3.1.1 extends nicely to handle
uncertainty in prediction. This was the main reason why value iteration was
introduced in Chapter 2. Value iteration was easier to describe in Section 2.3.1.1
because the complications of nature were avoided. In the current setting, value
iteration retains most of its efficiency and can easily solve problems that involve
thousands or even millions of states.

The state space, X, is assumed to be finite throughout Section 10.2.1. An
extension to the case of a countably infinite state space can be developed if cost-
to-go values over the entire space do not need to be computed incrementally.

Only backward value iteration is considered here. Forward versions can be
defined alternatively.

Nondeterministic case Suppose that the nondeterministic model of nature is
used. A dynamic programming recurrence, (10.39), will be derived. This directly
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yields an iterative approach that computes a plan that minimizes the worst-case
cost. The following presentation shadows that of Section 2.3.1.1; therefore, it may
be helpful to refer back to this periodically.

An optimal plan π∗ will be found by computing optimal cost-to-go functions.
For 1 ≤ k ≤ F , let G∗

k denote the worst-case cost that could accumulate from
stage k to F under the execution of the optimal plan (compare to (2.5))

G∗

k(xk) = min
uk

max
θk

min
uk+1

max
θk+1

· · ·min
uK

max
θK

{
K∑

i=k

l(xi, ui, θi) + lF (xF )

}

. (10.33)

Inside of the min’s and max’s of (10.33) are the last F − k terms of the cost
functional, (10.8). For simplicity, the ranges of each ui and θi in the min’s and
max’s of (10.33) have not been indicated. The optimal cost-to-go for k = F is

G∗

F (xF ) = lF (xF ), (10.34)

which is the same as (2.6) for the predictable case.

Now consider making K passes over X, each time computing G∗
k from G∗

k+1,
as k ranges from F down to 1. In the first iteration, G∗

F is copied from lF . In the
second iteration, G∗

K is computed for each xK ∈ X as (compare to (2.7))

G∗

K(xK) = min
uK

max
θK

{

l(xK , uK , θK) + lF (xF )
}

, (10.35)

in which uK ∈ U(xK) and θK ∈ Θ(xK , uK). Since lF = G∗
F and xF = f(xK , uK , θK),

substitutions are made into (10.35) to obtain (compare to (2.8))

G∗

K(xK) = min
uK

max
θK

{

l(xK , uK , θK) +G∗

F (f(xK , uK , θK))
}

, (10.36)

which computes the costs of all optimal one-step plans from stage K to stage
F = K + 1.

More generally, G∗
k can be computed once G∗

k+1 is given. Carefully study
(10.33), and note that it can be written as (compare to (2.9))

G∗

k(xk) = min
uk

max
θk

{

min
uk+1

max
θk+1

· · ·min
uK

max
θK

{

l(xk, uk, θk)+

K∑

i=k+1

l(xi, ui, θi) + lF (xF )

}}

(10.37)

by pulling the first cost term out of the sum and by separating the minimization
over uk from the rest, which range from uk+1 to uK . The second min and max do
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not affect the l(xk, uk, θk) term; thus, l(xk, uk, θk) can be pulled outside to obtain
(compare to (2.10))

G∗

k(xk) = min
uk

max
θk

{

l(xk, uk, θk)+

min
uk+1

max
θk+1

· · ·min
uK

max
θK

{
K∑

i=k+1

l(xi, ui, θi) + l(xF )

}}

.

(10.38)

The inner min’s and max’s represent G∗
k+1, which yields the recurrence (compare

to (2.11))

G∗

k(xk) = min
uk∈U(xk)

{

max
θk

{

l(xk, uk, θk) +G∗

k+1(xk+1)
}}

. (10.39)

Probabilistic case Now consider the probabilistic case. A value iteration
method can be obtained by once again shadowing the presentation in Section
2.3.1.1. For k from 1 to F , let G∗

k denote the expected cost from stage k to F
under the execution of the optimal plan (compare to (2.5)):

G∗

k(xk) = min
uk,...,uK

{

Eθk,...,θK

[
K∑

i=k

l(xi, ui, θi) + lF (xF )

]}

. (10.40)

The optimal cost-to-go for the boundary condition of k = F again reduces to
(10.34).

Once again, the algorithm makes K passes over X, each time computing G∗
k

from G∗
k+1, as k ranges from F down to 1. As before, G∗

F is copied from lF . In
the second iteration, G∗

K is computed for each xK ∈ X as (compare to (2.7))

G∗

K(xK) = min
uK

{

EθK

[

l(xK , uK , θK) + lF (xF )
]}

, (10.41)

in which uK ∈ U(xK) and the expectation occurs over θK . Substitutions are made
into (10.41) to obtain (compare to (2.8))

G∗

K(xK) = min
uK

{

EθK

[

l(xK , uK , θK) +G∗

F (f(xK , uK , θK))
]}

. (10.42)

The general iteration is

G∗

k(xk) =min
uk

{

Eθk

[

min
uk+1,...,uK

{

Eθk+1,...,θK

[

l(xk, uk, θk)+

K∑

i=k+1

l(xi, ui, θi) + lF (xF )

]}]}

,

(10.43)
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which is obtained once again by pulling the first cost term out of the sum and
by separating the minimization over uk from the rest. The second min and ex-
pectation do not affect the l(xk, uk, θk) term, which is pulled outside to obtain
(compare to (2.10))

G∗

k(xk) =min
uk

{

Eθk

[

l(xk, uk, θk)+

min
uk+1,...,uK

{

Eθk+1,...,θK

[
K∑

i=k+1

l(xi, ui, θi) + l(xF )

]}]}

.

(10.44)

The inner min and expectation define G∗
k+1, yielding the recurrence (compare to

(2.11) and (10.39))

G∗

k(xk) = min
uk∈U(xk)

{

Eθk

[

l(xk, uk, θk) +G∗

k+1(xk+1)
]}

= min
uk∈U(xk)

{ ∑

θk∈Θ(xk,uk)

(

l(xk, uk, θk) +G∗

k+1(f(xk, uk, θk))
)

P (θk|xk, uk)
}

.

(10.45)

If the cost term does not depend on θk, it can be written as l(xk, uk), and
(10.45) simplifies to

G∗

k(xk) = min
uk∈U(xk)

{

l(xk, uk) +
∑

xk+1∈X

G∗

k+1(xk+1)P (xk+1|xk, uk)
}

. (10.46)

The dependency of state transitions on θk is implicit through the expression of
P (xk+1|xk, uk), for which the definition uses P (θk|xk, uk) and the state transition
equation f . The form given in (10.46) may be more convenient than (10.45) in
implementations.

Convergence issues If the maximum number of stages is fixed in the problem
definition, then convergence is assured. Suppose, however, that there is no limit on
the number of stages. Recall from Section 2.3.2 that each value iteration increases
the total path length by one. The actual stage indices were not important in
backward dynamic programming because arbitrary shifting of indices does not
affect the values. Eventually, the algorithm terminated because optimal cost-to-
go values had been computed for all reachable states from the goal. This resulted
in a stationary cost-to-go function because the values no longer changed. States
that are reachable from the goal converged to finite values, and the rest remained
at infinity. The only problem that prevents the existence of a stationary cost-to-go
function, as mentioned in Section 2.3.2, is negative cycles in the graph. In this
case, the best plan would be to loop around the cycle forever, which would reduce
the cost to −∞.
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xI xG xI xG

(a) (b)

Figure 10.2: Plan-based state transition graphs. (a) The goal is possibly reachable,
but not guaranteed reachable because an infinite cycle could occur. (b) The goal
is guaranteed reachable because all flows lead to the goal.

In the current setting, a stationary cost-to-go function once again arises, but
cycles once again cause difficulty in convergence. The situation is, however, more
complicated due to the influence of nature. It is helpful to consider a plan-based
state transition graph, Gπ. First consider the nondeterministic case. If there
exists a plan π from some state x1 for which all possible actions of nature cause
the traversal of cycles that accumulate negative cost, then the optimal cost-to-
go at x1 converges to −∞, which prevents the value iterations from terminating.
These cases can be detected in advance, and each such initial state can be avoided
(some may even be in a different connected component of the state space).

It is also possible that there are unavoidable positive cycles. In Section 2.3.2,
the cost-to-go function behaved differently depending on whether the goal set was
reachable. Due to nature, the goal set may be possibly reachable or guaranteed
reachable, as illustrated in Figure 10.2. To be possibly reachable from some initial
state, there must exist a plan, π, for which there exists a sequence of nature
actions that will lead the state into the goal set. To be guaranteed reachable, the
goal must be reached in spite of all possible sequences of nature actions. If the
goal is possibly reachable, but not guaranteed reachable, from some state x1 and
all edges have positive cost, then the cost-to-go value of x1 tends to infinity as
the value iterations are repeated. For example, every plan-based state transition
graph may contain a cycle of positive cost, and in the worst case, nature may
cause the state to cycle indefinitely. If convergence of the value iterations is only
evaluated at states from which the goal set is guaranteed to be reachable, and
if there are no negative cycles, then the algorithm should terminate when all
cost-to-go values remain unchanged.

For the probabilistic case, there are three situations:

1. The value iterations arrive at a stationary cost-to-go function after a finite
number of iterations.

2. The value iterations do not converge in any sense.

3. The value iterations converge only asymptotically to a stationary cost-to-go
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1/211
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Figure 10.3: A plan-based state transition graph that causes asymptotic conver-
gence. The probabilities of the transitions are shown on the edges. Longer and
longer paths exist by traversing the cycle, but the probabilities become smaller.

function. The number of iterations tends to infinity as the values converge.

The first two situations have already occurred. The first one occurs if there exists
a plan, π, for which Gπ has no cycles. The second situation occurs if there are neg-
ative or positive cycles for which all edges in the cycle have probability one. This
situation is essentially equivalent to that for the nondeterministic case. Worst-
case analysis assumes that the worst possible nature actions will be applied. For
the probabilistic case, the nature actions are forced by setting their probabilities
to one.

The third situation is unique to the probabilistic setting. This is caused by
positive or negative cycles in Gπ for which the edges have probabilities in (0, 1).
The optimal plan may even have such cycles. As the value iterations consider
longer and longer paths, a cycle may be traversed more times. However, each
time the cycle is traversed, the probability diminishes. The probabilities diminish
exponentially in terms of the number of stages, whereas the costs only accumulate
linearly. The changes in the cost-to-go function gradually decrease and converge
only to stationary values as the number of iterations tends to infinity. If some
approximation error is acceptable, then the iterations can be terminated once
the maximum change over all of X is within some ǫ threshold. The required
number of value iterations to obtain a solution of the desired quality depends on
the probabilities of following the cycles and on their costs. If the probabilities are
lower, then the algorithm converges sooner.

Example 10.6 (A Cycle in the Transition Graph) Suppose that a plan, π,
is chosen that yields the plan-based state transition graph shown in Figure 10.3.
A probabilistic model is used, and the probabilities are shown on each edge. For
simplicity, assume that each transition results in unit cost, l(x, u, θ) = 1, over all
x, u, and θ.

The expected cost from xI is straightforward to compute. With probability
1/2, the cost to reach xG is 3. With probability 1/4, the cost is 7. With probability
1/8, the cost is 11. Each time another cycle is taken, the cost increases by 4, but
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the probability is cut in half. This leads to the infinite series

Gπ(xI) = 3 + 4
∞∑

i=1

1

2i
= 7. (10.47)

The infinite sum is the standard geometric series and converges to 1; hence (10.47)
converges to 7.

Even though the cost converges to a finite value, this only occurs in the limit.
An infinite number of value iterations would theoretically be required to obtain
this result. For most applications, an approximate solution suffices, and very
high precision can be obtained with a small number of iterations (e.g., after 20
iterations, the change is on the order of one-billionth). Thus, in general, it is
sensible to terminate the value iterations after the maximum cost-to-go change is
less than a threshold based directly on precision.

Note that if nondeterministic uncertainty is used, then the value iterations
do not converge because, in the worst case, nature will cause the state to cycle
forever. Even though the goal is not guaranteed reachable, the probabilistic un-
certainty model allows reasonable solutions. �

Using the plan Assume that there is no limit on the number of stages. After
the value iterations terminate, cost-to-go functions are determined over X. This
is not exactly a plan, because an action is required for each x ∈ X. The actions
can be obtained by recording the u ∈ U(x) that produced the minimum cost value
in (10.45) or (10.39).

Assume that the value iterations have converged to a stationary cost-to-go
function. Before uncertainty was introduced, the optimal actions were determined
by (2.19). The nondeterministic and probabilistic versions of (2.19) are

π∗(x) = argmin
u∈U(x)

{

max
θ∈Θ(x,u)

{

l(x, u, θ) +G∗(f(x, u, θ))
}}

(10.48)

and
π∗(x) = argmin

u∈U(x)

{

Eθ

[

l(x, u, θ) +G∗(f(x, u, θ))
]}

, (10.49)

respectively. For each x ∈ X at which the optimal cost-to-go value is known, one
evaluation of (10.45) yields the best action.

Conveniently, the optimal action can be recovered directly during execution
of the plan, rather than storing actions. Each time a state xk is obtained during
execution, the appropriate action uk = π∗(xk) is selected by evaluating (10.48) or
(10.49) at xk. This means that the cost-to-go function itself can be interpreted as
a representation of the optimal plan, once it is understood that a local operator is
required to recover the action. It may seem strange that such a local computation
yields the global optimum; however, this works because the cost-to-go function
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already encodes the global costs. This behavior was also observed for continuous
state spaces in Section 8.4.1, in which a navigation function served to define a
feedback motion plan. In that context, a gradient operator was needed to recover
the direction of motion. In the current setting, (10.48) and (10.49) serve the same
purpose.

10.2.2 Policy Iteration

The value iterations of Section 10.2.1 work by iteratively updating cost-to-go
values on the state space. The optimal plan can alternatively be obtained by
iteratively searching in the space of plans. This leads to a method called policy
iteration [18]; the term policy is synonymous with plan. The method will be
explained for the case of probabilistic uncertainty, and it is assumed that X is
finite. With minor adaptations, a version for nondeterministic uncertainty can
also be developed.

Policy iteration repeatedly requires computing the cost-to-go for a given plan,
π. Recall the definition of Gπ from (10.32). First suppose that there are no
uncertainties, and that the state transition equation is x′ = f(x, u). The dynamic
programming equation (2.18) from Section 2.3.2 can be used to derive the cost-
to-go for each state x ∈ X under the application of π. Make a copy of (2.18) for
each x ∈ X, and instead of the min, use the given action u = π(x), to yield

Gπ(x) = l(x, π(x)) +Gπ(f(x, π(x))). (10.50)

In (10.50), the G∗ has been replaced by Gπ because there are no variables to
optimize (it is simply the cost of applying π). Equation (10.50) can be thought
of as a trivial form of dynamic programming in which the choice of possible plans
has been restricted to a single plan, π. If the dynamic programming recurrence
(2.18) holds over the space of all plans, it must certainly hold over a space that
consists of a single plan; this is reflected in (10.50).

If there are n states, (10.50) yields n equations, each of which gives an ex-
pression of Gπ(x) for a different state. For the states in which x ∈ XG, it is
known that Gπ(x) = 0. Now that this is known, the cost-to-go for all states
from which XG can be reached in one stage can be computed using (10.50) with
Gπ(f(x, π(x))) = 0. Once these cost-to-go values are computed, another wave
of values can be computed from states that can reach these in one stage. This
process continues until the cost-to-go values are computed for all states. This is
similar to the behavior of Dijkstra’s algorithm.

This process of determining the cost-to-go should not seem too mysterious.
Equation (10.50) indicates how the costs differ between neighboring states in the
state transition graph. Since all of the differences are specified and an initial
condition is given for XG, all others can be derived by adding up the differences
expressed in (10.50). Similar ideas appear in the Hamilton-Jacobi-Bellman equa-
tion and Pontryagin’s minimum principle, which are covered in Section 15.2.
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Now we turn to the case in which there are probabilistic uncertainties. The
probabilistic analog of (2.18) is (10.49). For simplicity, consider the special case
in which l(x, u, θ) does not depend on θ, which results in

π∗(x) = argmin
u∈U(x)

{

l(x, u) +
∑

x′∈X

G∗(x′)P (x′|x, u)
}

, (10.51)

in which x′ = f(x, u). The cost-to-go function, G∗, satisfies the dynamic program-
ming recurrence

G∗(x) = min
u∈U(x)

{

l(x, u) +
∑

x′∈X

G∗(x′)P (x′|x, u)
}

. (10.52)

The probabilistic analog to (10.50) can be made from (10.52) by restricting the
set of actions to a single plan, π, to obtain

Gπ(x) = l(x, π(x)) +
∑

x′∈X

Gπ(x
′)P (x′|x, π(x)), (10.53)

in which x′ is the next state.
The cost-to-go for each x ∈ X under the application of π can be determined

by writing (10.53) for each state. Note that all quantities except Gπ are known.
This means that if there are n states, then there are n linear equations and n
unknowns (Gπ(x) for each x ∈ X). The same was true when (10.50) was used,
except the equations were much simpler. In the probabilistic setting, a system of
n linear equations must be solved to determine Gπ. This may be performed using
classical linear algebra techniques, such as singular value decomposition (SVD)
[115, 287].

Now that we have a method for evaluating the cost of a plan, the policy
iteration method is straightforward, as specified in Figure 10.4. Note that in Step
3, the cost-to-go Gπ, which was developed for one plan, π, is used to evaluate
other plans. The result is the cost that will be obtained if a new action is tried in
the first stage and then π is used for all remaining stages. If a new action cannot
reduce the cost, then π must have already been optimal because it means that
(10.54) has become equivalent to the stationary dynamic programming equation,
(10.49). If it is possible to improve π, then a new plan is obtained. The new plan
must be strictly better than the previous plan, and there is only a finite number
of possible plans in total. Therefore, the policy iteration method converges after
a finite number of iterations.

Example 10.7 (An Illustration of Policy Iteration) A simple example will
now be used to illustrate policy iteration. Let X = {a, b, c} and U = {1, 2, uT}.
Let XG = {c}. Let l(x, u) = 1 for all x ∈ X and u ∈ U \ {uT} (if uT is applied,
there is no cost). The probabilistic state transition graphs for each action are



10.2. ALGORITHMS FOR COMPUTING FEEDBACK PLANS 519

POLICY ITERATION ALGORITHM

1. Pick an initial plan π, in which uT is applied at each x ∈ XG and all other
actions are chosen arbitrarily.

2. Use (10.53) to compute Gπ for each x ∈ X under the plan π.

3. Substituting the computed Gπ values for G
∗, use (10.51) to compute a better

plan, π′:

π′(x) = argmin
u∈U(x)

{

l(x, u) +
∑

x′∈X

Gπ(x
′)P (x′|x, u)

}

. (10.54)

4. If π′ produces at least one lower cost-to-go value than π, then let π = π′

and repeat Steps 2 and 3. Otherwise, declare π to be the optimal plan, π∗.

Figure 10.4: The policy iteration algorithm iteratively searches the space of plans
by evaluating and improving plans.

ba c

1/3

1/3

1/3

1/3

1/3
1/3

xG
ba c

3/4

1/2

1/4

1/2

xG

u=1 u=2

Figure 10.5: The probabilistic state transition graphs for u = 1 and u = 2.
Transitions out of c are not shown because it is assumed that a termination action
is always applied from xg.
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shown in Figure 10.5. The first step is to pick an initial plan. Let π(a) = 1 and
π(b) = 1; let π(c) = uT because c ∈ XG.

Now use (10.53) to compute Gπ. This yields three equations:

Gπ(a) = 1 +Gπ(a)P (a | a, 1) +Gπ(b)P (b | a, 1) +Gπ(c)P (c | a, 1) (10.55)

Gπ(b) = 1 +Gπ(a)P (a | b, 1) +Gπ(b)P (b | b, 1) +Gπ(c)P (c | b, 1) (10.56)

Gπ(c) = 0 +Gπ(a)P (a | c, uT ) +Gπ(b)P (b | c, uT ) +Gπ(c)P (c | c, uT ). (10.57)

Each equation represents a different state and uses the appropriate action from π.
The final equation reduces to Gπ(c) = 0 because of the basic rules of applying a
termination condition. After substituting values for P (x′|x, u) and using Gπ(c) =
0, the other two equations become

Gπ(a) = 1 + 1
3
Gπ(a) +

1
3
Gπ(b) (10.58)

and

Gπ(b) = 1 + 1
3
Gπ(a) +

1
3
Gπ(b). (10.59)

The solutions are Gπ(a) = Gπ(b) = 3.
Now use (10.54) for each state with Gπ(a) = Gπ(b) = 3 and Gπ(c) = 0 to find

a better plan, π′. At state a, it is found by solving

π′(a) = argmin
u∈U

{

l(x, a) +
∑

x′∈X

Gπ(x
′)P (x′|x, a)

}

. (10.60)

The best action is u = 2, which produces cost 5/2 and is computed as

l(x, 2) +
∑

x′∈X

Gπ(x
′)P (x′|x, 2) = 1 + 0 + (3)1

2
+ (0)1

4
= 5

2
. (10.61)

Thus, π′(a) = 2. Similarly, π′(b) = 2 can be computed, which produces cost 7/4.
Once again, π′(c) = uT , which completes the determination of an improved plan.

Since an improved plan has been found, replace π with π′ and return to Step
2. The new plan yields the equations

Gπ(a) = 1 + 1
2
Gπ(b) (10.62)

and

Gπ(b) = 1 + 1
4
Gπ(a). (10.63)

Solving these yields Gπ(a) = 12/7 and Gπ(b) = 10/7. The next step attempts to
find a better plan using (10.54), but it is determined that the current plan cannot
be improved. The policy iteration method terminates by correctly reporting that
π∗ = π. �
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BACKPROJECTION ALGORITHM

1. Initialize S = XG, and let π(x) = uT for each x ∈ XG.

2. For each x ∈ X \ S, if there exists some u ∈ U(x) such that x ∈ SB(S, u)
then: 1) let π(x) = u, and 2) insert x into S.

3. If Step 2 failed to extend S, then exit. This implies that SB(S) = S, which
means no more progress can be made. Otherwise, go to Step 2.

Figure 10.6: A general algorithm for computing a feasible plan under nondeter-
ministic uncertainty.

Policy iteration may appear preferable to value iteration, especially because it
usually converges in fewer iterations than value iteration. The equation solving
that determines the cost of a plan effectively considers multiple stages at once.
However, for most planning problems, X is large and the large linear system
of equations that must be solved at every iteration can become unwieldy. In
some applications, either the state space may be small enough or sparse matrix
techniques may allow efficient solutions over larger state spaces. In general, value-
based methods seem preferable for most planning problems.

10.2.3 Graph Search Methods

Value iteration is quite general; however, in many instances, most of the time is
wasted on states that do not update their values because either the optimal cost-
to-go is already known or the goal is not yet reached. Policy iteration seems to
alleviate this problem, but it is limited to small state spaces. These shortcomings
motivate the consideration of alternatives, such as extending the graph search
methods of Section 2.2. In some cases, Dijkstra’s algorithm can even be extended
to quickly obtain optimal solutions, but a strong assumption is required on the
structure of solutions. In the nondeterministic setting, search methods can be
developed that produce only feasible solutions, without regard for optimality. For
the methods in this section, X need not be finite, as long as the search method is
systematic, in the sense defined in Section 2.2.

Backward search with backprojections A backward search can be con-
ducted by incrementally growing a plan outward from XG by using backprojec-
tions. A complete algorithm for computing feasible plans under nondeterministic
uncertainty is outlined in Figure 10.6. Let S denote the set of states for which
the plan has been computed. Initially, S = XG and, if possible, S may grow
until S = X. The plan definition starts with π(x) = uT for each x ∈ XG and is
incrementally extended to new states during execution.

Step 2 takes every state x that is not already in S and checks whether it should
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S

x

Forward projection
under u

Figure 10.7: A state x can be added to S if there exists an action u ∈ U(x) such
that the one-stage forward projection is contained in S.

be added. This requires determining whether some action, u, can be applied from
x, with the next state guaranteed to lie in S, as shown in Figure 10.7. If so, then
π(x) = u is assigned and S is extended to include x. If no such progress can be
made, then the algorithm must terminate. Otherwise, every state is checked again
by returning to Step 2. This is necessary because S has grown, and in the next
iteration new states may lie in its strong backprojection.

For efficiency reasons, the X \ S set in Step 2 may be safely replaced with
the smaller set, WB(S) \ S, because it is impossible for other states in X to be
affected. Depending on the problem, this condition may provide a quick way to
prune many hopeless states from consideration. As an example, consider a grid-
like environment in which a maximum of two steps in any direction is possible at
a given time. A simple distance test can be implemented to eliminate many states
from possible inclusion into S in Step 2.

As long as the consideration of states to include in S is systematic, as con-
sidered in Section 2.2, numerous variations of the algorithm in Figure 10.6 are
possible. One possibility is to keep track of the cost-to-go and grow S based
on incrementally inserting minimal-cost states. This leads to a nondeterministic
version of Dijkstra’s algorithm, which is covered next.

Nondeterministic Dijkstra Figure 10.8 shows an extension of Dijkstra’s al-
gorithm for solving the problem of Formulation 10.1 under nondeterministic un-
certainty. It can also be considered as a variant of the algorithm in Figure 10.6
because it grows S by using backprojections. The algorithm in Figure 10.8 rep-
resents a backward-search version of Dijkstra’s algorithm; therefore, it maintains
the worst-case cost-to-go, G, which sometimes becomes the optimal, worst-case
cost-to-go, G∗. Initially, G = 0 for states in the goal, and G = ∞ for all others.

Step 1 performs the initialization. Step 2 selects the state in A that has the
smallest value. As in Dijkstra’s algorithm for deterministic problems, it is known
that the cost-to-go for this state is the smallest possible. It is therefore declared
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NONDETERMINISTIC DIJKSTRA

1. Initialize S = ∅ and A = XG. Associate uT with every x ∈ A. Assign
G(x) = 0 for all x ∈ A and G(x) = ∞ for all other states.

2. Unless A is empty, remove the xs ∈ A and its corresponding u, for which G
is smallest. If A was empty, then exit (no further progress is possible).

3. Designate π∗(xs) = u as part of the optimal plan and insert xs into S.
Declare G∗(xs) = G(xs).

4. Compute G(x) using (10.64) for any x in the frontier set, Front(xs, S), and
insert Front(xs, S) into A and with associated actions for each inserted state.
For states already in A, retain whichever G value is lower, either its original
value or the new computed value. Go to Step 2.

Figure 10.8: A Dijkstra-based algorithm for computing an optimal feasible plan
under nondeterministic uncertainty.

in Step 3 that G∗(xs) = G(xs), and π
∗ is extended to include xs.

Step 4 updates the costs for some states and expands the active set, A. Which
costs could be immediately affected by the insertion of xs into S? These are
states xk ∈ X \ S for which there exists some uk ∈ U(xk) that produces a one-
stage forward projection, Xk+1(xk, uk), such that: 1) xs ∈ Xk+1(xk, uk) and 2)
Xk+1(xk, uk) ⊆ S. This is depicted in Figure 10.9. Let the set of states that
satisfy these constraints be called the frontier set, denoted by Front(xs, S). For
each x ∈ Front(xs, S), let Uf (x) ⊆ U(x) denote the set of all actions for which the
forward projection satisfies the two previous conditions.

The frontier set can be interpreted in terms of backprojections. The weak
backprojection WB(xs) yields all states that can possibly reach xs in one step.
However, the cost-to-go is only finite for states in SB(S) (here S already includes
xs). The states in S should certainly be excluded because their optimal costs are
already known. These considerations reduce the set of candidate frontier states
to (WB(xs) ∩ SB(S)) \ S. This set is still too large because the same action, u,
must produce a one-stage forward projection that includes xs and is a subset of
S.

The worst-case cost-to-go is computed for all x ∈ Front(xs, S) as

G(x) = min
u∈Uf (x)

{

max
θ∈Θ(x,u)

{

l(x, u, θ) +G(f(x, u, θ))
}}

, (10.64)

in which the restricted action set, Uf (x), is used. If x was already in A and a
previous G(x) was computed, then the minimum of its previous value and (10.64)
is kept.

524 S. M. LaValle: Planning Algorithms

x

Original S

xs

Forward projection
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Expanded S

Figure 10.9: The worst-case cost-to-go is computed for any state x such that there
exists a u ∈ U(x) for which the one-stage forward projection is contained in the
updated S and one state in the forward projection is xs.

Probabilistic Dijkstra A probabilistic version of Dijkstra’s algorithm does
not exist in general; however, for some problems, it can be made to work. The
algorithm in Figure 10.8 is adapted to the probabilistic case by using

G(x) = min
u∈Uf (x)

{

Eθ

[

l(x, u, θ) +G(f(x, u, θ))
]}

(10.65)

in the place of (10.64). The definition of Front remains the same, and the nonde-
terministic forward projections are still applied to the probabilistic problem. Only
edges in the transition graph that have nonzero probability are actually consid-
ered as possible future states. Edges with zero probability are precluded from the
forward projection because they cannot affect the computed cost values.

The probabilistic version of Dijkstra’s algorithm can be successfully applied
if there exists a plan, π, for which from any xk ∈ X there is probability one
that Gπ(xk+1) < Gπ(xk). What does this condition mean? From any xk, all
possible next states that have nonzero probability of occurring must have a lower
cost value. If all edge costs are positive, this means that all paths in the multi-
stage forward projection will make monotonic progress toward the goal. In the
deterministic case, this always occurs if l(x, u) is always positive. If nonmonotonic
paths are possible, then Dijkstra’s algorithm breaks down because the region in
which cost-to-go values change is no longer contained within a propagating band,
which arises in Dijkstra’s algorithm for deterministic problems.

10.3 Infinite-Horizon Problems

In stochastic control theory and artificial intelligence research, most problems
considered to date do not specify a goal set. Therefore, there are no associated
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termination actions. The task is to develop a plan that minimizes the expected
cost (or maximize expected reward) over some number of stages. If the number of
stages is finite, then it is straightforward to apply the value iteration method of
Section 10.2.1. The adapted version of backward value iteration simply terminates
when the first stage is reached. The problem becomes more challenging if the
number of stages is infinite. This is called an infinite-horizon problem.

The number of stages for the planning problems considered in Section 10.1 is
also infinite; however, it was expected that if the goal could be reached, termi-
nation would occur in a finite number of iterations. If there is no termination
condition, then the costs tend to infinity. There are two alternative cost models
that force the costs to become finite. The discounted cost model shrinks the per-
stage costs as the stages extend into the future; this yields a geometric series for
the total cost that converges to a finite value. The average cost-per-stage model
divides the total cost by the number of stages. This essentially normalizes the
accumulating cost, once again preventing its divergence to infinity. Some of the
computation methods of Section 10.2 can be adapted to these models. This sec-
tion formulates these two infinite-horizon cost models and presents computational
solutions.

10.3.1 Problem Formulation

Both of the cost models presented in this section were designed to force the cu-
mulative cost to become finite, even though there is an infinite number of stages.
Each can be considered as a minor adaptation of cost functional used in Formu-
lation 10.1.

The following formulation will be used throughout Section 10.3.

Formulation 10.2 (Infinite-Horizon Problems)

1. A nonempty, finite state space X.

2. For each state x ∈ X, a finite action space U(x) (there is no termination
action, contrary to Formulation 10.1).

3. A finite nature action space Θ(x, u) for each x ∈ X and u ∈ U(x).

4. A state transition function f that produces a state, f(x, u, θ), for every
x ∈ X, u ∈ U(x), and θ ∈ Θ(x, u).

5. A set of stages, each denoted by k, that begins at k = 1 and continues
indefinitely.

6. A stage-additive cost functional, L(x̃, ũ, θ̃), in which x̃, ũ, and θ̃ are infinite
state, action, and nature histories, respectively. Two alternative forms of L
will be given shortly.
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In comparison to Formulation 10.1, note that here there is no initial or goal state.
Therefore, there are no termination actions. Without the specification of a goal
set, this may appear to be a strange form of planning. A feedback plan, π, still
takes the same form; π(x) produces an action u ∈ U(x) for each x ∈ X.

As a possible application, imagine a robot that delivers materials in a factory
from several possible source locations to several destinations. The robot operates
over a long work shift and has a probabilistic model of when requests to deliver
materials will arrive. Formulation 10.2 can be used to define a problem in which
the goal is to minimize the average amount of time that materials wait to be
delivered. This strategy should not depend on the length of the shift; therefore,
an infinite number of stages is reasonable. If the shift is too short, the robot may
focus only on one delivery, or it may not even have enough time to accomplish
that.

Discounted cost In Formulation 10.2, the cost functional in Item 6 must be
defined carefully to ensure that finite values are always obtained, even though the
number of stages tends to infinity. The discounted cost model provides one simple
way to achieve this by rapidly decreasing costs in future stages. Its definition is
based on the standard geometric series. For any real parameter α ∈ (0, 1),

lim
K→∞

(
K∑

k=0

αk

)

=
1

1− α
. (10.66)

The simplest case, α = 1/2, yields 1+1/2+1/4+1/8+· · · , which clearly converges
to 2.

Now let α ∈ (0, 1) denote a discount factor, which is applied in the definition
of a cost functional:

L(x̃, ũ, θ̃) = lim
K→∞

(
K∑

k=0

αkl(xk, uk, θk)

)

. (10.67)

Let lk denote the cost, l(xk, uk, θk), received at stage k. For convenience in this
setting, the first stage is k = 0, as opposed to k = 1, which has been used
previously. As the maximum stage, K, increases, the diminished importance of
costs far in the future can easily be observed, as indicated in Figure 10.10.

The rate of cost decrease depends strongly on α. For example, if α = 1/2,
the costs decrease very rapidly. If α = 0.999, the convergence to zero is much
slower. The trade-off is that with a large value of α, more stages are taken into
account, and the designed plan is usually of higher quality. If a small value of α is
used, methods such as value iteration converge much more quickly; however, the
solution quality may be poor because of “short sightedness.”

The term l(xk, uk, θk) in (10.67) assumes different values depending on xk, uk,
and θk. Since there are only a finite number of possibilities, they must be bounded
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Stage L∗
K

K = 0 l0
K = 1 l0 + αl1
K = 2 l0 + αl1 + α2l2
K = 3 l0 + αl1 + α2l2 + α3l3
K = 4 l0 + αl1 + α2l2 + α3l3 + α4l4

...

Figure 10.10: The cost magnitudes decease exponentially over the stages.

by some positive constant c.1 Hence,

lim
K→∞

(
K∑

k=0

αkl(xk, uk, θk)

)

≤ lim
K→∞

(
K∑

k=0

αkc

)

≤ c

1− α
, (10.68)

which means that L(x̃, ũ, θ̃) is bounded from above, as desired. A similar lower
bound can be constructed, which ensures that the resulting total cost is always
finite.

Average cost-per-stage An alternative to discounted cost is to use the average
cost-per-stage model, which keeps the cumulative cost finite by dividing out the
total number of stages:

L(x̃, ũ, θ̃) = lim
K→∞

(

1

K

K−1∑

k=0

l(xk, uk, θk)

)

. (10.69)

Using the maximum per-stage cost bound c, it is clear that (10.69) grows no larger
than c, even as K → ∞. This model is sometimes preferable because the cost
does not depend on an arbitrary parameter, α.

10.3.2 Solution Techniques

Straightforward adaptations of the value and policy iteration methods of Section
10.2 exist for infinite-horizon problems. These will be presented here; however,
it is important to note that many other important issues exist regarding their
convergence and numerical stability [26]. There are several other variants of these
algorithms that are too involved to cover here but nevertheless are important
because they address many of these additional issues. The main point in this
section is to understand the simple relationship to the problems considered so far
in Sections 10.1 and 10.2.

1The state space X may even be infinite, but this requires that the set of possible costs is
bounded.
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Value iteration for discounted cost A backward value iteration solution will
be presented that follows naturally from the method given in Section 10.2.1. For
notational convenience, let the first stage be designated as k = 0 so that αk−1 may
be replaced by αk. In the probabilistic case, the expected optimal cost-to-go is

G∗(x) = lim
K→∞

(

min
ũ

{

Eθ̃

[
K∑

k=1

αkl(xk, uk, θk)

]})

. (10.70)

The expectation is taken over all nature histories, each of which is an infinite
sequence of nature actions. The corresponding expression for the nondeterministic
case is

G∗(x) = lim
K→∞

(

min
ũ

{

max
θ̃

{
K∑

k=1

αkl(xk, uk, θk)

}})

. (10.71)

Since the probabilistic case is more common, it will be covered here. The
nondeterministic version is handled in a similar way (see Exercise 17). As before,
backward value iterations will be performed because they are simpler to express.
The discount factor causes a minor complication that must be fixed to make the
dynamic programming recurrence work properly.

One difficulty is that the stage index now appears in the cost function, in the
form of αk. This means that the shift-invariant property from Section 2.3.1.1 is
no longer preserved. We must therefore be careful about assigning stage indices.
This is a problem because for backward value iteration the final stage index has
been unknown and unimportant.

Consider a sequence of discounted decision-making problems, by increasing the
maximum stage index: K = 0, K = 1, K = 2, . . .. Look at the neighboring cost
expressions in Figure 10.10. What is the difference between finding the optimal
cost-to-go for the K+1-stage problem and the K-stage problem? In Figure 10.10
the last four terms of the cost for K = 4 can be obtained by multiplying all terms
for K = 3 by α and adding a new term, l0. The only difference is that the stage
indices need to be shifted by one on each li that was borrowed from the K = 3
case. In general, the optimal costs of a K-stage optimization problem can serve
as the optimal costs of the K + 1-stage problem if they are first multiplied by α.
The K + 1-stage optimization problem can be solved by optimizing over the sum
of the first-stage cost plus the optimal cost for the K-stage problem, discounted
by α.

This can be derived using straightforward dynamic programming arguments
as follows. Suppose that K is fixed. The cost-to-go can be expressed recursively
for k from 0 to K as

G∗

k(xk) = min
uk∈U(xk)

{

Eθk

[

αkl(xk, uk, θk) +G∗

k+1(xk+1)
]}

, (10.72)

in which xk+1 = f(xk, uk, θk). The problem, however, is that the recursion depends
on k through αk, which makes it appear nonstationary.
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The idea of using neighboring cost values as shown in Figure 10.10 can be
applied by making a notational change. Let J∗

K−k(xk) = α−kG∗
k(xk). This reverses

the direction of the stage indices to avoid specifying the final stage and also scales
by α−k to correctly compensate for the index change. Substitution into (10.72)
yields

αkJ∗

K−k(xk) = min
uk∈U(xk)

{

Eθk

[

αkl(xk, uk, θk) + αk+1J∗

K−k−1(xk+1)
]}

. (10.73)

Dividing by αk and then letting i = K − k yields

J∗

i (xk) = min
uk∈U(xk)

{

Eθk

[

l(xk, uk, θk) + αJ∗

i−1(xk+1)
]}

, (10.74)

in which J∗
i represents the expected cost for a finite-horizon discounted problem

in which K = i. Note that (10.74) expresses J∗
i in terms of J∗

i−1, but xk is
given, and the right-hand side uses xk+1. The indices appear to run in opposite
directions because this is simply backward value iteration with a notational change
that reverses some of the indices. The particular stage indices of xk and xk+1

are not important in (10.74), as long as xk+1 = f(xk, uk, θk) (for example, the
substitutions x = xk, x

′ = xk+1, u = uk, and θ = θk can be safely made).
Value iteration proceeds by first letting J∗

0 (x0) = 0 for all x ∈ X. Successive
cost-to-go functions are computed by iterating (10.74) over the state space. Un-
der the cycle-avoiding assumptions of Section 10.2.1, the convergence is usually
asymptotic due to the infinite horizon. The discounting gradually causes the cost
differences to diminish until they are within the desired tolerance. The stationary
form of the dynamic programming recurrence, which is obtained in the limit as i
tends to infinity, is

J∗(x) = min
u∈U(x)

{

Eθk

[

l(x, u, θ) + αJ∗(f(x, u, θ))
]}

. (10.75)

If the cost terms do not depend on nature, then the simplified form is

J∗(x) = min
u∈U(x)

{

l(x, u) + α
∑

x′∈X

J∗(x′)P (x′|x, u)
}

. (10.76)

As explained in Section 10.2.1, the optimal action, π∗(x), is assigned as the u ∈
U(x) that satisfies (10.75) or (10.76) at x.

Policy iteration for discounted cost The policy iteration method may al-
ternatively be applied to the probabilistic discounted-cost problem. Recall the
method given in Figure 10.4. The general approach remains the same: A search is
conducted over the space of plans by solving a linear system of equations in each
iteration. In Step 2, (10.53) is replaced by

Jπ(x) = l(x, u) + α
∑

x′∈X

Jπ(x
′)P (x′|x, u), (10.77)
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which is a special form of (10.76) for evaluating a fixed plan. In Step 3, (10.54) is
replaced by

π′(x) = argmin
u∈U(x)

{

l(x, u) + α
∑

x′∈X

Jπ(x
′)P (x′|x, u)

}

. (10.78)

Using these alterations, the policy iteration algorithm proceeds in the same way
as in Section 10.2.2.

Solutions for the average cost-per-stage model A value iteration algorithm
for the average cost model can be obtained by simply neglecting to divide by K.
Selecting actions that optimize the total cost also optimizes the average cost as
the number of stages approaches infinity. This may cause costs to increase toward
±∞; however, only a finite number of iterations can be executed in practice.

The backward value iterations of Section 10.2.1 can be followed with very little
modification. Initially, let G∗(xF ) = 0 for all xF ∈ X. The value iterations are
computed using the standard form

G∗

k(xk) = min
uk∈U(xk)

{
∑

θ∈Θ(xk,uk)

(

l(xk, uk, θk) +G∗

k+1(f(xk, uk, θk))
)

P (θk|xk, uk)
}

.

(10.79)
The iterations continue until convergence occurs. To determine whether a solution
of sufficient quality has been obtained, a reasonable criterion for is

max
x∈X

{∣
∣G∗

k(x)/N −G∗

k+1(x)/(N − 1)
∣
∣

}

< ǫ, (10.80)

in which ǫ is the error tolerance and N is the number of value iterations that have
been completed (it is required in (10.80) that N > 1). Once (10.80) has been
satisfied, the iterations can be terminated.

A numerical problem may exist with the growing values obtained for G∗(x).
This can be alleviated by periodically reducing all values by some constant factor
to ensure that the numbers fit within the allowable floating point range. In [26], a
method called relative value iteration is presented, which selects one state, s ∈ X,
arbitrarily and expresses the cost-to-go values by subtracting off the cost at s. This
trims down all values simultaneously to keep them bounded while still maintaining
the convergence properties of the algorithm.

Policy iteration can alternatively be performed by using the method given in
Figure 10.4 with only minor modification.

10.4 Reinforcement Learning

10.4.1 The General Philosophy

This section briefly introduces the basic ideas of a framework that has been highly
popular in the artificial intelligence community in recent years. It was developed
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and used primarily by machine learning researchers [3, 271], and therefore this
section is called reinforcement learning. The problem generally involves comput-
ing optimal plans for probabilistic infinite-horizon problems. The basic idea is
to combine the problems of learning the probability distribution, P (θ|x, u), and
computing the optimal plan into the same algorithm.

Terminology Before detailing the method further, some explanation of existing
names seems required. Consider the term reinforcement learning. In machine
learning, most decision-theoretic models are expressed in terms of reward instead
of cost. Thus, the task is to make decisions or find plans that maximize a reward
functional. Choosing good actions under this model appears to provide positive
reinforcement in the form of a reward. Therefore, the term reinforcement is used.
Using cost and minimization instead, some alternative names may be decision-
theoretic learning or cost-based learning.

The term learning is associated with the problem because estimating the prob-
ability distribution P (θ|x, u) or P (x′|x, u) is clearly a learning problem. However,
it is important to remember that there is also the planning problem of computing
cost-to-go functions (or reward-to-go functions) and determining a plan that op-
timizes the costs (or rewards). Therefore, the term reinforcement planning may
be just as reasonable.

The general framework is referred to as neuro-dynamic programming in [27]
because the formulation and resulting algorithms are based on dynamic program-
ming. Most often, a variant of value iteration is obtained. The neuro part refers
to a family of functions that can be used to approximate plans and cost-to-go
values. This term is fairly specific, however, because other function families may
be used. Furthermore, for some problems (e.g., over small, finite state spaces),
the cost values and plans are represented without approximation.

The name simulation-based methods is used in [25], which is perhaps one of
the most accurate names (when used in the context of dynamic programming).
Thus, simulation-based dynamic programming or simulation-based planning nicely
reflects the framework explained here. The term simulation comes from the fact
that a Monte Carlo simulator is used to generate samples for which the required
distributions are learned during planning. You are, of course, welcome to use your
favorite name, but keep in mind that under all of the names, the idea remains the
same. This will be helpful to remember if you intend to study related literature.

The general framework The framework is usually applied to infinite-horizon
problems under probabilistic uncertainty. The discounted-cost model is most pop-
ular; however, we will mostly work with Formulation 10.1 because it is closer to
the main theme of this book. It has been assumed so far that when planning un-
der Formulation 10.1, all model components are known, including P (xk+1|xk, uk).
This can be considered as a traditional framework, in which there are three general
phases:
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Apply action uk from xk

Next state, xk+1

Learning/Planning/Execution

Simulator

Monte Carlo

Algorithm

Cost value, l(xk, uk)

Figure 10.11: The general framework for reinforcement learning (or simulation-
based dynamic programming).

Learning phase: The transition probabilities are estimated by visiting
states in X, trying actions, and gathering statistics. When this phase con-
cludes, the model of the environment is completely known.

Planning phase: An algorithm computes a feedback plan using a method
such as value iteration or policy iteration.

Execution phase: The plan is executed on a machine that is connected to
the same environment on which the learning phase was applied.

The simulation-based framework combines all three of these phases into one.
Learning, planning, and execution are all conducted by a machine that initially
knows nothing about the state transitions or even the cost terms. Ideally, the ma-
chine should be connected to a physical environment for which the Markov model
holds. However, in nearly all implementations, the machine is instead connected
to a Monte Carlo simulator as shown in Figure 10.11. Based on the current state,
the algorithm sends an action, uk, to the simulator, and the simulator computes
its effect by sampling according to its internal probability distributions. Obvi-
ously, the designer of the simulator knows the transition probabilities, but these
are not given directly to the planning algorithm. The simulator then sends the
next state, xk+1, and cost, l(xk, uk), back to the algorithm.

For simplicity, l(xk, uk) is used instead of allowing the cost to depend on the
particular nature action, which would yield l(xk, uk, θk). The explicit charac-
terization of nature is usually not needed in this framework. The probabilities
P (xk+1|xk, uk) are directly learned without specifying nature actions. It is com-
mon to generalize the cost term from l(xk, uk) to l(xk, uk, xk+1), but this is avoided
here for notational convenience. The basic ideas remain the same, and only slight
variations of the coming equations are needed to handle this generalization.

The simulator is intended to simulate “reality,” in which the machine interacts
with the physical world. It replaces the environment in Figure 1.16b from Sec-
tion 1.4. Using the interpretation of that section, the algorithms presented in this
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context can be considered as a plan as shown in Figure 1.18b. If the learning com-
ponent is terminated, then the resulting feedback plan can be programmed into
another machine, as shown in Figure 1.18a. This step is usually not performed,
however, because often it is assumed that the machine continues to learn over its
lifetime.

One of the main issues is exploration vs. exploitation [271]. Some repetitive
exploration of the state space is needed to gather enough data that reliably esti-
mate the model. For true theoretical convergence, each state-action pair must be
tried infinitely often. On the other hand, information regarding the model should
be exploited to efficiently accomplish tasks. These two goals are often in conflict.
Focusing too much on exploration will not optimize costs. Focusing too much
on exploitation may prevent useful solutions from being developed because better
alternatives have not yet been discovered.

10.4.2 Evaluating a Plan via Simulation

The simulation method is based on averaging the information gained incrementally
from samples. Suppose that you receive a sequence of costs, c1, c2, . . ., and would
like to incrementally compute their average. You are not told the total number
of samples in advance, and at any point you are required to report the current
average. Let mi denote the average of the first i samples,

mi =
1

i

i∑

j=1

cj. (10.81)

To efficiently compute mi from mi−1, multiply mi−1 by i− 1 to recover the total,
add ci, and then divide by i:

mi =
(i− 1)mi−1 + ci

i
. (10.82)

This can be manipulated into

mi = mi−1 +
1

i
(ci −mi−1). (10.83)

Now consider the problem of estimating the expected cost-to-go, Gπ(x), at
every x ∈ X for some fixed plan, π. If P (x′|x, u) and the costs l(x, u) were
known, then it could be computed by solving

Gπ(x) = l(x, u) +
∑

x′

P (x′|x, u)Gπ(x
′). (10.84)

However, without this information, we must rely on the simulator.
From each x ∈ X, suppose that 1000 trials are conducted, and the resulting

costs to get to the goal are recorded and averaged. Each trial is an iterative process
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in which π selects the action, and the simulator indicates the next state and its
incremental cost. Once the goal state is reached, the costs are totaled to yield the
measured cost-to-go for that trial (this assumes that π(x) = uT for all x ∈ XG).
If ci denotes this total cost at trial i, then the average, mi, over i trials provides
an estimate of Gπ(x). As i tends to infinity, we expect mi to converge to Gπ(x).
The update formula (10.83) can be conveniently used to maintain the improving
sequence of cost-to-go estimates. Let Ĝπ(x) denote the current estimate of Gπ(x).
The update formula based on (10.83) can be expressed as

Ĝπ(x) := Ĝπ(x) +
1

i
(l(x1, u1) + l(x2, u2) + · · ·+ l(xK , uK)− Ĝπ(x)), (10.85)

in which := means assignment, in the sense used in some programming languages.
It turns out that a single trial can actually yield update values for multiple

states [271, 26]. Suppose that a trial is performed from x that results in the
sequence x1 = x, x2, . . ., xk, . . ., xK , xF of visited states. For every state, xk, in
the sequence, a cost-to-go value can be measured by recording the cost that was
accumulated from xk to xK :

ck(xk) =
K∑

j=k

l(xj , uj). (10.86)

It is much more efficient to make use of (10.85) on every state that is visited along
the path.

Temporal differences Rather than waiting until the end of each trial to com-
pute ci(xi), it is possible to update each state, xi, immediately after it is visited
and l(xi, ui) is received from the simulator. This leads to a well-known method
of estimating the cost-to-go called temporal differences [270]. It is very similar to
the method already given but somewhat more complicated. It will be introduced
here because the method frequently appears in reinforcement learning literature,
and an extension of it leads to a nice simulation-based method for updating the
estimated cost-to-go.

Once again, consider the sequence x1, . . ., xK , xF generated by a trial. Let dk
denote a temporal difference, which is defined as

dk = l(xk, uk) + Ĝπ(xk+1)− Ĝπ(xk). (10.87)

Note that both l(xk, uk) + Ĝπ(xk+1) and Ĝπ(xk) could each serve as an estimate
of Gπ(xk). The difference is that the right part of (10.87) utilizes the latest
cost obtained from the simulator for the first step and then uses Ĝπ(xk+1) for an
estimate of the remaining cost. In this and subsequent expressions, every action,
uk, is chosen using the plan: uk = π(xk).

Let vk denote the number of times that xk has been visited so far, for each
1 ≤ k ≤ K, including previous trials and the current visit. The following update
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algorithm can be used during the trial. When x2 is reached, the value at x1 is
updated as

Ĝπ(x1) := Ĝπ(x1) +
1

v1
d1. (10.88)

When x3 is reached, the values at x1 and x2 are updated as

Ĝπ(x1) := Ĝπ(x1) +
1

v1
d2,

Ĝπ(x2) := Ĝπ(x2) +
1

v2
d2.

(10.89)

Now consider what has been done so far at x1. The temporal differences partly
collapse:

Ĝπ(x1) :=Ĝπ(x1) +
1

v1
d1 +

1

v1
d2

=Ĝπ(x1) +
1

v1
(l(x1, u1) + Ĝπ(x2)− Ĝπ(x1) + l(x2, u2) + Ĝπ(x3)− Ĝπ(x2))

=Ĝπ(x1) +
1

v1
(l(x1, u1) + l(x2, u2)− Ĝπ(x1) + Ĝπ(x3)).

(10.90)

When x4 is reached, similar updates are performed. At xk, the updates are

Ĝπ(x1) :=Ĝπ(x1) +
1

v1
dk,

Ĝπ(x2) :=Ĝπ(x2) +
1

v2
dk,

...

Ĝπ(xk) :=Ĝπ(xk) +
1

vk
dk.

(10.91)

The updates are performed in this way until xF ∈ XG is reached. Now consider
what was actually computed for each xk. The temporal differences form a tele-
scoping sum that collapses, as shown in (10.90) after two iterations. After all
iterations have been completed, the value at xk has been updated as

Ĝπ(xk) :=Ĝπ(xk) +
1

vk
dk +

1

vk+1

dk+1 + · · ·+ 1

vK
dK +

1

vF
dF

=Ĝπ(xk) +
1

vk
(l(x1, u1) + l(x2, u2) + · · ·+ l(xK , uK)− Ĝπ(xk) + Ĝπ(xF ))

=Ĝπ(xk) +
1

vk
(l(x1, u1) + l(x2, u2) + · · ·+ l(xK , uK)− Ĝπ(xk)).

(10.92)

The final Ĝπ(xF ) was deleted because its value is zero, assuming that the termina-
tion action is applied by π. The resulting final expression is equivalent to (10.85) if
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each visited state in the sequence was distinct. This is often not true, which makes
the method discussed above differ slightly from the method of (10.85) because the
count, vk, may change during the trial in the temporal difference scheme. This
difference, however, is negligible, and the temporal difference method computes
estimates that converge to Ĝπ [26, 27].

The temporal difference method presented so far can be generalized in a way
that often leads to faster convergence in practice. Let λ ∈ [0, 1] be a specified
parameter. The TD(λ) temporal difference method replaces the equations in
(10.91) with

Ĝπ(x1) :=Ĝπ(x1) + λk−1

(
1

v1
dk

)

,

Ĝπ(x2) :=Ĝπ(x2) + λk−2

(
1

v2
dk

)

,

...

Ĝπ(xk−1) :=Ĝπ(xk−1) + λ

(
1

vk−1

dk

)

,

Ĝπ(xk) :=Ĝπ(xk) +
1

vk
dk.

(10.93)

This has the effect of discounting costs that are received far away from xk. The
method in (10.91) was the special case of λ = 1, yielding TD(1).

Another interesting special case is TD(0), which becomes

Ĝπ(xk) = Ĝπ(xk) +
1

vk

(

l(xk, uk) + Ĝπ(xk+1)− Ĝπ(xk)
)

. (10.94)

This form appears most often in reinforcement learning literature (although it is
applied to the discounted-cost model instead). Experimental evidence indicates
that lower values of λ help to improve the convergence rate. Convergence for all
values of λ is proved in [27].

One source of intuition about why (10.94) works is that it is a special case
of a stochastic iterative algorithm or the Robbins-Monro algorithm [20, 27, 152].
This is a general statistical estimation technique that is used for solving systems
of the form h(y) = y by using a sequence of samples. Each sample represents
a measurement of h(y) using Monte Carlo simulation. The general form of this
iterative approach is to update y as

y := (1− ρ)y + ρh(y), (10.95)

in which ρ ∈ [0, 1] is a parameter whose choice affects the convergence rate.
Intuitively, (10.95) updates y by interpolating between its original value and the
most recent sample of h(y). Convergence proofs for this algorithm are not given
here; see [27] for details. The typical behavior is that a smaller value of ρ leads to
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more reliable estimates when there is substantial noise in the simulation process,
but this comes at the cost of slowing the convergence rate. The convergence is
asymptotic, which requires that all edges (that have nonzero probability) in the
plan-based state transition graph should be visited infinitely often.

A general approach to obtaining Ĝπ can be derived within the stochastic iter-
ative framework by generalizing TD(0):

Ĝπ(x) := (1− ρ)Ĝπ(x) + ρ
(

l(x, u) + Ĝπ(x
′)
)

. (10.96)

The formulation of TD(0) in (10.94) essentially selects the ρ parameter by the
way it was derived, but in (10.96) any ρ ∈ (0, 1) may be used.

It may appear incorrect that the update equation does not take into account
the transition probabilities. It turns out that they are taken into account in
the simulation process because transitions that are more likely to occur have a
stronger effect on (10.96). The same thing occurs when the mean of a nonuniform
probability density function is estimated by using samples from the distribution.
The values that occur with higher frequency make stronger contributions to the
average, which automatically gives them the appropriate weight.

10.4.3 Q-Learning: Computing an Optimal Plan

This section moves from evaluating a plan to computing an optimal plan in the
simulation-based framework. The most important idea is the computation of Q-
factors, Q∗(x, u). This is an extension of the optimal cost-to-go, G∗, that records
optimal costs for each possible combination of a state, x ∈ X, and action u ∈ U(x).
The interpretation of Q∗(x, u) is the expected cost received by starting from state
x, applying u, and then following the optimal plan from the resulting next state,
x′ = f(x, u, θ). If u happens to be the same action as would be selected by the
optimal plan, π∗(x), then Q∗(x, u) = G∗(x). Thus, the Q-value can be thought
of as the cost of making an arbitrary choice in the first stage and then exhibiting
optimal decision making afterward.

Value iteration A simulation-based version of value iteration can be constructed
from Q-factors. The reason for their use instead of G∗ is that a minimization over
U(x) will be avoided in the dynamic programming. Avoiding this minimization
enables a sample-by-sample approach to estimating the optimal values and ulti-
mately obtaining the optimal plan. The optimal cost-to-go can be obtained from
the Q-factors as

G∗(x) = min
u∈U(x)

{

Q∗(x, u)
}

. (10.97)

This enables the dynamic programming recurrence in (10.46) to be expressed as

Q∗(x, u) = l(x, u) +
∑

x′∈X

P (x′|x, u) min
u′∈U(x′)

{

Q∗(x′, u′)
}

. (10.98)

538 S. M. LaValle: Planning Algorithms

By applying (10.97) to the right side of (10.98), it can also be expressed using G∗

as
Q∗(x, u) = l(x, u) +

∑

x′∈X

P (x′|x, u)G∗(x′). (10.99)

If P (x′|x, u) and l(x, u) were known, then (10.98) would lead to an alternative,
storage-intensive way to perform value iteration. After convergence occurs, (10.97)
can be used to obtain the G∗ values. The optimal plan is constructed as

π∗(x) = argmin
u∈U(x)

{

Q∗(x, u)
}

. (10.100)

Since the costs and transition probabilities are unknown, a simulation-based
approach is needed. The stochastic iterative algorithm idea can be applied once
again. Recall that (10.96) estimated the cost of a plan by using individual sam-
ples and required a convergence-rate parameter, ρ. Using the same idea here, a
simulation-based version of value iteration can be derived as

Q̂∗(x, u) := (1− ρ)Q̂∗(x, u) + ρ

(

l(x, u) + min
u′∈U(x′)

{

Q̂∗(x′, u′)
})

, (10.101)

in which x′ is the next state and l(x, u) is the cost obtained from the simulator
when u is applied at x. Initially, all Q-factors are set to zero. Sample trajectories
that arrive at the goal can be generated using simulation, and (10.101) is applied
to the resulting states and costs in each stage. Once again, the update equation
may appear to be incorrect because the transition probabilities are not explicitly
mentioned, but this is taken into account automatically through the simulation.

In most literature, Q-learning is applied to the discounted cost model. This
yields a minor variant of (10.101):

Q̂∗(x, u) := (1− ρ)Q̂∗(x, u) + ρ

(

l(x, u) + α min
u′∈U(x′)

{

Q̂∗(x′, u′)
})

, (10.102)

in which the discount factor α appears because the update equation is derived
from (10.76).

Policy iteration A simulation-based policy iteration algorithm can be derived
using Q-factors. Recall from Section 10.2.2 that methods are needed to: 1) eval-
uate a given plan, π, and 2) improve the plan by selecting better actions. The
plan evaluation previously involved linear equation solving. Now any plan, π, can
be evaluated without even knowing P (x′|x, u) by using the methods of Section
10.4.2. Once Ĝπ is computed reliably from every x ∈ X, further simulation can
be used to compute Qπ(x, u) for each x ∈ X and u ∈ U . This can be achieved by
defining a version of (10.99) that is constrained to π:

Qπ(x, u) = l(x, u) +
∑

x′∈X

P (x′|x, u)Gπ(x
′). (10.103)
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Cost

P1 acts 21

1 2 3P2 acts 1 12 23 3

3

3 5 1 0 43 −1 7 −2

Figure 10.12: A 3× 3 matrix game expressed using a game tree.

The transition probabilities do not need to be known. The Q-factors are computed
by simulation and averaging. The plan can be improved by setting

π′(x) = argmin
u∈U(x)

{

Q∗(x, u)
}

, (10.104)

which is based on (10.97).

10.5 Sequential Game Theory

So far in the chapter, the sequential decision-making process has only involved
a game against nature. In this section, other decision makers are introduced to
the game. The single-stage games and their equilibrium concepts from Sections
9.3 and 9.4 will be extended into a sequence of games. Section 10.5.1 introduces
sequential zero-sum games that are represented using game trees, which help vi-
sualize the concepts. Section 10.5.2 covers sequential zero-sum games using the
state-space representation. Section 10.5.3 briefly covers extensions to other games,
including nonzero-sum games and games that involve nature. The formulations in
this section will be called sequential game theory. Another common name for them
is dynamic game theory [9]. If there is a continuum of stages, which is briefly con-
sidered in Section 13.5, then differential game theory is obtained [9, 129, 225, 297].

10.5.1 Game Trees

In most literature, sequential games are formulated in terms of game trees. A
state-space representation, which is more in alignment with the representations
used in this chapter, will be presented in Section 10.5.2. The tree representation is
commonly referred to as the extensive form of a game (as opposed to the normal
form, which is the cost matrix representation used in Chapter 9). The represen-
tation is helpful for visualizing many issues in game theory. It is perhaps most
helpful for visualizing information states; this aspect of game trees will be de-
ferred until Section 11.7, after information spaces have been formally introduced.
Here, game trees are presented for cases that are simple to describe without going
deeply into information spaces.
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Before a sequential game is introduced, consider representing a single-stage
game in a tree form. Recall Example 9.14, which is a zero-sum, 3 × 3 matrix
game. It can be represented as a game tree as shown in Figure 10.12. At the
root, P1 has three choices. At the next level, P2 has three choices. Based on the
choices by both, one of nine possible leaves will be reached. At this point, a cost is
obtained, which is written under the leaf. The entries of the cost matrix, (9.53),
appear across the leaves of the tree. Every nonleaf vertex is called a decision
vertex: One player must select an action.

There are two possible interpretations of the game depicted in Figure 10.12:

1. Before it makes its decision, P2 knows which action was applied by P1. This
does not correspond to the zero-sum game formulation introduced in Section
9.3 because P2 seems as powerful as nature. In this case, it is not equivalent
to the game in Example 9.14.

2. P2 does not know the action applied by P1. This is equivalent to assum-
ing that both P1 and P2 make their decisions at the same time, which is
consistent with Formulation 9.7. The tree could have alternatively been
represented with P2 acting first.

Now imagine that P1 and P2 play a sequence of games. A sequential version
of the zero-sum game from Section 9.3 will be defined by extending the game tree
idea given so far to more levels. This will model the following sequential game:

Formulation 10.3 (Zero-Sum Sequential Game in Tree Form)

1. Two players, P1 and P2, take turns playing a game. A stage as considered
previously is now stretched into two substages, in which each player acts
individually. It is usually assumed that P1 always starts, followed by P2,
then P1 again, and so on. Player alternations continue until the game ends.
The model reflects the rules of many popular games such as chess or poker.
Let K = {1, . . . , K} denote the set of stages at which P1 and P2 both take
a turn.

2. As each player takes a turn, it chooses from a nonempty, finite set of actions.
The available set could depend on the decision vertex.

3. At the end of the game, a cost for P1 is incurred based on the sequence of
actions chosen by each player. The cost is interpreted as a reward for P2.

4. The amount of information that each player has when making its decision
must be specified. This is usually expressed by indicating what portions of
the action histories are known. For example, if P1 just acted, does P2 know
its choice? Does it know what action P1 chose in some previous stage?
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Figure 10.13: A two-player, two-stage game expressed using a game tree.

The game tree can now be described in detail. Figure 10.13 shows a particular
example for two stages (hence, K = 2 and K = {1, 2}). Every vertex corre-
sponds to a point at which a decision needs to be made by one player. Each edge
emanating from a vertex represents an action. The root of the tree indicates the
beginning of the game, which usually means that P1 chooses an action. The leaves
of the tree represent the end of the game, which are the points at which a cost
is received. The cost is usually shown below each leaf. One final concern is to
specify the information available to each player, just prior to its decision. Which
actions among those previously applied by itself or other players are known?

For the game tree in Figure 10.13, there are two players and two stages. There-
fore, there are four levels of decision vertices. The action sets for the players are
U = V = {L,R}, for “left” and “right.” Since there are always two actions, a
binary tree is obtained. There are 16 possible outcomes, which correspond to all
pairwise combinations of four possible two-stage plans for each player.

For a single-stage game, both deterministic and randomized strategies were
defined to obtain saddle points. Recall from Section 9.3.3 that randomized strate-
gies were needed to guarantee the existence of a saddle point. For a sequential
game, these are extended to deterministic and randomized plans, respectively. In
Section 10.1.3, a (deterministic) plan was defined as a mapping from the state
space to an action space. This definition can be applied here for each player;
however, we must determine what is a “state” for the game tree. This depends
on the information that each player has available when it plays.

A general framework for representing information in game trees is covered in
Section 11.7. Three simple kinds of information will be discussed here. In every
case, each player knows its own actions that were applied in previous stages. The
differences correspond to knowledge of actions applied by the other player. These
define the “state” that is used to make the decisions in a plan.

The three information models considered here are as follows.

Alternating play: The players take turns playing, and all players know all
actions that have been previously applied. This is the situation obtained, for
example, in a game of chess. To define a plan, let N1 and N2 denote the set
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of all vertices from which P1 and P2 must make a decision, respectively. In
Figure 10.13, N1 is the set of dark vertices and N2 is the set of white vertices.
Let U(n1) and V (n2) be the action spaces for P1 and P2, respectively, which
depend on the vertex. A (deterministic) plan for P1 is defined as a function,
π1, on N1 that yields an action u ∈ U(n1) for each n1 ∈ N1. Similarly, a
(deterministic) plan for P2 is defined as a function, π2, on N2 that yields an
action v ∈ V (n2) for each n2 ∈ N2. For the randomized case, let W (n1) and
Z(n2) denote the sets of all probability distributions over U(n1) and V (n2),
respectively. A randomized plan for P1 is defined as a function that yields
some w ∈ W (n1) for each n1 ∈ N1. Likewise, a randomized plan for P2 is
defined as a function that maps from N2 into Z(n2).

Stage-by-stage: Each player knows the actions applied by the other in all
previous stages; however, there is no information about actions chosen by
others in the current stage. This effectively means that both players act
simultaneously in each stage. In this case, a deterministic or randomized
plan for P1 is defined as in the alternating play case; however, plans for P2

are defined as functions on N1, instead of N2. This is because at the time
it makes its decision, P2 has available precisely the same information as P1.
The action spaces for P2 must conform to be dependent on elements of N1,
instead of N2; otherwise, P2 would not know what actions are available.
Therefore, they are defined as V (n1) for each n1 ∈ N1.

Open loop: Each player has no knowledge of the previous actions of the
other. They only know how many actions have been applied so far, which
indicates the stage of the game. Plans are defined as functions on K, the
set of stages, because the particular vertex is not known. Note that an
open-loop plan is just a sequence of actions in the deterministic case (as in
Section 2.3) and a sequence of probability distributions in the randomized
case. Again, the action spaces must conform to the information. Thus, they
are U(k) and V (k) for each k ∈ K.

For a single-stage game, as in Figure 10.12, the stage-by-stage and open-loop
models are equivalent.

Determining a security plan

The notion of a security strategy from Section 9.3.2 extends in a natural way
to sequential games. This yields a security plan in which each player performs
worst-case analysis by treating the other player as nature under nondeterministic
uncertainty. A security plan and its resulting cost can be computed by propagating
costs from the leaves up to the root. The computation of the security plan for P1

for the game in Figure 10.13 is shown in Figure 10.14. The actions that would be
chosen by P2 are determined at all vertices in the second-to-last level of the tree.
Since P2 tries to maximize costs, the recorded costs at each of these vertices is the
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Figure 10.14: The security plan for P1 is determined by propagating costs upward
from the leaves. The choices involved in the security plan are shown in the last
picture. An upper value of 1 is obtained for the game.

maximum over the costs of its children. At the next higher level, the actions that
would be chosen by P1 are determined. At each vertex, the minimum cost among
its children is recorded. In the next level, P2 is considered, and so on, until the
root is reached. At this point, the lowest cost that P1 could secure is known. This
yields the upper value, L

∗
, for the sequential game. The security plan is defined

by providing the action that selects the lowest cost child vertex, for each n1 ∈ N1.
If P2 responds rationally to the security plan of P1, then the path shown in bold
in Figure 10.14d will be followed. The execution of P1’s security plan yields the
action sequence (L,L) for P1 and (R,L) for P2. The upper value is L

∗
= 1.

A security plan for P2 can be computed similarly; however, the order of the
decisions must be swapped. This is not easy to visualize, unless the order of the
players is swapped in the tree. If P2 acts first, then the resulting tree is as shown
in Figure 10.15. The costs on the leaves appear in different order; however, for
the same action sequences chosen by P1 and P2, the costs obtained at the end of
the game are the same as those in Figure 10.14. The resulting lower value for the
game is found to be L∗ = 1. The resulting security plan is defined by assigning
the action to each n2 ∈ N2 that maximizes the cost value of its children. If P1

responds rationally to the security plan of P2, then the actions executed will be
(L,L) for P1 and (R,L) for P2. Note that these are the same as those obtained
from executing the security plan of P1, even though they appear different in the
trees because the player order was swapped. In many cases, however, different

544 S. M. LaValle: Planning Algorithms

P2 acts

Cost 4 0 4 2

P2 acts

P1 acts

P1 acts

2 3 112 3 2 1 3 0 20

0 0 1 2 1 0 3 1

0 2 1 3

1

1

0

Figure 10.15: The security plan can be found for P2 by swapping the order of P1

and P2 (the order of the costs on the leaves also become reshuffled).

action sequences will be obtained.
As in the case of a single-stage game, L∗ = L

∗
implies that the game has a

deterministic saddle point and the value of the sequential game is L∗ = L∗ =
L
∗
. This particular game has a unique, deterministic saddle point. This yields

predictable, identical choices for the players, even though they perform separate,
worst-case analyses.

A substantial reduction in the cost of computing the security strategies can be
obtained by recognizing when certain parts of the tree do not need to be explored
because they cannot yield improved costs. This idea is referred to as alpha-beta
pruning in AI literature (see [240], pp. 186-187 for references and a brief history).
Suppose that the tree is searched in depth-first order to determine the security
strategy for P1. At some decision vertex for P1, suppose it has been determined
that a cost c would be secured if a particular action, u, is applied; however, there
are still other actions for which it is not known what costs could be secured.
Consider determining the cost that could be secured for one of these remaining
actions, denoted by u′. This requires computing how P2 will maximize cost to
respond to u′. As soon as P2 has at least one option for which the cost, c′, is
greater than c, the other children of P2 do not need to be explored. Why? This
is because P1 would never choose u′ if P2 could respond in a way that leads to a
higher cost than what P1 can already secure by choosing u. Figure 10.16 shows
a simple example. This situation can occur at any level in the tree, and when an
action does not need to be considered, an entire subtree is eliminated. In other
situations, children of P1 can be eliminated because P2 would not make a choice
that allows P1 to improve the cost below a value that P2 can already secure for
itself.

Computing a saddle point

The security plan for P1 constitutes a valid solution to the game under the alter-
nating play model. P2 has only to choose an optimal response to the plan of P1



10.5. SEQUENTIAL GAME THEORY 545

Cost
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P2 acts

1

u u′
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c′ ≥ 2

c = 1

No need to explore

Figure 10.16: If the tree is explored in depth-first order, there are situations in
which some children (and hence whole subtrees) do not need to be explored. This
is an example that eliminates children of P2. Another case exists, which eliminates
children of P1.

at each stage. Under the stage-by-stage model, the “solution” concept is a saddle
point, which occurs when the upper and lower values coincide. The procedure just
described could be used to determine the value and corresponding plans; however,
what happens when the values do not coincide? In this case, randomized security
plans should be developed for the players. As in the case of a single-stage game, a
randomized upper value L∗

and a randomized lower value L∗ are obtained. In the
space of randomized plans, it turns out that a saddle point always exists. This
implies that the game always has a randomized value, L∗ = L∗ = L∗

. This saddle
point can be computed from the bottom up, in a manner similar to the method
just used to compute security plans.

Return to the example in Figure 10.13. This game actually has a deterministic
saddle point, as indicated previously. It still, however, serves as a useful illustra-
tion of the method because any deterministic plan can once again be interpreted
as a special case of a randomized plan (all of the probability mass is placed on
a single action). Consider the bottom four subtrees of Figure 10.13, which are
obtained by using only the last two levels of decision vertices. In each case, P1

and P2 must act in parallel to end the sequential game. Each subtree can be
considered as a matrix game because the costs are immediately obtained after the
two players act.

This leads to an alternative way to depict the game in Figure 10.13, which is
shown in Figure 10.17. The bottom two layers of decision vertices are replaced
by matrix games. Now compute the randomized value for each game and place it
at the corresponding leaf vertex, as shown in Figure 10.18. In the example, there
are only two layers of decision vertices remaining. This can be represented as the
game

V

U
0 1
2 3

, (10.105)

which has a value of 1 and occurs if P1 applies L and P2 applies R. Thus, the
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Figure 10.17: Under the stage-by-stage model, the game in Figure 10.13 can
instead be represented as a tree in which each player acts once, and then they
play a matrix game to determine the cost.

P1 acts

P2 acts

L R

RRL L

0 1 2 3

Figure 10.18: Each matrix in Figure 10.17 can be replaced by its randomized
value. This clips one level from the original tree. For this particular example, the
randomized value is also a deterministic value. Note that these are exactly the
costs that appeared in Figure 10.14c. This occurred because each of the matrix
games has a deterministic value; if they do not, then the costs will not coincide.

solution to the original sequential game has been determined by solving matrix
games as an alternative to the method applied to obtain the security plans. The
benefit of the new method is that if any matrix does not have a deterministic saddle
point, its randomized value can instead be computed. A randomized strategy must
be played by the players if the corresponding decision vertex is reached during
execution.

Converting the tree to a single-stage game

Up to this point, solutions have been determined for the alternating-play and the
stage-by-stage models. The open-loop model remains. In this case, there is no
exchange of information between the players until the game is finished and they
receive their costs. Therefore, imagine that players engaged in such a sequential
game are equivalently engaged in a large, single-stage game. Recall that a plan
under the open-loop model is a function over K. Let Π1 and Π2 represent the
sets of possible plans for P1 and P2, respectively. For the game in Figure 10.13,
Πi is a set of four possible plans for each player, which will be specified in the
following order: (L,L), (L,R), (R,L), and (R,R). These can be arranged into a
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4× 4 matrix game:
Π2

Π1

4 2 1 0
0 0 3 2
2 3 4 1
1 2 3 2

. (10.106)

This matrix game does not have a deterministic saddle point. Unfortunately,
a four-dimensional linear programming problem must be solved to find the ran-
domized value and equilibrium. This is substantially different than the solution
obtained for the other two information models.

The matrix-game form can also be derived for sequential games defined un-
der the stage-by-stage model. In this case, however, the space of plans is even
larger. For the example in Figure 10.13, there are 32 possible plans for each player
(there are 5 decision vertices for each player, at which two different actions can
be applied; hence, |Πi| = 25 for i = 1 and i = 2). This results in a 32 × 32
matrix game! This game should admit the same saddle point solution that we
already determined. The advantage of using the tree representation is that this
enormous game was decomposed into many tiny matrix games. By treating the
problem stage-by-stage, substantial savings in computation results. This power
arises because the dynamic programming principle was implicitly used in the tree-
based computation method of decomposing the sequential game into small matrix
games. The connection to previous dynamic programming methods will be made
clearer in the next section, which considers sequential games that are defined over
a state space.

10.5.2 Sequential Games on State Spaces

An apparent problem in the previous section is that the number of vertices grows
exponentially in the number of stages. In some games, however, there may be
multiple action sequences that lead to the same state. This is true of many popular
games, such as chess, checkers, and tic-tac-toe. In this case, it is convenient to
define a state space that captures the complete set of unique game configurations.
The player actions then transform the state. If there are different action sequences
that lead to the same state, then separate vertices are not needed. This converts
the game tree into a game graph by declaring vertices that represent the same
state to be equivalent. The game graph is similar in many ways to the transition
graphs discussed in Section 10.1, in the sequential game against nature. The same
idea can be applied when there are opposing players.

We will arrive at a sequential game that is played over a state space by collaps-
ing the game tree into a game graph. We will also allow the more general case of
costs occurring on any transition edges, as opposed to only the leaves of the orig-
inal game tree. Only the stage-by-stage model from the game tree is generalized
here. Generalizations that use other information models are considered in Section
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11.7. In the formulation that follows, P2 can be can viewed as the replacement
for nature in Formulation 10.1. The new formulation is still a generalization of
Formulation 9.7, which was a single-stage, zero-sum game. To keep the concepts
simpler, all spaces are assumed to be finite. The formulation is as follows.

Formulation 10.4 (Sequential Zero-Sum Game on a State Space)

1. Two players, P1 and P2.

2. A finite, nonempty state space X.

3. For each state x ∈ X, a finite, nonempty action space U(x) for P1.

4. For each state x ∈ X, a finite, nonempty action space V (x) for P2. To allow
an extension of the alternating play model from Section 10.5.1, V (x, u) could
alternatively be defined, to enable the set of actions available to P2 to depend
on the action u ∈ U of P1.

5. A state transition function f that produces a state, f(x, u, v), for every
x ∈ X, u ∈ U(x), and v ∈ V (x).

6. A set K of K stages, each denoted by k, which begins at k = 1 and ends
at k = K. Let F = K + 1, which is the final stage, after the last action is
applied.

7. An initial state xI ∈ X. For some problems, this may not be specified, in
which case a solution must be found from all initial states.

8. A stage-additive cost functional L. Let ṽK denote the history of P2’s actions
up to stage K. The cost functional may be applied to any combination of
state and action histories to yield

L(x̃F , ũK , ṽK) =
K∑

k=1

l(xk, uk, vk) + lF (xF ). (10.107)

It will be assumed that both players always know the current state. Note that
there are no termination actions in the formulation. The game terminates after
each player has acted K times. There is also no direct formulation of a goal set.
Both termination actions and goal sets can be added to the formulation without
difficulty, but this is not considered here. The action sets can easily be extended
to allow a dependency on the stage, to yield U(x, k) and V (x, k). The methods
presented in this section can be adapted without trouble. This is avoided, however,
to make the notation simpler.
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Defining a plan for each player Each player must now have its own plan.
As in Section 10.1, it seems best to define a plan as a mapping from states to
actions, because it may not be clear what actions will be taken by the other
decision maker. In Section 10.1, the other decision maker was nature, and here
it is a rational opponent. Let π1 and π2 denote plans for P1 and P2, respectively.
Since the number of stages in Formulation 10.4 is fixed, stage-dependent plans
of the form π1 : X × K → U and π2 : X × K → V are appropriate (recall that
stage-dependent plans were defined in Section 10.1.3). Each produces an action
π1(x, k) ∈ U(x) and π2(x, k) ∈ V (x), respectively.

Now consider different solution concepts for Formulation 10.4. For P1, a
deterministic plan is a function π1 : X × K → U , that produces an action
u = π(x) ∈ U(x), for each state x ∈ X and stage k ∈ K. For P2 it is in-
stead π2 : X × K → V , which produces an action v = π(x) ∈ V (x), for each
x ∈ X and k ∈ K. Now consider defining a randomized plan. Let W (x) and Z(x)
denote the sets of all probability distributions over U(x) and V (x), respectively.
A randomized plan for P1 yields some w ∈ W (x) for each x ∈ X and k ∈ K.
Likewise, a randomized plan for P2 yields some z ∈ Z(x) for each x ∈ X and
k ∈ K.

Saddle points in a sequential game A saddle point will be obtained once
again by defining security strategies for each player. Each player treats the other
as nature, and if the same worst-case value is obtained, then the result is a saddle
point for the game. If the values are different, then a randomized plan is needed
to close the gap between the upper and lower values.

Upper and lower values now depend on the initial state, x1 ∈ X. There was
no equivalent for this in Section 10.5.1 because the root of the game tree is the
only possible starting point.

If sequences, ũK and ṽK , of actions are applied from x1, then the state history,
x̃F , can be derived by repeatedly using the state transition function, f . The upper
value from x1 is defined as

L
∗
(x1) = min

u1
max
v1

min
u2

max
v2

· · ·min
uK

max
vK

{

L(x̃F , ũK , ṽK)
}

, (10.108)

which is identical to (10.33) if P2 is replaced by nature. Also, (10.108) generalizes
(9.44) to multiple stages. The lower value from x1, which generalizes (9.46), is

L∗(x1) = max
v1

min
u1

max
v2

min
u2

· · ·max
vK

min
uK

{

L(x̃F , ũK , ṽK)
}

. (10.109)

If L
∗
(x1) = L∗(x2), then a deterministic saddle point exists from x1. This implies

that the order of max and min can be swapped inside of every stage.

Value iteration A value-iteration method can be derived by adapting the
derivation that was applied to (10.33) to instead apply to (10.108). This leads to
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the dynamic programming recurrence

L
∗

k(xk) = min
uk∈U(xk)

{

max
vk∈V (xk)

{

l(xk, uk, vk) + L
∗

k+1(xk+1)
}}

, (10.110)

which is analogous to (10.39). This can be used to iteratively compute a security
plan for P1. The security plan for P2 can be computed using

L∗

k(xk) = max
vk∈V (xk)

{

min
uk∈U(xk)

{

l(xk, uk, vk) + L∗

k+1(xk+1)
}}

, (10.111)

which is the dynamic programming equation derived from (10.109).
Starting from the final stage, F , the upper and lower values are determined

directly from the cost function:

L
∗

F (xF ) = L∗

F (xF ) = lF (xF ). (10.112)

Now compute L
∗

K and L∗

K . From every state, xK , (10.110) and (10.111) are
evaluated to determine whether L

∗

K(xK) = L∗

K(xK). If this occurs, then L
∗
L(xK) =

L
∗

K(xK) = L∗

K(xK) is the value of the game from xK at stageK. If it is determined
that from any particular state, xK ∈ X, the upper and lower values are not
equal, then there is no deterministic saddle point from xK . Furthermore, this will
prevent the existence of deterministic saddle points from other states at earlier
stages; these are encountered in later value iterations. Such problems are avoided
by allowing randomized plans, but the optimization is more complicated because
linear programming is repeatedly involved.

Suppose for now that L
∗

K(xK) = L∗

K(xK) for all xK ∈ X. The value iterations
proceed in the usual way from k = K down to k = 1. Again, suppose that at
every stage, L

∗

k(xk) = L∗

k(xk) for all xk ∈ X. Note that L∗
k+1 can be written in the

place of L
∗

k+1 and L∗

k+1 in (10.110) and (10.111) because it is assumed that the
upper and lower values coincide. If they do not, then the method fails because
randomized plans are needed to obtain a randomized saddle point.

Once the resulting values are computed from each x1 ∈ X1, a security plan π∗
1

for P1 is defined for each k ∈ K and xk ∈ X as any action u that satisfies the min
in (10.110). A security plan π∗

2 is similarly defined for P2 by applying any action
v that satisfies the max in (10.111).

Now suppose that there exists no deterministic saddle point from one or more
initial states. To avoid regret, randomized security plans must be developed.
These follow by direct extension of the randomized security strategies from Section
9.3.3. The vectors w and z will be used here to denote probability distributions
over U(x) and V (x), respectively. The probability vectors are selected from W (x)
and Z(x), which correspond to the set of all probability distributions over U(x)
and V (x), respectively. For notational convenience, assume U(x) = {1, . . . ,m(x)}
and V (x) = {1, . . . , n(x)}, in which m(x) and n(x) are positive integers.

Recall (9.61) and (9.62), which defined the randomized upper and lower val-
ues of a single-stage game. This idea is generalized here to randomized upper
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and lower value of a sequential game. Their definitions are similar to (10.108)
and (10.109), except that: 1) the alternating min’s and max’s are taken over
probability distributions on the space of actions, and 2) the expected cost is used.

The dynamic programming principle can be applied to the randomized upper
value to derive

L∗

k(xk) = min
w∈W (xk)

{

max
z∈Z(xk)

{
m(xk)∑

i=1

n(xk)∑

j=1

(

l(xk, i, j) + L∗

k+1(xk+1)
)

wizj

}}

,

(10.113)
in which xk+1 = f(xk, i, j). The randomized lower value is similarly obtained as

L∗

k(xk) = max
z∈Z(xk)

{

min
w∈W (xk)

{
m(xk)∑

i=1

n(xk)∑

j=1

(

l(xk, i, j) + L∗

k+1(xk+1)
)

wizj

}}

.

(10.114)
In many games, the cost term may depend only on the state: l(x, u, v) = l(x)

for all x ∈ X, u ∈ U(x) and v ∈ V (x). In this case, (10.113) and (10.114) simplify
to

L∗

k(xk) = min
w∈W (xk)

{

max
z∈Z(xk)

{

l(xk) +

m(xk)∑

i=1

n(xk)∑

j=1

L∗

k+1(xk+1)wizj

}}

(10.115)

and

L∗

k(xk) = max
z∈Z(xk)

{

min
w∈W (xk)

{

l(xk) +

m(xk)∑

i=1

n(xk)∑

j=1

L∗

k+1(xk+1)wizj

}}

, (10.116)

which is similar to the simplification obtained in (10.46), in which θk was assumed
not to appear in the cost term. The summations are essentially generalizations of
(9.57) to the multiple-stage case. If desired, these could even be written as matrix
multiplications, as was done in Section 9.3.3.

Value iteration can be performed over the equations above to obtain the ran-
domized values of the sequential game. Since the upper and lower values are
always the same, there is no need to check for discrepancies between the two. In
practice, it is best in every evaluation of (10.113) and (10.114) (or their simpler
forms) to first check whether a deterministic saddle exists from xk. Whenever one
does not exist, the linear programming problem formulated in Section 9.3.3 must
be solved to determine the value and the best randomized plan for each player.
This can be avoided if a deterministic saddle exists from the current state and
stage.

10.5.3 Other Sequential Games

Most of the ideas presented so far in Section 10.5 extend naturally to other se-
quential game problems. This subsection briefly mentions some of these possible
extensions.
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LL RRP1 acts

P2 acts

Cost

RL L L LR R R

1/3Nature acts 2/3

3 −2 −6 3 3 −1 6 0

Figure 10.19: This is a single-stage, zero-sum game that involves nature. It is
assumed that all players act at the same time.

Nash equilibria in sequential games Formulations 10.3 and 10.4 can be
extended to sequential nonzero-sum games. In the case of game trees, a cost
vector, with one element for each player, is written at each of the leaves. Under
the stage-by-stage model, deterministic and randomized Nash equilibria can be
computed using the bottom-up technique that was presented in Section 10.5.1.
This will result in the computation of a single Nash equilibrium. To represent
all Nash equilibria is considerably more challenging. As usual, the game tree is
decomposed into many matrix games; however, in each case, all Nash equilibria
must be found and recorded along with their corresponding costs. Instead of
propagating a single cost up the tree, a set of cost vectors, along with the actions
associated with each cost vector, must be propagated up the tree to the root. As in
the case of a single-stage game, nonadmissible Nash equilibria can be removed from
consideration. Thus, from every matrix game encountered in the computation,
only the admissible Nash equilibria and their costs should be propagated upward.

Formulation 10.4 can be extended by introducing the cost functions L1 and
L2 for P1 and P2, respectively. The value-iteration approach can be extended in
a way similar to the extension of the game tree method. Multiple value vectors
and their corresponding actions must be maintained for each combination of state
and stage. These correspond to the admissible Nash equilibria.

The nonuniqueness of Nash equilibria causes the greatest difficulty in the se-
quential game setting. There are typically many more equilibria in a sequential
game than in a single-stage game. Therefore, the concept is not very useful in the
design of a planning approach. It may be more useful, for example, in modeling
the possible outcomes of a complicated economic system. A thorough treatment
of the subject appears in [9].

Introducing nature A nature player can easily be introduced into a game.
Suppose, for example, that nature is introduced into a zero-sum game. In this
case, there are three players: P1, P2, and nature. Figure 10.19 shows a game tree
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for a single-stage, zero-sum game that involves nature. It is assumed that all three
players act at the same time, which fits the stage-by-stage model. Many other
information models are possible. Suppose that probabilistic uncertainty is used to
model nature, and it is known that nature chooses the left branch with probability
1/3 and the right branch with probability 2/3. Depending on the branch chosen
by nature, it appears that P1 and P2 will play a specific 2× 2 matrix game. With
probability 1/3, the cost matrix will be

V

U
3 -2
-6 3

, (10.117)

and with probability 2/3 it will be

V

U
3 -1
6 0

. (10.118)

Unfortunately, P1 and P2 do not know which matrix game they are actually play-
ing. The regret can be eliminated in the expected sense, if the game is played over
many independent trials. Let A1 and A2 denote (10.117) and (10.118), respec-
tively. Define a new cost matrix as A = (1/3)A1 + (2/3)A2 (a scalar multiplied
by a matrix scales every value of the matrix). The resulting matrix is

V

U
3 0
2 1

. (10.119)

This matrix game has a deterministic saddle point in which P1 chooses L (row
2) and P2 chooses R (column 1), which yields a cost of 2. This means that
they can play a deterministic strategy to obtain an expected cost of 2, if the
game play is averaged over many independent trials. If this matrix did not admit
a deterministic saddle point, then a randomized strategy would be needed. It is
interesting to note that randomization is not needed for this example, even though
P1 and P2 each play against both nature and an intelligent adversary.

Several other variations are possible. If nature is modeled nondeterministically,
then a matrix of worst-case regrets can be formed to determine whether it is
possible to eliminate regret. A sequential version of games such as the one in
Figure 10.19 can be considered. In each stage, there are three substages in which
nature, P1, and P2 all act. The bottom-up approach from Section 10.5.1 can be
applied to decompose the tree into many single-stage games. Their costs can be
propagated upward to the root in the same way to obtain an equilibrium solution.

Formulation 10.4 can be easily extended to include nature in games over state
spaces. For each x, a nature action set is defined as Θ(x). The state transition
equation is defined as

xk+1 = f(xk, uk, vk, θk), (10.120)
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which means that the next state depends on all three player actions, in addition to
the current state. The value-iteration method can be extended to solve problems of
this type by properly considering the effect of nature in the dynamic programming
equations. In the probabilistic case, for example, an expectation over nature is
needed in every iteration. The resulting sequential game is often referred to as a
Markov game [220].

Introducing more players Involving more players poses no great difficulty,
other than complicating the notation. For example, suppose that a set of n
players, P1, P2, . . ., Pn, takes turns playing a game. Consider using a game
tree representation. A stage is now stretched into n substages, in which each
player acts individually. Suppose that P1 always starts, followed by P2, and so
on, until Pn. After Pn acts, then the next stage is started, and P1 acts. The
circular sequence of player alternations continues until the game ends. Again,
many different information models are possible. For example, in the stage-by-
stage model, each player does not know the action chosen by the other n − 1
players in the current stage. The bottom-up computation method can be used to
compute Nash equilibria; however, the problems with nonuniqueness must once
again be confronted.

A state-space formulation that generalizes Formulation 10.4 can be made by
introducing action sets U i(x) for each player Pi and state x ∈ X. Let uik denote
the action chosen by Pi at stage k. The state transition becomes

xk+1 = f(xk, u
1
k, u

2
k, . . . , u

n
k). (10.121)

There is also a cost function, Li, for each Pi. Value iteration, adapted to maintain
multiple equilibria and cost vectors can be used to compute Nash equilibria.

10.6 Continuous State Spaces

Virtually all of the concepts covered in this chapter extend to continuous state
spaces. This enables them to at least theoretically be applied to configuration
spaces. Thus, a motion planning problem that involves uncertainty or noncoop-
erating robots can be modeled using the concepts of this chapter. Such problems
also inherit the feedback concepts from Chapter 8. This section covers feedback
motion planning problems that incorporate uncertainty due to nature. In partic-
ular contexts, it may be possible to extend some of the methods of Sections 8.4
and 8.5. Solution feedback plans must ensure that the goal is reached in spite
of nature’s efforts. Among the methods in Chapter 8, the easiest to generalize is
value iteration with interpolation, which was covered in Section 8.5.2. Therefore,
it is the main focus of the current section. For games in continuous state spaces,
see Section 13.5.
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10.6.1 Extending the value-iteration method

The presentation follows in the same way as in Section 8.5.2, by beginning with
the discrete problem and making various components continuous. Begin with
Formulation 10.1 and let X be a bounded, open subset of R

n. Assume that
U(x) and Θ(x, u) are finite. The value-iteration methods of Section 10.2.1 can be
directly applied by using the interpolation concepts from Section 8.5.2 to compute
the cost-to-go values over X. In the nondeterministic case, the recurrence is
(10.39), in which G∗

k+1 is represented on a finite sample set S ⊂ X and is evaluated
on all other points in R(S) by interpolation (recall from Section 8.5.2 that R(S)
is the interpolation region of S). In the probabilistic case, (10.45) or (10.46) may
once again be used, but G∗

k+1 is evaluated by interpolation.
If U(x) is continuous, then it can be sampled to evaluate the min in each

recurrence, as suggested in Section 8.5.2. Now suppose Θ(x, u) is continuous. In
the nondeterministic case, Θ(x, u) can be sampled to evaluate the max in (10.39)
or it may be possible to employ a general optimization technique directly over
Θ(x, u). In the probabilistic case, the expectation must be taken over a continuous
probability space. A probability density function, p(θ|x, u), characterizes nature’s
action. A probabilistic state transition density function can be derived from this
as p(xk+1|xk, uk). Using these densities, the continuous versions of (10.45) and
(10.46) become

G∗

k(xk) = min
uk∈U(xk)

{∫

Θ(xk,uk)

(

l(xk, uk, θk) +G∗

k+1(f(xk, uk, θk))
)

p(θk|xk, uk)dθk
}

(10.122)
and

G∗

k(xk) = min
uk∈U(xk)

{

l(xk, uk) +

∫

X

G∗

k+1(xk+1)p(xk+1|xk, uk)dxk+1

}

, (10.123)

respectively. Sampling can be used to evaluate the integrals. One straightforward
method is to approximate p(θ|x, u) by a discrete distribution. For example, in one
dimension, this can be achieved by partitioning Θ(x, u) into intervals, in which
each interval is declared to be a discrete nature action. The probability associated
with the discrete nature action is just the integral of p(θ|x, u) over the associated
interval.

Section 8.5.2 concluded by describing Dijkstra-like algorithms for continuous
spaces. These were derived mainly by using backprojections, (8.66), to conclude
that some samples cannot change their values because they are too far from the
active set. The same principle can be applied in the current setting; however, the
weak backprojection, (10.20), must be used instead. Using the weak backprojec-
tion, the usual value iterations can be applied while removing all samples that
are not in the active set. For many problems, however, the size of the active set
may quickly become unmanageable because the weak backprojection often causes
much faster propagation than the original backprojection. Continuous-state gen-
eralizations of the Dijkstra-like algorithms in Section 10.2.3 can be made; however,
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this requires the additional condition that in every iteration, it must be possible
to extend D by forcing the next state to lie in R(D), in spite of nature.

10.6.2 Motion planning with nature

Recall from Section 8.5.2 that value iteration with interpolation can be applied
to motion planning problems that are approximated in discrete time. Nature can
even be introduced into the discrete-time approximation. For example, (8.62) can
be replaced by

x(t+∆t) = x(t) + ∆t (u+ θ), (10.124)

in which θ is chosen from a bounded set, Θ(x, u). Using (10.124), value iterations
can be performed as described so far. An example of a 2D motion planning prob-
lem under this model using probabilistic uncertainty is shown in Figure 10.20. It
is interesting that when the plan is executed from a fixed initial state, a differ-
ent trajectory is obtained each time. The average cost over multiple executions,
however, is close to the expected optimum.

Interesting hybrid system examples can be made in which nature is only al-
lowed to interfere with the mode. Recall Formulation 7.3 from Section 7.3. Nature
can be added to yield the following formulation.

Formulation 10.5 (Hybrid System Motion Planning with Nature)

1. Assume all of the definitions from Formulation 7.3, except for the transition
functions, fm and f . The state is represented as x = (q,m).

2. A finite nature action space Θ(x, u) for each x ∈ X and u ∈ U(x).

3. A mode transition function fm that produces a mode fm(x, u, θ) for every
x ∈ X, u ∈ U(x), and θ ∈ Θ(x, u).

4. A state transition function f that is derived from fm by changing the mode
and holding the configuration fixed. Thus, f((q,m), u, θ) = (q, fm(q,m, θ))
(the only difference with respect to Formulation 7.3 is that θ has been in-
cluded).

5. An unbounded time interval T = [0,∞).

6. A continuous-time cost-functional,

L(x̃tF , ũtF ) =

∫ tF

0

l(x(t), u(t))dt+ lF (x(tF )). (10.125)

Value iteration proceeds in the same way for such hybrid problems. Interpolation
only needs to be performed over the configuration space. Along the mode “axis”
no interpolation is needed because the mode set is already finite. The resulting
computation time grows linearly in the number of modes. A 2D motion planning
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(a) Motion planning game against nature (a) Optimal navigation function

XG XG

(c) Vector field (d) Simulated executions

Figure 10.20: (a) A 2D planning problem is shown in which nature is probabilistic
(uniform density over an interval of angles) and can interfere with the direction
of motion. Contact with obstacles is actually allowed in this problem. (b) Level
sets of the computed, optimal cost-to-go (navigation) function. (c) The vector
field derived from the navigation function. (d) Several dozen execution trials are
superimposed [166].
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Vector field, open mode Vector field, closed mode

Figure 10.21: Level sets of the optimal navigation function and resulting vector
field are shown for a stochastic, hybrid motion planning problem. There are two
modes, which correspond to whether a door is closed. The goal is to reach the
rectangle at the bottom left [168]



10.6. CONTINUOUS STATE SPACES 559

XG

Figure 10.22: Several executions from the same initial state are shown. A different
trajectory results each time because of the different times when the door is open
or closed.

example for a point robot, taken from [168], is shown in Figures 10.21 and 10.22.
In this case, the environment contains a door that is modeled as a stationary
Markov process. The configuration space is sampled using a 40× 40 grid. There
are two modes: door open or door closed. Thus, the configuration space has
two layers, one for each mode. The robot wishes to minimize the expected time
to reach the goal. The navigation function for each layer cannot be computed
independently because each takes into account the transition probabilities for the
mode. For example, if the door is almost always open, then its plan would be
different from one in which the door is almost always closed. If the door is almost
always open, then the robot should go toward the door, even if it is currently
closed, because it is highly likely that it will open soon. Numerous variations can
be made on this example. More modes could be added, and other interpretations
are possible, such as hazardous regions and shelters (the mode might be imagined
as rain occurring and the robot must run for shelter) or requests to deliver objects
[168, 250, 251].

Further Reading

Since this chapter considers sequential versions of single-stage decision problems, the
suggested reading at the end of Chapter 9 is also relevant here. The probabilistic for-
mulation in Section 10.1 is a basic problem of stochastic control theory [25, 151]. The
framework is also popular in artificial intelligence [15, 69, 128, 240]. For an early, in-
fluential work on stochastic control, see [31], in which the notion of sequential games
against nature is developed. The forward projection and backprojection topics are not
as common in control theory and are instead inspired from [75, 92, 177]. The nonde-
terministic formulation is obtained by eliminating probabilities from the formulation;
worst-case analysis also appears extensively in control theory [7, 8, 86]. A case for using
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randomized strategies in robotics is made in [93].
Section 10.2 is based on classical dynamic programming work, but with emphasis

on the stochastic shortest-path problem. For more reading on value and policy iteration
in this context, see [25]. Section 10.2.3 is based on extending Dijkstra’s algorithm. For
convergence issues due to approximations of continuous problems, see [22, 153, 197].
For complexity results for games against nature, see [212, 213].

Section 10.3 was inspired by coverage in [25]. For further reading on reinforcement
learning, the subject of Section 10.4, see [3, 13, 27, 262].

Section 10.5 was based on material in [9], but with an emphasis on unifying con-
cepts from previous sections. Also contained in [9] are sequential game formulations
on continuous spaces and even in continuous time. In continuous time, these are called
differential games, and they are introduced in Section 13.5. Dynamic programming prin-
ciples extend nicely into game theory. Furthermore, they extend to Pareto optimality
[61].

The main purpose of Section 10.6 is to return to motion planning by considering
continuous state spaces. Few works exist on combining stochastic optimal control with
motion planning. The presented material is based mainly on [162, 166, 168, 247, 248].

Exercises

1. Show that SB(S, u) cannot be expressed as the union of all SB(x, u) for x ∈ S.

2. Show that for any S ⊂ X and any state transition equation, x′ = f(x, u, θ), it
follows that SB(S) ⊆ WB(S).

3. Generalize the strong and weak backprojections of Section 10.1.2 to work for
multiple stages.

4. Assume that nondeterministic uncertainty is used, and there is no limit on the
number of stages. Determine an expression for the forward projection at any
stage k > 1, given that π is applied.

5. Give an algorithm for computing nondeterministic forward projections that uses
matrices with binary entries. What is the asymptotic running time and space for
your algorithm?

6. Develop a variant of the algorithm in Figure 10.6 that is based on possibly achiev-
ing the goal, as opposed to guaranteeing that it is achieved.

7. Develop a forward version of value iteration for nondeterministic uncertainty, by
paralleling the derivation in Section 10.2.1.

8. Do the same as in Exercise 7, but for probabilistic uncertainty.

9. Give an algorithm that computes probabilistic forward projections directly from
the plan-based state transition graph, Gπ.

10. Augment the nondeterministic value-iteration method of Section 10.2.1 to detect
and handle states from which the goal is possibly reachable but not guaranteed

reachable.
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Figure 10.23: A two-player, two-stage game expressed using a game tree.

11. Derive a generalization of (10.39) for the case of stage-dependent state-transition
equations, xk+1 = f(xk, uk, θk, k), and cost terms, l(xk, uk, θk, k), under nonde-
terministic uncertainty.

12. Do the same as in Exercise 11, but for probabilistic uncertainty.

13. Extend the policy-iteration method of Figure 10.4 to work for the more general
case of nature-dependent cost terms, l(xk, uk, θk).

14. Derive a policy-iteration method that is the nondeterministic analog to the method
in Figure 10.4. Assume that the cost terms do not depend on nature.

15. Can policy iteration be applied to solve problems under Formulation 2.3, which
involve no uncertainties? Explain what happens in this case.

16. Show that the probabilistic infinite-horizon problem under the discounted-cost
model is equivalent in terms of cost-to-go to a particular stochastic shortest-path
problem (under Formulation 10.1). [Hint: See page 378 of [25].]

17. Derive a value-iteration method for the infinite-horizon problem with the discounted-
cost model and nondeterministic uncertainty. This method should compute the
cost-to-go given in (10.71).

18. Figure 10.23 shows a two-stage, zero-sum game expressed as a game tree. Com-
pute the randomized value of this sequential game and give the corresponding
randomized security plans for each player.

19. Generalize alpha-beta pruning beyond game trees so that it works for sequential
games defined on a state space, starting from a fixed initial state.

20. Derive (10.110) and (10.111).

21. Extend Formulation 2.4 to allow nondeterministic uncertainty. This can be ac-
complished by specifying sets of possible effects of operators.

22. Extend Formulation 2.4 to allow probabilistic uncertainty. For this case, assign
probabilities to the possible operator effects.
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Implementations

23. Implement probabilistic backward value iteration and study the convergence is-
sue depicted in Figure 10.3. How does this affect performance in problems for
which there are many cycles in the state transition graph? How does performance
depend on particular costs and transition probabilities?

24. Implement the nondeterministic version of Dijkstra’s algorithm and test it on a
few examples.

25. Implement and test the probabilistic version of Dijkstra’s algorithm. Make sure
that the condition Gπ(xk+1) < Gπ(xk) from 10.2.3 is satisfied. Study the perfor-
mance of the algorithm on problems for which the condition is almost violated.

26. Experiment with the simulation-based version of value iteration, which is given by
(10.101). For some simple examples, characterize how the performance depends
on the choice of ρ.

27. Implement a recursive algorithm that uses dynamic programming to determine
the upper and lower values for a sequential game expressed using a game tree
under the stage-by-stage model.



Chapter 11

Sensors and Information Spaces

Up until now it has been assumed everywhere that the current state is known.
What if the state is not known? In this case, information regarding the state
is obtained from sensors during the execution of a plan. This situation arises in
most applications that involve interaction with the physical world. For example, in
robotics it is virtually impossible for a robot to precisely know its state, except in
some limited cases. What should be done if there is limited information regarding
the state? A classical approach is to take all of the information available and try to
estimate the state. In robotics, the state may include both the map of the robot’s
environment and the robot configuration. If the estimates are sufficiently reliable,
then we may safely pretend that there is no uncertainty in state information. This
enables many of the planning methods introduced so far to be applied with little
or no adaptation.

The more interesting case occurs when state estimation is altogether avoided.
It may be surprising, but many important tasks can be defined and solved without
ever requiring that specific states are sensed, even though a state space is defined
for the planning problem. To achieve this, the planning problem will be expressed
in terms of an information space. Information spaces serve the same purpose for
sensing problems as the configuration spaces of Chapter 4 did for problems that
involve geometric transformations. Each information space represents the place
where a problem that involves sensing uncertainty naturally lives. Successfully
formulating and solving such problems depends on our ability to manipulate, sim-
plify, and control the information space. In some cases elegant solutions exist, and
in others there appears to be no hope at present of efficiently solving them. There
are many exciting open research problems associated with information spaces and
sensing uncertainty in general.

Recall the situation depicted in Figure 11.1, which was also shown in Section
1.4. It is assumed that the state of the environment is not known. There are three
general sources of information regarding the state:

1. The initial conditions can provide powerful information before any actions
are applied. It might even be the case that the initial state is given. At the
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Figure 11.1: The state of the environment is not known. The only information
available to make inferences is the history of sensor observations, actions that have
been applied, and the initial conditions. This history becomes the information
state.

other extreme, the initial conditions might contain no information.

2. The sensor observations provide measurements related to the state during
execution. These measurements are usually incomplete or involve distur-
bances that distort their values.

3. The actions already executed in the plan provide valuable information re-
garding the state. For example, if a robot is commanded to move east (with
no other uncertainties except an unknown state), then it is expected that
the state is further east than it was previously. Thus, the applied actions
provide important clues for deducing possible states.

Keep in mind that there are generally two ways to use the information space:

1. Take all of the information available, and try to estimate the state. This is
the classical approach. Pretend that there is no longer any uncertainty in
state, but prove (or hope) that the resulting plan works under reasonable
estimation error. A plan is generally expressed as π : X → U .

2. Solve the task entirely in terms of an information space. Many tasks may be
achieved without ever knowing the exact state. The goals and analysis are
formulated in the information space, without the need to achieve particular
states. For many problems this results in dramatic simplifications. A plan
is generally expressed as π : I → U for an information space, I.

The first approach may be considered somewhat traditional and can be handled
by the concepts of Chapter 8 once a good estimation technique is defined. Most
of the focus of the chapter is on the second approach, which represents a powerful
way to express and solve planning problems.

For brevity, “information” will be replaced by “I” in many terms. Hence, infor-
mation spaces and information states become I-spaces and I-states, respectively.
This is similar to the shortening of configuration spaces to C-spaces.

Sections 11.1 to 11.3 first cover information spaces for discrete state spaces.
This case is much easier to formulate than information spaces for continuous
spaces. In Sections 11.4 to 11.6, the ideas are extended from discrete state spaces
to continuous state spaces. It is helpful to have a good understanding of the
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discrete case before proceeding to the continuous case. Section 11.7 extends the
formulation of information spaces to game theory, in which multiple players inter-
act over the same state space. In this case, each player in the game has its own
information space over which it makes decisions.

11.1 Discrete State Spaces

11.1.1 Sensors

As the name suggests, sensors are designed to sense the state. Throughout all of
this section it is assumed that the state space, X, is finite or countably infinite,
as in Formulations 2.1 and 2.3. A sensor is defined in terms of two components:
1) an observation space, which is the set of possible readings for the sensor, and
2) a sensor mapping, which characterizes the readings that can be expected if
the current state or other information is given. Be aware that in the planning
model, the state is not really given; it is only assumed to be given when modeling
a sensor. The sensing model given here generalizes the one given in Section 9.2.3.
In that case, the sensor provided information regarding θ instead of x because
state spaces were not needed in Chapter 9.

Let Y denote an observation space, which is a finite or countably infinite set.
Let h denote the sensor mapping. Three different kinds of sensor mappings will
be considered, each of which is more complicated and general than the previous
one:

1. State sensor mapping: In this case, h : X → Y , which means that given
the state, the observation is completely determined.

2. State-nature sensor mapping: In this case, a finite set, Ψ(x), of nature
sensing actions is defined for each x ∈ X. Each nature sensing action,
ψ ∈ Ψ(x), interferes with the sensor observation. Therefore, the state-
nature mapping, h, produces an observation, y = h(x, ψ) ∈ Y , for every
x ∈ X and ψ ∈ Ψ(x). The particular ψ chosen by nature is assumed to be
unknown during planning and execution. However, it is specified as part of
the sensing model.

3. History-based sensor mapping: In this case, the observation could be
based on the current state or any previous states. Furthermore, a nature
sensing action could be applied. Suppose that the current stage is k. The
set of nature sensing actions is denoted by Ψk(x), and the particular nature
sensing action is ψk ∈ Ψk(x). This yields a very general sensor mapping,

yk = hk(x1, . . . , xk, ψk), (11.1)

in which yk is the observation obtained in stage k. Note that the mapping is
denoted as hk because the domain is different for each k. In general, any of the
sensor mappings may be stage-dependent, if desired.
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Many examples of sensors will now be given. These are provided to illustrate
the definitions and to provide building blocks that will be used in later examples
of I-spaces. Examples 11.1 to 11.6 all involve state sensor mappings.

Example 11.1 (Odd/Even Sensor) Let X = Z, the set of integers, and let
Y = {0, 1}. The sensor mapping is

y = h(x) =

{
0 if x is even
1 if x is odd.

(11.2)

The limitation of this sensor is that it only tells whether x ∈ X is odd or even.
When combined with other information, this might be enough to infer the state,
but in general it provides incomplete information. �

Example 11.2 (Mod Sensor) Example 11.1 can be easily generalized to yield
the remainder when x is divided by k for some fixed integer k. Let X = Z, and
let Y = {0, 1, . . . , k − 1}. The sensor mapping is

y = h(x) = xmod k. (11.3)

�

Example 11.3 (Sign Sensor) Let X = Z, and let Y = {−1, 0, 1}. The sensor
mapping is

y = h(x) = sgn x. (11.4)

This sensor provides very limited information because it only indicates on which
side of the boundary x = 0 the state may lie. It can, however, precisely determine
whether x = 0. �

Example 11.4 (Selective Sensor) Let X = Z × Z, and let (i, j) ∈ X denote
a state in which i, j ∈ Z. Suppose that only the first component of (i, j) can be
observed. This yields the sensor mapping

y = h(i, j) = i. (11.5)

An obvious generalization can be made for any state space that is formed from
Cartesian products. The sensor may reveal the values of one or more components,
and the rest remain hidden. �

Example 11.5 (Bijective Sensor) Let X be any state space, and let Y = X.
Let the sensor mapping be any bijective function h : X → Y . This sensor provides
information that is equivalent to knowing the state. Since h is bijective, it can be
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inverted to obtain h−1 : Y → X. For any y ∈ Y , the state can be determined as
x = h−1(y).

A special case of the bijective sensor is the identity sensor, for which h is the
identity function. This was essentially assumed to exist for all planning problems
covered before this chapter because it immediately yields the state. However, any
bijective sensor could serve the same purpose. �

Example 11.6 (Null Sensor) Let X be any state space, and let Y = {0}. The
null sensor is obtained by defining the sensor mapping as h(x) = 0. The sensor
reading remains fixed and hence provides no information regarding the state. �

From the examples so far, it is tempting to think about partitioningX based on
sensor observations. Suppose that in general a state mapping, h, is not bijective,
and let H(y) denote the following subset of X:

H(y) = {x ∈ X | y = h(x)}, (11.6)

which is the preimage of y. The set of preimages, one for each y ∈ Y , forms
a partition of X. In some sense, this indicates the “resolution” of the sensor.
A bijective sensor partitions X into singleton sets because it contains perfect
information. At the other extreme, the null sensor partitions X into a single set,
X itself. The sign sensor appears slightly more useful because it partitions X
into three sets: H(1) = {1, 2, . . .}, H(−1) = {. . . ,−2,−1}, and H(0) = {0}.
The preimages of the selective sensor are particularly interesting. For each i ∈ Z,
H(i) = Z. The partitions induced by the preimages may remind those with an
algebra background of the construction of quotient groups via homomorphisms
[215].

Next consider some examples that involve a state-action sensor mapping.
There are two different possibilities regarding the model for the nature sensing
action:

1. Nondeterministic: In this case, there is no additional information regard-
ing which ψ ∈ Ψ(x) will be chosen.

2. Probabilistic: A probability distribution is known. In this case, the prob-
ability, P (ψ|x), that ψ will be chosen is known for each ψ ∈ Ψ(x).

These two possibilities also appeared in Section 10.1.1, for nature actions that
interfere with the state transition equation.

It is sometimes useful to consider the state-action sensor model as a probability
distribution over Y for a given state. Recall the conversion from P (ψ|θ) to P (y|θ)
in (9.28). By replacing Θ by X, the same idea can be applied here. Assume that
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if the domain of h is restricted to some x ∈ X, it forms an injective (one-to-one)
mapping from Ψ to Y . In this case,

P (y|x) =
{
P (ψ|x) for the unique ψ such that y = h(x, ψ).
0 if no such ψ exists.

(11.7)

If the injective assumption is lifted, then P (ψ|x) is replaced by a sum over all ψ
for which y = h(x, ψ).

Example 11.7 (Sensor Disturbance) Let X = Z, Y = Z, and Ψ = {−1, 0, 1}.
The idea is to construct a sensor that would be the identity sensor if it were not
for the interference of nature. The sensor mapping is

y = h(x, ψ) = x+ ψ. (11.8)

It is always known that |x−y| ≤ 1. Therefore, if y is received as a sensor reading,
one of the following must be true: x = y − 1, x = y, or x = y + 1. �

Example 11.8 (Disturbed Sign Sensor) Let X = Z, Y = {−1, 0, 1}, and
Ψ = {−1, 0, 1}. Let the sensor mapping be

y = h(x, ψ) = sgn(x+ ψ). (11.9)

In this case, if y = 0, it is no longer known for certain whether x = 0. It is possible
that x = −1 or x = 1. If x = 0, then it is possible for the sensor to read −1, 0, or
1. �

Example 11.9 (Disturbed Odd/Even Sensor) It is not hard to construct ex-
amples for which some mild interference from nature destroys all of the informa-
tion. Let X = Z, Y = {0, 1}, and Ψ = {0, 1}. Let the sensor mapping be

y = h(x, ψ) =

{
0 if x+ ψ is even.
1 if x+ ψ is odd.

(11.10)

Under the nondeterministic model for the nature sensing action, the sensor pro-
vides no useful information regarding the state. Regardless of the observation, it
is never known whether x is even or odd. Under a probabilistic model, however,
this sensor may provide some useful information. �

It is once again informative to consider preimages. For a state-action sensor
mapping, the preimage is

H(y) = {x ∈ X | ∃ψ ∈ Ψ(x) for which y = h(x, ψ)}. (11.11)
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y1 y2 y3

x1
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// u1 // x2
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// u2 // x3

OO

// . . .

Figure 11.2: In each stage, k, an observation, yk ∈ Y , is received and an action
uk ∈ U is applied. The state, xk, however, is hidden from the decision maker.

In comparison to state sensor mappings, the preimage sets are larger for state-
action sensor mappings. Also, they do not generally form a partition of X. For
example, the preimages of Example 11.8 are H(1) = {0, 1, . . .}, H(0) = {−1, 0, 1},
and H(−1) = {. . . ,−2,−1, 0}. This is not a partition because every preimage
contains 0. If desired, H(y) can be directly defined for each y ∈ Y , instead of
explicitly defining nature sensing actions.

Finally, one example of a history-based sensor mapping is given.

Example 11.10 (Delayed-Observation Sensor) Let X = Y = Z. A delayed-
observation sensor can be defined for some fixed positive integer i as yk = xk−i.
It indicates what the state was i stages ago. In this case, it gives a perfect mea-
surement of the old state value. Many other variants are possible. For example,
it might only give the sign of the state from i stages ago. �

11.1.2 Defining the History Information Space

This section defines the most basic and natural I-space. Many others will be
derived from it, which is the topic of Section 11.2. Suppose that X, U , and f have
been defined as in Formulation 10.1, and the notion of stages has been defined
as in Formulation 2.2. This yields a state sequence x1, x2, . . ., and an action
sequence u1, u2, . . ., during the execution of a plan. However, in the current
setting, the state sequence is not known. Instead, at every stage, an observation,
yk, is obtained. The process depicted in Figure 11.2.

In previous formulations, the action space, U(x), was generally allowed to
depend on x. Since x is unknown in the current setting, it would seem strange to
allow the actions to depend on x. This would mean that inferences could be made
regarding the state by simply noticing which actions are available.1 Instead, it
will be assumed by default that U is fixed for all x ∈ X. In some special contexts,
however, U(x) may be allowed to vary.

Initial conditions As stated at the beginning of the chapter, the initial condi-
tions provide one of the three general sources of information regarding the state.
Therefore, three alternative types of initial conditions will be allowed:

1Such a problem could be quite interesting to study, but it will not be considered here.
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1. Known State: The initial state, x1 ∈ X, is given. This initializes the
problem with perfect state information. Assuming nature actions interfere
with the state transition function, f , uncertainty in the current state will
generally develop.

2. Nondeterministic: A set of states, X1 ⊂ X, is given. In this case, the
initial state is only known to lie within a particular subset of X. This can be
considered as a generalization of the first type, which only allowed singleton
subsets.

3. Probabilistic: A probability distribution, P (x1), over X is given.

In general, let η0 denote the initial condition, which may be any one of the three
alternative types.

History Suppose that the kth stage has passed. What information is available?
It is assumed that at every stage, a sensor observation is made. This results in a
sensing history,

ỹk = (y1, y2, . . . , yk). (11.12)

At every stage an action can also be applied, which yields an action history,

ũk−1 = (u1, u2, . . . , uk−1). (11.13)

Note that the action history only runs to uk−1; if uk is applied, the state xk+1 and
stage k+1 are obtained, which lie beyond the current stage, k. By combining the
sensing and action histories, the history at stage k is (ũk−1, ỹk).

History information states The history, (ũk−1, ỹk), in combination with the
initial condition, η0, yields the history I-state, which is denoted by ηk. This
corresponds to all information that is known up to stage k. In spite of the fact
that the states, x1, . . ., xk, might not be known, the history I-states are always
known because they are defined directly in terms of available information. Thus,
the history I-state is

ηk = (η0, ũk−1, ỹk). (11.14)

When representing I-spaces, we will generally ignore the problem of nesting paren-
theses. For example, (11.14) is treated a single sequence, instead of a sequence
that contains two sequences. This distinction is insignificant for the purposes of
decision making.

The history I-state, ηk, can also be expressed as

ηk = (ηk−1, uk−1, yk), (11.15)

by noticing that the history I-state at stage k contains all of the information from
the history I-state at stage k − 1. The only new information is the most recently
applied action, uk−1, and the current sensor observation, yk.
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The history information space The history I-space is simply the set of all
possible history I-states. Although the history I-states appear to be quite compli-
cated, it is helpful to think of them abstractly as points in a new space. To define
the set of all possible history I-states, the sets of all initial conditions, actions,
and observations must be precisely defined.

The set of all observation histories is denoted as Ỹk and is obtained by a
Cartesian product of k copies of the observation space:

Ỹk = Y × Y . . .× Y
︸ ︷︷ ︸

k

. (11.16)

Similarly, the set of all action histories is Ũk−1, the Cartesian product of k − 1
copies of the action space U .

It is slightly more complicated to define the set of all possible initial conditions
because three different types of initial conditions are possible. Let I0 denote the
initial condition space. Depending on which of the three types of initial conditions
are used, one of the following three definitions of I0 is used:

1. Known State: If the initial state, x1, is given, then I0 ⊆ X. Typically,
I0 = X; however, it might be known in some instances that certain initial
states are impossible. Therefore, it is generally written that I0 ⊆ X.

2. Nondeterministic: If X1 is given, then I0 ⊆ pow(X) (the power set of
X). Again, a typical situation is I0 = pow(x); however, it might be known
that certain subsets of X are impossible as initial conditions.

3. Probabilistic: Finally, if P (x) is given, then I0 ⊆ P(X), in which P(x) is
the set of all probability distributions over X.

The history I-space at stage k is expressed as

Ik = I0 × Ũk−1 × Ỹk. (11.17)

Each ηk ∈ Ik yields an initial condition, an action history, and an observation
history. It will be convenient to consider I-spaces that do not depend on k. This
will be defined by taking a union (be careful not to mistakenly think of this
construction as a Cartesian product). If there are K stages, then the history
I-space is

Ihist = I0 ∪ I1 ∪ I2 ∪ · · · ∪ IK . (11.18)

Most often, the number of stages is not fixed. In this case, Ihist is defined to be
the union of Ik over all k ∈ {0} ∪ N:

Ihist = I0 ∪ I1 ∪ I2 ∪ · · · . (11.19)

This construction is related to the state space obtained for time-varying motion
planning in Section 7.1. The history I-space is stage-dependent because infor-
mation accumulates over time. In the discrete model, the reference to time is
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only implicit through the use of stages. Therefore, stage-dependent I-spaces are
defined. Taking the union of all of these is similar to the state space that was
formed in Section 7.1 by making time be one axis of the state space. For the
history I-space, Ihist, the stage index k can be imagined as an “axis.”

One immediate concern regarding the history I-space Ihist is that its I-states
may be arbitrarily long because the history grows linearly with the number of
stages. For now, it is helpful to imagine Ihist abstractly as another kind of state
space, without paying close attention to how complicated each η ∈ Ihist may be
to represent. In many contexts, there are ways to simplify the I-space. This is the
topic of Section 11.2.

11.1.3 Defining a Planning Problem

Planning problems will be defined directly on the history I-space, which makes it
appear as an ordinary state space in many ways. Keep in mind, however, that it
was derived from another state space for which perfect state observations could
not be obtained. In Section 10.1, a feedback plan was defined as a function of the
state. Here, a feedback plan is instead a function of the I-state. Decisions cannot
be based on the state because it will be generally unknown during the execution of
the plan. However, the I-state is always known; thus, it is logical to base decisions
on it.

Let πK denote a K-step information-feedback plan, which is a sequence (π1,
π2, . . ., πK) of K functions, πk : Ik → U . Thus, at every stage k, the I-state
ηk ∈ Ik is used as a basis for choosing the action uk = πk(ηk). Due to interference
of nature through both the state transition equation and the sensor mapping, the
action sequence (u1, . . . , uK) produced by a plan, πK , will not be known until the
plan terminates.

As in Formulation 2.3, it will be convenient to assume that U contains a termi-
nation action, uT . If uT is applied at stage k, then it is repeatedly applied forever.
It is assumed once again that the state xk remains fixed after the termination con-
dition is applied. Remember, however, xk is still unknown in general; it becomes
fixed but unknown. Technically, based on the definition of the history I-space, the
I-state must change after uT is applied because the history grows. These changes
can be ignored, however, because no new decisions are made after uT is applied. A
plan that uses a termination condition can be specified as π = (π1, π2, . . .) because
the number of stages may vary each time the plan is executed. Using the history
I-space definition in (11.19), an information-feedback plan is expressed as

π : Ihist → U. (11.20)

We are almost ready to define the planning problem. This will require the spec-
ification of a cost functional. The cost depends on the histories of states x̃ and
actions ũ as in Section 10.1. The planning formulation involves the following com-
ponents, summarizing most of the concepts introduced so far in Section 11.1 (see
Formulation 10.1 for similarities):
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Formulation 11.1 (Discrete Information Space Planning)

1. A nonempty state space X that is either finite or countably infinite.

2. A nonempty, finite action space U . It is assumed that U contains a special
termination action, which has the same effect as defined in Formulation 2.3.

3. A finite nature action space Θ(x, u) for each x ∈ X and u ∈ U .

4. A state transition function f that produces a state, f(x, u, θ), for every
x ∈ X, u ∈ U , and θ ∈ Θ(x, u).

5. A finite or countably infinite observation space Y .

6. A finite nature sensing action space Ψ(x) for each x ∈ X.

7. A sensor mapping h which produces an observation, y = h(x, ψ), for each x ∈
X and ψ ∈ Ψ(x). This definition assumes a state-nature sensor mappings. A
state sensor mapping or history-based sensor mapping, as defined in Section
11.1.1, could alternatively be used.

8. A set of stages, each denoted by k, which begins at k = 1 and continues
indefinitely.

9. An initial condition η0, which is an element of an initial condition space, I0.

10. A history I-space Ihist which is the union of I0 and Ik = I0 × Ũk−1 × Ỹk for
every stage k ∈ N.

11. Let L denote a stage-additive cost functional, which may be applied to any
pair (x̃K+1, ũK) of state and action histories to yield

L(x̃K+1, ũK) =
K∑

k=1

l(xk, uk) + lF (xK+1). (11.21)

If the termination action uT is applied at some stage k, then for all i ≥ k,
ui = uT , xi = xk, and l(xi, uT ) = 0. Either a feasible or optimal planning
problem can be defined, as in Formulation 10.1; however, the plan here is
specified as π : I → U .

A goal set may be defined as XG ⊂ X. Alternatively, the goal could be expressed
as a desirable set of history I-states. After Section 11.2, it will be seen that the
goal can be expressed in terms of I-states that are derived from histories.

Some immediate extensions of Formulation 11.1 are possible, but we avoid
them here simplify notation in the coming concepts. One extension is to allow
different action sets, U(x), for each x ∈ X. Be careful, however, because infor-
mation regarding the current state can be inferred if the action set U(x) is given,
and it varies depending on x. Another extension is to allow the costs to depend
on nature, to obtain l(xk, uk, θk), instead of l(xk, uk) in (11.21).
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The cost of a plan The next task is to extend the definition of the cost-to-go
under a fixed plan, which was given in Section 10.1.3, to the case of imperfect
state information. Consider evaluating the quality of a plan, so that the “best”
one might be selected. Suppose that the nondeterministic uncertainty is used to
model nature and that a nondeterministic initial condition is given. If a plan
π is fixed, some state and action trajectories are possible, and others are not.
It is impossible to know in general what histories will occur; however, the plan
constrains the choices substantially. Let H(π, η0) denote the set of state-action
histories that could arise from π applied to the initial condition η0.

The cost of a plan π from an initial condition η0 is measured using worst-case
analysis as

Gπ(η0) = max
(x̃,ũ)∈H(π,η0)

{

L(x̃, ũ)
}

. (11.22)

Note that x̃ includes x1, which is usually not known. It may be known only to lie
in X1, as specified by η0. Let Π denote the set of all possible plans. An optimal
plan using worst-case analysis is any plan for which (11.22) is minimized over all
π ∈ Π and η0 ∈ I0. In the case of feasible planning, there are usually numerous
equivalent alternatives.

Under probabilistic uncertainty, the cost of a plan can be measured using
expected-case analysis as

Gπ(η0) = EH(π,η0)

[

L(x̃, ũ)
]

, (11.23)

in which E denotes the mathematical expectation of the cost, with the probability
distribution taken over H(π, η0). The task is to find a plan π ∈ Π that minimizes
(11.23).

The information space is just another state space It will become impor-
tant throughout this chapter and Chapter 12 to view the I-space as an ordinary
state space. It only seems special because it is derived from another state space,
but once this is forgotten, it exhibits many properties of an ordinary state space in
planning. One nice feature is that the state in this special space is always known.
Thus, by converting from an original state space to its I-space, we also convert
from having imperfect state information to always knowing the state, albeit in a
larger state space.

One important consequence of this interpretation is that the state transition
equation can be lifted into the I-space to obtain an information transition function,
fI . Suppose that there are no sensors, and therefore no observations. In this case,
future I-states are predictable, which leads to

ηk+1 = fI(ηk, uk). (11.24)

The function fI generates ηk+1 by concatenating uk onto ηk.
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Now suppose that there are observations, which are generally unpredictable.
In Section 10.1, the nature action θk ∈ Θ(x, u) was used to model the unpre-
dictability. In terms of the information transition equation, yk+1 serves the same
purpose. When the decision is made to apply uk, the observation yk+1 is not
yet known (just as θk is unknown in Section 10.1). In a sequential game against
nature with perfect state information, xk+1 is directly observed at the next stage.
For the information transition equation, yk+1 is instead observed, and ηk+1 can be
determined. Using the history I-state representation, (11.14), simply concatenate
uk and yk+1 onto the histories in ηk to obtain ηk+1. The information transition
equation is expressed as

ηk+1 = fI(ηk, uk, yk+1), (11.25)

with the understanding that yk+1 plays the same role as θk in the case of perfect
state information and unpredictable future states. Even though nature causes
future I-states to be unpredictable, the current I-state is always known. A plan,
π : I → U , now seems like a state-feedback plan, if the I-space is viewed as a
state space. The transitions are all specified by fI .

The costs in this new state space can be derived from the original cost func-
tional, but a maximization or expectation is needed over all possible states given
the current information. This will be covered in Section 12.1.

11.2 Derived Information Spaces

The history I-space appears to be quite complicated. Every I-state corresponds
to a history of actions and observations. Unfortunately, the length of the I-state
sequence grows linearly with the number of stages. To overcome this difficultly, it
is common to map history I-states to some simpler space. In many applications,
the ability to perform this simplification is critical to finding a practical solution.
In some cases, the simplification fully preserves the history I-space, meaning that
completeness, and optimality if applicable, is not lost. In other cases, we are
willing to tolerate a simplification that destroys much of the structure of the
history I-space. This may be necessary to obtain a dramatic reduction in the size
of the I-space.

11.2.1 Information Mappings

Consider a function that maps the history I-space into a space that is simpler to
manage. Formally, let κ : Ihist → Ider denote a function from a history I-space,
Ihist, to a derived I-space, Ider. The function, κ, is called an information mapping,
or I-map. The derived I-space may be any set; hence, there is great flexibility in
defining an I-map.2 Figure 11.3 illustrates the idea. The starting place is Ihist,

2Ideally, the mapping should be onto Ider; however, to facilitate some definitions, this will
not be required.
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Figure 11.3: Many alternative information mappings may be proposed. Each
leads to a derived information space.

and mappings are made to various derived I-spaces. Some generic mappings, κ1,
κ2, and κ3, are shown, along with some very important kinds, Iest, Indet and Iprob.
The last two are the subjects of Sections 11.2.2 and 11.2.3, respectively. The other
important I-map is κest, which uses the history to estimate the state; hence, the
derived I-space is X (see Example 11.11). In general, an I-map can even map any
derived I-space to another, yielding κ : Ider → I ′

der, for any I-spaces Ider and I ′
der.

Note that any composition of I-maps yields an I-map. The derived I-spaces I2

and I3 from Figure 11.3 are obtained via compositions.

Making smaller information-feedback plans The primary use of an I-map
is to simplify the description of a plan. In Section 11.1.3, a plan was defined as a
function on the history I-space, Ihist. Suppose that an I-map, κ, is introduced that
maps from Ihist to Ider. A feedback plan on Ider is defined as π : Ider → U . To
execute a plan defined on Ider, the derived I-state is computed at each stage k by
applying κ to ηk to obtain κ(ηk) ∈ Ider. The action selected by π is π(κ(ηk)) ∈ U .

To understand the effect of using Ider instead of Ihist as the domain of π,
consider the set of possible plans that can be represented over Ider. Let Πhist and
Πder be the sets of all plans over Ihist and Ider, respectively. Any π ∈ Πder can be
converted into an equivalent plan, π′ ∈ Πhist, as follows: For each η ∈ Ihist, define
π′(η) = π(κ(η)).

It is not always possible, however, to construct a plan, π ∈ Πder, from some
π′ ∈ Ihist. The problem is that there may exist some η1, η2 ∈ Ihist for which
π′(η1) 6= π′(η2) and κ(η1) = κ(η2). In words, this means that the plan in Πhist

requires that two histories cause different actions, but in the derived I-space the
histories cannot be distinguished. For a plan in Πder, both histories must yield
the same action.

An I-map κ has the potential to collapse Ihist down to a smaller I-space by
inducing a partition of Ihist. For each ηder ∈ Ider, let the preimage κ−1(ηder) be
defined as

κ−1(ηder) = {η ∈ Ihist | ηder = κ(η)}. (11.26)

This yields the set of history I-states that map to ηder. The induced partition
can intuitively be considered as the “resolution” at which the history I-space is
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characterized. If the sets in (11.26) are large, then the I-space is substantially
reduced. The goal is to select κ to make the sets in the partition as large as
possible; however, one must be careful to avoid collapsing the I-space so much
that the problem can no longer be solved.

Example 11.11 (State Estimation) In this example, the I-map is the classical
approach that is conveniently taken in numerous applications. Suppose that a
technique has been developed that uses the history I-state η ∈ Ihist to compute
an estimate of the current state. In this case, the I-map is κest : Ihist → X. The
derived I-space happens to be X in this case! This means that a plan is specified
as π : X → U , which is just a state-feedback plan.

Consider the partition of Ihist that is induced by κest. For each x ∈ X, the
set κ−1

est(x), as defined in (11.26), is the set of all histories that lead to the same
state estimate. A plan on X can no longer distinguish between various histories
that led to the same state estimate. One implication is that the ability to encode
the amount of uncertainty in the state estimate has been lost. For example, it
might be wise to make the action depend on the covariance in the estimate of
x; however, this is not possible because decisions are based only on the estimate
itself. �

Example 11.12 (Stage Indices) Consider an I-map, κstage, that returns only
the current stage index. Thus, κstage(ηk) = k. The derived I-space is the set
of stages, which is N. A feedback plan on the derived I-space is specified as
π : N → U . This is equivalent to specifying a plan as an action sequence,
(u1, u2, . . . , ), as in Section 2.3.2. Since the feedback is trivial, this is precisely
the original case of planning without feedback, which is also refereed to as an
open-loop plan. �

Constructing a derived information transition equation As presented so
far, the full history I-state is needed to determine a derived I-state. It may be
preferable, however, to discard histories and work entirely in the derived I-space.
Without storing the histories on the machine or robot, a derived information
transition equation needs to be developed. The important requirement in this
case is as follows:

If ηk is replaced by κ(ηk), then κ(ηk+1) must be correctly determined
using only κ(ηk), uk, and yk+1.

Whether this requirement can be met depends on the particular I-map. An-
other way to express the requirement is that if κ(ηk) is given, then the full history
η does not contain any information that could further constrain κ(ηk+1). The
information provided by κ is sufficient for determining the next derived I-states.
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Figure 11.4: (a) For an I-map to be sufficient, the same result must be reached in
the lower right, regardless of the path taken from the upper left. (b) The problem
is that κ images may contain many histories, which eventually map to multiple
derived I-states.

This is similar to the concept of a sufficient statistic, which arises in decision
theory [21]. If the requirement is met, then κ is called a sufficient I-map. One
peculiarity is that the sufficiency is relative to Ider, as opposed to being absolute
in some sense. For example, any I-map that maps onto Ider = {0} is sufficient
because κ(ηk+1) is always known (it remains fixed at 0). Thus, the requirement
for sufficiency depends strongly on the particular derived I-space.

For a sufficient I-map, a derived information transition equation is determined
as

κ(ηk+1) = fIder(κ(ηk), uk, yk+1). (11.27)

The implication is that Ider is the new I-space in which the problem “lives.” There
is no reason for the decision maker to consider histories. This idea is crucial to
the success of many planning algorithms. Sections 11.2.2 and 11.2.3 introduce
nondeterministic I-spaces and probabilistic I-spaces, which are two of the most
important derived I-spaces and are obtained from sufficient I-maps. The I-map
κstage from Example 11.12 is also sufficient. The estimation I-map from Example
11.11 is usually not sufficient because some history is needed to provide a better
estimate.

The diagram in Figure 11.4a indicates the problem of obtaining a sufficient
I-map. The top of the diagram shows the history I-state transitions before the
I-map was introduced. The bottom of the diagram shows the attempted derived
information transition equation, fIder. The requirement is that the derived I-state
obtained in the lower right must be the same regardless of which path is followed
from the upper left. Either fI can be applied to η, followed by κ, or κ can be
applied to η, followed by some fIder. The problem with the existence of fIder is
that κ is usually not invertible. The preimage κ−1(ηder) of some derived I-state
ηder ∈ Ider yields a set of histories in Ihist. Applying fI to all of these yields a set of
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possible next-stage history I-states. Applying κ to these may yield a set of derived
I-states because of the ambiguity introduced by κ−1. This chain of mappings is
shown in Figure 11.4b. If a singleton is obtained under all circumstances, then
this yields the required values of fIder. Otherwise, new uncertainty arises about
the current derived I-state. This could be handled by defining an information
space over the information space, but this nastiness will be avoided here.

Since I-maps can be defined from any derived I-space to another, the concepts
presented in this section do not necessarily require Ihist as the starting point. For
example, an I-map, κ : Ider → I ′

der, may be called sufficient with respect to Ider
rather than with respect to Ihist.

11.2.2 Nondeterministic Information Spaces

This section defines the I-map κndet from Figure 11.3, which converts each history
I-state into a subset of X that corresponds to all possible current states. Nature
is modeled nondeterministically, which means that there is no information about
what actions nature will choose, other than that they will be chosen from Θ and
Ψ. Assume that the state-action sensor mapping from Section 11.1.1 is used.
Consider what inferences may be drawn from a history I-state, ηk = (η0, ũk−1, ỹk).
Since the model does not involve probabilities, let η0 represent a set X1 ⊆ X. Let
κndet(ηk) be the minimal subset of X in which xk is known to lie given ηk. This
subset is referred to as a nondeterministic I-state. To remind you that κndet(ηk)
is a subset of X, it will now be denoted as Xk(ηk). It is important that Xk(ηk)
be as small as possible while consistent with ηk.

Recall from (11.6) that for every observation yk, a set H(yk) ⊆ X of possible
values for xk can be inferred. This could serve as a crude estimate of the nondeter-
ministic I-state. It is certainly known that Xk(ηk) ⊆ H(yk); otherwise, xk, would
not be consistent with the current sensor observation. If we carefully progress
from the initial conditions while applying constraints due to the state transition
equation, the appropriate subset of H(yk) will be obtained.

From the state transition function f , define a set-valued function F that yields
a subset of X for every x ∈ X and u ∈ U as

F (x, u) = {x′ ∈ X | ∃θ ∈ Θ(x, u) for which x′ = f(x, u, θ)}. (11.28)

Note that both F and H are set-valued functions that eliminate the direct ap-
pearance of nature actions. The effect of nature is taken into account in the set
that is obtained when these functions are applied. This will be very convenient
for computing the nondeterministic I-state.

An inductive process will now be described that results in computing the
nondeterministic I-state, Xk(ηk), for any stage k. The base case, k = 1, of the
induction proceeds as

X1(η1) = X1(η0, y1) = X1 ∩H(y1). (11.29)
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The first part of the equation replaces η1 with (η0, y1), which is a longer way to
write the history I-state. There are not yet any actions in the history. The second
part applies set intersection to make consistent the two pieces of information: 1)
The initial state lies in X1, which is the initial condition, and 2) the states in
H(y1) are possible given the observation y1.

Now assume inductively that Xk(ηk) ⊆ X has been computed and the task is
to compute Xk+1(ηk+1). From (11.15), ηk+1 = (ηk, uk, yk+1). Thus, the only new
pieces of information are that uk was applied and yk+1 was observed. These will
be considered one at a time.

Consider computing Xk+1(ηk, uk). If xk was known, then after applying uk, the
state could lie anywhere within F (xk, uk), using (11.28). Although xk is actually
not known, it is at least known that xk ∈ Xk(ηk). Therefore,

Xk+1(ηk, uk) =
⋃

xk∈Xk(ηk)

F (xk, uk). (11.30)

This can be considered as the set of all states that can be reached by starting
from some state in Xk(ηk) and applying any actions uk ∈ U and θk ∈ Θ(xk, uk).
See Figure 11.5.

��
��
��
��

��
��
��
����

��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

Xk+1(ηk, uk)
Xk(ηk)F (xk, uk)

xk

Figure 11.5: The first step in computing the nondeterministic I-state is to take
the union of F (xk, uk) over all possible xk ∈ Xk(ηk).

The next step is to take into account the observation yk+1. This information
alone indicates that xk+1 lies in H(yk+1). Therefore, an intersection is performed
to obtain the nondeterministic I-state,

Xk+1(ηk+1) = Xk+1(ηk, uk, yk+1) = Xk+1(ηk, uk) ∩H(yk+1). (11.31)

Thus, it has been shown how to compute Xk+1(ηk+1) from Xk(ηk). After start-
ing with (11.29), the nondeterministic I-states at any stage can be computed by
iterating (11.30) and (11.31) as many times as necessary.

Since the nondeterministic I-state is always a subset of X, the nondetermin-
istic I-space, Indet = pow(X), is obtained (shown in Figure 11.3). If X is finite,
then Indet is also finite, which was not the case with Ihist because the histories
continued to grow with the number of stages. Thus, if the number of stages is
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unbounded or large in comparison to the size of X, then nondeterministic I-states
seem preferable. It is also convenient that κndet is a sufficient I-map, as defined in
Section 11.2.1. This implies that a planning problem can be completely expressed
in terms of Indet without maintaining the histories. The goal region, XG, can be
expressed directly as a nondeterministic I-state. In this way, the planning task is
to terminate in a nondeterministic I-state, Xk(ηk), for which Xk(ηk) ⊆ XG.

The sufficiency of κndet is obtained because (11.30) and (11.31) show that
Xk+1(ηk+1) can be computed from Xk(ηk), uk, and yk+1. This implies that a
derived information transition equation can be formed. The nondeterministic
I-space can also be treated as “just another state space.” Although many his-
tory I-states may map to the same nondeterministic I-state, it has been assumed
for decision-making purposes that particular history is irrelevant, once Xk(ηk) is
given.

The following example is not very interesting in itself, but it is simple enough
to illustrate the concepts.

Example 11.13 (Three-State Example) Let X = {0, 1, 2}, U = {−1, 0, 1},
and Θ(x, u) = {0, 1} for all x ∈ X and u ∈ U . The state transitions are given
by f(x, u, θ) = (x + u + θ) mod 3. Regarding sensing, Y = {0, 1, 2, 3, 4} and
Ψ(x) = {0, 1, 2} for all x ∈ X. The sensor mapping is y = h(x, ψ) = x+ ψ.

The history I-space appears very cumbersome for this example, which only
involves three states. The nondeterministic I-space for this example is

Indet = {∅, {0}, {1}, {2}, {0, 1}, {1, 2}, {0, 2}, {0, 1, 2}}, (11.32)

which is the power set of X = {0, 1, 2}. Note, however, that the empty set, ∅, can
usually be deleted from Indet.3 Suppose that the initial condition is X1 = {0, 2}
and that the initial state is x1 = 0. The initial state is unknown to the decision
maker, but it is needed to ensure that valid observations are made in the example.

Now consider the execution over a number of stages. Suppose that the first
observation is y1 = 2. Based on the sensor mapping, H(y1) = H(2) = {0, 1, 2},
which is not very helpful because H(2) = X. Applying (11.29) yields X1(η1) =
{0, 2}. Now suppose that the decision maker applies the action u1 = 1 and nature
applies θ1 = 1. Using f , this yields x2 = 2. The decision maker does not know
θ1 and must therefore take into account any nature action that could have been
applied. It uses (11.30) to infer that

X2(η1, u1) = F (2, 1) ∪ F (0, 1) = {0, 1} ∪ {1, 2} = {0, 1, 2}. (11.33)

Now suppose that y2 = 3. From the sensor mapping, H(3) = {1, 2}. Applying
(11.31) yields

X2(η2) = X2(η1, u1) ∩H(y2) = {0, 1, 2} ∩ {1, 2} = {1, 2}. (11.34)

3One notable exception is in the theory of nondeterministic finite automata, in which it is
possible that all copies of the machine die and there is no possible current state [260].
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This process may be repeated for as many stages as desired. A path is generated
through Indet by visiting a sequence of nondeterministic I-states. If the observa-
tion yk = 4 is ever received, the state, xk, becomes immediately known because
H(4) = {2}. �

11.2.3 Probabilistic Information Spaces

This section defines the I-map κprob from Figure 11.3, which converts each history
I-state into a probability distribution over X. A Markov, probabilistic model is
assumed in the sense that the actions of nature only depend on the current state
and action, as opposed to state or action histories. The set union and intersection
of (11.30) and (11.31) are replaced in this section by marginalization and Bayes’
rule, respectively. In a sense, these are the probabilistic equivalents of union and
intersection. It will be very helpful to compare the expressions from this section
to those of Section 11.2.2.

Rather than write κprob(η), standard probability notation will be applied to
obtain P (x|η). Most expressions in this section of the form P (xk|·) have an
analogous expression in Section 11.2.2 of the form Xk(·). It is helpful to recognize
the similarities.

The first step is to construct probabilistic versions of H and F . These are
P (xk|yk) and P (xk+1|xk, uk), respectively. The latter term was given in Section
10.1.1. To obtain P (xk|yk), recall from Section 11.1.1 that P (yk|xk) is easily
derived from P (ψk|xk). To obtain P (xk|yk), Bayes’ rule is applied:

P (xk|yk) =
P (yk|xk)P (xk)

P (yk)
=

P (yk|xk)P (xk)
∑

xk∈X

P (yk|xk)P (xk)
. (11.35)

In the last step, P (yk) was rewritten using marginalization, (9.8). In this case
xk appears as the sum index; therefore, the denominator is only a function of
yk, as required. Bayes’ rule requires knowing the prior, P (xk). In the coming
expressions, this will be replaced by a probabilistic I-state.

Now consider defining probabilistic I-states. Each is a probability distribution
over X and is written as P (xk|ηk). The initial condition produces P (x1). As for
the nondeterministic case, probabilistic I-states can be computed inductively. For
the base case, the only new piece of information is y1. Thus, the probabilistic
I-state, P (x1|η1), is P (x1|y1). This is computed by letting k = 1 in (11.35) to
yield

P (x1|η1) = P (x1|y1) =
P (y1|x1)P (x1)
∑

x1∈X

P (y1|x1)P (x1)
. (11.36)

Now consider the inductive step by assuming that P (xk|ηk) is given. The task
is to determine P (xk+1|ηk+1), which is equivalent to P (xk+1|ηk, uk, yk+1). As in
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Section 11.2.2, this will proceed in two parts by first considering the effect of uk,
followed by yk+1. The first step is to determine P (xk+1|ηk, uk) from P (xk|ηk).
First, note that

P (xk+1|ηk, xk, uk) = P (xk+1|xk, uk) (11.37)

because ηk contains no additional information regarding the prediction of xk+1

once xk is given. Marginalization, (9.8), can be used to eliminate xk from P (xk+1|xk, uk).
This must be eliminated because it is not given. Putting these steps together yields

P (xk+1|ηk, uk) =
∑

xk∈X

P (xk+1|xk, uk, ηk)P (xk|ηk)

=
∑

xk∈X

P (xk+1|xk, uk)P (xk|ηk),
(11.38)

which expresses P (xk+1|ηk, uk) in terms of given quantities. Equation (11.38) can
be considered as the probabilistic counterpart of (11.30).

The next step is to take into account the observation yk+1. This is accomplished
by making a version of (11.35) that is conditioned on the information accumulated
so far: ηk and uk. Also, k is replaced with k + 1. The result is

P (xk+1|yk+1, ηk, uk) =
P (yk+1|xk+1, ηk, uk)P (xk+1|ηk, uk)
∑

xk+1∈X

P (yk+1|xk+1, ηk, uk)P (xk+1|ηk, uk)
. (11.39)

This can be considered as the probabilistic counterpart of (11.31). The left side
of (11.39) is equivalent to P (xk+1|ηk+1), which is the probabilistic I-state for stage
k + 1, as desired. There are two different kinds of terms on the right. The
expression for P (xk+1|ηk, uk) is given in (11.38). Therefore, the only remaining
term to calculate is P (yk+1|xk+1, ηk, uk). Note that

P (yk+1|xk+1, ηk, uk) = P (yk+1|xk+1) (11.40)

because the sensor mapping depends only on the state (and the probability model
for the nature sensing action, which also depends only on the state). Since
P (yk+1|xk+1) is specified as part of the sensor model, we have now determined
how to obtain P (xk+1|ηk+1) from P (xk|ηk), uk, and yk+1. Thus, Iprob is another
I-space that can be treated as just another state space.

The probabilistic I-space Iprob (shown in Figure 11.3) is the set of all probabil-
ity distributions over X. The update expressions, (11.38) and (11.39), establish
that the I-map κprob is sufficient, which means that the planning problem can be
expressed entirely in terms of Iprob, instead of maintaining histories. A goal re-
gion can be specified as constraints on the probabilities. For example, from some
particular x ∈ X, the goal might be to reach any probabilistic I-state for which
P (xk|ηk) > 1/2.
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Figure 11.6: The probabilistic I-space for the three-state example is a 2-simplex
embedded in R

3. This simplex can be projected into R
2 to yield the depicted

triangular region in R
2.

Example 11.14 (Three-State Example Revisited) Now return to Example
11.13, but this time use probabilistic models. For a probabilistic I-state, let pi
denote the probability that the current state is i ∈ X. Any probabilistic I-
state can be expressed as (p0, p1, p2) ∈ R

3. This implies that the I-space can be
nicely embedded in R

3. By the axioms of probability (given in Section 9.1.2),
p0+ p1+ p2 = 1, which can be interpreted as a plane equation in R

3 that restricts
Iprob to a 2D set. Also following the axioms of probability, for each i ∈ {0, 1, 2},
0 ≤ pi ≤ 1. This means that Iprob is restricted to a triangular region in R

3.
The vertices of this triangular region are (0, 0, 1), (0, 1, 0), and (1, 0, 0); these
correspond to the three different ways to have perfect state information. In a sense,
the distance away from these points corresponds to the amount of uncertainty in
the state. The uniform probability distribution (1/3, 1/3, 1/3) is equidistant from
the three vertices. A projection of the triangular region into R

2 is shown in Figure
11.6. The interpretation in this case is that p0 and p1 specify a point in R

2, and
p2 is automatically determined from p2 = 1− p0 − p1.

The triangular region in R
3 is an uncountably infinite set, even though the

history I-space is countably infinite for a fixed initial condition. This may seem
strange, but there is no mistake because for a fixed initial condition, it is generally
impossible to reach all of the points in Iprob. If the initial condition can be any
point in Iprob, then all of the probabilistic I-space is covered because I0 = Iprob,
in which I0 is the initial condition space.. �

11.2.4 Limited-Memory Information Spaces

Limiting the amount of memory provides one way to reduce the sizes of history
I-states. Except in special cases, this usually does not preserve the feasibility or
optimality of the original problem. Nevertheless, such I-maps are very useful in
practice when there appears to be no other way to reduce the size of the I-space.
Furthermore, they occasionally do preserve the desired properties of feasibility,
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and sometimes even optimality.

Previous i stages Under this model, the history I-state is truncated. Any
actions or observations received earlier than i stages ago are dropped from memory.
An I-map, κi, is defined as

κi(ηk) = (uk−i, . . . , uk−1, yk−i+1, . . . , yk), (11.41)

for any integer i > 0 and k > i. If i ≤ k, then the derived I-state is the full
history I-state, (11.14). The advantage of this approach, if it leads to a solution,
is that the length of the I-state no longer grows with the number of stages. If X
and U are finite, then the derived I-space is also finite. Note that κi is sufficient
in the sense defined in Section 11.2.1 because enough history is passed from stage
to stage to determine the derived I-states.

Sensor feedback An interesting I-map is obtained by removing all but the last
sensor observation from the history I-state. This yields an I-map, κsf : Ihist → Y ,
which is defined as κsf (ηk) = yk. The model is referred to as sensor feedback. In
this case, all decisions are made directly in terms of the current sensor observation.
The derived I-space is Y , and a plan on the derived I-space is π : Y → U , which
is called a sensor-feedback plan. In some literature, this may be referred to as
a purely reactive plan. Many problems for which solutions exist in the history
I-space cannot be solved using sensor feedback. Neglecting history prevents the
complicated deductions that are often needed regarding the state. In some sense,
sensor feedback causes short-sightedness that could unavoidably lead to repeating
the same mistakes indefinitely. However, it may be worth determining whether
such a sensor-feedback solution plan exists for some particular problem. Such
plans tend to be simpler to implement in practice because the actions can be
connected directly to the sensor output. Certainly, if a sensor-feedback solution
plan exists for a problem, and feasibility is the only concern, then it is pointless
to design and implement a plan in terms of the history I-space or some larger
derived I-space. Note that this I-map is sufficient, even though it ignores the
entire history.

11.3 Examples for Discrete State Spaces

11.3.1 Basic Nondeterministic Examples

First, we consider a simple example that uses the sign sensor of Example 11.3.

Example 11.15 (Using the Sign Sensor) This example is similar to Example
10.1, except that it involves sensing uncertainty instead of prediction uncertainty.
Let X = Z, U = {−1, 1, uT}, Y = {−1, 0, 1}, and y = h(x) = sgnx. For the state
transition equation, xk+1 = f(xk, uk) = xk + uk. No nature actions interfere with
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the state transition equation or the sensor mapping. Therefore, future history
I-states are predictable. The information transition equation is ηk+1 = fI(ηk, uk).
Suppose that initially, η0 = X, which means that any initial state is possible. The
goal is to terminate at 0 ∈ X.

The general expression for a history I-state at stage k is

ηk = (X, u1, . . . , uk−1, y1, . . . , yk). (11.42)

A possible I-state is η5 = (X,−1, 1, 1,−1, 1, 1, 1, 1, 0). Using the nondeterministic
I-space from Section 11.2.2, Indet = pow(X), which is uncountably infinite. By
looking carefully at the problem, however, it can be seen that most of the nonde-
terministic I-states are not reachable. If yk = 0, it is known that xk = 0; hence,
Xk(ηk) = {0}. If yk = 1, it will always be the case that Xk(ηk) = {1, 2, . . .} unless
0 is observed. If yk = −1, then Xk(ηk) = {. . . ,−2,−1}. From this a plan, π, can
be specified over the three nondeterministic I-states mentioned above. For the
first one, π(Xk(ηk)) = uT . For the other two, π(Xk(ηk)) = −1 and π(Xk(ηk)) = 1,
respectively. Based on the sign, the plan tries to move toward 0. If different
initial conditions are allowed, then more nondeterministic I-states can be reached,
but this was not required as the problem was defined. Note that optimal-length
solutions are produced by the plan.

The solution can even be implemented with sensor feedback because the action
depends only on the current sensor value. Let π : Y → U be defined as

π(y) =







−1 if y = 1
1 if y = −1
uT if y = 0.

(11.43)

This provides dramatic memory savings over defining a plan on Ihist. �

The next example provides a simple illustration of solving a problem without
ever knowing the current state. This leads to the goal recognizability problem [177]
(see Section 12.5.1).

Example 11.16 (Goal Recognizability) Let X = Z, U = {−1, 1, uT}, and
Y = Z. For the state transition equation, xk+1 = f(xk, uk) = xk + uk. Now
suppose that a variant of Example 11.7 is used to model sensing: y = h(x, ψ) =
x+ψ and Ψ = {−5,−4, . . . , 5}. Suppose that once again, η0 = X. In this case, it
is impossible to guarantee that a goal, XG = {0}, is reached because of the goal
recognizability problem. The disturbance in the sensor mapping does not allow
precise enough state measurements to deduce the precise achievement of the state.
If the goal region, XG, is enlarged to {−5,−4, . . . , 5}, then the problem can be
solved. Due to the disturbance, the nondeterministic I-state is always a subset of
a consecutive sequence of 11 states. It is simple to derive a plan that moves this
interval until the nondeterministic I-state becomes a subset of XG. When this
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Figure 11.7: An example that involves 19 states. There are no sensor observations;
however, actions can be chosen that enable the state to be estimated. The example
provides an illustration of reducing the I-space via I-maps.

occurs, then the plan applies uT . In solving this problem, the exact state never
had to be known. �

The problem shown in Figure 11.7 serves two purposes. First, it is an example
of sensorless planning [97, 112], which means that there are no observations (see
Sections 11.5.4 and 12.5.2). This is an interesting class of problems because it
appears that no information can be gained regarding the state. Contrary to
intuition, it turns out for this example and many others that plans can be designed
that estimate the state. The second purpose is to illustrate how the I-space
can be dramatically collapsed using the I-map concepts of Section 11.2.1. The
standard nondeterministic I-space for this example contains 219 I-states, but it can
be mapped to a much smaller derived I-space that contains only a few elements.

Example 11.17 (Moving in an L-shaped Corridor) The state space X for
the example shown in Figure 11.7 has 19 states, each of which corresponds to a
location on one of the white tiles. For convenience, let each state be denoted by
(i, j). There are 10 bottom states, denoted by (1, 1), (2, 1), . . ., (10, 1), and 10 left
states, denoted by (1, 1), (1, 2), . . ., (1, 10). Since (1, 1) is both a bottom state
and a left state, it is called the corner state.

There are no sensor observations for this problem. However, nature interferes
with the state transitions, which leads to a form of nondeterministic uncertainty.
If an action is applied that tries to take one step, nature may cause two or three
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steps to be taken. This can be modeled as follows. Let

U = {(1, 0), (−1, 0), (0, 1), (0,−1)} (11.44)

and let Θ = {1, 2, 3}. The state transition equation is defined as f(x, u, θ) = x+θu
whenever such motion is not blocked (by hitting a dead end). For example, if
x = (5, 1), u = (−1, 0), and θ = 2, then the resulting next state is (5, 1) +
2(−1, 0) = (3, 1). If blocking is possible, the state changes as much as possible
until it becomes blocked. Due to blocking, it is even possible that f(x, u, θ) = x.

Since there are no sensor observations, the history I-state at stage k is

ηk = (η0, u1, . . . , uk−1). (11.45)

Now use the nondeterministic I-space, Indet = pow(X). The initial state, x1 =
(10, 1), is given, which means that the initial I-state, η0, is {(10, 1)}. The goal is
to arrive at the I-state, {(1, 10)}, which means that the task is to design a plan
that moves from the lower right to the upper left.

With perfect information, this would be trivial; however, without sensors
the uncertainty may grow very quickly. For example, after applying the ac-
tion u1 = (−1, 0) from the initial state, the nondeterministic I-state becomes
{(7, 1), (8, 1), (9, 1)}. After u2 = (−1, 0) it becomes {(4, 1), . . . , (8, 1)}. A nice
feature of this problem, however, is that uncertainty can be reduced without sens-
ing. Suppose that for 100 stages, we repeatedly apply uk = (−1, 0). What is
the resulting I-state? As the corner state is approached, the uncertainty is re-
duced because the state cannot be further changed by nature. It is known that
each action, uk = (−1, 0), decreases the X coordinate by at least one each time.
Therefore, after nine or more stages, it is known that ηk = {(1, 1)}. Once this is
known, then the action (0, 1) can be applied. This will again increase uncertainty
as the state moves through the set of left states. If (0, 1) is applied nine or more
times, then it is known for certain that xk = (1, 10), which is the required goal
state.

A successful plan has now been obtained: 1) Apply (−1, 0) for nine stages, 2)
then apply (0, 1) for nine stages. This plan could be defined over Indet; however,
it is simpler to use the I-map κstage from Example 11.12 to define a plan as
π : N → U . For k such that 1 ≤ k ≤ 9, π(k) = (−1, 0). For k such that
10 ≤ k ≤ 18, π(k) = (0, 1). For k > 18, π(k) = uT . Note that the plan works
even if the initial condition is any subset of X. From this point onward, assume
that any subset may be given as the initial condition.

Some alternative plans will now be considered by making other derived I-spaces
from Indet. Let κ3 be an I-map from Indet to a set I3 of three derived I-states. Let
I3 = {g, l, a}, in which g denotes “goal,” l denotes “left,” and a denotes “any.”
The I-map, κ3, is

X(η) =







g if X(η) = {(1, 10)}
l if X(η) is a subset of the set of left states
a otherwise.

(11.46)
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Based on the successful plan described so far, a solution on I3 is defined as π(g) =
uT , π(l) = (0, 1), and π(a) = (−1, 0). This plan is simpler to represent than the
one on N; however, there is one drawback. The I-map κ3 is not sufficient. This
implies that more of the nondeterministic I-state needs to be maintained during
execution. Otherwise, there is no way to know when certain transitions occur.
For example, if (−1, 0) is applied from a, how can the robot determine whether
l or a is reached in the next stage? This can be easily determined from the
nondeterministic I-state.

To address this problem, consider a new I-map, κ19 : Indet → I19, which is
sufficient. There are 19 derived I-states, which include g as defined previously,
li for 1 ≤ j ≤ 9, and ai for 2 ≤ i ≤ 10. The I-map is defined as κ19(X(η)) =
g if X(η) = {(1, 10)}. Otherwise, κ19(X(η)) = li for the smallest value of i
such that X(η) is a subset of {(1, i), . . . , (1, 10)}. If there is no such value for
i, then κ19(X(η)) = ai, for the smallest value of i such that X(η) is a subset
of {(1, 1), . . . , (1, 10), (2, 1), . . . , (i, 1)}. Now the plan is defined as π(g) = uT ,
π(li) = (0, 1), and π(ai) = (−1, 0). Although the plan is larger, the robot does
not need to represent the full nondeterministic I-state during execution. The
correct transitions occur. For example, if uk = (−1, 0) is applied at a5, then a4
is obtained. If u = (−1, 0) is applied at a2, then l1 is obtained. From there,
u = (0, 1) is applied to yield l2. These actions can be repeated until eventually l9
and g are reached. The resulting plan, however, is not an improvement over the
original open-loop one. �

11.3.2 Nondeterministic Finite Automata

An interesting connection lies between the ideas of this chapter and the theory of
finite automata, which is part of the theory of computation (see [126, 260]). In
Section 2.1, it was mentioned that determining whether there exists some string
that is accepted by a DFA is equivalent to a discrete feasible planning problem.
If unpredictability is introduced into the model, then a nondeterministic finite
automaton (NFA) is obtained, as depicted in Figure 11.8. This represents one of
the simplest examples of nondeterminism in theoretical computer science. Such
nondeterministic models serve as a powerful tool for defining models of computa-
tion and their associated complexity classes. It turns out that these models give
rise to interesting examples of information spaces.

An NFA is typically described using a directed graph as shown in Figure
11.8b, and is considered as a special kind of finite state machine. Each vertex of
the graph represents a state, and edges represent possible transitions. An input
string of finite length is read by the machine. Typically, the input string is a
binary sequence of 0’s and 1’s. The initial state is designated by an inward arrow
that has no source vertex, as shown pointing into state a in Figure 11.8b. The
machine starts in this state and reads the first symbol of the input string. Based

590 S. M. LaValle: Planning Algorithms

1 10 1 0 NFA

Input String 0

0,1

1

0

ǫ

b c

a

(a) (b)

Figure 11.8: (a) An nondeterministic finite automaton (NFA) is a state machine
that reads an input string and decides whether to accept it. (b) A graphical
depiction of an NFA.

on its value, it makes appropriate transitions. For a DFA, the next state must be
specified for each of the two inputs 0 and 1 from each state. From a state in an
NFA, there may be any number of outgoing edges (including zero) that represent
the response to a single symbol. For example, there are two outgoing edges if 0 is
read from state c (the arrow from c to b actually corresponds to two directed edges,
one for 0 and the other for 1). There are also edges designated with a special ǫ
symbol. If a state has an outgoing ǫ, the state may immediately transition along
the edge without reading another symbol. This may be iterated any number of
times, for any outgoing ǫ edges that may be encountered, without reading the next
input symbol. The nondeterminism arises from the fact that there are multiple
choices for possible next states due to multiple edges for the same input and ǫ
transitions. There is no sensor that indicates which state is actually chosen.

The interpretation often given in the theory of computation is that when there
are multiple choices, the machine clones itself and one copy runs each choice. It is
like having multiple universes in which each different possible action of nature is
occurring simultaneously. If there are no outgoing edges for a certain combination
of state and input, then the clone dies. Any states that are depicted with a double
boundary, such as state a in Figure 11.8, are called accept states. When the input
string ends, the NFA is said to accept the input string if there exists at least one
alternate universe in which the final machine state is an accept state.

The formulation usually given for NFAs seems very close to Formulation 2.1
for discrete feasible planning. Here is a typical NFA formulation [260], which
formalizes the ideas depicted in Figure 11.8:

Formulation 11.2 (Nondeterministic Finite Automaton)

1. A finite state space X.

2. A finite alphabet Σ which represents the possible input symbols. Let Σǫ =
Σ ∪ {ǫ}.
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3. A transition function, δ : X × Σǫ → pow(X). For each state and symbol, a
set of outgoing edges is specified by indicating the states that are reached.

4. A start state x0 ∈ X.

5. A set A ⊆ X of accept states.

Example 11.18 (Three-State NFA) The example in Figure 11.8 can be ex-
pressed using Formulation 11.2. The components are X = {a, b, c}, Σ = {0, 1},
Σǫ = {0, 1, ǫ}, x0 = a, and A = {a}. The state transition equation requires the
specification of a state for every x ∈ X and symbol in Σǫ:

0 1 ǫ
a ∅ {c} {b}
b {a} ∅ ∅
c {b, c} {b} ∅ .

(11.47)

�

Now consider reformulating the NFA and its acceptance of strings as a kind
of planning problem. An input string can be considered as a plan that uses
no form of feedback; it is a fixed sequence of actions. The feasible planning
problem is to determine whether any string exists that is accepted by the NFA.
Since there is no feedback, there is no sensing model. The initial state is known,
but subsequent states cannot be measured. The history I-state ηk at stage k
reduces to ηk = ũk−1 = (u1, . . . , uk−1), the action history. The nondeterminism
can be accounted for by defining nature actions that interfere with the state
transitions. This results in the following formulation, which is described in terms
of Formulation 11.2.

Formulation 11.3 (An NFA Planning Problem)

1. A finite state space X.

2. An action space U = Σ ∪ {uT}.

3. A state transition function, F : X × U → pow(X). For each state and
symbol, a set of outgoing edges is specified by indicating the states that are
reached.

4. An initial state x0 = x1.

5. A set XG = A of goal states.

The history I-space Ihist is defined using

Ik = Ũk−1 (11.48)
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for each k ∈ N and taking the union as defined in (11.19). Assume that the initial
state of the NFA is always fixed; therefore, it does not appear in the definition of
Ihist.

For expressing the planning task, it is best to use the nondeterministic I-
space Indet = pow(X) from Section 11.2.2. Thus, each nondeterministic I-state,
X(η) ∈ Indet, is the subset of X that corresponds to the possible current states of
the machine. The initial condition could be any subset of X because ǫ transitions
can occur from x1. Subsequent nondeterministic I-states follow directly from F .
The task is to compute a plan of the form

π = (u1, u2, . . . , uK , uT ), (11.49)

which results in XK+1(ηK+1) ∈ Indet with XK+1(ηK+1) ∩ XG 6= ∅. This means
that at least one possible state of the NFA must lie in XG after the termination
action is applied. This condition is much weaker than a typical planning require-
ment. Using worst-case analysis, a typical requirement would instead be that
every possible NFA state lies in XG.

The problem given in Formulation 11.3 is not precisely a specialization of
Formulation 11.1 because of the state transition function. For convenience, F
was directly defined, instead of explicitly requiring that f be defined in terms
of nature actions, Θ(x, u), which in this context depend on both x and u for an
NFA. There is one other small issue regarding this formulation. In the planning
problems considered in this book, it is always assumed that there is a current
state. For an NFA, it was already mentioned that if there are no outgoing edges
for a certain input, then the clone of the machine dies. This means that potential
current states cease to exist. It is even possible that every clone dies, which leaves
no current state for the machine. This can be easily enabled by directly defining
F ; however, planning problems must always have a current state. To resolve this
issue, we could augment X in Formulation 11.3 to include an extra dead state,
which signifies the death of a clone when there are no outgoing edges. A dead
state can never lie in XG, and once a transition to a dead state occurs, the state
remains dead for all time. In this section, the state space will not be augmented
in this way; however, it is important to note that the NFA formulation can easily
be made consistent with Formulation 11.3.

The planning model can now be compared to the standard use of NFAs in the
theory of computation. A language of an NFA is defined to be the set of all input
strings that it accepts. The planning problem formulated here determines whether
there exists a string (which is a plan that ends with termination actions) that is
accepted by the NFA. Equivalently, a planning algorithm determines whether the
language of an NFA is empty. Constructing the set of all successful plans is
equivalent to determining the language of the NFA.

Example 11.19 (Planning for the Three-State NFA) The example in Fig-
ure 11.8 can be expressed using Formulation 11.2. The components are X =
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{a, b, c}, Σ = {0, 1}, Σǫ = {0, 1, ǫ}, x0 = a, and F = {a}. The function F (x, u) is
defined as

0 1
a ∅ {c}
b {a, b} ∅
c {b, c} {b}.

(11.50)

The nondeterministic I-space is

X(η) = {∅, {a}, {b}, {c}, {a, b}, {a, c}, {b, c}, {a, b, c}}, (11.51)

in which the initial condition is η0 = {a, b} because an ǫ transition occurs imme-
diately from a. An example plan that solves the problem is (1, 0, 0, uT , . . .). This
corresponds to sending an input string “100” through the NFA depicted in Figure
11.8. The sequence of nondeterministic I-states obtained during the execution of
the plan is

{a, b} 1→ {c} 0→ {b, c} 0→ {a, b, c} uT→ {a, b, c}. (11.52)

�

A basic theorem from the theory of finite automata states that for the set of
strings accepted by an NFA, there exists a DFA (deterministic) that accepts the
same set [260]. This is proved by constructing a DFA directly from the nondeter-
ministic I-space. Each nondeterministic I-state can be considered as a state of a
DFA. Thus, the DFA has 2n states, if the original NFA has n states. The state
transitions of the DFA are derived directly from the transitions between nondeter-
ministic I-states. When an input (or action) is given, then a transition occurs from
one subset of X to another. A transition is made between the two corresponding
states in the DFA. This construction is an interesting example of how the I-space
is a new state space that arises when the states of the original state space are
unknown. Even though the I-space is usually larger than the original state space,
its states are always known. Therefore, the behavior appears the same as in the
case of perfect state information. This idea is very general and may be applied to
many problems beyond DFAs and NFAs; see Section 12.1.2

11.3.3 The Probabilistic Case: POMDPs

Example 11.14 generalizes nicely to the case of n states. In operations research
and artificial intelligence literature, these are generally referred to as partially ob-
servable Markov decision processes or POMDPs (pronounced “pom dee peez”).
For the case of three states, the probabilistic I-space, Iprob, is a 2-simplex em-
bedded in R

3. In general, if |X| = n, then Iprob is an (n − 1)-simplex embedded
in R

n. The coordinates of a point are expressed as (p0, p1, . . . , pn−1) ∈ R
n. By

the axioms of probability, p0 + · · · + pn−1 = 1, which implies that Iprob is an
(n−1)-dimensional subspace of Rn. The vertices of the simplex correspond to the
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n cases in which the state is known; hence, their coordinates are (0, 0, . . . , 0, 1),
(0, 0, . . . , 0, 1, 0), . . ., (1, 0, . . . , 0). For convenience, the simplex can be projected
into R

n−1 by specifying a point in R
n−1 for which p1 + · · · + pn−2 ≤ 1 and then

choosing the final coordinate as pn−1 = 1−p1+ · · ·+pn−2. Section 12.1.3 presents
algorithms for planning for POMDPs.

11.4 Continuous State Spaces

This section takes many of the concepts that have been developed in Sections
11.1 and 11.2 and generalizes them to continuous state spaces. This represents
an important generalization because the configuration space concepts, on which
motion planning was defined in Part II, are all based on continuous state spaces.
In this section, the state space might be a configuration space, X = C, as defined
in Chapter 4 or any other continuous state space. Since it may be a configuration
space, many interesting problems can be drawn from robotics.

During the presentation of the concepts of this section, it will be helpful to
recall analogous concepts that were already developed for discrete state spaces. In
many cases, the formulations appear identical. In others, the continuous case is
more complicated, but it usually maintains some of the properties from the discrete
case. It will be seen after introducing continuous sensing models in Section 11.5.1
that some problems formulated in continuous spaces are even more elegant and
easy to understand than their discrete counterparts.

11.4.1 Discrete-Stage Information Spaces

Assume here that there are discrete stages. Let X ⊆ R
m be an n-dimensional

manifold for n ≤ m called the state space.4 Let Y ⊆ R
m be an ny-dimensional

manifold for ny ≤ m called the observation space. For each x ∈ X, let Ψ(x) ⊆ R
m

be an nn-dimensional manifold for nn ≤ m called the set of nature sensing actions.
The three kinds of sensors mappings, h, defined in Section 11.1.1 are possible, to
yield either a state mapping, y = h(x), a state-nature mapping y = h(x, ψ),
or a history-based, y = hk(x1, . . . , xk, y). For the case of a state mapping, the
preimages, H(y), once again induce a partition of X. Preimages can also be
defined for state-action mappings, but they do not necessarily induce a partition
of X.

Many interesting sensing models can be formulated in continuous state spaces.
Section 11.5.1 provides a kind of sensor catalog. There is once again the choice of
nondeterministic or probabilistic uncertainty if nature sensing actions are used. If
nondeterministic uncertainty is used, the expressions are the same as the discrete
case. Probabilistic models are defined in terms of a probability density function,

4If you did not read Chapter 4 and are not familiar with manifold concepts, then assume
X = R

n; it will not make much difference. Make similar assumptions for Y , Ψ(x), U , and
Θ(x, u).
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p : Ψ → [0,∞),5 in which p(ψ) denotes the continuous-time replacement for P (ψ).
The model can also be expressed as p(y|x), in that same manner that P (y|x) was
obtained for discrete state spaces.

The usual three choices exist for the initial conditions: 1) Either x1 ∈ X is
given; 2) a subset X1 ∈ X is given; or 3) a probability density function, p(x), is
given. The initial condition spaces in the last two cases can be enormous. For
example, if X = [0, 1] and any subset is possible as an initial condition, then
I0 = pow(R), which has higher cardinality than R. If any probability density
function is possible, then I0 is a space of functions.6

The I-space definitions from Section 11.1.2 remain the same, with the under-
standing that all of the variables are continuous. Thus, (11.17) and (11.19) serve
as the definitions of Ik and I. Let U ⊆ R

m be an nu-dimensional manifold for
nu ≤ m. For each x ∈ X and u ∈ U , let Θ(x, u) be an nθ-dimensional manifold for
nθ ≤ m. A discrete-stage I-space planning problem over continuous state spaces
can be easily formulated by replacing each discrete variable in Formulation 11.1
by its continuous counterpart that uses the same notation. Therefore, the full
formulation is not given.

11.4.2 Continuous-Time Information Spaces

Now assume that there is a continuum of stages. Most of the components of
Section 11.4.1 remain the same. The spaces X, Y , Ψ(x), U , and Θ(x, u) remain
the same. The sensor mapping also remains the same. The main difference occurs
in the state transition equation because the effect of nature must be expressed in
terms of velocities. This was already introduced in Section 10.6. In that context,
there was only uncertainty in predictability. In the current context there may be
uncertainties in both predictability and in sensing the current state.

For the discrete-stage case, the history I-states were based on action and ob-
servation sequences. For the continuous-time case, the history instead becomes a
function of time. As defined in Section 7.1.1, let T denote a time interval, which
may be bounded or unbounded. Let ỹt : [0, t] → Y be called the observation
history up to time t ∈ T . Similarly, let ũt : [0, t) → U and x̃t : [0, t] → X be called
the action history and state history, respectively, up to time t ∈ T .

Thus, the three kinds of sensor mappings in the continuous-time case are as
follows:

5Assume that all continuous spaces are measure spaces and all probability density functions
are measurable functions over these spaces.

6To appreciate of the size of this space, it can generally be viewed as an infinite-dimensional
vector space (recall Example 8.5). Consider, for example, representing each function with a
series expansion. To represent any analytic function exactly over [0, 1], an infinite sequence
of real-valued coefficients may be needed. Each sequence can be considered as an infinitely
long vector, and the set of all such sequences forms an infinite-dimensional vector space. See
[103, 239] for more background on function spaces and functional analysis.

596 S. M. LaValle: Planning Algorithms

1. A state-sensor mapping is expressed as y(t) = h(x(t)), in which x(t) and
y(t) are the state and observation, respectively, at time t ∈ T .

2. A state-nature mapping is expressed as y(t) = h(x(t), ψ(t)), which implies
that nature chooses some ψ(t) ∈ Ψ(x(t)) for each t ∈ T .

3. A history-based sensor mapping, which could depend on all of the states
obtained so far. Thus, it depends on the entire function x̃t. This could be
denoted as y(t) = h(x̃t, ψ(t)) if nature can also interfere with the observation.

If ũt and ỹt are combined with the initial condition η0, the history I-state at
time t is obtained as

ηt = (η0, ũt, ỹt). (11.53)

The history I-space at time t is the set of all possible ηt and is denoted as It.
Note that It is a space of functions because each ηt ∈ It is a function of time.
Recall that in the discrete-stage case, every Ik was combined into a single history
I-space, Ihist, using (11.18) or (11.19). The continuous-time analog is obtained as

Ihist =
⋃

t∈T

It, (11.54)

which is an irregular collection of functions because they have different domains;
this irregularity also occurred in the discrete-stage case, in which Ihist was com-
posed of sequences of varying lengths.

A continuous-time version of the cost functional in Formulation 11.1 can be
given to evaluate the execution of a plan. Let L denote a cost functional that may
be applied to any state-action history (x̃t, ũt) to yield

L(x̃t, ũt) =

∫ t

0

l(x(t′), u(t′))dt′ + lF (x(t)), (11.55)

in which l(x(t′), u(t′)) is the instantaneous cost and lF (x(t)) is a final cost.

11.4.3 Derived Information Spaces

For continuous state spaces, the motivation to construct derived I-spaces is even
stronger than in the discrete case because the I-space quickly becomes unwieldy.

Nondeterministic and probabilistic I-spaces for discrete stages

The concepts of I-maps and derived I-spaces from Section 11.2 extend directly to
continuous spaces. In the nondeterministic case, κndet once again transforms the
initial condition and history into a subset of X. In the probabilistic case, κprob
yields a probability density function over X. First, consider the discrete-stage
case.
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The nondeterministic I-states are obtained exactly as defined in Section 11.2.2,
except that the discrete sets are replaced by their continuous counterparts. For
example, F (x, u) as defined in (11.28) is now a continuous set, as are X and
Θ(x, u). Since probabilistic I-states are probability density functions, the deriva-
tion in Section 11.2.3 needs to be modified slightly. There are, however, no impor-
tant conceptual differences. Follow the derivation of Section 11.2.3 and consider
which parts need to be replaced.

The replacement for (11.35) is

p(xk|yk) =
p(yk|xk)p(xk)

∫

X

p(yk|xk)p(xk)dxk
, (11.56)

which is based in part on deriving p(yk|xk) from p(ψk|xk). The base of the induc-
tion, which replaces (11.36), is obtained by letting k = 1 in (11.56). By following
the explanation given from (11.37) to (11.40), but using instead probability den-
sity functions, the following update equations are obtained:

p(xk+1|ηk, uk) =
∫

X

p(xk+1|xk, uk, ηk)p(xk|ηk)dxk

=

∫

X

p(xk+1|xk, uk)p(xk|ηk)dxk,
(11.57)

and

p(xk+1|yk+1, ηk, uk) =
p(yk+1|xk+1)p(xk+1|ηk, uk)

∫

X

p(yk+1|xk+1)p(xk+1|ηk, uk)dxk+1

. (11.58)

Approximating nondeterministic and probabilistic I-spaces

Many other derived I-spaces extend directly to continuous spaces, such as the
limited-memory models of Section 11.2.4 and Examples 11.11 and 11.12. In the
present context, it is extremely useful to try to collapse the I-space as much
as possible because it tends to be unmanageable in most practical applications.
Recall that an I-map, κ : Ihist → Ider, partitions Ihist into sets over which a
constant action must be applied. The main concern is that restricting plans to
Ider does not inhibit solutions.

Consider making derived I-spaces that approximate nondeterministic or prob-
abilistic I-states. Approximations make sense because X is usually a metric space
in the continuous setting. The aim is to dramatically simplify the I-space while
trying to avoid the loss of critical information. A trade-off occurs in which the
quality of the approximation is traded against the size of the resulting derived I-
space. For the case of nondeterministic I-states, conservative approximations are
formulated, which are sets that are guaranteed to contain the nondeterministic
I-state. For the probabilistic case, moment-based approximations are presented,
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which are based on general techniques from probability and statistics to approxi-
mate probability densities. To avoid unnecessary complications, the presentation
will be confined to the discrete-stage model.

X2(η2) X3(η3)X1(η1)

Figure 11.9: The nondeterministic I-states may be complicated regions that are
difficult or impossible to compute.

X̂1 X̂2 X̂3

Figure 11.10: The nondeterministic I-states can be approximated by bounding
spheres.

Conservative approximations Suppose that nondeterministic uncertainty is
used and an approximation is made to the nondeterministic I-states. An I-map,
κapp : Indet → Iapp, will be defined in which Iapp is a particular family of subsets
of X. For example, Iapp could represent the set of all ball subsets of X. If
X = R

2, then the balls become discs, and only three parameters (x, y, r) are
needed to parameterize Iapp (x, y for the center and r for the radius). This implies
that Iapp ⊂ R

3; this appears to be much simpler than Indet, which could be
a complicated collection of regions in R

2. To make Iapp even smaller, it could
be required that x, y, and r are integers (or are sampled with some specified
dispersion, as defined in Section 5.2.3). If Iapp is bounded, then the number of
derived I-states would become finite. Of course, this comes an at expense because
Indet may be poorly approximated.

For a fixed sequence of actions (u1, u2, . . .) consider the sequence of nondeter-
ministic I-states:

X1(η1)
u1,y2−→ X2(η2)

u2,y3−→ X3(η3)
u3,y4−→ · · · , (11.59)

which is also depicted in Figure 11.9. The I-map Iapp must select a bounding
region for every nondeterministic I-state. Starting with a history I-state, η, the
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nondeterministic I-state Xk(ηk) can first be computed, followed by applying Iapp
to yield a bounding region. If there is a way to efficiently compute Xk(ηk) for any
ηk, then a plan on Iapp could be much simpler than those on Indet or Ihist.

If it is difficult to compute Xk(ηk), one possibility is to try to define a de-
rived information transition equation, as discussed in Section 11.2.1. The trouble,
however, is that Iapp is usually not a sufficient I-map. Imagine wanting to com-
pute κapp(Xk+1(ηk+1)), which is a bounding approximation to Xk+1(ηk+1). This
can be accomplished by starting with Xk(ηk), applying the update rules (11.30)
and (11.31), and then applying κapp to Xk+1(ηk+1). In general, this does not pro-
duce the same result as starting with the bounding volume Iapp(Xk(ηk)), applying
(11.30) and (11.31), and then applying κapp.

Thus, it is not possible to express the transitions entirely in Iapp without
some further loss of information. However, if this loss of information is tolerable,
then an information-destroying approximation may nevertheless be useful. The
general idea is to make a bounding region for the nondeterministic I-state in each
iteration. Let X̂k denote this bounding region at stage k. Be careful in using such
approximations. As depicted in Figures 11.9 and 11.10, the sequences of derived
I-states diverge. The sequence in Figure 11.10 is not obtained by simply bounding
each calculated I-state by an element of Iapp; the entire sequence is different.

Initially, X̂1 is chosen so that X1(η1) ⊆ X̂1. In each inductive step, X̂k is
treated as if it were the true nondeterministic I-state (not an approximation).
Using (11.30) and (11.31), the update for considering uk and yk+1 is

X̂ ′

k+1 =

(
⋃

xk∈X̂k

F (xk, uk)

)

∩H(yk+1). (11.60)

In general, X̂ ′
k+1(ηk+1) might not lie in Iapp. Therefore, a bounding region, X̂k+1 ∈

Iapp, must be selected to approximate X̂ ′ under the constraint that X̂ ′
k+1 ⊆ X̂k+1.

This completes the inductive step, which together with the base case yields a
sequence

X̂1
u1,y2−→ X̂2

u2,y3−→ X̂3
u3,y4−→ · · · , (11.61)

which is depicted in Figure 11.10.
Both a plan, π : Iapp → U , and information transitions can now be defined over

Iapp. To ensure that a plan is sound, the approximation must be conservative. If

in some iteration, X̂k+1(ηk+1) ⊂ X̂ ′
k+1(ηk+1), then the true state may not necessar-

ily be included in the approximate derived I-state. This could, for example, mean
that a robot is in a collision state, even though the derived I-state indicates that
this is impossible. This bad behavior is generally avoided by keeping conservative
approximations. At one extreme, the approximations can be made very conser-
vative by always assigning X̂k+1(ηk+1) = X. This, however, is useless because the
only possible plans must apply a single, fixed action for every stage. Even if the
approximations are better, it might still be impossible to cause transitions in the
approximated I-state. To ensure that solutions exist to the planning problem, it
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is therefore important to make the bounding volumes as close as possible to the
derived I-states.

This trade-off between the simplicity of bounding volumes and the compu-
tational expense of working with them was also observed in Section 5.3.2 for
collision detection. Dramatic improvement in performance can be obtained by
working with simpler shapes; however, in the present context this could come
at the expense of failing to solve the problem. Using balls as described so far
might not seem to provide very tight bounds. Imagine instead using solid ellip-
soids. This would provide tighter approximations, but the dimension of Iapp grows
quadratically with the dimension of X. A sphere equation generally requires n+1
parameters, whereas the ellipsoid equation requires (n2 ) + 2n parameters. Thus,
if the dimension of X is high, it may be difficult or even impossible to use el-
lipsoid approximations. Nonconvex bounding shapes could provide even better
approximations, but the required number of parameters could easily become un-
manageable, even if X = R

2. For very particular problems, however, it may be
possible to design a family of shapes that is both manageable and tightly ap-
proximates the nondeterministic I-states. This leads to many interesting research
issues.

Moment-based approximations Since the probabilistic I-states are functions,
it seems natural to use function approximation methods to approximate Iprob. One
possibility might be to use the first m coefficients of a Taylor series expansion.
The derived I-space then becomes the space of possible Taylor coefficients. The
quality of the approximation is improved as m is increased, but also the dimension
of the derived I-space rises.

Since we are working with probability density functions, it is generally prefer-
able to use moments as approximations instead of Taylor series coefficients or
other generic function approximation methods. The first and second moments are
the familiar mean and covariance, respectively. These are preferable over other
approximations because the mean and covariance exactly represent the Gaussian
density, which is the most basic and fundamental density in probability theory.
Thus, approximating the probabilistic I-space with first and second moments is
equivalent to assuming that the resulting probability densities are always Gaus-
sian. Such approximations are frequently made in practice because of the conve-
nience of working with Gaussians. In general, higher order moments can be used
to obtain higher quality approximations at the expense of more coefficients. Let
κmom : Iprob → Imom denote a moment-based I-map.

The same issues arise for κmom as for κapp. In most cases, κmom is not a
sufficient I-map. The moments are computed in the same way as the conserva-
tive approximations. The update equations (11.57) and (11.58) are applied for
probabilistic I-states; however, after each step, κmom is applied to the resulting
probability density function. This traps the derived I-states in Imom. The mo-
ments could be computed after each of (11.57) and (11.58) or after both of them
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have been applied (different results may be obtained). The later case may be more
difficult to compute, depending on the application.

First consider using the mean (first moment) to represent some probabilistic
I-state, p(x|η). Let xi denote the ith coordinate of x. The mean, x̄i, with respect
to xi is generally defined as

x̄i =

∫

X

xi p(x|η)dx. (11.62)

This leads to the vector mean x̄ = (x̄1, . . . , x̄n). Suppose that we would like to
construct Imom using only the mean. Since there is no information about the
covariance of the density, working with x̄ is very similar to estimating the state.
The mean value serves as the estimate, and Imom = X. This certainly helps
to simplify the I-space, but there is no way to infer the amount of uncertainty
associated with the I-state. Was the probability mass concentrated greatly around
x̄, or was the density function very diffuse over X?

Using second moments helps to alleviate this problem. The covariance with
respect to two variables, xi and xi, is

σi,j =

∫

X

xixj p(x|η)dx. (11.63)

Since σij = σji, the second moments can be organized into a symmetric covariance
matrix,

Σ =








σ1,1 σ1,2 · · · σ1,n
σ2,1 σ2,2 · · · σ2,n
...

...
...

σn,1 σn,2 · · · σn,n








(11.64)

for which there are (n2 )+n unique elements, corresponding to every xi,i and every
way to pair xi with xj for each distinct i and j such that 1 ≤ i, j ≤ n. This
implies that if first and second moments are used, then the dimension of Imom
is (n2 ) + 2n. For some problems, it may turn out that all probabilistic I-states
are indeed Gaussians. In this case, the mean and covariance exactly capture the
probabilistic I-space. The I-map in this case is sufficient. This leads to a powerful
tool called the Kalman filter, which is the subject of Section 11.6.1.

Higher quality approximations can be made by taking higher order moments.
The rth moment is defined as

∫

X

xi1xi2 · · · xir p(x|η)dx, (11.65)

in which i1, i2, . . ., ir are r integers chosen with replacement from {1, . . . , n}.
The moment-based approximation is very similar to the conservative approxi-

mations for nondeterministic uncertainty. The use of mean and covariance appears
very similar to using ellipsoids for the nondeterministic case. The level sets of a
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Gaussian density are ellipsoids. These level sets generalize the notion of confidence
intervals to confidence ellipsoids, which provides a close connection between the
nondeterministic and probabilistic cases. The domain of a Gaussian density is
R
n, which is not bounded, contrary to the nondeterministic case. However, for

a given confidence level, it can be approximated as a bounded set. For example,
an elliptical region can be computed in which 99.9% of the probability mass falls.
In general, it may be possible to combine the idea of moments and bounding vol-
umes to construct a derived I-space for the probabilistic case. This could yield
the guaranteed correctness of plans while also taking probabilities into account.
Unfortunately, this would once again increase the dimension of the derived I-space.

Derived I-spaces for continuous time

The continuous-time case is substantially more difficult, both to express and to
compute in general forms. In many special cases, however, there are elegant ways
to compute it. Some of these will be covered in Section 11.5 and Chapter 12.
To help complete the I-space framework, some general expressions are given here.
In general, I-maps and derived I-spaces can be constructed following the ideas of
Section 11.2.1.

Since there are no discrete transition rules, the derived I-states cannot be
expressed in terms of simple update rules. However, they can at least be expressed
as a function that indicates the state x(t) that will be obtained after ũt and θ̃t
are applied from an initial state x(0). Often, this is obtained via some form
of integration (see Section 14.1), although this may not be explicitly given. In
general, let Xt(ηt) ⊂ X denote a nondeterministic I-state at time t; this is the
replacement for Xk from the discrete-stage case. The initial condition is denoted
as X0, as opposed to X1, which was used in the discrete-stage case.

More definitions are needed to precisely characterize Xt(ηt). Let θ̃t : [0, t) → Θ
denote the history of nature actions up to time t. Similarly, let ψ̃t : [0, t] → Ψ
denote the history of nature sensing actions. Suppose that the initial condition is
X0 ⊂ X. The nondeterministic I-state is defined as

Xt(ηt) = {x ∈ X | ∃x′ ∈ X0, ∃θ̃t, and ∃ψ̃t such that

x = Φ(x′, ũt, θ̃t) and ∀t′ ∈ [0, t], y(t′) = h(x(t′), ψ(t′))}.
(11.66)

In words, this means that a state x(t) lies in Xt(ηt) if and only if there exists an
initial state x′ ∈ X0, a nature history θ̃t, and a nature sensing action history, ψ̃t
such that the transition equation causes arrival at x(t) and the observation history
ỹt agrees with the sensor mapping over all time from 0 to t.

It is also possible to derive a probabilistic I-state, but this requires technical
details from continuous-time stochastic processes and stochastic differential equa-
tions. In some cases, the resulting expressions work out very nicely; however,
it is difficult to formulate a general expression for the derived I-state because it
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Ψ

H(y)

y
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(a) (b)

Figure 11.11: A simple sensing model in which the observation error is no more
than r: (a) the nature sensing action space; (b) the preimage in X based on
observation y.

depends on many technical assumptions regarding the behavior of the stochastic
processes. For details on such systems, see [153].

11.5 Examples for Continuous State Spaces

11.5.1 Sensor Models

A remarkable variety of sensing models arises in applications that involve con-
tinuous state spaces. This section presents a catalog of different kinds of sensor
models that is inspired mainly by robotics problems. The models are gathered
together in one place to provide convenient reference. Some of them will be used
in upcoming sections, and others are included to help in the understanding of I-
spaces. For each sensor, there are usually two different versions, based on whether
nature sensing actions are included.

Linear sensing models Developed mainly in control theory literature, linear
sensing models are some of the most common and important. For all of the sensors
in this family, assume that X = Y = R

n (nonsingular linear transformations allow
the sensor space to effectively have lower dimension, if desired). The simplest
case in this family is the identity sensor, in which y = x. In this case, the state
is immediately known. If this sensor is available at every stage, then the I-space
collapses to X by the I-map κsf : Ihist → X.

Now nature sensing actions can be used to corrupt this perfect state obser-
vation to obtain y = h(x, ψ) = x + ψ. Suppose that y is an estimate of x, the
current state, with error bounded by a constant r ∈ (0,∞). This can be modeled
by assigning for every x ∈ X, Ψ(x) as a closed ball of radius r, centered at the
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origin:
Ψ = {ψ ∈ R

n | ‖ψ‖ ≤ r}. (11.67)

Figure 11.11 illustrates the resulting nondeterministic sensing model. If the obser-
vation y is received, then it is known that the true state lies within a ball in X of
radius r, centered at y. This ball is the preimage, H(y), as defined in (11.11). To
make the model probabilistic, a probability density function can be defined over
Ψ. For example, it could be assumed that p(ψ) is a uniform density (although
this model is not very realistic in many applications because there is a boundary
at which the probability mass discontinuously jumps to zero).

A more typical probabilistic sensing model can be made by letting Ψ(x) =
R
n and defining a probability density function over all of Rn. (Note that the

nondeterministic version of this sensor is completely useless.) One of the easiest
choices to work with is the multivariate Gaussian probability density function,

p(ψ) =
1

√

(2π)n|Σ|
e−

1

2
ψTΣψ, (11.68)

in which Σ is the covariance matrix (11.64), |Σ| is its determinant, and ψTΣψ is
a quadratic form, which multiplies out to yield

ψTΣψ =
n∑

i=1

n∑

j=1

σi,jψiψj. (11.69)

If p(x) is a Gaussian and y is received, then p(y|x) must also be Gaussian under
this model. This will become very important in Section 11.6.1.

The sensing models presented so far can be generalized by applying linear
transformations. For example, let C denote a nonsingular n×n matrix with real-
valued entries. If the sensor mapping is y = h(x) = Cx, then the state can still
be determined immediately because the mapping y = Cx is bijective; each H(y)
contains a unique point of X. A linear transformation can also be formed on the
nature sensing action. Let W denote an n× n matrix. The sensor mapping is

y = h(x) = Cx+Wψ. (11.70)

In general, C and W may even be singular, and a linear sensing model is still
obtained. Suppose that W = 0. If C is singular, however, it is impossible to infer
the state directly from a single sensor observation. This generally corresponds to
a projection from an n-dimensional state space to a subset of Y whose dimension
is the rank of C. For example, if

C =

(
0 1
0 0

)

, (11.71)

then y = Cx yields y1 = x2 and y2 = 0. Only x2 of each (x1, x2) ∈ X can be
observed because C has rank 1. Thus, for some special cases, singular matrices
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can measure some state variables while leaving others invisible. For a general sin-
gular matrix C, the interpretation is that X is projected into some k-dimensional
subspace by the sensor, in which k is the rank of C. If W is singular, this means
that the effect of nature is limited. The degrees of freedom with which nature can
distort the sensor observations is the rank of W . These concepts motivate the
next set of sensor models.

Simple projection sensors Several common sensor models can be defined by
observing particular coordinates of X while leaving others invisible. This is the
continuous version of the selective sensor from Example 11.4. Imagine, for exam-
ple, a mobile robot that rolls in a 2D world, W = R

2, and is capable of rotation.
The state space (or configuration space) is X = R

2 × S
1. For visualization pur-

poses, it may be helpful to imagine that the robot is very tiny, so that it can be
interpreted as a point, to avoid the complicated configuration space constructions
of Section 4.3.7 Let p = (p1, p2) denote the coordinates of the point, and let s ∈ S

1

denote its orientation. Thus, a state in R
2 × S

1 is specified as (p1, p2, s) (rather
than (x, y, θ), which may cause confusion with important spaces such as X, Y ,
and Θ).

Suppose that the robot can estimate its position but does not know its orienta-
tion. This leads to a position sensor defined as Y = R

2, with y1 = p1 and y2 = p2
(also denoted as y = h(x) = p). The third state variable, s, of the state remains
unknown. Of course, any of the previously considered nature sensing action mod-
els can be added. For example, nature might cause errors that are modeled with
Gaussian probability densities.

A compass or orientation sensor can likewise be made by observing only the
final state variable, s. In this case, Y = S

1 and y = s. Nature sensing actions
can be included. For example, the sensed orientation may be y, but it is only
known that |s−y| ≤ ǫ for some constant ǫ, which is the maximum sensor error. A
Gaussian model cannot exactly be applied because its domain is unbounded and
S
1 is bounded. This can be fixed by truncating the Gaussian or by using a more

appropriate distribution.

The position and orientation sensors generalize nicely to a 3D world, W = R
3.

Recall from Section 4.2 that in this case the state space is X = SE(3), which can
be represented as R3×RP

3. A position sensor measures the first three coordinates,
whereas an orientation sensor measures the last three coordinates. A physical
sensor that measures orientation in R

3 is often called a gyroscope. These are
usually based on the principle of precession, which means that they contain a
spinning disc that is reluctant to change its orientation due to angular momentum.
For the case of a linkage of bodies that are connected by revolute joints, a point
in the state space gives the angles between each pair of attached links. A joint
encoder is a sensor that yields one of these angles.

7This can also be handled, but it just adds unnecessary complication to the current discussion.
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Dynamics of mechanical systems will not be considered until Part IV; how-
ever, it is worth pointing out several sensors. In these problems, the state space
will be expanded to include velocity parameters and possibly even acceleration
parameters. In this case, a speedometer can sense a velocity vector or a scalar
speed. Sensors even exist to measure angular velocity, which indicates the speed
with which rotation occurs. Finally, an accelerometer can be used to sense accel-
eration parameters. With any of these models, nature sensing actions can be used
to account for measurement errors.

(a) (b) (c)

Figure 11.12: Boundary sensors indicate whether contact with the boundary has
occurred. In the latter case, a proximity sensor may indicate whether the bound-
ary is within a specified distance.

Boundary sensors If the state space has an interesting boundary, as in the case
of Cfree for motion planning problems, then many important boundary sensors can
be formulated based on the detection of the boundary. Figure 11.12 shows several
interesting cases on which sensors are based.

Suppose that the state space is a closed set with some well-defined boundary.
To provide a connection to motion planning, assume that X = cl(Cfree), the
closure of Cfree. A contact sensor determines whether the boundary is being
contacted. In this case, Y = {0, 1} and h is defined as h(x) = 1 if x ∈ ∂X, and
h(x) = 0 otherwise. These two cases are shown in Figures 11.12a and 11.12b,
respectively. Using this sensor, there is no information regarding where along the
boundary the contact may be occurring. In mobile robotics, it may be disastrous
if the robot is in contact with obstacles. Instead, a proximity sensor is often used,
which yields h(x) = 1 if the state or position is within some specified constant, r,
of ∂X, and h(x) = 0 otherwise. This is shown in Figure 11.12.

In robot manipulation, haptic interfaces, and other applications in which phys-
ical interaction occurs between machines and the environment, a force sensor may
be used. In addition to simply indicating contact, a force sensor can indicate the
magnitude and direction of the force. The robot model must be formulated so
that it is possible to derive the anticipated force value from a given state.

Landmark sensors Many important sensing models can be defined in terms
of landmarks. A landmark is a special point or region in the state space that



11.5. EXAMPLES FOR CONTINUOUS STATE SPACES 607

can be detected in some way by the sensor. The measurements of the landmark
can be used to make inferences about the current state. An ancient example is
using stars to navigate on the ocean. Based on the location of the stars relative
to a ship, its orientation can be inferred. You may have found landmarks useful
for trying to find your way through an unfamiliar city. For example, mountains
around the perimeter of Mexico City or the Eiffel Tower in Paris might be used
to infer your heading. Even though the streets of Paris are very complicated, it
might be possible to walk to the Eiffel Tower by walking toward it whenever it is
visible. Such models are common in the competitive ratio framework for analyzing
on-line algorithms [185].

Landmark

x

Figure 11.13: The most basic landmark sensor indicates only its direction.

In general, a set of states may serve as landmarks. A common model is to
make xG a single landmark. In robotics applications, these landmarks may be
instead considered as points in the world, W . Generalizations from points to
landmark regions are also possible. The ideas, here, however, will be kept simple
to illustrate the concept. Following this presentation, you can imagine a wide
variety of generalizations. Assume for all examples of landmarks that X = R

2,
and let a state be denoted by x = (x1, x2).

For the first examples, suppose there is only one landmark, l ∈ X, with co-
ordinates (l1, l2). A homing sensor is depicted in Figure 11.13 and yields values
in Y = S

1. The sensor mapping is h(x) = atan2(l1 − x1, l2 − x2), in which atan2
gives the angle in the proper quadrant.

Another possibility is a Geiger counter sensor (radiation level), in which Y =
[0,∞) and h(x) = ‖x − l‖. In this case, only the distance to the landmark is
reported, but there is no directional information.

A contact sensor could also be combined with the landmark idea to yield a
sensor called a pebble. This sensor reports 1 if the pebble is “touched”; otherwise,
it reports 0. This idea can be generalized nicely to regions. Imagine that there is
a landmark region, Xl ⊂ X. If x ∈ Xl, then the landmark region detector reports
1; otherwise, it reports 0.

Many useful and interesting sensing models can be formulated by using the
ideas explained so far with multiple landmarks. For example, using three homing
sensors that are not collinear, it is possible to reconstruct the exact state. Many
interesting problems can be made by populating the state space with landmark
regions and their associated detectors. In mobile robotics applications, this can be
implemented by placing stationary cameras or other sensors in an environment.
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The sensors can indicate which cameras can currently view the robot. They might
also provide the distance from each camera.

(a) (b)

Figure 11.14: (a) A mobile robot is dropped into an unknown environment. (b)
Four sonars are used to measure distances to the walls.

Depth-mapping sensors In many robotics applications, the robot may not
have a map of the obstacles in the world. In this case, sensing is used to both
learn the environment and to determine its position and orientation within the
environment. Suppose that a robot is dropped into an environment as shown in
Figure 11.14a. For problems such as this, the state represents both the position
of the robot and the obstacles themselves. This situation is explained in further
detail in Section 12.3. Here, some sensor models for problems of this type are
given. These are related to the boundary and proximity sensors of Figure 11.12,
but they yield more information when the robot is not at the boundary.

One of the oldest sensors used in mobile robotics is an acoustic sonar, which
emits a high-frequency sound wave in a specific direction and measures the time
that it takes for the wave to reflect off a wall and return to the sonar (often the
sonar serves as both a speaker and a microphone). Based on the speed of sound
and the time of flight, the distance to the wall can be estimated. Sometimes, the
wave never returns; this can be modeled with nature. Also, errors in the distance
estimate can be modeled with nature. In general, the observation space Y for a
single sonar is [0,∞], in which ∞ indicates that the wave did not return. The
interpretation of Y could be the time of flight, or it could already be transformed
into estimated distance. If there are k sonars, each pointing in a different direction,
then Y = [0,∞]k, which indicates that one reading can be obtained for each sonar.
For example, Figure 11.14b shows four sonars and the distances that they can
measure. Each observation therefore yields a point in R

4.
Modern laser scanning technology enables very accurate distance measure-

ments with very high angular density. For example, the SICK LMS-200 can
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(a) (b)

Figure 11.15: A range scanner or visibility sensor is like having a continuum of
sonars, even with much higher accuracy. A distance value is provided for each
s ∈ S

1.

Figure 11.16: A gap sensor indicates only the directions at which discontinuities
in depth occur, instead of providing distance information.

obtain a distance measurement for at least every 1/2 degree and sweep the full
360 degrees at least 30 times a second. The measurement accuracy in an indoor
environment is often on the order of a few millimeters. Imagine the limiting case,
which is like having a continuum of sonars, one for every angle in S

1. This results
in a sensor called a range scanner or visibility sensor, which provides a distance
measurement for each s ∈ S

1, as shown in Figure 11.15.

A weaker sensor can be made by only indicating points in S
1 at which dis-

continuities (or gaps) occur in the depth scan. Refer to this as a gap sensor; an
example is shown in Figure 11.16. It might even be the case that only the circular
ordering of these gaps is given around S

1, without knowing the relative angles be-
tween them, or the distance to each gap. A planner based on this sensing model
is presented in Section 12.3.4.
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Odometry sensors A final category will be given, which provides interesting
examples of history-based sensor mappings, as defined for discrete state spaces in
Section 11.1.1. Mobile robots often have odometry sensors, which indicate how
far the robot has traveled, based on the amount that the wheels have turned.
Such measurements are often inaccurate because of wheel slippage, surface im-
perfections, and small modeling errors. For a given state history, x̃t, a sensor can
estimate the total distance traveled. For this model, Y = [0,∞) and y = h(x̃t), in
which the argument, x̃t, to h is the entire state history up to time t. Another way
to model odometry is to have a sensor indicate the estimated distance traveled
since the last stage. This avoids the dependency on the entire history, but it may
be harder to model the resulting errors in distance estimation.

In some literature (e.g., [105]) the action history, ũk, is referred to as odometry.
This interpretation is appropriate in some applications. For example, each action
might correspond to turning the pedals one full revolution on a bicycle. The
number of times the pedals have been turned could serve as an odometry reading.
Since this information already appears in ηk, it is not modeled in this book as
part of the sensing process. For the bicycle example, there might be an odometry
sensor that bases its measurements on factors other than the pedal motions. It
would be appropriate to model this as a history-based sensor.

Another kind of history-based sensor is to observe a wall clock that indicates
how much time has passed since the initial stage. This, in combination with other
information, such as the speed of the robot, could enable strong inferences to be
made about the state.

11.5.2 Simple Projection Examples

This section gives examples of I-spaces for which the sensor mapping is y = h(x)
and h is a projection that reveals some of the state variables, while concealing
others. The examples all involve continuous time, and the focus is mainly on
the nondeterministic I-space Indet. It is assumed that there are no actions, which
means that U = ∅. Nature actions, Θ(x), however, will be allowed. Since there
are no robot actions and no nature sensing actions, all of the uncertainty arises
from the fact that h is a projection and the nature actions that affect the state
transition equation are not known. This is a very important and interesting class
of problems in itself. The examples can be further complicated by allowing some
control from the action set, U ; however, the purpose here is to illustrate I-space
concepts. Therefore, it will not be necessary.

Example 11.20 (Moving on a Sine Curve) Suppose that the state space is
the set of points that lie on the sine curve in the plane:

X = {(x1, x2) ∈ R
2 | x2 = sin x1}. (11.72)

Let U = ∅, which results in no action history. The observation space is Y = [−1, 1]
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Y X

Figure 11.17: The state space is the set of points traced out by a sine curve in R
2.

Y X

Figure 11.18: The preimage, H(y), of an observation y is a countably infinite set
of points along X.

and the sensor mapping yields y = h(x) = x2, the height of the point on the sine
curve, as shown in Figure 11.17.

The nature action space is Θ = {−1, 1}, in which −1 means to move at unit
speed in the −x1 direction along the sine curve, and 1 means to move at unit
speed in the x1 direction along the curve. Thus, for some nature action history
θ̃t, a state trajectory x̃t that moves the point along the curve can be determined
by integration.

A history I-state takes the form ηt = (X0, ỹt), which includes the initial con-
dition X0 ⊆ X and the observation history ỹt up to time t. The nondeterministic
I-states are very interesting for this problem. For each observation y, the preimage
H(y) is a countably infinite set of points that corresponds to the intersection of
X with a horizontal line at height y, as shown in Figure 11.18.

The uncertainty for this problem is always characterized by the number of
intersection points that might contain the true state. Suppose that X0 = X. In
this case, there is no state trajectory that can reduce the amount of uncertainty.
As the point moves along X, the height is always known because of the sensor,
but the x1 coordinate can only be narrowed down to being any of the intersection
points.

XY

Figure 11.19: A bifurcation occurs when y = 1 or y = −1 is received. This
irreversibly increases the amount of uncertainty in the state.
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(a) (b)

Figure 11.20: (a) Imagine trying to infer the location of a point on a planar graph
while observing only a single coordinate. (b) This simple example involves a point
moving along a graph that has four edges. When the point is on the rightmost
edge, there is no uncertainty; however, uncertainty exists when the point travels
along the other edges.

Suppose instead that X0 = {x0}, in which x0 is some particular point along
X. If y remains within (0, 1) over some any period of time starting at t = 0, then
x(t) is known because the exact segment of the sine curve that contains the state
is known. However, if the point reaches an extremum, which results in y = 0 or
y = 1, then it is not known which way the point will travel. From this point, the
sensor cannot disambiguate moving in the −x1 direction from the x1 direction.
Therefore, the uncertainty grows, as shown in Figure 11.19. After the observation
y = 1 is obtained, there are two possibilities for the current state, depending on
which action was taken by nature when y = 1; hence, the nondeterministic I-state
contains two states. If the motion continues until y = −1, then there will be four
states in the nondeterministic I-state. Unfortunately, the uncertainty can only
grow in this example. There is no way to use the sensor to reduce the size of the
nondeterministic I-states. �

The previous example can be generalized to observing a single coordinate of a
point that moves around in a planar topological graph, as shown in Figure 11.20a.
Most of the model remains the same as for Example 11.20, except that the state
space is now a graph. The set of nature actions, Θ(x), needs to be extended so
that if x is a vertex of the graph, then there is one input for each incident edge.
These are the possible directions along which the point could move.

Example 11.21 (Observing a Point on a Graph) Consider the graph shown
in Figure 11.20b, in which there are four edges.8 When the point moves on the
interior of the rightmost edge of the graph, then the state can be inferred from

8This example was significantly refined after a helpful discussion with Rob Ghrist.
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Figure 11.21: Pieces of the nondeterministic I-space Indet are obtained by the
different possible sets of edges on which the point may lie.

the sensor. The set H(y) contains a single point on the rightmost edge. If the
point moves in the interior of one of the other edges, then H(y) contains three
points, one for each edge above y. This leads to seven possible cases for the non-
deterministic I-state, as shown in Figure 11.21. Any subset of these edges may be
possible for the nondeterministic I-state, except for the empty set.

The eight pieces of Indet depicted in Figure 11.21 are connected together in an
interesting way. Suppose that the point is on the rightmost edge and moves left.
After crossing the vertex, the I-state must be the case shown in the upper right
of Figure 11.21, which indicates that the point could be on one of two edges. If
the point travels right from one of the I-states of the left edges, then the I-state
shown in the bottom right of Figure 11.20 is always reached; however, it is not
necessarily possible to return to the same I-state on the left. Thus, in general,
there are directional constraints on Indet. Also, note that from the I-state on the
lower left of Figure 11.20, it is impossible to reach the I-state on the lower right
by moving straight right. This is because it is known from the structure of the
graph that this is impossible. �

The graph example can be generalized substantially to reflect a wide variety
of problems that occur in robotics and other areas. For example, Figure 11.22
shows a polygon in which a point can move. Only one coordinate is observed,
and the resulting nondeterministic I-space has layers similar to those obtained
for Example 11.21. These ideas can be generalized to any dimension. Interesting
models can be constructed using the simple projection sensors, such as a position
sensor or compass, from Section 11.5.1. In Section 12.4, such layers will appear
in a pursuit-evasion game that uses visibility sensors to find moving targets.

11.5.3 Examples with Nature Sensing Actions

This section illustrates the effect of nature sensing actions, but only for the nonde-
terministic case. General methods for computing probabilistic I-states are covered
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Y
h(x)

x
X

Figure 11.22: The graph can be generalized to a planar region, and layers in the
nondeterministic I-space will once again be obtained.

(a) (b)

Figure 11.23: (a) It is always possible to determine whether the state trajectory
went above or below the designated region. (b) Now the ability to determine
whether the trajectory went above or below the hole depends on the particular
observations. In some cases, it may not be possible.

in Section 11.6.

Example 11.22 (Above or Below Disc?) This example involves continuous
time. Suppose that the task is to gather information and determine whether the
state trajectory travels above or below some designated region of the state space,
as shown in Figure 11.23.

Let X = R
2. Motions are generated by integrating the velocity (ẋ, ẏ), which is

expressed as ẋ = cos(u(t) + θ(t)) and ẏ = sin(u(t) + θ(t)). For simplicity, assume
u(t) = 0 is applied for all time, which is a command to move right. The nature
action θ(t) ∈ Θ = [−π/4, π/4] interferes with the outcome. The robot tries to
make progress by moving in the positive x1 direction; however, the interference
of nature makes it difficult to predict the x2 direction. Without nature, there
should be no change in the x2 coordinate; however, with nature, the error in the
x2 direction could be as much as t, after t seconds have passed. Figure 11.24
illustrates the possible resulting motions.
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x
u

Figure 11.24: Nature interferes with the commanded direction, so that the true
state could be anywhere within a circular section.

F (x, u)

u
x

H(y)

Figure 11.25: A simple mobile robot motion model in which the sensing model is
as given in Figure 11.11 and then nature interferes with commanded motions to
yield an uncertainty region that is a circular ring.

Sensor observations will be made that alleviate the growing cone of uncertainty;
use the sensing model from Figure 11.11, and suppose that the measurement error
r is 1. Suppose there is a disc in R

2 of radius larger than 1, as shown in Figure
11.23a. Since the true state is never further than 1 from the measured state, it
is always possible to determine whether the state passed above or below the disc.
Multiple possible observation histories are shown in Figure 11.23a. The observa-
tion history need not even be continuous, but it is drawn that way for convenience.
For a disc with radius less than 1, there may exist some observation histories for
which it is impossible to determine whether the true state traveled above or below
the disc; see Figure 11.23b. For other observation histories, it may still be possible
to make the determination; for example, from the uppermost trajectory shown in
Figure 11.23b it is known for certain that the true state traveled above the disc. �

Example 11.23 (A Simple Mobile Robot Model) In this example, suppose
that a robot is modeled as a point that moves in X = R

2. The sensing model
is the same as in Example 11.22, except that discrete stages are used instead of
continuous time. It can be imagined that each stage represents a constant interval
of time (e.g., 1 second).

To control the robot, a motion command is given in the form of an action
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Figure 11.26: (a) Combining information from X2(η1, u1) and the observation y2;
(b) the intersection must be taken between X2(η1, u1) and H(y2). (c) The action
u2 leads to a complicated nondeterministic I-state that is the union of F (x2, u2)
over all x2 ∈ X2(η2).

uk ∈ U = S
1. Nature interferes with the motions in two ways: 1) The robot

tries to travel some distance d, but there is some error ǫd > 0, for which the true
distance traveled, d′, is known satisfy |d′ − d| < ǫd; and 2) the robot tries to move
in a direction u, but there is some error, ǫu > 0, for which the true direction u′ is
known to satisfy |u− u′| < ǫu. These two independent errors can be modeled by
defining a 2D nature action set, Θ(x). The transition equation is then defined so
that the forward projection F (x, u) is as shown in Figure 11.25.

Some nondeterministic I-states will now be constructed. Suppose that the
initial state x1 is known, and history I-states take the form

ηk = (x1, u1, . . . , uk−1, y1, . . . , yk). (11.73)

The first sensor observation, y1, is useless because the initial state is known.
Equation (11.29) is applied to yield H(y1)∩{x1} = {x1}. Suppose that the action
u1 = 0 is applied, indicating that the robot should move horizontally to the right.
Equation (11.30) is applied to yield X2(η1, u1), which looks identical to the F (x, u)
shown in Figure 11.25. Suppose that an observation y2 is received as shown in
Figure 11.26a. Using this, X2(η2) is computed by taking the intersection of H(y2)
and X2(η1, u1), as shown in Figure 11.26b.

The next step is considerably more complicated. Suppose that u2 = 0 and that
(11.30) is applied to compute X3(η2, u2) from X2(η2). The shape shown in Figure
11.26c is obtained by taking the union of F (x2, u2) for all possible x2 ∈ X2(η2).
The resulting shape is composed of circular arcs and straight line segments (see
Exercise 13). Once y3 is obtained, an intersection is taken once again to yield
X3(η3) = X3(η2, u2) ∩ H(y3), as shown in Figure 11.27. The process repeats in
the same way for the desired number of stages. The complexity of the region
in Figure 11.26c provides motivation for the approximation methods of Section
11.4.3. For example, the nondeterministic I-states could be nicely approximated
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Figure 11.27: After the sensor observation, y3, the intersection must be taken
between X3(η2, u2) and H(y3).

by ellipsoidal regions. �

11.5.4 Gaining Information Without Sensors

For some problems, it is remarkable that uncertainty may be reduced without even
using sensors. Recall Example 11.17. This is counterintuitive because it seems
that information regarding the state can only be gained from sensing. It is possi-
ble, however, to also gain information from the knowledge that some actions have
been executed and the effect that should have in terms of the state transitions.
The example presented in this section is inspired by work on sensorless manipu-
lation planning [97, 114], which is covered in more detail in Section 12.5.2. This
topic underscores the advantages of reasoning in terms of an I-space, as opposed
to requiring that accurate state estimates can be made.

Figure 11.28: A top view of a tray that must be tilted to roll the ball into the
desired corner.
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1: down 2: down-left 3: down-right

4: up 5: up-left 6: down-left

Figure 11.29: A plan is shown that places the ball in the desired location using
a sequence of six tilts, regardless of its initial position and in spite of the fact
that there are no sensors. The thickened black lines and black dots indicate the
possible locations for the ball: the nondeterministic I-states. Under each picture,
the direction that the ball rolls due to the action is written.

Example 11.24 (Tray Tilting) The state space, X ⊂ R
2, indicates the posi-

tion of a ball that rolls on a flat surface, as shown Figure 11.28. The ball is confined
to roll within the polygonal region shown in the figure. It can be imagined that
the ball rolls in a tray on which several barriers have been glued to confine its
motion (try this experiment at home!). If the tray is tilted, it is assumed that the
ball rolls in a direction induced by gravity (in the same way that a ball rolls to
the bottom of a pinball machine).

The tilt of the tray is considered as an action that can be chosen by the robot.
It is assumed that the initial position of the ball (initial state) is unknown and
there are no sensors that can be used to estimate the state. The task is to find
some tilting motions that are guaranteed to place the ball in the position shown
in Figure 11.28, regardless of its initial position.

The problem could be modeled with continuous time, but this complicates the
design. If the tray is tilted in a particular orientation, it is assumed that the ball
rolls in a direction, possibly following the boundary, until it comes to rest. This
can be considered as a discrete-stage transition: The ball is in some rest state, a
tilt action is applied, and a then it enters another rest state. Thus, a discrete-stage
state transition equation, xk+1 = f(xk, uk), is used.

To describe the tilting actions, we can formally pick directions for the upward
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normal vector to the tray from the upper half of S2; however, this can be reduced
to a one-dimensional set because the steepness of the tilt is not important, as long
as the ball rolls to its new equilibrium state. Therefore, the set of actions can be
considered as U = S

1, in which a direction u ∈ S
1 indicates the direction that the

ball rolls due to gravity. Before any action is applied, it is assumed that the tray
is initially level (its normal is parallel to the direction of gravity). In practice, one
should be more careful and model the motion of the tray between a pair of actions;
this is neglected here because the example is only for illustrative purposes. This
extra level of detail could be achieved by introducing new state variables that
indicate the orientation of the tray or by using continuous-time actions. In the
latter case, the action is essentially providing the needed state information, which
means that the action function would have to be continuous. Here it is simply
assumed that a sequence of actions from S

1 is applied.

The initial condition is X1 = X and the history I-state is

ηk = (X1, u1, u2, . . . , uk−1). (11.74)

Since there are no observations, the path through the I-space is predictable. There-
fore, a plan, π, is simply an action sequence, π = (u1, u2, . . . , uK), for any desired
K.

It is surprisingly simple to solve this task by reasoning in terms of nondeter-
ministic I-states, each of which corresponds to a set of possible locations for the
ball. A sequence of six actions, as shown in Figure 11.29, is sufficient to guarantee
that the ball will come to rest at the goal position, regardless of its initial position.
�

11.6 Computing Probabilistic Information States

The probabilistic I-states can be quite complicated in practice because each el-
ement of Iprob is a probability distribution or density function. Therefore, sub-
stantial effort has been invested in developing efficient techniques for computing
probabilistic I-states efficiently. This section can be considered as a continua-
tion of the presentations in Sections 11.2.3 (and part of Section 11.4, for the case
of continuous state spaces). Section 11.6.1 covers Kalman filtering, which pro-
vides elegant computations of probabilistic I-states. It is designed for problems in
which the state transitions and sensor mapping are linear, and all acts of nature
are modeled by multivariate Gaussian densities. Section 11.6.2 covers a general
sampling-based planning approach, which is approximate but applies to a broader
class of problems. One of these methods, called particle filtering, has become very
popular in recent years for mobile robot localization.
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11.6.1 Kalman Filtering

This section covers the most successful and widely used example of a derived
I-space that dramatically collapses the history I-space. In the special case in
which both f and h are linear functions, and p(θ), p(ψ), and p(x1) are Gaussian,
all probabilistic I-states become Gaussian. This means that the probabilistic
I-space, Iprob, does not need to represent every conceivable probability density
function. The probabilistic I-state is always trapped in the subspace of Iprob
that corresponds only to Gaussians. The subspace is denoted as Igauss. This
implies that an I-map, κmom : Iprob → Igauss, can be applied without any loss of
information.

The model is called linear-Gaussian (or LG). Each Gaussian density on R
n is

fully specified by its n-dimensional mean vector µ and an n×n symmetric covari-
ance matrix, Σ. Therefore, Igauss can be considered as a subset of Rm in which
m = 2n+ (n2 ). For example, if X = R

2, then Igauss ⊂ R
5, because two indepen-

dent parameters specify the mean and three independent parameters specify the
covariance matrix (not four, because of symmetry). It was mentioned in Section
11.4.3 that moment-based approximations can be used in general; however, for an
LG model it is important to remember that Igauss is an exact representation of
Iprob.

In addition to the fact that the Iprob collapses nicely, κmom is a sufficient I-map,
and convenient expressions exist for incrementally updating the derived I-states
entirely in terms of the computed means and covariance. This implies that we
can work directly with Igauss, without any regard for the original histories or even
the general formulas for the probabilistic I-states from Section 11.4.1. The update
expressions are given here without the full explanation, which is lengthy but not
difficult and can be found in virtually any textbook on stochastic control (e.g.,
[25, 151]).

For Kalman filtering, all of the required spaces are Euclidean, but they may
have different dimensions. Therefore, letX = R

n, U = Θ = R
m, and Y = Ψ = R

r.
Since Kalman filtering relies on linear models, everything can be expressed in
terms of matrix transformations. Let Ak, Bk, Ck, Gk, andHk each denote a matrix
with constant real-valued entries and which may or may not be singular. The
dimensions of the matrices will be inferred from the equations in which they will
appear (the dimensions have to be defined correctly to make the multiplications
work out right). The k subscript is used to indicate that a different matrix may
be used in each stage. In many applications, the matrices will be the same in
each stage, in which case they can be denoted by A, B, C, G, and H. Since
Kalman filtering can handle the more general case, the subscripts are included
(even though they slightly complicate the expressions).

In general, the state transition equation, xk+1 = fk(xk, uk, θk), is defined as

xk+1 = Akxk + Bkuk +Gkθk, (11.75)

in which the matrices Ak, Bk, and Gk are of appropriate dimensions. The notation
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fk is used instead of f , because the Kalman filter works even if f is different in
every stage.

Example 11.25 (Linear-Gaussian Example) For a simple example of (11.75),
suppose X = R

3 and U = Θ = R
2. A particular instance is

xk+1 =





0
√
2 1

1 −1 4
2 0 1



 xk +





1 0
0 1
1 1



uk +





1 1
0 −1
0 1



 θk. (11.76)

�

The general form of the sensor mapping yk = hk(xk, ψk) is

yk = Ckxk +Hkψk, (11.77)

in which the matrices Ck and Hk are of appropriate dimension. Once again, hk is
used instead of h because a different sensor mapping can be used in every stage.

So far the linear part of the model has been given. The next step is to specify
the Gaussian part. In each stage, both nature actions θk and ψk are modeled with
zero-mean Gaussians. Thus, each has an associated covariance matrix, denoted by
Σθ and Σψ, respectively. Using the model given so far and starting with an initial
Gaussian density over X, all resulting probabilistic I-states will be Gaussian [151].

Every derived I-state in Igauss can be represented by a mean and covariance.
Let µk and Σk denote the mean and covariance of P (xk|ηk). The expressions given
in the remainder of this section define a derived information transition equation
that computes µk+1 and Σk+1, given µk, Σk, uk, and yk+1. The process starts by
computing µ1 and Σ1 from the initial conditions.

Assume that an initial condition is given that represents a Gaussian density
over Rn. Let this be denoted by µ0, and Σ0. The first I-state, which incorporates
the first observation y1, is computed as µ1 = µ0 + L1(y1 − C1µ0) and

Σ1 = (I − L1C1)Σ0, (11.78)

in which I is the identity matrix and

L1 = Σ0C
T
1

(
C1Σ0C

T
1 +H1ΣψH1

)−1
. (11.79)

Although the expression for L1 is complicated, note that all matrices have been
specified as part of the model. The only unfortunate part is that a matrix inversion
is required, which sometimes leads to numerical instability in practice; see [151]
or other sources for an alternative formulation that alleviates this problem.

Now that µ1 and Σ1 have been expressed, the base case is completed. The
next part is to give the iterative updates from stage k to stage k + 1. Using µk,
the mean at the next stage is computed as

µk+1 = Akµk + Bkuk + Lk+1(yk+1 − Ck+1(Akµk +Bkuk)), (11.80)
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in which Lk+1 will be defined shortly. The covariance is computed in two steps;
one is based on applying uk, and the other arises from considering yk+1. Thus,
after uk is applied, the covariance becomes

Σ′

k+1 = AkΣkA
T
k +GkΣθG

T
k . (11.81)

After yk+1 is received, the covariance Σk+1 is computed from Σ′
k+1 as

Σk+1 = (I − Lk+1Ck+1)Σ
′

k+1. (11.82)

The expression for Lk is

Lk = Σ′

kC
T
k

(
CkΣ

′

kC
T
k +HkΣψHk

)−1
. (11.83)

To obtain Lk+1, substitute k+1 for k in (11.83). Note that to compute µk+1 using
(11.80), Σ′

k+1 must first be computed because (11.80) depends on Lk+1, which in
turn depends on Σ′

k+1.
The most common use of the Kalman filter is to provide reliable estimates of

the state xk by using µk. It turns out that the optimal expected-cost feedback
plan for a cost functional that is a quadratic form can be obtained for LG systems
in a closed-from expression; see Section 15.2.2. This model is often called LQG,
to reflect the fact that it is linear, quadratic-cost, and Gaussian. The optimal
feedback plan can even be expressed directly in terms of µk, without requiring
Σk. This indicates that the I-space may be collapsed down to X; however, the
corresponding I-map is not sufficient. The covariances are still needed to compute
the means, as is evident from (11.80) and (11.83). Thus, an optimal plan can be
specified as π : X → U , but the derived I-states in Igauss need to be represented
for the I-map to be sufficient.

The Kalman filter provides a beautiful solution to the class of linear Gaus-
sian models. It is even successfully applied quite often in practice for problems
that do not even satisfy these conditions. This is called the extended Kalman
filter. The success may be explained by recalling that the probabilistic I-space
may be approximated by mean and covariance in a second-order moment-based
approximation. In general, such an approximation may be inappropriate, but it
is nevertheless widely used in practice.

11.6.2 Sampling-Based Approaches

Since probabilistic I-space computations over continuous spaces involve the eval-
uation of complicated, possibly high-dimensional integrals, there is strong mo-
tivation for using sampling-based approaches. If a problem is nonlinear and/or
non-Gaussian, such approaches may provide the only practical way to compute
probabilistic I-states. Two approaches are considered here: grid-based sampling
and particle filtering. One of the most common applications of the techniques
described here is mobile robot localization, which is covered in Section 12.2.
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A grid-based approach Perhaps the most straightforward way to numeri-
cally compute probabilistic I-states is to approximate probability density func-
tions over a grid and use numerical integration to evaluate the integrals in (11.57)
and (11.58).

A grid can be used to compute a discrete probability distribution that approx-
imates the continuous probability density function. Consider, for example, using
the Sukharev grid shown in Figure 5.5a, or a similar grid adapted to the state
space. Consider approximating some probability density function p(x) using a
finite set, S ⊂ X. The Voronoi region surrounding each point can be considered
as a “bucket” that holds probability mass. A probability is associated with each
sample and is defined as the integral of p(x) over the Voronoi region associated
with the point. In this way, the samples S and their discrete probability distribu-
tion, P (s) for all s ∈ S approximate p(x) over X. Let P (sk) denote the probability
distribution over Sk, the set of grid samples at stage k.

In the initial step, P (s) is computed from p(x) by numerically evaluating the
integrals of p(x1) over the Voronoi region of each sample. This can alternatively be
estimated by drawing random samples from the density p(x1) and then recording
the number of samples that fall into each bucket (Voronoi region). Normalizing
the counts for the buckets yields a probability distribution, P (s1). Buckets that
have little or no points can be eliminated from future computations, depending on
the desired accuracy. Let S1 denote the samples for which nonzero probabilities
are associated.

Now suppose that P (sk|ηk) has been computed over Sk and the task is to com-
pute P (sk+1|ηk+1) given uk and yk+1. A discrete approximation, P (sk+1|sk, uk), to
p(xk+1|xk, uk) can be computed using a grid and buckets in the manner described
above. At this point the densities needed for (11.57) have been approximated by
discrete distributions. In this case, (11.38) can be applied over Sk to obtain a
grid-based distribution over Sk+1 (again, any buckets that do not contain enough
probability mass can be discarded). The resulting distribution is P (sk+1|ηk, uk),
and the next step is to consider yk+1. Once again, a discrete distribution can be
computed; in this case, p(xk+1|yk+1) is approximated by P (sk+1|yk+1) by using
the grid samples. This enables (11.58) to be replaced by the discrete counterpart
(11.39), which is applied to the samples. The resulting distribution, P (sk+1|ηk+1),
represents the approximate probabilistic I-state.

Particle filtering As mentioned so far, the discrete distributions can be esti-
mated by using samples. In fact, it turns out that the Voronoi regions over the
samples do not even need to be carefully considered. One can work directly with
a collection of samples drawn randomly from the initial probability density, p(x1).
The general method is referred to as particle filtering and has yielded good per-
formance in applications to experimental mobile robotics. Recall Figure 1.7 and
see Section 12.2.3.

Let S ⊂ X denote a finite collection of samples. A probability distribution is
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defined over S. The collection of samples, together with its probability distribu-
tion, is considered as an approximation of a probability density over X. Since S is
used to represent probabilistic I-states, let Pk denote the probability distribution
over Sk, which is computed at stage k using the history I-state ηk. Thus, at every
stage, there is a new sample set, Sk, and probability distribution, Pk.

The general method to compute the probabilistic I-state update proceeds as
follows. For some large number, m, of iterations, perform the following:

1. Select a state xk ∈ Sk according to the distribution Pk.

2. Generate a new sample, xk+1, for Sk+1 by generating a single sample accord-
ing to the density p(xk+1|xk, uk).

3. Assign the weight, w(xk+1) = p(yk+1|xk+1).

After the m iterations have completed, the weights over Sk+1 are normalized
to obtain a valid probability distribution, Pk+1. It turns out that this method
provides an approximation that converges to the true probabilistic I-states as m
tends to infinity. Other methods exist, which provide faster convergence [143].
One of the main difficulties with using particle filtering is that for some problems
it is difficult to ensure that a sufficient concentration of samples exists in the
places where they are needed the most. This is a general issue that plagues many
sampling-based algorithms, including the motion planning algorithms of Chapter
5.

11.7 Information Spaces in Game Theory

This section unifies the sequential game theory concepts from Section 10.5 with
the I-space concepts from this chapter. Considerable attention is devoted to the
modeling of information in game theory. The problem is complicated by the fact
that each player has its own frame of reference, and hence its own I-space. Game
solution concepts, such as saddle points or Nash equilibria, depend critically on the
information available to each player as it makes it decisions. Paralleling Section
10.5, the current section first covers I-states in game trees, followed by I-states
for games on state spaces. The presentation in this section will be confined to the
case in which the state space and stages are finite. The formulation of I-spaces
extends naturally to countably infinite or continuous state spaces, action spaces,
and stages [9].

11.7.1 Information States in Game Trees

Recall from Section 10.5.1 that an important part of formulating a sequential
game in a game tree is specifying the information model. This was described in
Step 4 of Formulation 10.3. Three information models were considered in Section
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10.5.1: alternating play, stage-by-stage, and open loop. These and many other
information models can be described using I-spaces.

From Section 11.1, it should be clear that an I-space is always defined with
respect to a state space. Even though Section 10.5.1 did not formally introduce a
state space, it is not difficult to define one. Let the state space X be N , the set of
all vertices in the game tree. Assume that two players are engaged in a sequential
zero-sum game. Using notation from Section 10.5.1, N1 and N2 are the decision
vertices of P1 and P2, respectively. Consider the nondeterministic I-space Indet
over N . Let η denote a nondeterministic I-state; thus, each η ∈ Indet is a subset
of N .

There are now many possible ways in which the players can be confused while
making their decisions. For example, if some η contains vertices from both N1

and N2, the player does not know whether it is even its turn to make a decision.
If η additionally contains some leaf vertices, the game may be finished without a
player even being aware of it. Most game tree formulations avoid these strange
situations. It is usually assumed that the players at least know when it is their
turn to make a decision. It is also usually assumed that they know the stage of
the game. This eliminates many sets from Indet.

While playing the game, each player has its own nondeterministic I-state be-
cause the players may hide their decisions from each other. Let η1 and η2 denote
the nondeterministic I-states for P1 and P2, respectively. For each player, many
sets in Indet are eliminated. Some are removed to avoid the confusions mentioned
above. We also impose the constraint that ηi ⊆ Ni for i = 1 and i = 2. We only
care about the I-state of a player when it is that player’s turn to make a decision.
Thus, the nondeterministic I-state should tell us which decision vertices in Ni

are possible as Pi faces a decision. Let I1 and I2 represent the nondeterministic
I-spaces for P1 and P2, respectively, with all impossible I-states eliminated.

The I-spaces I1 and I2 are usually defined directly on the game tree by circling
vertices that belong to the same I-state. They form a partition of the vertices in
each level of the tree (except the leaves). In fact, Ii even forms a partition of Ni

for each player. Figure 11.30 shows four information models specified in this way
for the example in Figure 10.13. The first three correspond directly to the models
allowed in Section 10.5.1. In the alternating-play model, each player always knows
the decision vertex. This corresponds to a case of perfect state information. In
the stage-by-stage model, P1 always knows the decision vertex; P2 knows the
decision vertex from which P1 made its last decision, but it does not know which
branch was chosen. The open-loop model represents the case that has the poorest
information. Only P1 knows its decision vertex at the beginning of the game. After
that, there is no information about the actions chosen. In fact, the players cannot
even remember their own previous actions. Figure 11.30d shows an information
model that does not fit into any of the three previous ones. In this model, very
strange behavior results. If P1 and P2 initially choose right branches, then the
resulting decision vertex is known; however, if P2 instead chooses the left branch,
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(c) Open loop (d) Something else

Figure 11.30: Several different information models are illustrated for the game in
Figure 10.13.

then P1 will forget which action it applied (as if the action of P2 caused P1 to
have amnesia!). Here is a single-stage example:

Example 11.26 (An Unusual Information Model) Figure 11.31 shows a game
that does not fit any of the information models in Section 10.5.1. It is actually
a variant of the game considered before in Figure 10.12. The game is a kind of
hybrid that partly looks like the alternating-play model and partly like the stage-
by-stage model. This particular problem can be solved in the usual way, from the
bottom up. A value is computed for each of the nondeterministic I-states, for the
level in which P2 makes a decision. The left I-state has value 5, which corresponds
to P1 choosing 1 and P2 responding with 3. The right I-state has value 4, which
results from the deterministic saddle point in a 2×3 matrix game played between
P1 and P2. The overall game has a deterministic saddle point in which P1 chooses
3 and P2 chooses 3. This results in a value of 4 for the game. �

Plans are now defined directly as functions on the I-spaces. A (deterministic)
plan for P1 is defined as a function π1 on I1 that yields an action u ∈ U(η1) for
each η1 ∈ I1, and U(η1) is the set of actions that can be inferred from the I-state
η1; assume that this set is the same for all decision vertices in η1. Similarly, a
(deterministic) plan for P2 is defined as a function π2 on I2 that yields an action
v ∈ V (η2) for each η2 ∈ I2.

There are generally two alternative ways to define a randomized plan in terms
of I-spaces. The first choice is to define a globally randomized plan, which is a
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Cost

P1 acts 21

1 2 3P2 acts 1 12 23 3

3

3 5 1 0 43 −1 7 −2

Figure 11.31: A single-stage game that has an information model unlike those in
Section 10.5.1.

probability distribution over the set of all deterministic plans. During execution,
this means that an entire deterministic plan will be sampled in advance according
to the probability distribution. An alternative is to sample actions as they are
needed at each I-state. This is defined as follows. For the randomized case, let
W (η1) and Z(η2) denote the sets of all probability distributions over U(η1) and
V (η2), respectively. A locally randomized plan for P1 is defined as a function that
yields some w ∈ W (η1) for each η1 ∈ I1. Likewise, a locally randomized plan
for P2 is a function that maps from I2 into Z(η2). Locally randomized plans
expressed as functions of I-states are often called behavioral strategies in game
theory literature.

A randomized saddle point on the space of locally randomized plans does not
exist for all sequential games [9]. This is unfortunate because this form of ran-
domization seems most natural for the way decisions are made during execution.
At least for the stage-by-stage model, a randomized saddle point always exists
on the space of locally randomized plans. For the open-loop model, randomized
saddle points are only guaranteed to exist using a globally randomized plan (this
was actually done in Section 10.5.1). To help understand the problem, suppose
that the game tree is a balanced, binary tree with k stages (hence, 2k levels). For
each player, there are 2k possible deterministic plans. This means that 2k − 1
probability values may be assigned independently (the last one is constrained to
force them to sum to 1) to define a globally randomized plan over the space of
deterministic plans. Defining a locally randomized plan, there are k I-states for
each player, one for each search stage. At each stage, a probability distribution is
defined over the action set, which contains only two elements. Thus, each of these
distributions has only one independent parameter. A randomized plan is specified
in this way using k − 1 independent parameters. Since k − 1 is much less than
2k − 1, there are many globally randomized plans that cannot be expressed as a
locally randomized plan. Unfortunately, in some games the locally randomized
representation removes the randomized saddle point.

This strange result arises mainly because players can forget information over
time. A player with perfect recall remembers its own actions and also never forgets
any information that it previously knew. It was shown by Kuhn that the space of
all globally randomized plans is equivalent to the space of all locally randomized

628 S. M. LaValle: Planning Algorithms

plans if and only if the players have perfect memory [150]. Thus, by sticking to
games in which all players have perfect recall, a randomized saddle point always
exists in the space locally randomized plans. The result of Kuhn even holds for
the more general case of the existence of randomized Nash equilibria on the space
of locally randomized plans.

The nondeterministic I-states can be used in game trees that involve more
players. Accordingly, deterministic, globally randomized, and locally randomized
plans can be defined. The result of Kuhn applies to any number of players, which
ensures the existence of a randomized Nash equilibrium on the space of locally
randomized strategies if (and only if) the players have perfect recall. It is generally
preferable to exploit this fact and decompose the game tree into smaller matrix
games, as described in Section 10.5.1. It turns out that the precise condition that
allows this is that it must be ladder-nested [9]. This means that there are decision
vertices, other than the root, at which 1) the player that must make a decision
knows it is at that vertex (the nondeterministic I-state is a singleton set), and
2) the nondeterministic I-state will not leave the subtree rooted at that vertex
(vertices outside of the subtree cannot be circled when drawing the game tree).
In this case, the game tree can be decomposed at these special decision vertices
and replaced with the game value(s). Unfortunately, there is still the nuisance of
multiple Nash equilibria.

It may seem odd that nondeterministic I-states were defined without being
derived from a history I-space. Without much difficulty, it is possible to define
a sensing model that leads to the nondeterministic I-states used in this section.
In many cases, the I-state can be expressed using only a subset of the action
histories. Let ũk and ṽk denote the action histories of P1 and P2, respectively.
The history I-state for the alternating-play model at stage k is (ũk−1, ṽk−1) for
P1 and (ũk, ṽk−1) for P2. The history I-state for the stage-by-stage model is
(ũk−1, ṽk−1) for both players. The nondeterministic I-states used in this section
can be derived from these histories. For other models, such as the one in Figure
11.31, a sensing model is additionally needed because only partial information
regarding some actions appears. This leads into the formulation covered in the
next section, which involves both sensing models and a state space.

11.7.2 Information Spaces for Games on State Spaces

I-space concepts can also be incorporated into sequential games that are played
over state spaces. The resulting formulation naturally extends Formulation 11.1
of Section 11.1 to multiple players. Rather than starting with two players and
generalizing later, the full generality of having n players is assumed up front.
The focus in this section is primarily on characterizing I-spaces for such games,
rather than solving them. Solution approaches depend heavily on the particular
information models; therefore, they will not be covered here.

As in Section 11.7.1, each player has its own frame of reference and therefore
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its own I-space. The I-state for each player indicates its information regarding a
common game state. This is the same state as introduced in Section 10.5; however,
each player may have different observations and may not know the actions of
others. Therefore, the I-state is different for each decision maker. In the case of
perfect state sensing, these I-spaces all collapse to X.

Suppose that there are n players. As presented in Section 10.5, each player
has its own action space, U i; however, here it is not allowed to depend on x,
because the state may generally be unknown. It can depend, however, on the
I-state. If nature actions may interfere with the state transition equation, then
(10.120) is used (if there are two players); otherwise, (10.121) is used, which leads
to predictable future states if the actions of all of the players are given. A single
nature action, θ ∈ Θ(x, u1, u2, . . . , un), is used to model the effect of nature across
all players when uncertainty in prediction exists.

Any of the sensor models from Section 11.1.1 may be defined in the case of
multiple players. Each has its own observation space Y i and sensor mapping hi.
For each player, nature may interfere with observations through nature sensing
actions, Ψi(x). A state-action sensor mapping appears as yi = hi(x, ψi); state
sensor mappings and history-based sensor mappings may also be defined.

Consider how the game appears to a single player at stage k. What information
might be available for making a decision? Each player produces the following in
the most general case: 1) an initial condition, ηi0; 2) an action history, ũik−1; and
3) and an observation history, ỹik. It must be specified whether one player knows
the previous actions that have been applied by other players. It might even be
possible for one player to receive the observations of other players. If Pi receives
all of this information, its history I-state at stage k is

ηik = (ηi0, ũ
1
k−1, ũ

2
k−1, . . . , ũ

n
k−1, ỹ

1
k, ỹ

2
k, ..., ỹ

n
k ). (11.84)

In most situations, however, ηik only includes a subset of the histories from (11.84).
A typical situation is

ηik = (ηi0, ũ
i
k−1, ỹ

i
k), (11.85)

which means that Pi knows only its own actions and observations. Another possi-
bility is that all players know all actions that have been applied, but they do not
receive the observations of other players. This results in

ηik = (ηi0, ũ
1
k−1, ũ

2
k−1, . . . , ũ

n
k−1, ỹ

i
k). (11.86)

Of course, many special cases may be defined by generalizing many of the examples
in this chapter. For example, an intriguing sensorless game may be defined in
which the history I-state consists only of actions. This could yield

ηik = (ηi0, ũ
1
k−1, ũ

2
k−1, . . . , ũ

n
k−1), (11.87)

or even a more secretive game in which the actions of other players are not known:

ηik = (ηi0, ũ
i
k−1). (11.88)
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Once the I-state has been decided upon, a history I-space I ihist for each player is
defined as the set of all history I-states. In general, I-maps and derived I-spaces
can be defined to yield alternative simplifications of each history I-space.

Assuming all spaces are finite, the concepts given so far can be organized into
a sequential game formulation that is the imperfect state information counterpart
of Formulation 10.4:

Formulation 11.4 (Sequential Game with I-Spaces)

1. A set of n players, P1, P2, . . ., Pn.

2. A nonempty, finite state space X.

3. For each Pi, a finite action space U i. We also allow a more general definition,
in which the set of available choices depends on the history I-state; this can
be written as U i(ηi).

4. A finite nature action space Θ(x, u1, . . . , un) for each x ∈ X, and ui ∈ U i for
each i such that 1 ≤ i ≤ m.

5. A state transition function f that produces a state, f(x, u1, . . . , un, θ), for
every x ∈ X, θ ∈ Θ(x, u), and ui ∈ U i for each i such that 1 ≤ i ≤ n.

6. For each Pi, a finite observation space Y i.

7. For each Pi, a finite nature sensing action space Ψi(x) for each x ∈ X.

8. For each Pi, a sensor mapping hi which produces an observation, y =
hi(x, ψi), for each x ∈ X and ψi ∈ Ψi(x). This definition assumes a state-
nature sensor mapping. A state sensor mapping or history-based sensor
mapping, as defined in Section 11.1.1, may alternatively be used.

9. A set of K stages, each denoted by k, which begins at k = 1 and ends at
k = K. Let F = K + 1.

10. For each Pi, an initial condition ηi0, which is an element of an initial condition
space I i0.

11. For each Pi, a history I-space I ihist which is the set of all history I-states,
formed from action and observation histories, and may include the histories
of other players.

12. For each Pi, let L
i denote a stage-additive cost functional,

Li(x̃F , ũ
1
K , . . . , ũ

2
K) =

K∑

k=1

l(xk, u
1
k, . . . , u

n
k) + lF (xF ). (11.89)
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Figure 11.32: In the Battleship game, each player places several ships on a grid.
The other player must guess the locations of ships by asking whether a particular
tile is occupied.

Extensions exist for cases in which one or more of the spaces are continuous; see
[9]. It is also not difficult to add goal sets and termination conditions and allow
the stages to run indefinitely.

An interesting specialization of Formulation 11.4 is when all players have iden-
tical cost functions. This is not equivalent to having a single player because the
players have different I-states. For example, a task may be for several robots to
search for a treasure, but they have limited communication between them. This
results in different I-states. They would all like to cooperate, but they are unable
to do so without knowing the state. Such problems fall under the subject of team
theory [57, 125, 142].

As for the games considered in Formulation 10.4, each player has its own plan.
Since the players do not necessarily know the state, the decisions are based on
the I-state. The definitions of a deterministic plan, a globally randomized plan,
and a locally randomized plan are essentially the same as in Section 11.7.1. The
only difference is that more general I-spaces are defined in the current setting.
Various kinds of solution concepts, such as saddle points and Nash equilibria,
can be defined for the general game in Formulation 11.4. The existence of locally
randomized saddle points and Nash equilibria depends on general on the particular
information model [9].

Example 11.27 (Battleship Game) Many interesting I-spaces arise from clas-
sical board games. A brief illustration is provided here from Battleship, which
is a sequential game under the alternating-turn model. Two players, P1 and P2,
each having a collection of battleships that it arranges secretly on a 10× 10 grid;
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see Figure 11.32.
A state is the specification of the exact location of all ships on each player’s

grid. The state space yields the set of all possible ship locations for both players.
Each player always knows the location of its own ships. Once they are placed on
the grid, they are never allowed to move.

The players take turns guessing a single grid tile, expressed as a row and
column, that it suspects contains a ship. The possible observations are “hit” and
“miss,” depending on whether a ship was at that location. In each turn, a single
guess is made, and the players continue taking turns until one player has observed
a hit for every tile that was occupied by a ship.

This is an interesting game because once a “hit” is discovered, it is clear that
a player should search for other hits in the vicinity because there are going to be
several contiguous tiles covered by the same ship. The only problem is that the
precise ship position and orientation are unknown. A good player essentially uses
the nondeterministic I-state to improve the chances that a hit will occur next. �

Example 11.28 (The Princess and the Monster) This is a classic example
from game theory that involves no sensing. A princess and a monster move about
in a 2D environment. A simple motion model is assumed; for example, they take
single steps on a grid. The princess is trying not to be discovered by the monster,
and the game is played in complete darkness. The game ends when the monster
and the princess are on the same grid point. There is no form of feedback that
can be used during the game; however, it is possible to construct nondeterministic
I-states for the players. For most environments, it is impossible for the monster
to be guaranteed to win; however, for some environments it is guaranteed to
succeed. This example can be considered as a special kind of pursuit-evasion
game. A continuous-time pursuit-evasion game that involves I-spaces is covered
in Section 12.4. �

Further Reading

The basic concept of an information space can be traced back to work of Kuhn [150]
in the context of game trees. There, the nondeterministic I-state is referred to as
an information set. After spreading throughout game theory, the concept was also
borrowed into stochastic control theory (see [25, 151]). The term information space

is used extensively in [9] in the context of sequential and differential game theory.
For further reading on I-spaces in game theory, see [9, 210]. In artificial intelligence
literature, I-states are referred to as belief states and are particularly important in
the study of POMDPs; see the literature suggested at the end of Chapter 12. The
observability problem in control theory also results in I-spaces [51, 89, 130, 266], in which
observers are used to reconstruct the current state from the history I-state. In robotics
literature, they have been called hyperstates [114] and knowledge states [94]. Concepts
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closely related to I-spaces also appear as perceptual equivalence classes in [80] and also
appear in the information invariants framework of Donald [79]. I-spaces were proposed
as a general way to represent planning under sensing uncertainty in [12, 165, 166]. For
further reading on sensors in general, see [106].

The Kalman filter is covered in great detail in numerous other texts; see for example,
[58, 151, 266]. The original reference is [137]. For more on particle filters, see [5, 81,
105, 143].

Exercises

1. Forward projections in Indet:

(a) Starting from a nondeterministic I-state, Xk(ηk), and applying an action uk,
derive an expression for the nondeterministic one-stage forward projection
by extending the presentation in Section 10.1.2.

(b) Determine an expression for the two-stage forward projection starting from
Xk(ηk) and applying uk and uk+1.

2. Forward projections in Iprob:

(a) Starting from a probabilistic I-state, P (xk|ηk), and applying an action uk,
derive an expression for the probabilistic one-stage forward projection.

(b) Determine an expression for the two-stage forward projection starting from
P (xk|ηk) and applying uk and uk+1.

3. Determine the strong and weak backprojections on Ihist for a given history I-state,
ηk. These should give sets of possible ηk−1 ∈ Ihist.

4. At the end of Section 11.3.2, it was mentioned that an equivalent DFA can be
constructed from an NFA.

(a) Give an explicit DFA that accepts the same set of strings as the NFA in
Figure 11.8b.

(b) Express the problem of determining whether the NFA in Figure 11.8b accepts
any strings as a planning problem using Formulation 2.1.

5. This problem involves computing probabilistic I-states for Example 11.14. Let
the initial I-state be

P (x1) = [1/3 1/3 1/3], (11.90)

in which the ith entry in the vector indicates P (x1 = i+ 1). Let U = {0, 1}. For
each action, a state transition matrix can be specified, which gives the probabili-
ties P (xk+1|xk, uk). For u = 0, let P (xk+1|xk, uk = 0) be





4/5 1/5 0
1/10 4/5 1/10
0 1/5 4/5



 . (11.91)
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Figure 11.33: (a) A topological graph in which a point moves (note that two
vertices are vertically aligned). (b) An exercise that is a variant of Example
11.17.

The jth entry of the ith row yields P (xk+1 = i | xk = j, uk = 0). For u = 1, let
P (xk+1 | xk, uk = 1) be





1/10 5/5 1/10
0 1/5 4/5
0 0 1



 . (11.92)

The sensing model is specified by three vectors:

P (yk|xk = 0) = [4/5 1/5], (11.93)

P (yk|xk = 1) = [1/2 1/2], (11.94)

and

P (yk|xk = 2) = [1/5 4/5], (11.95)

in which the ith component yields P (yk = i | xk). Suppose that k = 3 and the
history I-state obtained so far is

(η0, u1, u2, y1, y2, y3) = (η0, 1, 0, 1, 0, 0). (11.96)

The task is to compute the probabilistic I-state. Starting from P (x1), compute the
following distributions: P (x1|η1), P (x2|η1, u1), P (x2|η2), P (x3|η2, u2), P (x3|η3).

6. Explain why it is not possible to reach every nondeterministic I-state from every
other one for Example 11.7. Give an example of a nondeterministic I-state that
cannot be reached from the initial I-state. Completely characterize the reachabil-
ity of nondeterministic I-states from all possible initial conditions.

7. In the same spirit as Example 11.21, consider a point moving on the topological
graph shown in Figure 11.33. Fully characterize the connectivity of Indet (you
may exploit symmetries to simplify the answer).
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8. Design an I-map for Example 11.17 that is not necessarily sufficient but leads to
a solution plan defined over only three derived I-states.

9. Consider the discrete problem in Figure 11.33b, using the same sensing and motion
model as in Example 11.17.

(a) Develop a sufficient I-map and a solution plan that uses as few derived I-
states as possible.

(b) Develop an I-map that is not necessarily sufficient, and a solution plan that
uses as few derived I-states as possible.

10. Suppose that there are two I-maps, κ1 : I1 → I2 and κ2 : I2 → I3, and it is given
that κ1 is sufficient with respect to I1, and κ2 is sufficient with respect to I2.
Determine whether the I-map κ2 ◦ κ1 is sufficient with respect to I1, and prove
your claim.

11. Propose a solution to Example 11.16 that uses fewer nondeterministic I-states.

12. Suppose that a point robot moves in R
2 and receives observations from three hom-

ing beacons that are not collinear and originate from known locations. Assume
that the robot can calibrate the three observations on S

1.

(a) Prove that the robot can always recover its position in R
2.

(b) What can the robot infer if there are only two beacons?

13. Nondeterministic I-state problems:

(a) Prove that the nondeterministic I-states for Example 11.23 are always a
single connected region whose boundary is composed only of circular arcs
and line segments.

(b) Design an algorithm for efficiently computing the nondeterministic I-states
from stage to stage.

14. Design an algorithm that takes as input a simply connected rectilinear region (i.e.,
described by a polygon that has all right angles) and a goal state, and designs
a sequence of tray tilts that guarantees the ball will come to rest at the goal.
Example 11.24 provides an illustration.

15. Extend the game-theoretic formulation from Section 11.7.2 of history I-spaces to
continuous time.

16. Consider the “where did I come from?” problem.

(a) Derive an expression for X1(ηk).

(b) Derive an expression for P (x1|ηk).

17. In the game of Example 11.27, could there exist a point in the game at which
one player has not yet observed every possible “hit” yet it knows the state of the
game (i.e., the exact location of all ships)? Explain.
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18. When playing blackjack in casinos, many card-counting strategies involve remem-
bering simple statistics of the cards, rather than the entire history of cards seen
so far. Define a game of blackjack and card counting as an example of history
I-states and an I-map that dramatically reduces the size of the I-space, and an
information-feedback plan.

Implementations

19. Implement the Kalman filter for the case of a robot moving in the plane. Show
the confidence ellipsoids obtained during execution. Be careful of numerical issues
(see [151]).

20. Implement probabilistic I-state computations for a point robot moving in a 2D
polygonal environment. Compare the efficiency and accuracy of grid-based ap-
proximations to particle filtering.

21. Design and implement an algorithm that uses nondeterministic I-states to play a
good game of Battleship, as explained in Example 11.27.



Chapter 12

Planning Under Sensing
Uncertainty

The main purpose of Chapter 11 was to introduce information space (I-space) con-
cepts and to provide illustrative examples that aid in understanding. This chapter
addresses planning under sensing uncertainty, which amounts to planning in an
I-space. Section 12.1 covers general-purpose algorithms, for which it will quickly
be discovered that only problems with very few states can be solved because of the
explosive growth of the I-space. In Chapter 6, it was seen that general-purpose
motion planning algorithms apply only to simple problems. Ways to avoid this
were either to develop sampling-based techniques or to focus on a narrower class
of problems. It is intriguing to apply sampling-based planning ideas to I-spaces,
but as of yet this idea remains largely unexplored. Therefore, the majority of
this chapter focuses on planning algorithms designed for narrower classes of prob-
lems. In each case, interesting algorithms have been developed that can solve
problems that are much more complicated than what could be solved by the
general-purpose algorithms. This is because they exploit some structure that is
specific to the problem.

An important philosophy when dealing with an I-space is to develop an I-map
that reduces its size and complexity as much as possible by obtaining a simpler
derived I-space. Following this, it may be possible to design a special-purpose
algorithm that efficiently solves the new problem by relying on the fact that the
I-space does have the full generality. This idea will appear repeatedly throughout
the chapter. The most common derived I-space is Indet from Section 11.2.2; Iprob,
from Section 11.2.3, will also arise.

After Section 12.1, the problems considered in the remainder of the chapter are
inspired mainly by robotics applications. Section 12.2 addresses the localization
problem, which means that a robot must use sensing information to determine
its location. This is essentially a matter of maintaining derived I-states and com-
puting plans that lead to the desired derived I-space. Section 12.3 generalizes
localization to problems in which the robot does not even know its environment.
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In this case, the state space and I-space take into account both the possible en-
vironments in which the robot might be and the possible locations of the robot
within each environment. This section is fundamental to robotics because it is
costly and difficult to build precise maps of a robot’s environment. By careful
consideration of the I-space, a complete representation may be safely avoided in
many applications.

Section 12.4 covers a kind of pursuit-evasion game that can be considered as
a formal version of the children’s game of “hide and seek.” The pursuer carries a
lantern and must illuminate an unpredictable evader that moves with unbounded
speed. The nondeterministic I-states for this problem characterize the set of pos-
sible evader locations. The problem is solved by performing a cell decomposition
of Indet to obtain a finite, graph-search problem. The method is based on finding
critical curves in the I-space, much like the critical-curve method in Section 6.3.4
for moving a line-segment robot.

Section 12.5 concludes the chapter with manipulation planning under imper-
fect state information. This differs from the manipulation planning considered in
Section 7.3.2 because it was assumed there that the state is always known. Sec-
tion 12.5.1 presents the preimage planning framework, which was introduced two
decades ago to address manipulation planning problems that have bounded uncer-
tainty models for the state transitions and the sensors. Many important I-space
ideas and complexity results were obtained from this framework and the body of
literature on which it was based; therefore, it will be covered here. Section 12.5.2
addresses problems in which the robots have very limited sensing information and
rely on the information gained from the physical interaction of objects. In some
cases, these methods surprisingly do not even require sensing.

12.1 General Methods

This section presents planning methods for the problems introduced in Section
11.1. They are based mainly on general-purpose dynamic programming, without
exploiting any particular structure to the problem. Therefore, their application
is limited to small state spaces; nevertheless, they are worth covering because
of their extreme generality. The basic idea is to use either the nondeterministic
or probabilistic I-map to express the problem entirely in terms of the derived I-
space, Indet or Iprob, respectively. Once the derived information transition equation
(recall Section 11.2.1) is defined, it can be imagined that Indet or Iprob is a state
space in which perfect state measurements are obtained during execution (because
the I-state is always known).

12.1.1 The Information Space as a Big State Space

Recall that any problem specified using Formulation 11.1 can be converted us-
ing derived I-states into a problem under Formulation 10.1. By building on the
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Item Notation Explanation
State ~x = ηder Derived I-state

State space ~X = Ider Derived I-space

Action space ~U = U Original action space

Nature action space ~Θ ⊆ Y Original observation space

State transition equation ~f(~x, ~u, ~θ) Nature action is just y
Initial state ~xI = η0 Initial I-state, η0 ∈ Ider
Goal set ~XG Subsets of original XG

Cost functional ~L Derived from original L

Figure 12.1: The derived I-space can be treated as an ordinary state space on
which planning with perfect state information can be performed.

discussion from the end of Section 11.1.3, this can be achieved by treating the I-
space as a big state space in which each state is an I-state in the original problem
formulation. Some of the components were given previously, but here a complete
formulation is given.

Suppose that a problem has been specified using Formulation 11.1, resulting in
the usual components: X, U , Θ, f , Y , h, xI , XG, and L. The following concepts
will work for any sufficient I-map; however, the presentation will be limited to
two important cases: κndet and κprob, which yield derived I-spaces Indet and Iprob,
respectively (recall Sections 11.2.2 and 11.2.3).

The components of Formulation 10.1 will now be specified using components of
the original problem. To avoid confusion between the two formulations, an arrow
will be placed above all components of the new formulation. Figure 12.1 sum-
marizes the coming definitions. The new state space, ~X, is defined as ~X = Ider,
and a state, ~x ∈ ~X, is a derived I-state, ~x = ηder. Under nondeterministic uncer-
tainty, ~xk means Xk(ηk), in which ηk is the history I-state. Under probabilistic

uncertainty, ~xk means P (xk|ηk). The action space remains the same: ~U = U .

The strangest part of the formulation is the new nature action space, ~Θ(~x, ~u).
The observations in Formulation 11.1 behave very much like nature actions be-
cause they are not selected by the robot, and, as will be seen shortly, they are
the only unpredictable part of the new state transition equation. Therefore,
~Θ(~x, ~u) ⊆ Y , the original observation space. A new nature action, ~θ ∈ ~Θ, is

just an observation, ~θ(~x, ~u) = y. The set ~Θ(~x, ~u) generally depends on ~x and ~u
because some observations may be impossible to receive from some states. For
example, if a sensor that measures a mobile robot position is never wrong by more
than 1 meter, then observations that are further than 1 meter from the true robot
position are impossible.

A derived state transition equation is defined with ~f(~xk, ~uk, ~θk) and yields a
new state, ~xk+1. Using the original notation, this is just a function that uses κ(ηk),
uk, and yk to compute the next derived I-state, κ(ηk+1), which is allowed because
we are working with sufficient I-maps, as described in Section 11.2.1.
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Initial states and goal sets are optional and can be easily formulated in the new
representation. The initial I-state, η0, becomes the new initial state, ~xI = η0. It
is assumed that η0 is either a subset of X or a probability distribution, depending
on whether planning occurs in Indet or Iprob. In the nondeterministic case, the

new goal set ~XG can be derived as

~XG = {X(η) ∈ Indet | X(η) ⊆ XG}, (12.1)

which is the set of derived I-states for which it is guaranteed that the true state lies
in XG. A probabilistic version can be made by requiring that all states assigned
nonzero probability by P (x|η) lie in XG. Instead of being nonzero, a threshold
could be used. For example, the goal may require being only 98% certain that the
goal is reached.

The only remaining portion of Formulation 10.1 is the cost functional. We will
develop a cost model that uses only the state and action histories. A dependency
on nature would imply that the costs depend directly on the observation, y = ~θ,
which was not assumed in Formulation 11.1. The general K-stage cost functional
from Formulation 10.1 appears in this context as

~L(~xk, ~uk) =
K∑

k=1

~l(~xk, ~uk) +~lF (~xF ), (12.2)

with the usual cost assumptions regarding the termination action.
The cost functional ~Lmust be derived from the cost functional L of the original

problem. This is expressed in terms of states, which are unknown. First consider
the case of Iprob. The state xk at stage k follows the probability distribution
P (xk|ηk), as derived in Section 11.2.3. Using ~xk, an expected cost is assigned as

~l(~xk, ~uk) = ~l(ηk, uk) =
∑

xk∈X

P (xk|ηk)l(xk, uk) (12.3)

and
~lF (~xF ) = ~lF (ηF ) =

∑

xF∈X

P (xF |ηK)lF (xF ). (12.4)

Ideally, we would like to make analogous expressions for the case of Indet;
however, there is one problem. Formulating the worst-case cost for each stage
is too pessimistic. For example, it may be possible to obtain high costs in two
consecutive stages, but each of these may correspond to following different paths
in X. There is nothing to constrain the worst-case analysis to the same path. In
the probabilistic case there is no problem because probabilities can be assigned
to paths. For the nondeterministic case, a cost functional can be defined, but
the stage-additive property needed for dynamic programming is destroyed in gen-
eral. Under some restrictions on allowable costs, the stage-additive property is
preserved.
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The state xk at stage k is known to lie in Xk(ηk), as derived in Section 11.2.2.
For every history I-state, ηk = ~xk, and uk ∈ U , assume that l(xk, uk) is invariant
over all xk ∈ Xk(ηk). In this case,

~l(~xk, ~uk) = ~l(ηk, uk) = l(xk, uk), (12.5)

in which xk ∈ Xk(ηk), and

~lF (~xF ) = ~lF (ηF ) = lF (xF ), (12.6)

in which xF ∈ XF (ηF ).
A plan on the derived I-space, Indet or Iprob, can now also be considered as

a plan on the new state space ~X. Thus, state feedback is now possible, but in
a larger state space ~X instead of X. The outcomes of actions are still generally
unpredictable due to the observations. An interesting special case occurs when
there are no observations. In this case, the I-state is predictable because it is
derived only from actions that are chosen by the robot. In this case, the new
formulation does not need nature actions, which reduces it down to Formulation
2.3. Due to this, feedback is no longer needed if the initial I-state is given. A plan
can be expressed once again as a sequence of actions. Even though the original
states are not predictable, the future information states are! This means that the
state trajectory in the new state space is completely predictable as well.

12.1.2 Algorithms for Nondeterministic I-Spaces

Now that the problem of planning in Indet has been expressed using Formulation
10.1, the methods of Section 10.2 directly apply. The main limitation of their use is
that the new state space ~X is exponentially larger than X. If X contains n states,
then ~X contains 2n−1 states. Thus, even though some methods in Section 10.2 can
solve problems in practice that involve a million states, this would only be about 20
states in the original state space. Handling substantially larger problems requires
developing application-specific methods that exploit some special structure of the
I-space, possibly by defining an I-map that leads to a smaller derived I-space.

Value iteration The value-iteration method from Section 10.2.1 can be applied
without modification. In the first step, initialize G∗

F using (12.6). Using the
notation for the new problem, the dynamic programming recurrence, (10.39),
becomes

G∗

k(~xk) = min
~uk∈U

{

max
~θk

{

~l(~xk, ~uk) +G∗

k+1(~xk+1)
}}

, (12.7)

in which ~xk+1 = ~f(~xk, ~uk, ~θk).

The main difficulty in evaluating (12.7) is to determine the set ~Θ(~xk, ~uk), over
which the maximization occurs. Suppose that a state-nature sensor mapping is
used, as defined in Section 11.1.1. From the I-state ~xk = Xk(ηk), the action
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~uk = uk is applied. This yields a forward projection Xk+1(ηk, uk). The set of all
possible observations is

~Θ(~xk, ~uk) = {yk+1 ∈ Y | ∃xk+1 ∈ Xk+1(ηk, uk) and ∃ψk+1 ∈ Ψ

such that yk+1 = h(xk+1, ψk+1)}.
(12.8)

Without using forward projections, a longer, equivalent expression is obtained:

~Θ(~xk, ~uk) = {yk+1 ∈ Y | ∃xk ∈ Xk(ηk), ∃θk ∈ Θ, and ∃ψk+1 ∈ Ψ

such that yk+1 = h(f(xk, uk, θk), ψk+1)}.
(12.9)

Other variants can be formulated for different sensing models.

Policy iteration The policy iteration method of Section 10.2.2 can be applied
in principle, but it is unlikely to solve challenging problems. For example, if
|X| = 10, then each iteration will require solving matrices that have 1 million
entries! At least they are likely to be sparse in many applications.

Graph-search methods The methods from Section 10.2.3, which are based on
backprojections, can also be applied to this formulation. These methods must
initially set S = ~XG. If S is initially nonempty, then backprojections can be
attempted using the general algorithm in Figure 10.6. Dijkstra’s algorithm, as
given in Figure 10.8, can be applied to yield a plan that is worst-case optimal.

The sensorless case If there are no sensors, then better methods can be applied
because the formulation reduces from Formulation 10.1 to Formulation 2.3. The
simpler value iterations of Section 2.3 or Dijkstra’s algorithm can be applied to
find a solution. If optimality is not required, then any of the search methods of
Section 2.2 can even be applied. For example, one can even imagine performing
a bidirectional search on ~X to attempt to connect ~xI to some ~xG.

12.1.3 Algorithms for Probabilistic I-Spaces (POMDPs)

For the probabilistic case, the methods of Section 10.2 cannot be applied because
Iprob is a continuous space. Dynamic programming methods for continuous state
spaces, as covered in Section 10.6, are needed. The main difficulty is that the
dimension of ~X grows linearly with the number of states in X. If there are n
states in X, the dimension of ~X is n− 1. Since the methods of Section 10.6 suffer
from the curse of dimensionality, the general dynamic programming techniques
are limited to problems in which X has only a few states.
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Approximate value iteration The continuous-space methods from Section
10.6 can be directly applied to produce an approximate solution by interpolat-
ing over ~X to determine cost-to-go values. The initial cost-to-go value G∗

F over
the collection of samples is obtained by (12.6). Following (10.46), the dynamic
programming recurrence is

G∗

k(~xk) = min
~uk∈~U

{

~l(~xk, ~uk) +
∑

~xk+1∈
~X

G∗

k+1(~xk+1)P (~xk+1|~xk, ~uk)
}

. (12.10)

If ~Θ(~x, ~u) is finite, the probability mass is distributed over a finite set of points,

y = ~θ ∈ ~Θ(~x, ~u). This in turn implies that P (~xk+1|~xk, ~uk) is also distributed

over a finite subset of ~X. This is somewhat unusual because ~X is a continuous
space, which ordinarily requires the specification of a probability density function.
Since the set of future states is finite, this enables a sum to be used in (12.10) as
opposed to an integral over a probability density function. This technically yields
a probability density over ~X, but this density must be expressed using Dirac
functions.1 An approximation is still needed, however, because the xk+1 points
may not be exactly the sample points on which the cost-to-go function G∗

k+1 is
represented.

Exact methods If the total number of stages is small, it is possible in practice
to compute exact representations. Some methods are based on an observation
that the cost-to-come is piecewise linear and convex [136]. A linear-programming
problem results, which can be solved using the techniques that were described
for finding randomized saddle points of zero-sum games in Section 9.3. Due to
the numerous constraints, methods have been proposed that dramatically reduce
the number that need to be considered in some circumstances (see the suggested
reading on POMDPs at the end of the chapter).

An exact, discrete representation can be computed as follows. Suppose that the
initial condition space I0 consists of one initial condition, η0 (or a finite number of
initial conditions), and that there are no more thanK stages at which decisions are
made. Since Θ(x, u) and Ψ(x) are assumed to be finite, there is a finite number
of possible final I-states, ηF = (η0, ũK , ỹF ). For each of these, the distribution
P (xF |ηF ) can be computed, which is alternatively represented as ~xF . Following
this, (12.4) is used to compute G∗(~xF ) for each possible ~xF . The number of these
states is unfortunately exponential in the total number of stages, but at least there
are finitely many. The dynamic programming recurrence (12.10) can be applied
for k = K to roll back one stage. It is known that each possible ~xk+1 will be
a point in ~X at which a value was computed because values were computed for
possible all I-states. Therefore, interpolation is not necessary. Equation 12.10
can be applied repeatedly until the first stage is reached. In each iteration, no

1These are single points that are assigned a nonzero probability mass, which is not allowed,
for example, in the construction of a continuous probability density function.
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interpolation is needed because the cost-to-goG∗
k+1 was computed for each possible

next I-state. Given the enormous size of I, this method is practical only for very
small problems.

The sensorless case In the case of having no observations, the path through
Iprob becomes predictable. Suppose that a feasible planning problem is formulated.
For example, there are complicated constraints on the probability distributions
over X that are permitted during the execution of the plan. Since ~X = Iprob
is a continuous space, it is tempting to apply motion planning techniques from
Chapter 5 to find a successful path. The adaptation of such techniques may be
possible, but they must be formulated to use actions and state transition functions,
which was not done in Chapter 5. Such adaptations of these methods, however,
will be covered in Chapter 14. They could be applied to this problem to search
the I-space and produce a sequence of actions that traverses it while satisfying
hard constraints on the probabilities.

12.2 Localization

Localization is a fundamental problem in robotics. Using its sensors, a mobile
robot must determine its location within some map of the environment. There
are both passive and active versions of the localization problem:

Passive localization: The robot applies actions, and its position is inferred
by computing the nondeterministic or probabilistic I-state. For example, if
the Kalman filter is used, then probabilistic I-states are captured by mean
and covariance. The mean serves as an estimate of the robot position, and
the covariance indicates the amount of uncertainty.

Active localization: A plan must be designed that attempts to reduce the
localization uncertainty as much as possible. How should the robot move so
that it can figure out its location?

Both versions of localization will be considered in this section.
In many applications, localization is an incremental problem. The initial con-

figuration may be known, and the task is to maintain good estimates as motions
occur. A more extreme version is the kidnapped-robot problem, in which a robot
initially has no knowledge of its initial configuration. Either case can be mod-
eled by the appropriate initial conditions. The kidnapped-robot problem is more
difficult and is assumed by default in this section.

12.2.1 Discrete Localization

Many interesting lessons about realistic localization problems can be learned by
first studying a discrete version of localization. Problems that may or may not be
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Figure 12.2: (a) This map is given to the robot for localization purposes. (b)
The four possible actions each take one step, if possible, and reorient the robot as
shown.

solvable can be embedded in more complicated problems, which may even involve
continuous state spaces. The discrete case is often easier to understand, which
motivates its presentation here. To simplify the presentation, only the nondeter-
ministic I-space Indet will be considered; see Section 12.2.3 for the probabilistic
case.

Suppose that a robot moves on a 2D grid, which was introduced in Example
2.1. It has a map of the grid but does not know its initial location or orientation
within the grid. An example is shown in Figure 12.2a.

To formulate the problem, it is helpful to include in the state both the position
of the robot and its orientation. Suppose that the robot may be oriented in one of
four directions, which are labeled N, E, W, and S, for “north,” “east,” “west,” and
“south,” respectively. Although the robot is treated as a point, its orientation is
important because it does not have a compass. If it chooses to move in a particular
direction, such as straight ahead, it does not necessarily know which direction it
will be heading with respect to the four directions.

Thus, a state, x ∈ X, is written as x = (p, d), in which p is a position and d
is one of the four directions. A set of states at the same position will be denoted

with special superscripts that point in the possible directions. For example, 3
indicates the set of states for which p = 3 and the direction may be north (N) or
east (E), because the superscript points in the north and east directions.

The robot is given four actions,

U = {F,B,R,L}, (12.11)

which represent “forward,” “backward,” “right motion,” and “left motion,” re-
spectively. These motions occur with respect to the current orientation of the
robot, which may be unknown. See Figure 12.2b. For the F action, the robot
moves forward one grid element and maintains its orientation. For the B action,
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Figure 12.3: (a) If a direction is blocked because of an obstacle, then the orien-
tation changes, but the position remains fixed. In this example, the R action is
applied. (b) Another map is given to the robot for localization purposes. In this
case, the robot cannot localize itself exactly.

the robot changes its orientation by 180 degrees and then moves forward one grid
element. For the R action, the robot turns right by 90 degrees and then moves
forward one grid element. The L action behaves similarly. If it is not possible to
move because of an obstacle, it is assumed that the robot changes its orientation
(in the case of B, R, or L) but does not change its position. This is depicted in
Figure 12.3a.

The robot has one simple sensor that can only detect whether it was able to
move in the direction that was attempted. The sensor space is Y = {0, 1}, and
the sensor mapping is h : X×X → Y . This yields y = h(xk−1, xk) = 1 if xk−1 and
xk place the robot at different positions, and h(xk−1, xk) = 0 otherwise. Thus, the
sensor indicates whether the robot has moved after the application of an action.

Nondeterministic uncertainty will be used, and the initial I-state η0 is always
assumed to be X (this can easily be extended to allow starting with any nonempty
subset of X). A history I-state at stake k in its general form appears as

η0 = (X, ũk−1, y2, . . . , yk). (12.12)

One special adjustment was made in comparison to (11.14). There is no obser-
vation y1 because the sensor mapping requires a previous state to report a value.
Thus, the observation history starts with y2. An example history I-state for stage
k = 5 is

η5 = (X,R,R,F,L, 1, 0, 1, 1), (12.13)

in which η0 = X, ũ4 = (R,R,F,L), and (y2, y3, y4, y5) = (1, 0, 1, 1).
The passive localization problem starts with a given map, such as the one shown

in Figure 12.2a, and a history I-state, ηk, and computes the nondeterministic I-
state Xk(ηk) ⊆ X. The active localization problem is to compute some k and
sequence of actions, (u1, . . . , uk−1), such that the nondeterministic I-state is as
small as possible. In the best case, Xk(ηk) might become a singleton set, which
means that the robot knows its position and orientation on the map. However,
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due to symmetries, which will be presented shortly in an example, it might not
be possible.

Solving the passive localization problem The passive problem requires only
that the nondeterministic I-states are computed correctly as the robot moves. A
couple of examples of this are given.

Example 12.1 (An Easy Localization Problem) Consider the example given
in Figure 12.2a. Suppose that the robot is initially placed in position 1 facing east.
The initial condition is η0 = X, which can be represented as

η0 = 1 ∪ 2 ∪ 3 ∪ 4 ∪ 5 , (12.14)

the collection of all 20 states in X. Suppose that the action sequence (F,L,F,L)
is applied. In each case, a motion occurs, which results in the observation history
(y2, y3, y4, y5) = (1, 1, 1, 1).

After the first action, u1 = F, the history I-state is η2 = (X,F, 1). The
nondeterministic I-state is

X2(η2) = 1 ∪ 2 ∪ 3 ∪ 4 ∪ 5 , (12.15)

which means that any position is still possible, but the successful forward motion

removed some orientations from consideration. For example, 1 is not possible
because the previous state would have to be directly south of 1, which is an
obstacle.

After the second action, u2 = L,

X3(η3) = 3 ∪ 5 , (12.16)

which yields only two possible current states. This can be easily seen in Figure
12.2a by observing that there are only two states from which a forward motion

can be followed by a left motion. The initial state must have been either 1 or

3 .
After u3 = F is applied, the only possibility remaining is that x3 must have

been 3 . This yields

X4(η4) = 4 , (12.17)

which exactly localizes the robot: It is at position 4 facing north. After the final
action u4 = L is applied it is clear that

X5(η5) = 5 , (12.18)

which means that in the final state, x5, the robot is at position 1 facing west.
Once the exact robot state is known, no new uncertainty will accumulate because
the effects of all actions are predictable. Although it was not shown, it is also pos-
sible to prune the possible states by the execution of actions that do not produce
motions. �
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Example 12.2 (A Problem that Involves Symmetries) Now extend the map
from Figure 12.2a so that it forms a loop as shown in Figure 12.2b. In this case,
it is impossible to determine the precise location of the robot. For simplicity,
consider only actions that produce motion (convince yourself that allowing the
other actions cannot fix the problem).

Suppose that the robot is initially in position 1 facing east. If the action
sequence (F,L,F,L, . . .) is executed, the robot will travel around in cycles. The
problem is that it is also possible to apply the same action sequence from position
3 facing north. Every action successfully moves the robot, which means that, to
the robot, the information appears identical. The other two cases in which this
sequence can be applied to travel in cycles are 1) from 5 heading west, and 2) from
7 heading south. A similar situation occurs from 2 facing east, if the sequence
(L,F,L,F, . . .) is applied. Can you find the other three starting states from which
this sequence moves the robot at every stage? Similar symmetries exist when
traveling in clockwise circles and making right turns instead of left turns.

The state space for this problem contains 32 states, obtained from four direc-
tions at each position. After executing some motions, the nondeterministic I-state
can be reduced down to a symmetry class of no more than four possible states.
How can this be proved? One way is to use the algorithm that is described next.
�

Solving the active localization problem From the previous two examples,
it should be clear how to compute nondeterministic I-states and therefore solve
the passive localization problem on a grid. Now consider constructing a plan that
solves the active localization problem. Imagine using a computer to help in this
task. There are two general approaches:

Precomputed Plan: In this approach, a planning algorithm running on a
computer accepts a map of the environment and computes an information-
feedback plan that immediately indicates which action to take based on
all possible I-states that could result (a derived I-space could be used).
During execution, the actions are immediately determined from the stored,
precomputed plan.

Lazy Plan: In this case the map is still given, but the appropriate action is
computed just as it is needed during each stage of execution. The computer
runs on-board of the robot and must compute which action to take based
on the current I-state.

The issues are similar to those of the sampling-based roadmap in Section 5.6. If
faster execution is desired, then the precomputed plan may be preferable. If it
would consume too much time or space, then a lazy plan may be preferable.
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Using either approach, it will be helpful to recall the formulation of Section
12.1.1, which considers Indet as a new state space, ~X, in which state feedback
can be used. Even though there are no nature sensing actions, the observations
are not predictable because the state is generally unknown. This means that ~θ
is unknown, and future new states, ~xk+1, are unpredictable once ~xk and ~uk are
given. A plan must therefore use feedback, which means that it needs information
learned during execution to solve the problem. The state transition function ~f
on the new state space was illustrated for the localization problem in Examples
12.1 and 12.2. The initial state ~xI is the set of all original states. If there are no
symmetries, the goal set ~XG is the set of all singleton subsets of X; otherwise, it
is the set of all smallest possible I-states that are reachable (this does not need
to be constructed in advance). If desired, cost terms can be defined to produce

an optimal planning problem. For example, ~l(~x, ~u) = 2 if a motion occurs, or
~l(~x, ~u) = 1 otherwise.

Consider the approach of precomputing a plan. The methods of Section 12.1.2
can generally be applied to compute a plan, π : ~X → U , that solves the localization
problem from any initial nondeterministic I-state. The approach may be space-
intensive because an action must be stored for every state in ~X. If there are n
grid tiles, then | ~X| = 2n − 1. If the initial I-state is always X, then it may be

possible to restrict π to a much smaller portion of ~X. From any ~x ∈ ~XG, a search
based on backprojections can be conducted. If the initial I-state is added to S,
then the partial plan will reliably localize the robot. Parts of ~X for which π is
not specified will never be reached and can therefore be ignored.

Now consider the lazy approach. An algorithm running on the robot can
perform a kind of search by executing actions and seeing which I-states result.
This leads to a directed graph over ~X that is incrementally revealed through the
robot’s motions. The graph is directed because the information regarding the state
generally improves. For example, once the robot knows its state (or symmetry
class of states), it cannot return to an I-state that represents greater uncertainty.
In many cases, the robot may get lucky during execution and localize itself using
much less memory than would be required for a precomputed plan.

The robot needs to recognize that the same positions have been reached in
different ways, to ensure a systematic search. Even though the robot does not
necessarily know its position on the map, it can usually deduce whether it has been
to some location previously. One way to achieve this is to assign (i, j) coordinates
to the positions already visited. It starts with (0, 0) assigned to the initial position.
If F is applied, then suppose that position (1, 0) is reached, assuming the robot
moves to a new grid cell. If R is applied, then (0, 1) is reached if the robot is not
blocked. The point (2, 1) may be reachable by (F,F,R) or (R,F,F). One way to
interpret this is that a local coordinate frame in R

2 is attached to the robot’s initial
position. Let this be referred to as the odometric coordinates. The orientation
between this coordinate frame and the map is not known in the beginning, but a
transformation between the two can be computed if the robot is able to localize
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itself exactly.
A variety of search algorithms can now be defined by starting in the initial

state ~xI and trying actions until a goal condition is satisfied (e.g., no smaller non-
deterministic I-states are reachable). There is, however, a key difference between
this search and the search conducted by the algorithms in Section 2.2.1. Previ-
ously, the search could continue from any state that has been explored previously
without any additional cost. In the current setting, there are two issues:

Reroute paths: Most search algorithms enable new states to be expanded
from any previously considered states at any time. For the lazy approach,
the robot must move to a state and apply an action to determine whether a
new state can be reached. The robot is capable of returning to any previously
considered state by using its odometric coordinates. This induces a cost that
does not exist in the previous search problem. Rather than being able to
jump from place to place in a search tree, the search is instead a long,
continuous path that is traversed by the robot. Let the jump be referred to
as a reroute path. This will become important in Section 12.3.2.

Information improvement: The robot may not even be able to return to a
previous nondeterministic I-state. For example, if the robot follows (F,F,R)
and then tries to return to the same state using (B,L,F), it will indeed know
that it returned to the same state, but the state remains unknown. It might
be the case, however, that after executing (F,F,R), it was able to narrow
down the possibilities for its current state. Upon returning using (B,L,F),
the nondeterministic I-state will be different.

The implication of these issues is that the search algorithm should take into ac-
count the cost of moving the robot and that the search graph is directed. The
second issue is really not a problem because even though the I-state may be dif-
ferent when returning to the same position, it will always be at least as good as
the previous one. This means that if η1 and η2 are the original and later history
I-states from the same position, it will always be true that X(η2) ⊆ X(η1). Infor-
mation always improves in this version of the localization problem. Thus, while
trying to return to a previous I-state, the robot will find an improved I-state.

Other information models The model given so far in this section is only one
of many interesting alternatives. Suppose, for example, that the robot carries a
compass that always indicates its direction. In this case, there is no need to keep
track of the direction as part of the state. The robot can use the compass to specify
actions directly with respect to global directions. Suppose that U = {N,E,W, S},
which denote the directions, “north,” “east,” “west,” and “south,” respectively.
Examples 12.1 and 12.2 now become trivial. The first one is solved by applying the
action sequence (E,N). The symmetry problems vanish for Example 12.2, which
can also be solved by the sequence (E,N) because (1, 2, 3) is the only sequence of
positions that is consistent with the actions and compass readings.
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Other interesting models can be made by giving the robot less information.
In the models so far, the robot can easily infer its current position relative to its
starting position. Even though it is not necessarily known where this starting
position lies on the map, it can always be expressed in relative coordinates. This
is because the robot relies on different forms of odometry. For example, if the
direction is E and the robot executes the sequence (L,L, L), it is known that the
direction is S because three lefts make a right. Suppose that instead of a grid, the
robot must explore a graph. It moves discretely from vertex to vertex by applying
an action that traverses an edge. Let this be a planar graph that is embedded in
R

2 and is drawn with straight line segments. The number of available actions can
vary at each vertex. We can generally define U = S

1, with the behavior that the
robot only rotates without translating whenever a particular direction is blocked
(this is a generalization of the grid case). A sensor can be defined that indicates
which actions will lead to translations from the current vertex. In this case, the
model nicely generalizes the original model for the grid. If the robot knows the
angles between the edges that arrive at a vertex, then it can use angular odometry
to make a local coordinate system in R

2 that keeps track of its relative positions.

The situation can be made very confusing for the robot. Suppose that instead
of U = S

1, the action set at each vertex indicates which edges can be traversed.
The robot can traverse an edge by applying an action, but it does not know any-
thing about the direction relative to other edges. In this case, angular odometry
can no longer be used. It could not, for example, tell the difference between
traversing a rhombus, trapezoid, or a rectangle. If angular odometry is possible,
then some symmetries can be avoided by noting the angles between the edges at
each vertex. However, the new model does not allow this. All vertices that have
the same degree would appear identical.

12.2.2 Combinatorial Methods for Continuous Localiza-
tion

Now consider localization for the case in which X is a continuous region in R
2.

Assume that X is bounded by a simple polygon (a closed polygonal chain; there
are no interior holes). A map of X in R

2 is given to the robot. The robot velocity
ẋ is directly commanded by the action u, yielding a motion model ẋ = u, for
which U is a unit ball centered at the origin. This enables a plan to be specified
as a continuous path in X, as was done throughout Part II. Therefore, instead
of specifying velocities using u, a path is directly specified, which is simpler. For
models of the form ẋ = u and the more general form ẋ = f(x, u), see Section 8.4
and Chapter 13, respectively.

The robot uses two different sensors:

1. Compass: A perfect compass solves all orientation problems that arose in
Section 12.2.1.
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Figure 12.4: An example of the visibility cell decomposition. Inside of each cell,
the visibility polygon is composed of the same edges of ∂X.

2. Visibility: The visibility sensor, which was shown in Figure 11.15, provides
perfect distance measurements in all directions.

There are no nature sensing actions for either sensor.

As in Section 12.2.1, localization involves computing nondeterministic I-states.
In the current setting there is no need to represent the orientation as part of the
state space because of the perfect compass and known orientation of the polygon
in R

2. Therefore, the nondeterministic I-states are just subsets of X. Imagine
computing the nondeterministic I-state for the example shown in Figure 11.15,
but without any history. This is H(y) ⊆ X, which was defined in (11.6). Only
the current sensor reading is given. This requires computing states from which the
distance measurements shown in Figure 11.15b could be obtained. This means
that a translation must be found that perfectly overlays the edges shown in Figure
11.15b on top of the polygon edges that are shown in Figure 11.15a. Let ∂X
denote the boundary of X. The distance measurements from the visibility sensor
must correspond exactly to a subset of ∂X. For the example, these could only be
obtained from one state, which is shown in Figure 11.15a. Therefore, the robot
does not even have to move to localize itself for this example.

As in Section 8.4.3, let the visibility polygon V (x) refer to the set of all points
visible from x, which is shown in Figure 11.15a. To perform the required com-
putations efficiently, the polygon must be processed to determine the different
ways in which the visibility polygon could appear from various points in X. This
involves carefully determining which edges of ∂X could appear on ∂V (x). The
state space X can be decomposed into a finite number of cells, and over each
region the invariant is that same set of edges is used to describe V (x) [38, 120].
An example is shown in Figure 12.4. Two different kinds of rays must be extended
to make the decomposition. Figure 12.5 shows the case in which a pair of vertices
is mutually visible and an outward ray extension is possible. The other case is
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Figure 12.5: Rays are extended outward, whenever possible, from each pair of
mutually visible vertices. The case on the right is a bitangent, as shown in Figure
6.10; however, here the edges extend outward instead of inward as required for
the visibility graph.

Figure 12.6: A reflex vertex: If the interior angle at a vertex is greater than π,
then two outward rays are extended from the incident edges.

shown in Figure 12.6, in which rays are extended outward at every reflex vertex
(a vertex whose interior angle is more than π, as considered in Section 6.2.4). The
resulting decomposition generates O(n2r) cells in the worse case, in which n is the
number of edges that form ∂X and r is the number of reflex vertices (note that
r < n). Once the measurements are obtained from the sensor, the cell or cells in
which the edges or distance measurements match perfectly need to be computed to
determine H(y) (the set of points in X from which the current distance measure-
ments could be obtained). An algorithm based on the idea of a visibility skeleton
is given in [120], which performs these computations in time O(m+ lg n+ s) and
uses O(n5) space, in which n is the number of vertices in ∂X, m is the number
of vertices in V (x), and s = |H(y)|, the size of the nondeterministic I-state. This
method assumes that the environment is preprocessed to perform rapid queries
during execution; without preprocessing, H(y) can be computed in time O(mn).

What happens if there are multiple states that match the distance data from
the visibility sensor? Since the method in [120] only computes H(y) ⊆ X, some
robot motions must be planned to further reduce the uncertainty. This provides
yet another interesting illustration of the power of I-spaces. Even though the state
space is continuous, an I-state in this case is used to disambiguate the state from
a finite collection of possibilities.
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x1

Figure 12.7: Consider this example, in which the initial state is not known [85].

Figure 12.8: The four possible initial positions for the robot in Figure 12.7 based
on the visibility sensor.

The following example is taken from [85].

Example 12.3 (Visibility-Based Localization) Consider the environment shown
in Figure 12.7, with the initial state as shown. Based on the visibility sensor obser-
vation, the initial state could be any one of the four possibilities shown in Figure
12.8. Thus, H(y1) contains four states, in which y1 is the initial sensor observa-
tion. Suppose that the motion sequence shown in Figure 12.9 is executed. After
the first step, the position of the robot is narrowed down to two possibilities, as
shown in Figure 12.10. This occurs because the corridor is longer for the remain-
ing two possibilities. After the second motion, the state is completely determined
because the short side corridor is detected. �
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Figure 12.9: These motions completely disambiguate the state.

Figure 12.10: There are now only two possible states.

The localization problem can be solved in general by using the visibility cell
decomposition, as shown in Figure 12.4. Initially, X1(η1) = H(y1) is computed
from the initial visibility polygon, which can be efficiently performed using the
visibility skeleton [120]. Suppose that X1(η1) contains k states. In this case, k
translated copies of the map are overlaid so that all of the possible states in X1(η1)
coincide. A motion is then executed that reduces the amount of uncertainty. This
could be performed, by example, by crossing a cell boundary in the overlay that
corresponds to one or more, but not all, of the k copies. This enables some possible
states to be eliminated from the next I-state, X2(η2). The overlay is used once
again to obtain another disambiguating motion, which results in X3(η3). This
process continues until the state is known. In [85], a motion plan is given that
enables the robot to localize itself by traveling no more than k times as far as the
optimal distance that would need to be traveled to verify the given state. This
particular localization problem might not seem too difficult after seeing Example
12.3, but it turns out that the problem of localizing using optimal motions is
NP-hard if any simple polygon is allowed. This was proved in [85] by showing
that every abstract decision tree can be realized as a localization problem, and
the abstract decision tree problem is already known to be NP-hard.

Many interesting variations of the localization problem in continuous spaces
can be constructed by changing the sensing model. For example, suppose that the
robot can only measure distances up to a limit; all points beyond the limit cannot

656 S. M. LaValle: Planning Algorithms

be seen. This corresponds to many realistic sensing systems, such as infrared
sensors, sonars, and range scanners on mobile robots. This may substantially
enlarge H(y). Suppose that the robot can take distance measurements only in
a limited number of directions, as shown in Figure 11.14b. Another interesting
variant can be made by removing the compass. This introduces the orientation
confusion effects observed in Section 12.2.1. One can even consider interesting
localization problems that have little or no sensing [205, 206], which yields I-
spaces that are similar to that for the tray tilting example in Figure 11.28.

12.2.3 Probabilistic Methods for Localization

The localization problems considered so far have involved only nondeterministic
uncertainty. Furthermore, it was assumed that nature does not interfere with the
state transition equation or the sensor mapping. If nature is involved in the sen-
sor mapping, then future I-states are not predictable. For the active localization
problem, this implies that a localization plan must use information feedback. In
other words, the actions must be conditioned on I-states so that the appropriate
decisions are taken after new observations are made. The passive localization
problem involves computing probabilistic I-states from the sensing and action his-
tories. The formulation and solution of localization problems that involve nature
and nondeterministic uncertainty will be left to the reader. Only the probabilistic
case will be covered here.

Discrete problems First consider adding probabilities to the discrete grid
problem of Section 12.2.1. A state is once again expressed as x = (p, d). The
initial condition is a probability distribution, P (x1), over X. One reasonable
choice is to make P (x1) a uniform probability distribution, which makes each di-
rection and position equally likely. The robot is once again given four actions,
but now assume that nature interferes with state transitions. For example, if
uk = F , then perhaps with high probability the robot moves forward, but with
low probability it may move right, left, or possibly not move at all, even if it is
not blocked.

The sensor mapping from Section 12.2.1 indicated whether the robot moved.
In the current setting, nature can interfere with this measurement. With low
probability, it may incorrectly indicate that the robot moved, when in fact it
remained stationary. Conversely, it may also indicate that the robot remained
still, when in fact it moved. Since the sensor depends on the previous two states,
the mapping is expressed as

yk = h(xk, xk−1, ψk). (12.19)

With a given probability model, P (ψk), this can be expressed as P (yk|xk, xk−1).
To solve the passive localization problem, the expressions from Section 11.2.3

for computing the derived I-states are applied. If the sensor mapping used only the
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current state, then (11.36), (11.38), and (11.39) would apply without modification.
However, since h depends on both xk and xk−1, some modifications are needed.
Recall that the observations start with y2 for this sensor. Therefore, P (x1|η1) =
P (x1|y1) = P (x1), instead of applying (11.36).

After each stage, P (xk+1|ηk+1) is computed from P (xk|ηk) by first applying
(11.38) to take into account the action uk. Equation (11.39) takes into account
the sensor observation, yk+1, but P (yk+1|xk+1, ηk, uk) is not given because the
sensor mapping also depends on xk−1. It reduces using marginalization as

P (yk|ηk−1, uk−1, xk) =
∑

xk−1∈X

P (yk|ηk−1, uk−1, xk−1, xk)P (xk−1|ηk−1, uk−1, xk).

(12.20)
The first factor in the sum can be reduced to the sensor model,

P (yk|ηk−1, uk−1, xk−1, xk) = P (yk|xk−1, xk), (12.21)

because the observations depend only on xk−1, xk, and the nature sensing action,
ψk. The second term in (12.20) can be computed using Bayes’ rule as

P (xk−1|ηk−1, uk−1, xk) =
P (xk|ηk−1, uk−1, xk−1)P (xk−1|ηk−1, uk−1)
∑

xk−1∈X

P (xk|ηk−1, uk−1, xk−1)P (xk−1|ηk−1, uk−1)
,

(12.22)
in which P (xk|ηk−1, uk−1, xk−1) simplifies to P (xk|uk−1, xk−1). This is directly
obtained from the state transition probability, which is expressed as P (xk+1|xk, uk)
by shifting the stage index forward. The term P (xk−1|ηk−1, uk−1) is given by
(11.38). The completes the computation of the probabilistic I-states, which solves
the passive localization problem.

Solving the active localization problem is substantially harder because a search
occurs on Iprob. The same choices exist as for the discrete localization problem.
Computing an information-feedback plan over the whole I-space Iprob is theoreti-
cally possible but impractical for most environments. The search-based idea that
was applied to incrementally grow a directed graph in Section 12.2.1 could also
be applied here. The success of the method depends on clever search heuristics
developed for this particular problem.

Continuous problems Localization in a continuous space using probabilistic
models has received substantial attention in recent years [64, 124, 172, 235, 256,
288]. It is often difficult to localize mobile robots because of noisy sensor data,
modeling errors, and high demands for robust operation over long time periods.
Probabilistic modeling and the computation of probabilistic I-states have been
quite successful in many experimental systems, both for indoor and outdoor mobile
robots. Figure 12.11 shows localization successfully being solved using sonars only.
The vast majority of work in this context involves passive localization because the
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(a) (b)

(c) (d)

Figure 12.11: Four frames from an animation that performs probabilistic local-
ization of an indoor mobile robot using sonars [105].

robot is often completing some other task, such as reaching a particular part of
the environment. Therefore, the focus is mainly on computing the probabilistic
I-states, rather than performing a difficult search on Iprob.

Probabilistic localization in continuous spaces most often involves the defini-
tion of the probability densities p(xk+1|xk, uk) and p(yk|xk) (in the case of a state
sensor mapping). If the stages represent equally spaced times, then these densities
usually remain fixed for every stage. The state space is usually X = SE(2) to
account for translation and rotation, but it may be X = R

2 for translation only.
The density p(xk+1|xk, uk) accounts for the unpredictability that arises when con-
trolling a mobile robot over some fixed time interval. A method for estimating this
distribution for nonholonomic robots by solving stochastic differential equations
appears in [301].

The density p(yk|xk) indicates the relative likelihood of various measurements
when given the state. Most often this models distance measurements that are
obtained from a laser range scanner, an array of sonars, or even infrared sensors.
Suppose that a robot moves around in a 2D environment and takes depth mea-
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surements at various orientations. In the robot body frame, there are n angles at
which a depth measurement is taken. Ideally, the measurements should look like
those in Figure 11.15b; however, in practice, the data contain substantial noise.
The observation y ∈ Y is an n-dimensional vector of noisy depth measurements.

One common way to define p(y|x) is to assume that the error in each distance
measurement follows a Gaussian density. The mean value of the measurement can
easily be calculated as the true distance value once x is given, and the variance
should be determined from experimental evaluation of the sensor. If it is assumed
that the vector of measurements is modeled as a set of independent, identically
distributed random variables, a simple product of Guassian densities is obtained
for p(y|x).

Once the models have been formulated, the computation of probabilistic I-
states directly follows from Sections 11.2.3 and 11.4.1. The initial condition is a
probability density function, p(x1), over X. The marginalization and Bayesian
update rules are then applied to construct a sequence of density functions of the
form p(xk|ηk) for every stage, k.

In some limited applications, the models used to express p(xk+1|xk, uk) and
p(yk|xk) may be linear and Gaussian. In this case, the Kalman filter of Section
11.6.1 can be easily applied. In most cases, however, the densities will not have
this form. Moment-based approximations, as discussed in Section 11.4.3, can be
used to approximate the densities. If second-order moments are used, then the so-
called extended Kalman filter is obtained, in which the Kalman filter update rules
can be applied to a linear-Gaussian approximation to the original problem. In
recent years, one of the most widely accepted approaches in experimental mobile
robotics is to use sampling-based techniques to directly compute and estimate
the probabilistic I-states. The particle-filtering approach, described in general in
Section 11.6.2, appears to provide good experimental performance when applied
to localization. The application of particle filtering in this context is often referred
to as Monte Carlo localization; see the references at the end of this chapter.

12.3 Environment Uncertainty and Mapping

After reading Section 12.2, you may have already wondered what happens if the
map is not given. This leads to a fascinating set of problems that are fundamental
to robotics. If the state represents configuration, then the I-space allows tasks to
be solved without knowing the exact configuration. If, however, the state also
represents the environment, then the I-space allows tasks to be solved without
even having a complete representation of the environment! This is obviously very
powerful because building a representation of a robot’s environment is very costly
and subject to errors. Furthermore, it is likely to become quickly outdated.
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12.3.1 Grid Problems

To gain a clear understanding of the issues, it will once again be helpful to consider
discrete problems. The discussion here is a continuation of Section 12.2.1. In that
section, the state represented a position, p, and a direction, d. Now suppose that
the state is represented as (p, d, e), in which e represents the particular environ-
ment that contains the robot. This will require defining a space of environments,
which is rarely represented explicitly. It is often expressed as a constraint on
the types of environments that can exist. For example, the set of environments
could be defined as all connected 2D grid-planning problems. The set of simply
connected grid-planning problems is even further constrained.

One question immediately arises: When are two maps of an environment equiv-
alent? Recall the maps shown in Figures 12.2a and 12.3b. The map in Figure
12.3b appears the same for every 90-degree rotation; however, the map in Figure
12.2a appears to be different. Even if it appears different, it should still be the
same environment, right? Imagine mapping a remote island without having a
compass that indicates the direction to the north pole. An orientation (which
way is up?) for the map can be chosen arbitrarily without any harm. If a map
of the environment is made by “drawing” on R

2, it should seem that two maps
are equivalent if a transformation in SE(2) (i.e., translation and rotation) can be
applied to overlay one perfectly on top of the other.

When defining an environment space, it is important to clearly define what it
means for two environments to be equivalent. For example, if we are required to
build a map by exploration, is it required to also provide the exact translation
and orientation? This may or may not be required, but it is important to specify
this in the problem description. Thus, we will allow any possibility: If the maps
only differ by a transformation in SE(2), they may or may not be defined as
equivalent, depending on the application.

To consider some examples, it will be convenient to define some finite or infinite
sets of environments. Suppose that planning on a 2D grid is once again considered.
In this section, assume that each grid point p has integer coordinates (i, j) ∈ Z×Z,
as defined in Section 2.1. Let E denote a set of environments. Once again, there
are four possible directions for the robot to face; let D denote this set. The state
space is

X = Z× Z×D × E. (12.23)

Assume in general that an environment, e ∈ E, is specified by indicating a subset
of Z×Z that corresponds to the positions of all of the white tiles on which the robot
can be placed. All other tiles are black, which means that they are obstacles. If
any subset of Z × Z is allowed, then E = pow(Z × Z). This includes many
useless maps, such as a checkerboard that spans the entire plane; this motivates
some restrictions on E. For example, E can be restricted to be the subset of
pow(Z × Z) that corresponds to all maps that include a white tile at the origin,
(0, 0), and for which all other white tiles are reachable from it and lie within a
bounded region.
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Examples will be given shortly, but first think about the kinds of problems
that can be formulated:

1. Map building: The task is to visit every reachable tile and construct
a map. Depending on how E is defined, this may identify a particular
environment in E or a set of environments that are consistent with the
exploration. This may also be referred to as simultaneous localization and
mapping, or SLAM, because constructing a complete map usually implies
that the robot position and orientation are eventually known [131, 292].
Thus, the complete state, x ∈ X, as given in (12.23) is determined by the
map-building process. For the grid problem considered here, this point is
trivial, but the problem becomes more difficult for the case of probabilistic
uncertainty in a continuous environment. See Section 12.3.5 for this case.

2. Determining the environment: Imagine that a robot is placed into a
building at random and then is switched on. The robot is told that it is
in one of a fixed (i.e., 10) number of buildings. It must move to determine
which one. As the number of possible environments is increased, the prob-
lem appears to be more like map building. In fact, map building can be
considered as a special case in which little or no constraints are initially
imposed on the set of possible environments.

3. Navigation: In this case, a goal position is to be reached, even though
the robot has no map. The location of the goal relative to the robot can
be specified through a sensor. The robot is allowed to solve this problem
without fully exploring the environment. Thus, the final nondeterministic
I-state after solving the task could contain numerous possible environments.
Only a part of the environment is needed to solve the problem.

4. Searching: In this case, a goal state can only be identified when it is reached
(or detected by a short-range sensor). There are no additional sensors to help
in the search. The environment must be systematically explored, but the
search may terminate early if the goal is found. A map does not necessarily
have to be constructed. Searching can be extended to pursuit-evasion, which
is covered in Section 12.4.

Simple examples of determining the environment and navigation will now be given.

Example 12.4 (Determining the Environment) Suppose that the robot is
told that it was placed into one of the environments shown in Figure 12.12. Let
the initial position of the robot be (0, 0), which is shown as a white circle. Let the
initial direction be east and the environment be e3. These facts are unknown to the
robot. Use the same actions and state transition model as in Section 12.2.1. The
current state space includes the environment, but the environment never changes.
Only information regarding which environment the robot is in will change. The
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e1 e2 e3

e4 e5 e6

Figure 12.12: A set of possible 2D grid environments. In each case, the “up”
direction represents north and the white circle represents the origin, p = (0, 0).

sensing model again only indicates whether the robot has changed its position
from the application of the last action.

The initial condition is X, because any position, orientation, and environ-
ment are possible. Some nondeterministic I-states will now be determined. Let
(u1, u2, u3) = (F,R,R). From this sequence of actions, the sensor observations
(y2, y3, y4) report that the robot has not yet changed its position. The orienta-
tion was changed to west, but this is not known to the robot (it does, however,
know that it is now pointing in the opposite direction with respect to its initial
orientation). What can now be inferred? The robot has discovered that it is on
a tile that is bounded on three sides by obstacles. This means that e1 and e6
are ruled out as possible environments. In the remaining four environments, the
robot deduces that it must be on one of the end tiles: 1) the upper left of e2, 2)
the upper right of e2, 3) the bottom of e3, 4) the rightmost of e3, 5) the top of e4,
6) the lower left of e5, or 7) the upper left of e5. It can also make strong inferences
regarding its orientation. It even knows that the action u4 = R would cause it to
move because all four directions cannot be blocked.

Apply (u4, u5) = (R,F). The robot should move two times, to arrive in the
upper left of e3 facing north. In this case, any of e2, e3, e4, or e5 are still possible;
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e7 e8 e9

Figure 12.13: Add these environments to the set depicted in Figure 12.12. Each
is essentially equivalent to an environment already given and generally does not
affect the planning problem.

however, it now knows that its position at stage 4 could not have been in the
upper left of e5. If the robot is in e3, it knows that it must be in the upper left,
but it still does not know its orientation (it could be north or west). The robot
could also be in the lower left or lower right of e2.

Now let (u6, u7) = (R,F), which moves the robot twice. At this point, e4 and
e5 are ruled out, and the set of possible environments is {e2, e3} (one orientation
from e2 is also ruled out). If u8 = R is applied, then the sensor observation y9
reports that the robot does not move. This rules out e2. Finally, the robot can
deduce that it is in the upper right of e3 facing south. It can also deduce that in its
initial state it was in the lower left of e3 facing east. Thus, all of the uncertainty
has been eliminated through the construction of the nondeterministic I-states.

Now consider adding the environments shown in Figure 12.13 to the set and
starting the problem over again. Environment e7 is identical to e1, except that the
origin is moved, and e8 is identical to e2, except that it is rotated by 180 degrees. In
these two cases, there exist no inputs that enable the robot to distinguish between
e1 and e7 or between e2 and e8. It is reasonable to declare these environments to
be pairwise equivalent. The only distinction between them is the way that the
map is drawn.

If the robot executes the same action sequence as given previously, then it
will also not be able to distinguish e3 from e9. It is impossible for the robot to
deduce whether there is a white tile somewhere that is not reachable. A general
environment space may include such variations, and this will prevent the robot
from knowing the precise environment. However, this usually presents no addi-
tional difficulty in solving a planning problem. Therefore, it might make sense to
declare e3 and e9 to be equivalent. The fact that tasks can be achieved without
knowing the precise environment is very important. In a sense, the environment
is observed at some “resolution” that is sufficient for solving a problem; further
details beyond that are unimportant. Since the robot can ignore unnecessary de-
tails, cheaper and more reliable systems can often be built. �
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Example 12.5 (Reaching a Goal State) Suppose once again that the set of
environments shown in Figure 12.12 is given. This time, also assume that the po-
sition p = (0, 0) and orientation east are known. The environment is e4, but it is
unknown to the robot. The task is to reach the position (2, 0), which means that
the robot must move two tiles to the east. The plan (u1, u2) = (F,F) achieves the
goal without providing much information about the environment. After u1 = F
is applied, it is known that the environment is not e3; however, after this, no
additional information is gathered regarding the environment because it is not
relevant to solving the problem. If the goal had been to reach (2, 2), then more
information would be obtained regarding the environment. For example, if the
plan is (F,L,R,L), then it is known that the environment is e6. �

Algorithms for determining the environment To determine the environ-
ment (which includes the map-building problem), it is sufficient to reach and
remember all of the tiles. If the robot must determine its environment from a
small set of possibilities, an optimal worst-case plan can be precomputed. This
can be computed on ~X = Indet by using value iteration or the nondeterministic
version of Dijkstra’s algorithm from Section 10.2.3. When the robot is dropped
into the environment, it applies the optimal plan to deduce its position, orienta-
tion, and environment. If the set of possible environments is too large (possibly
infinite), then a lazy approach is most suitable. This includes the map-building
problem, for which there may be little or no assumptions about the environment.
A lazy approach to the map-building problem simply has to ensure that every
tile is visited. One additional concern may be to minimize the amount of reroute
paths, which were mentioned in Section 12.2.1. A simple algorithm that solves
the problem while avoiding excessive rerouting is depth-first search, from Section
2.2.2.

Algorithms for navigation The navigation task is to reach a prescribed goal,
even though no environment map is given. It is assumed that the goal is expressed
in coordinates relative to the robot’s initial position and orientation (these are odo-
metric coordinates). If the goal can only be identified when the robot is on the
goal tile, then searching is required, which is covered next. As seen in Example
12.5, the robot is not required to learn the whole environment to solve a naviga-
tion problem. The search algorithms of Section 2.2 may be applied. For example,
the A∗ method will find the optimal route to the goal, and a reasonable heuris-
tic underestimate of the cost-to-go can be defined by assuming that all tiles are
empty. Although such a method will work, the reroute costs are not being taken
into account. Thus, the optimal path eventually computed by A∗ may be mean-
ingless unless other robots will later use this information to reach the same goal
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in the same environment. For the unfortunate robot that went first, a substantial
amount of exploration steps might have been wasted because A∗ is not designed
for exploration during execution. Even though the search algorithms in Section
2.2 assumed that the search graph was gradually revealed during execution, as op-
posed to being given in advance, they allow the current state in the search to jump
around arbitrarily. In the current setting, this would require teleporting the robot
to different parts of the environment. Section 12.3.2 covers a navigation algorithm
that extends Dijkstra’s algorithm to work correctly when the costs are discovered
during execution. It can be nicely applied to the grid-based navigation problem
presented in this section, even when the environment is initially unknown.

Algorithms for maze searching A fascinating example of using an I-map to
dramatically reduce the I-space was given a long time ago by Blum and Kozen
[35]. Map building requires space that is linear in the number of tiles; however,
it is possible to ensure that the environment has been systematically searched
using much less space. For 2D grid environments, the searching problem can be
solved without maintaining a complete map. It must systematically visit every
tile; however, this does not imply that it must remember all of the places that
it has visited. It is important only to ensure that the robot does not become
trapped in an infinite loop before covering all tiles. It was shown in [35] that any
maze can be searched using space that is only logarithmic in the number of tiles.
This implies that many different environments have the same representation in
the machine. Essentially, an I-map was developed that severely collapses Indet
down to a smaller derived I-space.

Assume that the robot motion model is the same as has been given so far in this
section; however, no map of the environment is initially given. Whatever direction
the robot is facing initially can be declared to be north without any harm. It is
assumed that any planar 2D grid is possible; therefore, there are identical maps
for each of the four orientations. The north direction of one of these maps might
be mislabeled by arbitrarily declaring the initial direction to be north, but this
is not critical for the coming approach. It is assumed that the robot is a finite
automaton that carries a binary counter. The counter will be needed because it
can store values that are arbitrarily large, which is not possible for the automaton
alone.

To keep the robot from wandering around in circles forever, two important
pieces of information need to be maintained:

1. The latitude, which is the number of tiles in the north direction from the
robot’s initial position.

2. When a loop path is executed, it needs to know its orientation, which means
whether the loop travels clockwise or counterclockwise.

Both of these can be computed from the history I-state, which takes the same form
as in (12.12), except in the current setting, X is given by (12.23) and E is the set
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of all bounded environments (bounded means that the white tiles can be contained
in a large rectangle). From the history I-state, let ũ′k denote the subsequence of
the action history that corresponds to actions that produce motions. The latitude,
l(ũ′k), can be computed by counting the number of actions that produce motions
in the north direction and subtracting those that produce motions in the south
direction. The loop orientation can be determined by angular odometry (which
is equivalent to having a compass in this problem [79]). Let the value r(ũ′k) give
the number of right turns in ũ′k minus the number of left turns in ũ′k. Note that
making four rights yields a clockwise loop and r(ũ′k) = 4. Making four lefts yields
a counterclockwise loop and r(ũ′k) = −4. In general, it can be shown that for
any loop path that does not intersect itself, either r(ũ′k) = 4, which means that it
travels clockwise, or r(ũ′k) = −4, which means that it travels counterclockwise.

It was stated that a finite automaton and a binary counter are needed. The
counter is used to keep track of l(ũ′k) as the robot moves. It turns out that an
additional counter is not needed to measure the angular odometry because the
robot can instead perform mod-3 arithmetic when counting right and left turns.
If the result is r(ũ′k) = 1 mod 3 after forming a loop, then the robot traveled
counterclockwise. If the result is r(ũ′k) = 2 mod 3, then the robot traveled clock-
wise. This observation avoids using an unlimited number of bits, contrary to the
case of maintaining latitude. The construction so far can be viewed as part of an
I-map that maps the history I-states into a much smaller derived I-space.

The plan will be described in terms of the example shown in Figure 12.14.
For any environment, there are obstacles in the interior (this example has six),
and there is an outer boundary. Using the latitude and orientation information,
a unique point can be determined on the boundary of each obstacle and on the
outer boundary. The unique point is defined as the westernmost vertex among the
southernmost vertices of the obstacle. These are shown by small discs in Figure
12.15. By using the latitude and orientation information, the unique point can
always be found (see Exercise 4).

To solve the problem, the robot moves to a boundary and traverses it by
performing wall following. The robot can use its sensing information to move
in a way that keeps the wall to its left. Assuming that the robot can always
detect a unique point along the boundary, it can imagine that the obstacles are
connected as shown in Figure 12.15. There is a fictitious thin obstacle that extends
southward from each unique point. This connects the obstacles together in a way
that appears to be an extension of the outer boundary. In other words, imagine
that the obstacles are protruding from the walls, as opposed to “floating” in the
interior. By refusing to cross these fictitious obstacles, the robot moves around
the boundary of all obstacles in a single closed-loop path. The strategy so far
does not ensure that every cell will be visited. Therefore, the modification shown
in Figure 12.16 is needed to ensure that every tile is visited by zig-zag motions.
It is interesting to compare the solution to the spanning-tree coverage planning
approach in Section 7.6, which assumed a complete map was given and the goal
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Figure 12.14: An example that has six obstacles.

Figure 12.15: The obstacles are connected together by extending a thin obstacle
downward from their unique points.

was to optimize the distance traveled.

If there is some special object in the environment that can be detected when
reached by the robot, then the given strategy is always guaranteed to find it, even
though at the end, it does not even have a map!

The resulting approach can be considered as an information-feedback plan on
the I-space. In this sense, Blum and Kozen were the “planner” that found a plan
that solves any problem. Alternative plans do not need to be computed from
the problem data because the plan can handle all possible environments without
modification. This is the power of working directly with an I-space over the set
of environments, as opposed to requiring state estimation.

12.3.2 Stentz’s Algorithm (D∗)

Imagine exploring an unknown planet using a robotic vehicle. The robot moves
along the rugged terrain while using a range scanner to make precise measurements
of the ground in its vicinity. As the robot moves, it may discover that some parts
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(a) (b)

Figure 12.16: (a) A clockwise loop produced by wall following. (b) An alternative
loop that visits all of the tiles in the interior.

Figure 12.17: The Automated Cross-Country Unmanned Vehicle (XUV) is
equipped with laser radar and other sensors, and uses Stentz’s algorithm to navi-
gate (courtesy of General Dynamics Robotic Systems).

were easier to traverse than it originally thought. In other cases, it might realize
that some direction it was intending to go is impassable due to a large bolder or
a ravine. If the goal is to arrive at some specified coordinates, this problem can
be viewed as a navigation problem in an unknown environment. The resulting
solution is a lazy approach, as discussed in Section 12.2.1.

This section presents Stentz’s algorithm [267], which has been used in many
outdoor vehicle navigation applications, such as the vehicle shown in Figure 12.17.
The algorithm can be considered as a dynamic version of the backward variant of
Dijkstra’s algorithm. Thus, it maintains cost-to-go values, and the search grows
outward from the goal, as opposed to cost-to-come values from xI in the version of
Dijkstra’s algorithm in Section 2.3.3. The method applies to any optimal planning
problem. In terms of the state transition graph, it is assumed that the costs of
edge transitions are unknown (equivalently, each cost l(x, u) is unknown). In the
navigation problem, a positive cost indicates the difficulty of traveling from state
x to state x′ = f(x, u).

To work with a concrete problem, imagine that a planet surface is partitioned
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into a high-resolution grid. The state space is simply a bounded set of grid tiles;
hence, X ⊆ Z × Z. Each grid tile is assigned a positive, real value, c(x), that
indicates the difficulty of its traversal. The actions U(x) at each grid point can
be chosen using standard grid neighbors (e.g., four-neighbors or eight-neighbors).
This now defines a state transition graph over X. From any x′ ∈ X and u′ ∈ U(x′)
such that x = f(x′, u′), the cost term is assigned using c as l(x′, u′) = c(x). This
model is a generalization of the grid in Section 12.3.1, in which the tiles were
either empty or occupied; here any positive real value is allowed. In the coming
explanation, the costs may be more general than what is permitted by starting
from c(x), and the state transition graph does not need to be derived from a
grid. Some initial values are assigned arbitrarily for all l(x, u). For example, in
the planetary exploration application, the cost of traversing a level, unobstructed
surface may be uniformly assumed.

The task is to navigate to some goal state, xG. The method works by initially
constructing a feedback plan, π, on a subset of X that includes both xI and xG.
The plan, π, is computed by iteratively applying the procedure in Figure 12.18
until the optimal cost-to-go is known at xI . A priority queue, Q, is maintained as
in Dijkstra’s algorithm; however, Stentz’s algorithm allows the costs of elements in
Q to be modified due to information sensed during execution. Let Gbest(x) denote
the lowest cost-to-go associated with x during the time it spends in Q. Assume
that Q is sorted according to Gbest. Let Gcur(x) denote its current cost-to-go
value, which may actually be more than Gbest(x) if some cost updates caused it to
increase. Suppose that some u ∈ U(x) can be applied to reach a state x′ = f(x, u).
Let Gvia(x, x

′) denote the cost-to-go from x by traveling via x′,

Gvia(x, x
′) = Gcur(x

′) + l(x, u). (12.24)

If Gvia(x, x
′) < Gcur(x), then it indicates that Gcur(x) could be reduced. If

Gcur(x
′) ≤ Gbest(x), then it is furthermore known that Gcur(x

′) is optimal. If
both of these conditions are met, then Gcur(x) is updated to Gvia(x, x

′).
After the iterations of Figure 12.18 finish, the robot executes π, which gener-

ates a sequence of visited states. Let xk denote the current state during execution.
If it is discovered that if π(xk) = uk would be applied, the received cost would
not match the cost l(xk, uk) in the current model, then the costs need to be up-
dated. More generally, the robot may have to be able to update costs within a
region around xk that corresponds to the sensor field of view. For the description
below, assume that an update, l(xk, uk), is obtained for xk only (the more gen-
eral case is handled similarly). First, l(xk, uk) is updated to the newly measured
value. If xk happened to be dead (visited, but no longer in Q), then it is inserted
again into Q, with cost Gcur(xk). The steps in Figure 12.18 are performed until
Gcur(xk) ≤ Gbest(x) for all x ∈ Q. Following this, the plan execution continues un-
til either the goal is reached or another cost mismatch is discovered. At any time
during execution, the robot motions are optimal given the current information
about the costs [267].
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STENTZ’S ALGORITHM

1. Remove x from Q, which is the state with the lowest Gbest(x) value.

2. If Gbest(x) < Gcur(x), then x has increased its value while on Q. If x can
improve its cost by traveling via a neighboring state for which the optimal
cost-to-go is known, it should do so. Thus, for every u ∈ U(x), test for
x′ = f(x, u) whether Gvia(x, x

′) < Gcur(x) and Gcur(x
′) ≤ Gbest(x). If so,

then update Gcur(x) := Gvia(x, x
′) and π(x) := u.

3. This and the remaining steps are repeated for each x′ such that there exists
u′ ∈ U(x′) for which x = f(x′, u′). If x′ is unvisited, then assign π(x′) := u′,
and place x′ onto Q with cost Gvia(x

′, x).

4. If the cost-to-go from x′ appears incorrect because π(x′) = u′ but
Gvia(x

′, x) 6= Gcur(x
′), then an update is needed. Place x′ onto Q with

cost Gvia(x
′, x).

5. If π(x′) 6= u′ but Gvia(x
′, x) < Gcur(x

′), then from x′ it is better to travel
via x than to use π(x′). If Gcur(x) = Gbest(x), then π(x′) := u′ and x′ is
inserted into Q because the optimal cost-to-go for x is known. Otherwise, x
(instead of x′) is inserted into Q with its current value, Gcur(x).

6. One final condition is needed to avoid generating cycles in π. If x′ is dead
(visited, but no longer in Q), it may need to be inserted back into Q with
cost Gcur(x

′). This must be done if π(x′) 6= u′, Gvia(x, x
′) < Gcur(x), and

Gcur(x) > Gbest(x)

Figure 12.18: Stentz’s algorithm, often called D∗ (pronounced “dee star”), is a
variant of Dijkstra’s algorithm that dynamically updates cost values as the cost
terms are learned during execution. The steps here are only one iteration of
updating the costs after a removal of a state from Q.

Figure 12.19 illustrates the execution of the algorithm. Figure 12.19a shows a
synthetic terrain that was generated by a stochastic fractal. Darker gray values
indicate higher cost. In the center, very costly terrain acts as a barrier, for which
an escape route exists in the downward direction. The initial state is the middle
of the left edge of the environment, and the goal state is the right edge. The
robot initially plans a straight-line path and then incrementally updates the path
in each step as it moves. In Figure 12.19b, the robot has encountered the costly
center and begins to search for a way around. Finally, the goal is reached, as
shown in Figure 12.19c. The executed path is actually the result of executing a
series of optimal paths, each of which is based on the known information at the
time a single action is applied.
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(a) (b) (c)

Figure 12.19: An example of executing Stentz’s algorithm (courtesy of Tony
Stentz).

Interpretation in terms of I-spaces An alternative formulation will now be
given to help understand the connection to I-spaces of a set of environments.
The state space, as defined previously, could instead be defined as a configuration
space, C = Z × Z. Let q ∈ C denote a configuration. Suppose that each possible
environment corresponds to one way to assign costs to all of the edges in a config-
uration transition graph. The set E of all possible environments for this problem
seems to be all possible ways to assign costs, l(q, u). The state space can now
be defined as C × E, and for each state, x = (q, e) ∈ X, the configuration and
complete set of costs are specified. Initially, it is guessed that the robot is in some
particular e ∈ E. If a cost mismatch is discovered, this means that a different en-
vironment model is now assumed because a transition cost is different from what
was expected. The costs should actually be written as l(x, u) = l(q, e, u), which
indicates the dependency of the costs on the particular environment is assumed.

A nondeterministic I-state corresponds to a set of possible cost assignments,
along with their corresponding configurations. Since the method requires assigning
costs that have not yet been observed, it takes a guess and assumes that one
particular environment in the nondeterministic I-state is the correct one. As cost
mismatches are discovered, it is realized that the previous guess lies outside of the
updated nondeterministic I-state. Therefore, the guess is changed to incorporate
the new cost information. As this process evolves, the nondeterministic I-state
continues to shrink. Note, however, that in the end, the robot may solve the
problem while being incorrect about the precise e ∈ E. Some tiles are never
visited, and their true costs are therefore unknown. A default assumption about
their costs was made to solve the problem; however, the true e ∈ E can only be
known if all tiles are visited. It is only true that the final assumed default values
lie within the final nondeterministic I-state.
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12.3.3 Planning in Unknown Continuous Environments

We now move from discrete to continuous environments but continue to use nonde-
terministic uncertainty. First, several bug algorithms [139, 180, 140] are presented,
which represent a family of motion plans that solve planning problems using ideas
that are related in many ways to the maze exploration ideas of Section 12.3.1.
In addition to bug algorithms, the concept of competitive ratios is also briefly
covered.

The following model will be used for bug algorithms. Suppose that a point
robot is placed into an unknown 2D environment that may contain any finite
number of bounded obstacles. It is assumed that the boundary of each obsta-
cle and the outer boundary (if it exists) are piecewise-analytic (here, analytic
implies that each piece is smooth and switches its curvature sign only a finite
number of times). Thus, the obstacles could be polygons, smooth curves, or some
combination of curved and linear parts. The set E of possible environments is
overwhelming, but it will be managed by avoiding its explicit construction. The
robot configuration is characterized by its position and orientation.

There are two main sensors:2

1. A goal sensor indicates the current Euclidean distance to the goal and the
direction to the goal, expressed with respect to an absolute “north.”

2. A local visibility sensor provides the exact shape of the boundary within a
small distance from the robot. The robot must be in contact or almost in
contact to observe part of the boundary; otherwise, the sensor provides no
useful information.

The goal sensor essentially encodes the robot’s position in polar coordinates (the
goal is the origin). Therefore, unique (x, y) coordinates can be assigned to any
position visited by the robot. This enables it to incrementally trace out obstacle
boundaries that it has already traversed. The local visibility sensor provides just
enough information to allow wall-following motions; the range of the sensor is
very short so that the robot cannot learn anything more about the structure of
the environment.

Some strategies will now be considered for the robot. Each of these can be
considered as an information-feedback plan on a nondeterministic I-space.

The Bug1 strategy A strategy called Bug1 was developed in [180] and is il-
lustrated in Figure 12.20. The execution is as follows:

1. Move toward the goal until an obstacle or the goal is encountered. If the
goal is reached, then stop.

2This is just one possible sensing model. Alternative combinations of sensors may be used,
provided that they enable the required motions and decisions to be executed in the coming
motion strategies.
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xGxI

Figure 12.20: An illustration of the Bug1 strategy.

xI xG

Figure 12.21: A bad example for Bug1. The perimeter of each obstacle is spanned
one and a half times.

2. Turn left and follow the entire perimeter of the contacted obstacle. Once
the full perimeter has been visited, then return to the point at which the
goal was closest, and go to Step 1.

Determining that the entire perimeter has been traversed may seem to require a
pebble or marker; however, this can be inferred by finding the point at which the
goal sensor reading repeats.

The worst case is conceptually simple to understand. The total distance trav-
eled by the robot is no greater than

d+
3

2

M∑

i=1

pi, (12.25)
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xGxI

Figure 12.22: An illustration of the Bug2 strategy.

in which d is the Euclidean distance from the initial position to the goal position,
pi is the perimeter of the ith obstacle, and M is the number of obstacles. This
means that the boundary of each obstacle is followed no more than 3/2 times.
Figure 12.21 shows an example in which each obstacle is traversed 3/2 times. This
bound relies on the fact that the robot can always recall the shortest path along
the boundary to the point from which it needs to leave. This seems reasonable
because the robot can infer its distance traveled along the boundary from the
goal sensor. If this was not possible, then the 3/2 would have to be replaced by 2
because the robot could nearly traverse the full boundary twice in the worst case.

The Bug2 strategy An alternative to Bug1 is the Bug2 strategy, which is
illustrated in Figure 12.22. The robot always attempts to move along a line that
connects the initial and goal positions. When the robot is on this line, the goal
direction will be either the same as from the initial state or it will differ by π
radians (if the robot is on the other side of the goal). The first step is the same as
for Bug1. In the second step, the robot follows the perimeter only until the line is
reached and it is able to move in the direction toward the goal. From there, it goes
to Step 1. As expressed so far, it is possible that infinite cycles occur. Therefore, a
small modification is needed. The robot remembers the distance to the goal from
the last point at which it departed from the boundary, and only departs from the
boundary again if the candidate point that is closer to the goal. This is applied
iteratively until the goal is reached or it is deemed to be impossible.
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xI xG

Figure 12.23: A bad case for Bug2. Only part of the resulting path is shown.
Points from which the robot can leave the boundary are indicated.

xI xG

Figure 12.24: An illustration of the VisBug strategy with unlimited radius.

For the Bug2 strategy, the total distance traveled is no more than

d+
1

2

M∑

i=1

nipi, (12.26)

in which ni is the number of times the ith obstacle crosses the line segment between
the initial position and the goal position. An example that illustrates the trouble
caused by the crossings is shown in Figure 12.23.

Using range data The VisBug [179] and TangentBug [140, 160] strategies in-
corporate distance measurements made by a range or visibility sensor to improve
the efficiency. The TangentBug strategy will be described here and is illustrated
in Figure 12.24. Suppose that in addition to the sensors described previously, it
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Figure 12.25: The candidate motions with respect to the range sensor are the
directions in which there is a discontinuity in the depth map. The distances from
the robot to the small circles are used to select the desired motion.

is also equipped with a sensor that produces measurements as shown in Figure
12.25. The strategy is as follows:

1. Move toward the goal, either through the interior of the space or by wall
following, until it is realized that the robot is trapped in a local minimum
or the goal is reached. This is similar to the gradient-descent motion of the
potential-field planner of Section 5.4.3. If the goal is reached, then stop;
otherwise, go to the next step.

2. Execute motions along the boundary. First, pick a direction by comparing
the previous heading to the goal direction. While moving along the bound-
ary, keep track of two distances: df and dr. The distance df is the minimal
distance from the goal, observed while traveling along the boundary. The
distance dr is the length of the shortest path from the current position to
the goal, assuming that the only obstacles are those visible by the range sen-
sor. The robot stops following the boundary if dr < df . In this case, go to
Step 1. If the robot loops around the entire obstacle without this condition
occurring, then the algorithm reports that the goal is not reachable.

A one-parameter family of TangentBug algorithms can be made by setting a depth
limit for the range sensor. As the maximum depth is decreased, the robot becomes
more short-sighted and performance degrades. It is shown in [140] that the dis-
tance traveled is no greater than

d+
M∑

i=1

pi +
M∑

i=1

pimi, (12.27)
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in which mi is the number of local minima for the ith obstacle and d is the initial
distance to the goal. The bound is taken over M obstacles, which are assumed
to intersect a disc of radius d, centered at the goal (all others can be ignored). A
variant of the TangentBug, called WedgeBug, was developed in [160] for planetary
rovers that have a limited field of view.

Competitive ratios A popular way to evaluate algorithms that utilize different
information has emerged from the algorithms community. The idea is to compute
a competitive ratio, which places an on-line algorithm in competition with an
algorithm that receives more information [185, 261]. The idea can generally be
applied to plans. First a cost is formulated, such as the total distance that the
robot travels to solve a navigation task. A competitive ratio can then be defined
as

max
e∈E

Cost of executing the plan that does not know e in advance.

Cost of executing the plan that knows e in advance
. (12.28)

The maximum is taken over all e ∈ E, which is usually an infinite set, as in the case
of the bug algorithms. A competitive ratio for a navigation problem can be made
by comparing the optimal distance to the total distance traveled by the robot
during the execution of the on-line algorithm. Since E is infinite, many plans fail
to produce a finite competitive ratio. The bug algorithms, while elegant, represent
such an example. Imagine a goal that is very close, but a large obstacle boundary
needs to be explored. An obstacle boundary can be made arbitrarily large while
making the optimal distance to the goal very small. When evaluated in (12.28),
the result over all environments is unbounded. In some contexts, the ratio may
still be useful if expressed as a function of the representation. For example, if E
is a polygon with n edges, then an O(

√
n) competitive ratio means that (12.28)

is bounded over all n by c
√
n for some c ∈ R. For competitive ratio analysis in

the context of bug algorithms, see [108].

(a) (b)

Figure 12.26: (a) A lost cow must find its way to the gate, but it does not know
in which direction the gate lies. (b) If there is no bound on the distance to the
gate, then a doubling spiral strategy works well, producing a competitive ratio of
9.

A nice illustration of competitive ratio analysis and issues is provided by the
lost-cow problem [10]. As shown in Figure 12.26a, a short-sighted cow is following
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along an infinite fence and wants to find the gate. This makes a convenient one-
dimensional planning problem. If the location of the gate is given, then the cow
can reach it by traveling directly. If the cow is told that the gate is exactly distance
1 away, then it can move one unit in one direction and return to try the other
direction if the gate has not been found. The competitive ratio in this case (the
set of environments corresponds to all gate placements) is 3. What if the cow is
told only that the gate is at least distance 1 away? In this case, the best strategy
is a spiral search, which is to zig-zag back and forth while iteratively doubling the
distance traveled in each direction, as shown in Figure 12.26b. In other words:
left one unit, right one unit, left two units, right two units, left four units, and so
on. The competitive ratio for this strategy turns out to be 9, which is optimal.
This approach resembles iterative deepening, which was covered in Section 2.2.2.

12.3.4 Optimal Navigation Without a Geometric Model

This section presents gap navigation trees (GNTs) [280, 282], which are a data
structure and associated planning algorithm for performing optimal navigation in
the continuous environments that were considered in Section 12.3.3. It is assumed
in this section that the robot is equipped with a gap sensor, as depicted in Figure
11.16 of Section 11.5.1. At every instant in time, the robot has available one action
for each gap that is visible in the gap sensor. If an action is applied, then the
robot moves toward the corresponding gap. This can be applied over continuous
time, which enables the robot to “chase” a particular gap. The robot has no
other sensing information: It has no compass and no ability to measure distances.
Therefore, it is impossible to construct a map of the environment that contains
metric information.

Assume that the robot is placed into an unknown but simply connected planar
environment, X. The GNT can be extended to the case of multiply connected
environments; however, in this case there are subtle issues with distinguishability,
and it is only possible to guarantee optimality within a homotopy class of paths
[281]. By analyzing the way that critical events occur in the gap sensor, a tree
representation can be built that indicates how to move optimally in the environ-
ment, even though precise measurements cannot be taken. Since a gap sensor
cannot even measure distances, it may seem unusual that the robot can move
along shortest paths without receiving any distance (or metric) information. This
will once again illustrate the power of I-spaces.

The appearance of the environment relative to the position of the robot is en-
coded as a tree that indicates how the gaps change as the robot moves. It provides
the robot with sufficient information to move to any part of the environment while
traveling along the shortest path. It is important to understand that the tree does
not correspond to some static map of the environment. It expresses how the en-
vironment appears relative to the robot and may therefore change as the robot
moves in the environment.
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Gap

Gap chasing action

Point of boundary contact

Robot position

Figure 12.27: A gap-chasing action is applied, which moves the robot straight in
the direction of the gap until the boundary is contacted. Once this occurs, a new
part of the environment becomes visible.

The root of the tree represents the gap sensor. For each gap that currently
appears in the sensor, an edge is connected to the root. Let these edges be called
root edges. Each root edge corresponds to an action that can be applied by the
robot. By selecting a root edge, the action moves the robot along a straight line
toward that gap. Thus, there is a simple control model that enables the robot
to move precisely toward a particular point along the boundary, ∂X, as shown in
Figure 12.27.

Let V (x) be the visibility region, which is the set of all points in X that are
visible from x. Let X \ V (x) be called the shadow region, which is the set of all
points not visible from x. Let each connected component of the shadow region
be called a shadow component. Every gap in the gap sensor corresponds to a line
segment in X that touches ∂X in two places (for example, see Figure 11.15a).
Each of these segments forms a boundary between the visibility region and a
shadow component. If the robot would like to travel to this shadow component,
the shortest way is to move directly to the gap. When moving toward a gap, the
robot eventually reaches ∂X, at which point a new action must be selected.

Critical gap events As the robot moves, several important events can occur
in the gap sensor:

1. Disappear: A gap disappears because the robot crosses an inflection ray as
shown in Figure 12.28. This means that some previous shadow component
is now visible.

2. Appear: A gap appears because the robot crosses an inflection ray in the
opposite direction. This means that a new shadow component exists, which
represents a freshly hidden portion of the environment.

3. Split: A gap splits into two gaps because the robot crosses a bitangent ray,
as shown in Figure 12.29 (this was also shown in Figure 12.5). This means
that one shadow component splits into two shadow components.
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Disappear

Appear

(a) (b)

Figure 12.28: (a) The robot crosses a ray that extends from an inflectional tangent.
(b) A gap appears or disappears from the gap sensor, depending on the direction.

Merge

Split

(a) (b)

Figure 12.29: (a) The robot crosses a ray that extends from a bitangent. (b) Gaps
split or merge, depending on the direction.

4. Merge: Two gaps merge into one because the robot crosses a bitangent ray
in the oppose direction. In this case, two shadow components merge into
one.

This is a complete list of possible events, under a general position assumption that
precludes environments that cause degeneracies, such as three gaps that merge into
one or the appearance of a gap precisely where two other gaps split.

As each of these gap events occurs, it needs to be reflected in the tree. If a
gap disappears, as shown in Figure 12.30, then the corresponding edge and vertex
are simply removed. If a merge event occurs, then an intermediate vertex is
inserted as shown in Figure 12.31. This indicates that if that gap is chased, it will
split into the two original gaps. If a split occurs, as shown in Figure 12.32, then
the intermediate vertex is removed. The appearance of a gap is an important
case, which generates a primitive vertex in the tree, as shown in Figure 12.33.
Note that a primitive vertex can never split because chasing it will result in its
disappearance.



12.3. ENVIRONMENT UNCERTAINTY AND MAPPING 681

a b

c

a b

a b

c

a b

a

b
c

a

b

Figure 12.30: If a gap disappears, it is simply removed from the GNT.

a b

c

a b

a b

c

a

b
c

a
b

c

a

b
c

d
c

c

d

c

a

b
cd

Figure 12.31: If two gaps merge, an intermediate vertex is inserted into the tree.
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Figure 12.32: If two gaps split, the intermediate vertex is removed.
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Figure 12.33: The appearance of a gap results in a primitive vertex, which is
denoted by a square.

A simple example will now be considered.

Example 12.6 (Gap Navigation Tree) Suppose that the robot does not know
the environment in Figure 12.34. It moves from cells 1 to 7 in order and then re-
turns to cell 1. The following sequence of trees occurs: T1, . . ., T7, T

′
6, . . ., T

′
1, as

shown in Figure 12.35. The root vertex is shown as a solid black disc. Vertices
that are not known to be primitive are shown as circles; primitive vertices are
squares. Note that if any leaf vertex is a circle, then it means that the shadow
region of R that is hidden by that gap has not been completely explored. Note
that once the robot reaches cell 5, it has seen the whole environment. This occurs
precisely when all leaf vertices are primitive. When the robot returns to the first
region, the tree is larger because it knows that the region on the right is composed
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1

2
3

4

5
6

7

Figure 12.34: A simple environment for illustrating the gap navigation tree.

of two smaller regions to the right. If all leaves are squares, this means that the
environment has been completely explored. �

In the example, all of the interesting parts of the environment were explored.
From this point onward, all leaf vertices will be primitive vertices because all
possible splits have been discovered. In a sense, the environment has been com-
pletely learned, at the level of resolution possible with the gap sensor. A simple
strategy for exploring the environment is to chase any gaps that themselves are
nonprimitive leaf vertices or that have children that are nonprimitive leaf vertices.
A leaf vertex in the tree can be chased by repeatedly applying actions that chase
its corresponding gap in the gap sensor. This may cause the tree to incrementally
change; however, there is no problem if the action is selected to chase whichever
gap hides the desired leaf vertex, as shown in Figure 12.36. Every nonprimitive
leaf vertex will either split or disappear. After all nonprimitive leaf vertices have
been chased, all possible splits have been performed and only primitive leaves
remain. In this case, the environment has been completely learned.

Using the GNTs for optimal navigation Since there is no precise map of
the environment, it is impossible to express a goal state using coordinates in R

2.
However, a goal can be expressed in terms of the vertex that must be chased to
make the state visible. For example, imagine showing the robot an object while it
explores. At first, the object is visible, but a gap may appear that hides the object.
After several merges, a vertex deep in the tree may correspond to the location from
which the object is visible. The robot can navigate back to the object optimally
by chasing the vertex that first hid the object by its appearance. Once this vertex
and its corresponding gap disappear, the object becomes visible. At this time
the robot can move straight toward the object (assuming an additional sensor
that indicates the direction of the object). It was argued in [282] that when the
robot chases a vertex in the GNT, it precisely follows the paths of the shortest-
path roadmap, which was introduced in Section 6.2.4. Each pair of successive gap
events corresponds to the traversal of a bitangent edge.
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Figure 12.35: Building a representation of the environment in Figure 12.34 us-
ing the gap navigation tree. The sequence is followed from left to right. For
convenience, the “R” or “L” inside of each vertex indicates whether the shadow
component is to the right or left of the gap, respectively. This information is not
needed by the algorithm, but it helps in understanding the representation.

I-space interpretation In terms of an I-space over the set of environments,
the GNT considers large sets of environments to be equivalent. This means that
an I-map was constructed on which the derived I-space is the set of possible
GNTs. Under this I-map, many environments correspond to the same GNT. Due
to this, the robot can accomplish interesting tasks without requesting further
information. For example, if two environments differ only by rotation or scale,
the GNT representations are identical. Surprisingly, the robot does not even
need to be concerned about whether the environment boundary is polygonal or
curved. The only important concern is how the gaps events occur. For example,
the environments in Figure 12.37 all produce the same GNTs and are therefore
indistinguishable to the robot. In the same way that the maze exploring algorithm
of Section 12.3.1 did not need a complete map to locate an object, the GNT does
not need one to perform optimal navigation.
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Figure 12.36: Optimal navigation to a specified part of the environment is achieved
by “chasing” the desired vertex in the GNT until it disappears. This will make a
portion of the environment visible. In the example, the gap labeled “h” is chased.

Figure 12.37: These environments yield the same GNTs and are therefore equiva-
lent at the resolution of the derived I-space. The robot cannot measure distances
and does not even care whether walls are straight or curved; it is not relevant
to the navigation task. Nevertheless, it executes optimal motions in terms of the
Euclidean distance traveled.

12.3.5 Probabilistic Localization and Mapping

The problems considered so far in Section 12.3 have avoided probabilistic mod-
eling. Suppose here that probabilistic models exist for the state transitions and
the observations. Many problems can be formulated by replacing the nondeter-
ministic models in Section 12.3.1 by probabilistic models. This would lead to
probabilistic I-states that represent distributions over a set of possible grids and
a configuration within each grid. If the problem is left in its full generality, the
I-space is enormous to the point that is seems hopeless to approach problems in
the manner used to far. If optimality is not required, then in some special cases
progress may be possible.

The current problem is to construct a map of the environment while simul-
taneously localizing the robot with the respect to the map. Recall Figure 1.7
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from Section 1.2. The section covers a general framework that has been popular
in mobile robotics in recent years (see the literature suggested at the end of the
chapter). The discussion presented here can be considered as a generalization of
the discussion from Section 12.2.3, which was only concerned with the localization
portion of the current problem. Now the environment is not even known. The
current problem can be interpreted as localization in a state space defined as

X = C × E, (12.29)

in which C is a configuration space and E is the environment space. A state, xk, is
represented as xk = (qk, e); there is no k subscript for e because the environment is
assumed to be static). The history I-state provides the data to use in the process
of determining the state. As for localization in Section 12.2, there are both passive
and active versions of the problem. An incremental version of the active problem
is sometimes called the next-best-view problem [11, 60, 227]. The difficulty is that
the robot has opposing goals of: 1) trying to turn on the sensor at places that will
gain as much new data as possible, and 2) this minimization of redundancy can
make it difficult to fuse all of the measurements into a global map. The passive
problem will be described here; the methods can be used to provide information
for solving the active problem.

Suppose that the robot is a point that translates and rotates in R
2. According

to Section 4.2, this yields C = R
2×S

1, which represents SE(2). Let q ∈ C denote a
configuration, which yields the position and orientation of the robot. Assume that
configuration transitions are modeled probabilistically, which requires specifying
a probability density, p(qk+1|qk, uk). This can be lifted to the state space to obtain
p(xk+1|xk, uk) by assuming that the configuration transitions are independent of
the environment (assuming no collisions ever occur). This replaces qk and qk+1

by xk and xk+1, respectively, in which xk = (qk, e) and xk+1 = (qk+1, e) for any
e ∈ E.

Suppose that observations are obtained from a depth sensor, which ideally
would produce measurements like those shown in Figure 11.15b; however, the
data are assumed to be noisy. The probabilistic model discussed in Section 12.2.3
can be used to define p(y|x). Now imagine that the robot moves to several parts
of the environment, such as those shown in Figure 11.15a, and performs a sensor
sweep in each place. If the configuration qk is not known from which each sweep
yk was performed, how can the data sets be sewn together to build a correct,
global map of the environment? This is trivial after considering the knowledge of
the configurations, but without it the problem is like putting together pieces of a
jigsaw puzzle. Thus, the important data in each stage form a vector, (yk, qk). If
the sensor observations, yk, are not tagged with a configuration, qk, from which
they are taken, then the jigsaw problem arises. If information is used to tightly
constrain the possibilities for qk, then it becomes easier to put the pieces together.
This intuition leads to the following approach.
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The EM algorithm The problem is often solved in practice by applying the
expectation-maximization (EM) algorithm [29]. In the general framework, there
are three different spaces:

1. A set of parameters, which are to be determined through some measurement
and estimation process. In our problem, this represents E, because the main
goal is to determine the environment.

2. A set of data, which provide information that can be used to estimate the
parameter. In the localization and mapping problem, this corresponds to the
history I-space IK . Each history I-state ηK ∈ IK is ηK = (p(x), ũK−1, ỹK),
in which p(x) is a prior probability density over X.

3. A set of hidden variables, which are unknown but need to be estimated to
complete the process of determining the parameters. In the localization and
mapping problem, this is the configuration space C.

Since both the parameters and the hidden variables are unknown, the choice
between the two may seem arbitrary. It will turn out that expressions can be
derived to nicely express the probability density for the hidden variables, but the
parameters are much more complicated.

The EM algorithm involves an expectation step followed by a maximization
step. The two steps are repeated as necessary until a solution with the desired
accuracy is obtained. The method is guaranteed to converge under general con-
ditions [71, 293, 294]. In practice, it appears to work well even under cases that
are not theoretically guaranteed to converge [277].

From this point onward, let E, IK , and C denote the three spaces for the EM
algorithm because they pertain directly to the problem. Suppose that a robot has
moved in the environment for K − 1 stages, resulting in a final stage, K. At each
stage, k ∈ {1, . . . , K}, an observation, yk, is made using its sensor. This could,
for example, represent a set of distance measurements made by sonars or a range
scanner. Furthermore, an action, uk, is applied for k = 1 to k = K. A prior
probability density function, p(x), is initially assumed over X. This leads to the
history I-state, ηk, as defined in (11.14).

Now imagine that K stages have been executed, and the task is to estimate
e. From each qk, a measurement, yk, of part of the environment is taken. The
EM algorithm generates a sequence of improved estimates of e. In each execution
of the two EM steps, a new estimate of e ∈ E is produced. Let êi denote this
estimate after the ith iteration. Let q̃K denote the configuration history from
stage 1 to stage K. The expectation step computes the expected likelihood of ηK
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given êi. This can be expressed as3

Q(e, êi−1) =E [p(ηK , q̃K | e)| ηK , êi−1]

=

∫

C

p(ηK , q̃K | e)p(q̃K | ηK , êi−1)dq̃K ,
(12.30)

in which the expectation is taken over the configuration histories. Since ηK is
given and the expectation removes q̃k, (12.30) is a function only of e and êi−1.
The term p(ηK , q̃K | e) can be expressed as

p(ηK , q̃K | e) = p(q̃K | ηK , e)p(ηK |e), (12.31)

in which p(ηK) is a prior density over the I-space, given nothing but the environ-
ment e. The factor p(q̃K | ηK , e) differs from the second factor of the integrand in
(12.30) only by using e or êi−1. The main difficulty in evaluating (12.30) is to eval-
uate p(q̃k| ηK , êi−1) (or the version that uses e). This is essentially a localization
problem with a given map, as considered in Section 12.2.3. The information up to
stage k can be applied to yield the probabilistic I-state p(qk| ηk, êi−1) for each qk;
however, this neglects the information from the remaining stages. This new in-
formation can be used to make inferences about old configurations. For example,
based on current measurements and memory of the actions that were applied, we
have better information regarding the configuration several stages ago. In [278]
a method of computing p(qk| ηk, êi−1) is given that computes two terms: One is
p(qk|ηk), and the other is a backward probabilistic I-state that starts at stage K
and runs down to k + 1.

Note that once determined, (12.30) is a function only of e and êi−1. The
maximization step involves selecting an êi that minimizes (12.30):

êi = argmax
e∈E

Q(e, êi−1). (12.32)

This optimization is often too difficult, and convergence conditions exist if êi
is chosen such that Q(êi, êi−1) > Q(êi−1, êi−1). Repeated iterations of the EM
algorithm result in a kind of gradient descent that arrives at a local minimum in
E.

One important factor in the success of the method is in the representation of E.
In the EM computations, one common approach is to use a set of landmarks, which
were mentioned in Section 11.5.1. These are special places in the environment that
can be identified by sensors, and if correctly classified, they dramatically improve
localization. In [278], the landmarks are indicated by a user as the robot travels.
Classification and positioning errors can both be modeled probabilistically and
incorporated into the EM approach. Another idea that dramatically simplifies

3In practice, a logarithm is applied to p(ηK , qk| e) because densities that contain exponentials
usually arise. Taking the logarithm makes the expressions simpler without affecting the result
of the optimization. The log is not applied here because this level of detail is not covered.
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the representation of E is to approximate environments with a fine-resolution
grid. Probabilities are associated with grid cells, which leads to a data structure
called an occupancy grid [88, 190, 244]. In any case, E must be carefully defined
to ensure that reasonable prior distributions can be made for p(e) to initialize the
EM algorithm as the robot first moves.

12.4 Visibility-Based Pursuit-Evasion

This section considers visibility-based pursuit-evasion [167, 273], which was de-
scribed in Section 1.2 as a game of hide-and-seek. The topic provides an excellent
illustration of the power of I-space concepts.

12.4.1 Problem Formulation

The problem considered in this section is formulated as follows.

Formulation 12.1 (Visibility-Based Pursuit-Evasion)

1. A given, continuous environment region R ⊂ R
2, which is an open set that

is bounded by a simple closed curve. The boundary ∂R is often a polygon,
but it may be any piecewise-analytic closed curve.

2. An unbounded time interval T = [0,∞).

3. An evader, which is a moving point in R. The evader position e(t) at time
t ∈ T is determined by a continuous position function, ẽ : [0, 1] → R.4

4. A pursuer, which is a moving point in R. The evader position function ẽ is
unknown to the pursuer.

5. A visibility sensor, which defines a set V (r) ⊆ R for each r ∈ R.

The task is to find a path, p̃ : [0, 1] → R, for the pursuer for which the evader
is guaranteed to be detected, regardless of its position function. This means that
∃t ∈ T such that e(t) ∈ V (p(t)). The speed of the pursuer is not important;
therefore, the time domain may be lengthened as desired, if the pursuer is slow.

It will be convenient to solve the problem by verifying that there is no evader.
In other words, find a path for the pursuer that upon completion guarantees that
there are no remaining places where the evader could be hiding. This ensures
that during execution of the plan, the pursuer will encounter any evader. In fact,
there can be any number of evaders, and the pursuer will find all of them. The
approach systematically eliminates any possible places where evaders could hide.

4Following from standard function notation, it is better to use ẽ(t) instead of e(t) to denote
the position at time t; however, this will not be followed.
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The state yields the positions of the pursuer and the evader, x = (p, e), which
results in the state space X = R×R ⊂ R

4. Since the evader position is unknown,
the current state is unknown, and I-spaces arise. The observation space Y is a
collection of subsets of R. For each p ∈ R, the sensor yields a visibility poly-
gon, V (p) ⊆ R (this is denoted by y = h(p, e) using notation of Section 11.1.1).
Consider the history I-state at time t. The initial pursuer position p(0) is given
(any position can be chosen arbitrarily, if it is not given), and the evader may lie
anywhere in R. The input history ũt can be expressed as the pursuer history p̃t.

5

Thus, the history I-state is

ηt = ((p(0), R), p̃t, ỹt), (12.33)

in which (p(0), R) ⊂ X reflects the initial condition in which p(0) is known, and
the evader position e(0) may lie anywhere in R.

Consider the nondeterministic I-space, Indet. Since the pursuer position is al-
ways known, the interesting part of R is the subset in which the evader may lie.
Thus, the nondeterministic I-state can be expressed as Xt(ηt) = (p(t), E(ηt)), in
which E(ηt) is the set of possible evader positions given ηt. As usual for non-
deterministic I-states, E(ηt) is the smallest set that is consistent with all of the
information in ηt.

Consider how E(ηt) varies over time. After the first instant of time, V (p(0)) is
observed, and it is known that the evader lies in R \V (p(0)), which is the shadow
region (defined in Section 12.3.4) from p(0). As the pursuer moves, E(ηt) varies.
Suppose you are told that the pursuer is now at position p(t), but you are not
yet told ηt. What options seem possible for E(ηt)? These depend on the history,
but the only interesting possibilities are that each shadow component may or may
not contain the evader. For some of these components, we may be certain that it
does not. For example, consider Figure 12.38. Suppose that the pursuer initially
believes that the end of the corridor may contain the evader. If it moves along
the smaller closed-loop path, the nondeterministic I-state gradually varies but
returns to the same value when the loop is completed. However, if the pursuer
traverses the larger loop, it becomes certain upon completing the loop that the
corridor does not contain the evader. The dashed line that was crossed in this
example may inspire you to think about cell decompositions based on critical
boundaries, as in the algorithm in Section 6.3.4. This idea will be pursued shortly
to develop a complete algorithm for solving this problem. Before presenting a
complete algorithm, however, first consider some interesting examples.

Example 12.7 (When Is a Problem Solvable?) Figure 12.39 shows four sim-
ilar problems. The evader position is never shown because the problem is solved

5To follow the notation of Section 11.4 more closely, the motion model ṗ = u can be used, in
which u represents the velocity of the pursuer. Nature actions can be used to model the velocity
of the evader to obtain ė. By integrating ṗ over time, p(t) can be obtained for any t. This means
that p̃t can be used as a simpler representation of the input history, instead of directly referring
to velocities.
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Figure 12.38: (a) Suppose the pursuer comes near the end of a contaminated
corridor. (b) If the pursuer moves in a loop path, the nondeterministic I-state
gradually changes, but returns to its original value. (c) However, if a critical
boundary is crossed, then the nondeterministic I-state fundamentally changes.

by ensuring that no evader could be left hiding. Note that the speed of the pur-
suer is not relevant to the nondeterministic I-states. Therefore, a solution can
be defined by simply showing the pursuer path. The first three examples are
straightforward to solve. However, the fourth example does not have a solution
because there are at least three distinct hiding places (can you find them?). Let
V (V (p)) denote the set of all points visible from at least one point in V (p). The
condition that prevents the problem from being solved is that there exist three
positions, p1, p2, p3, such that V (V (pi)) ∩ V (V (pj)) = ∅ for each i, j ∈ {1, 2, 3}
with i 6= j. As one hiding place is reached, the evader can sneak between the
other two. In the worst case, this could result in an endless chase with the evader
always eluding discovery. We would like an algorithm that systematically searches
Indet and determines whether a solution exists. �

Since one pursuer is incapable of solving some problems, it is tempting to
wonder whether two pursuers can solve any problem. The next example gives an
interesting sequence of environments that implies that for any positive integer k,
there is an environment that requires exactly k pursuers to solve.

Example 12.8 (A Sequence of Hard Problems) Each environment in the se-
quence shown in Figure 12.40 requires one more pursuer than the previous one
[119]. The construction is based on recursively ensuring there are three isolated
hiding places, as in the last problem of Figure 12.39. Each time this occurs, an-
other pursuer is needed. The sequence recursively appends three environments
that require k pursuers, to obtain a problem that requires k+1. An extra pursuer
is always needed to guard the junction where the three environments are attached
together. The construction is based on the notion of 3-separability, from pursuit-
evasion on a graph, which was developed in [219]. �

The problem can be made more challenging by considering multiply connected
environments (environments with holes). A single pursuer cannot solve any of the
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Figure 12.39: Three problems that can be easily solved with one pursuer, and a
minor variant for which no solution exists.

Figure 12.40: Each collection of corridors requires one more pursuer than the one
before it because a new pursuer must guard the junction.

these problems. Determining the minimum number of pursuers required to solve
such a problem is NP-hard [119].

12.4.2 A Complete Algorithm

Now consider designing a complete algorithm that solves the problem in the case of
a single pursuer. To be complete, it must find a solution if one exists; otherwise,
it correctly reports that no solution is possible. Recall from Figure 12.38 that
the nondeterministic I-state changed in an interesting way only after a critical
boundary was crossed. The pursuit-evasion problem can be solved by carefully
analyzing all of the cases in which these critical changes can occur. It turns out
that these are exactly the same cases as considered in Section 12.3.4: crossing
inflection rays and bitangent rays. Figure 12.38 is an example of crossing an
inflection ray. Figure 12.41 indicates the connection between the gaps of Section
12.3.4 and the parts of the environment that may contain the evader.
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Figure 12.41: Recall Figure 11.15. Beyond each gap is a portion of the environ-
ment that may or may not contain the evader.

Recall that the shadow region is the set of all points not visible from some
p(t); this is expressed as R \ V (p(t)). Every critical event changes the number
of shadow components. If an inflection ray is crossed, then a shadow component
either appears or disappears, depending on the direction. If a bitangent ray is
crossed, then either two components merge into one or one component splits into
two. To keep track of the nondeterministic I-state, it must be determined whether
each component of the shadow region is cleared, which means it certainly does not
contain the evader, or contaminated, which means that it might contain the evader.
Initially, all components are labeled as contaminated, and as the pursuer moves,
cleared components can emerge. Solving the pursuit-evasion problem amounts to
moving the pursuer until all shadow components are cleared. At this point, it is
known that there are no places left where the evader could be hiding.

If the pursuer crosses an inflection ray and a new shadow component appears,
it must always be labeled as cleared because this is a portion of the environ-
ment that was just visible. If the pursuer crosses a bitangent ray and a split
occurs, then the labels are distributed across the two components: A contami-
nated shadow component splits into two contaminated components, and a cleared
component splits into two cleared components. If the bitangent ray is crossed
in the other direction, resulting in a merge of components, then the situation is
more complicated. If one component is cleared and the other is contaminated,
then the merged component is contaminated. The merged component may only
be labeled as cleared if both of the original components are already cleared. Note
that among the four critical cases, only the merge has the potential to undo the
work of the pursuer. In other words, it may lead to recontamination.

Consider decomposing R into cells based on inflection rays and bitangent rays,
as shown in Figure 12.42. These cells have the following information-conservative
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Environment Inflection rays

Bitangent rays Cell decomposition

Figure 12.42: The environment is decomposed into cells based on inflections and
bitangents, which are the only critical visibility events.

property: If the pursuer travels along any loop path that stays within a 2D cell,
then the I-state remains the same upon returning to the start. This implies
that the particular path taken by the pursuer through a cell is not important. A
solution to the pursuit-evasion problem can be described as a sequence of adjacent
2D cells that must be visited. Due to the information-conservative property, the
particular path through a sequence of cells can be chosen arbitrarily.

Searching the cells for a solution is more complicated than searching for paths
in Chapter 6 because the search must be conducted in the I-space. The pursuer
may visit the same cell in R on different occasions but with different knowledge
about which components are cleared and contaminated. A directed graph, GI ,
can be constructed as follows. For each 2D cell in R and each possible labeling of
shadow components, a vertex is defined in GI . For example, if the shadow region
of a cell has three components, then there are 23 = 8 corresponding vertices in
GI . An edge exists in GI between two vertices if: 1) their corresponding cells are
adjacent, and 2) the labels of the components are consistent with the changes
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induced by crossing the boundary between the two cells. The second condition
means that the labeling rules for an appear, disappear, split, or merge must be
followed. For example, if crossing the boundary causes a split of a contaminated
shadow component, then the new components must be labeled contaminated and
all other components must retain the same label. Note that GI is directed because
many motions in the Indet are not reversible. For example, if a contaminated
region disappears, it cannot reappear as contaminated by reversing the path.
Note that the information in this directed graph does not improve monotonically
as in the case of lazy discrete localization from Section 12.2.1. In the current
setting, information is potentially worse when shadow components merge because
contamination can spread.

To search GI , start with any vertex for which all shadow region components
are labeled as contaminated. The particular starting cell is not important. Any of
the search algorithms from Section 2.2 may be applied to find a goal vertex, which
is any vertex of GI for which all shadow components are labeled as cleared. If no
such vertices are reachable from the initial state, then the algorithm can correctly
declare that no solution exists. If a goal vertex is found, then the path in GI
gives the sequence of cells that must be visited to solve the problem. The actual
path through R is then constructed from the sequence of cells. Some of the cells
may not be convex; however, their shape is simple enough that a sophisticated
motion planning algorithm is not needed to construct a path that traverses the
cell sequence.

The algorithm presented here is conceptually straightforward and performs
well in practice; however, its worst-case running time is exponential in the number
of inflection rays. Consider a polygonal environment that is expressed with n
edges. There can be as many as O(n) inflections and O(n2) bitangents. The
number of cells is bounded by O(n3) [118]. Unfortunately, GI has an exponential
number of vertices because there can be as many as O(n) shadow components,
and there are 2n possible labelings if there are n components. Note that GI does
not need to be computed prior to the search. It can be revealed incrementally
during the planning process. The most efficient complete algorithm, which is more
complicated, solves the pursuit-evasion problem in time O(n2) and was derived by
first proving that any problem that can be solved by a pursuer using the visibility
polygon can be solved by a pursuer that uses only two beams of light [216]. This
simplifies V (p(t)) from a 2D region in R to two rotatable rays that emanate from
p(t) and dramatically reduces the complexity of the I-space.

12.4.3 Other Variations

Numerous variations of the pursuit-evasion problem presented in this section can
be considered. The problem becomes much more difficult if there are multiple pur-
suers. A cell decomposition can be made based on changing shadow components;
however, some of the cell boundaries are algebraic surfaces due to complicated
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(a) (b) (c) (d) (e)

Figure 12.43: Several evader detection models: (a) omnidirectional sensing with
unlimited distance; (b) visibility with a limited field of view; (c) a single visibility
ray that is capable of rotating; (d) limited distance and a rotating viewing cone,
which corresponds closely to a camera model; and (e) three visibility rays that
are capable of rotating.

interactions between the visibility polygons of different pursuers. Thus, it is dif-
ficult to implement a complete algorithm. On the other hand, straightforward
heuristics can be used to guide multiple pursuers. A single pursuer can use the
complete algorithm described in this section. When this pursuer fails, it can move
to some part of the environment and then wait while a second pursuer applies the
complete single-pursuer algorithm on each shadow component. This idea can be
applied recursively for any number of robots.

The problem can be made more complicated by placing a velocity bound on
the evader. Even though this makes the pursuer more powerful, it is more difficult
to design a complete algorithm that correctly exploits this additional information.
No complete algorithms currently exist for this case.

Figure 12.43 shows several alternative detection models that yield different
definitions of V (p(t)). Each requires different pursuit-evasion algorithms because
the structure of the I-space varies dramatically across different sensing models.
For example, using the model in Figure 12.43c, a single pursuer is required to
move along the ∂X. Once it moves into the interior, the shadow region always
becomes a single connected component. This model is sometimes referred to as
a flashlight. If there are two flashlights, then one flashlight may move into the
interior while the other protects previous work. The case of limited depth, as
shown in Figure 12.43, is very realistic in practice, but unfortunately it is the
most challenging. The number of required pursuers generally depends on metric
properties of the environment, such as its minimum “thickness.” The method
presented in this section was extended to the case of a limited field of view in
[110]; critical curves are obtained that are similar to those in Section 6.3.4. See
the literature overview at the end of the chapter for more related material.
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12.5 Manipulation Planning with Sensing Un-

certainty

One of the richest sources of interesting I-spaces is manipulation planning. As
robots interact with obstacles or objects in the world, the burden of estimating
the state becomes greater. The classical way to address this problem is to highly
restrict the way in which the robot can interact with obstacles. Within the manip-
ulation planning framework of Section 7.3.2, this means that a robot must grasp
and carry objects to their desired destinations. Any object must be lying in a sta-
ble configuration upon grasping, and it must be returned to a stable configuration
after grasping.

As the assumptions on the classical manipulation planning framework are
lifted, it becomes more difficult to predict how the robot and other bodies will
behave. This immediately leads to the challenges of uncertainty in predictability,
which was the basis of Chapter 10. The next problem is to design sensors that
enable plans to be achieved in spite of this uncertainty. For each sensing model,
an I-space arises.

Section 12.5.1 covers the preimage planning framework [90, 177], under which
many interesting issues covered in Chapters 10 and 11 are addressed for a specific
manipulation planning problem. I-states, forward projections, backprojections,
and termination actions were characterized in this context. Furthermore, several
algorithmic complexity results regarding planning under uncertainty have been
proved within this framework.

Section 12.5.2 covers methods that clearly illustrate the power of reasoning
directly in terms of the I-space. The philosophy is to allow nonprehensile forms
of manipulation (e.g., pushing, squeezing, throwing) and to design simple sensors,
or even to avoid sensing altogether. This dramatically reduces the I-space while
still allowing feasible plans to exist. This contradicts the intuition that more
information is better. Using less information leads to greater uncertainty in the
state, but this is not important in some problems. It is only important is that the
I-space becomes simpler.

12.5.1 Preimage Planning

The preimage planning framework (or LMT framework, named after its developers,
Lozano-Pérez, Mason, and Taylor) was developed as a general way to perform
manipulation planning under uncertainty [90, 177]. Although the concepts apply
to general configuration spaces, they will be covered here for the case in which
C = R

2 and Cobs is polygonal. This is a common assumption throughout most
of the work done within this framework. This could correspond to a simplified
model of a robot hand that translates in W = R

2, while possibly carrying a
part. A popular illustrative task is the peg-in-hole problem, in which the part is
a peg that must be inserted into a hole that is slightly larger. This operation
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is frequently performed as manufacturing robots assemble products. Using the
configuration space representation of Section 4.3.2, the robot becomes a point
moving in R

2 among polygonal obstacles.
The distinctive features of the models used in preimage planning are as follows:

1. The robot can execute compliant motions, which means that it can slide
along the boundary of Cobs. This differs from the usual requirement in Part
II that the robot must avoid obstacles.

2. There is nondeterministic uncertainty in prediction. An action determines
a motion direction, but nature determines how much error will occur during
execution. A bounded error model is assumed.

3. There is nondeterministic uncertainty in sensing, and the true state cannot
be reliably estimated.

4. The goal region is usually an edge of Cobs, but it may more generally be any
subset of cl(Cfree), the closure of Cfree.

5. A hierarchical planning model is used, in which the robot is issued a sequence
of motion commands, each of which is terminated by applying uT based on
the I-state.

Each of these will now be explained in more detail.

Compliant motions It will be seen shortly that the possibility of executing
compliant motions is crucial for reducing uncertainty in the robot position. Let
Ccon denote the obstacle boundary, ∂Cobs (also, Ccon = ∂Cfree). A model of robot
motion while q ∈ Ccon needs to be formulated. In general, this is complicated
by friction. A simple Coulomb friction model is assumed here; see [189] for more
details on modeling friction in the context of manipulation planning. Suppose
that the net force F is applied by a robot at some q ∈ Ccon. The force could be
maintained by using the generalized damper model of robot control [289].

The resulting motion is characterized using a friction cone, as shown in Figure
12.44a. A basic principle of Newtonian mechanics is that the obstacle applies a
reaction force (it may be helpful to look ahead to Section 13.3, which introduces
mechanics). If F points into the surface and is normal to it, then the reaction
force provided by the obstacle will cancel F , and there will be no motion. If F
is not perpendicular to the surface, then sliding may occur. At one extreme, F
may be parallel to the surface. In this case, it must slide along the boundary. In
general, F can be decomposed into parallel and perpendicular components. If the
parallel component is too small relative to the perpendicular component, then the
robot becomes stuck. The friction cone shown in Figure 12.44a indicates precisely
the conditions under which motion occurs. The parameter α captures the amount
of friction (more friction leads to larger α). Figure 12.44b indicates the behaviors
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Figure 12.44: The compliant motion model. If a force F is applied by the robot
at q ∈ Ccon, then it moves along the boundary only if −F points outside of the
friction cone.

that occur for various directions of F . The diagram is obtained by inverting the
friction cone. If F points into the bottom region, then sticking occurs, which
means that the robot cannot move. If F points away from the obstacle boundary,
then contact is broken (this is reasonable, unless the boundary is sticky). For the
remaining two cases, the robot slides along the boundary.

Sources of uncertainty Nature interferes with both the configuration transi-
tions and with the sensor. Let U = [0, 2π), which indicates the direction in R

2

that the robot is commanded to head. Nature interferes with this command, and
the actual direction lies within an interval of S1. As shown in Figure 12.45a, the
forward projection (recall from Section 10.1.2) for a fixed action u ∈ U yields
a cone of possible future configurations. (A precise specification of the motion
model is given using differential equations in Example 13.15.) The sensing model,
shown in Figure 12.45b, was already given in Section 11.5.1. The nature sensing
actions form a disc given by (11.67), and y = q + ψ, in which q is the true con-
figuration, ψ is the nature sensing action, and y is the observation. The result
appears in Figure 11.11.

Goal region Since contact with the obstacle is allowed, the goal region can be
defined to include edges of Cobs in addition to points in Cfree. Most often, a single
edge of Cobs is chosen as the goal region.

Motion commands The planning problem can now be described. It may be
tempting to express the model using continuous time, as opposed to discrete
stages. This is a viable approach, but leads to planning under differential con-
straints, which is the topic of Part IV and is considerably more complicated. In
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Figure 12.45: Nature interferes with both the configuration transitions and the
sensor observations.

the preimage-planning framework, a hierarchical approach is taken. A restricted
kind of plan called a motion command, µ, will be defined, and the goal is achieved
by constructing a sequence of motion commands. This has the effect of convert-
ing the continuous-time decision-making problem into a planning problem that
involves discrete stages. Each time a motion command is applied, the robot must
apply a termination action to end it. At that point another motion command can
be issued. Thus, imagine that a high-level module issues motion commands, and
a low-level module executes each until a termination condition is met.

For some action u ∈ U , let Mu = {u, uT}, in which uT is the termination
action. A motion command is a feedback plan, µ : Ihist → Mu, in which Ihist is
the standard history I-space, based on initial conditions, the action history, and
the sensing history. The motion command is executed over continuous time. At
t = 0, µ(η0) = u. Using a history I-state η gathered during execution, the motion
command will eventually yield µ(η) = uT , which terminates it. If the goal was
not achieved, then the high-level module can apply another motion command.

Preimages Now consider how to construct motion commands. Using the hier-
archical approach, the main task of terminating in the goal region can be decom-
posed into achieving intermediate subgoals. The preimage P (µ,G) of a motion
command µ and subgoal G ⊂ cl(Cfree) is the set of all history I-states from which µ
is guaranteed to be achieved in spite of all interference from nature. Each motion
command must recognize that the subgoal has been achieved so that it can apply
its termination action. Once a subgoal is achieved, the resulting history I-state
must lie within the required set of history I-states for the next motion command
in the plan. Let M denote the set of all allowable motion commands that can
be defined. This can actually be considered as an action space for the high-level
module.
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Planning with motion commands A high-level open-loop plan,6

π = (µ1, µ2, . . . , µk), (12.34)

can be constructed, which is a sequence of k motion commands. Although the
precise path executed by the robot is unpredictable, the sequence of motion com-
mands is assumed to be predictable. Each motion command µi for 1 < i < k must
terminate with an I-state η ∈ P (µi+1, Gi+1). The preimage of µ1 must include η0,
the initial I-state. The goal is achieved by the last motion command, µk.

More generally, the particular motion command chosen need not be predictable,
and may depend on the I-state during execution. In this case, the high-level feed-
back plan π : Ihist → M can be developed, in which a motion command µ = π(η)
is chosen based on the history I-state η that results after the previous motion
command terminates. Such variations are covered in [75, 90, 158].

The high-level planning problem can be solved using discrete planning algo-
rithms from Chapters 2 and 10. The most popular method within the preimage
planning framework is to perform a backward search from the goal. Although this
sounds simple enough, the set of possible motion commands is infinite, and it is
difficult to sample µ in a way that leads to completeness. Another complication
is that termination is based on the history I-state. Planning is therefore quite
challenging. It was even shown in [90], by a reduction from the Turing machine
halting problem [260], that the preimage in general is uncomputable by any algo-
rithm. It was shown in [202] that the 3D version of preimage planning, in which
the obstacles are polyhedral, is PSPACE-hard. It was then shown in [47] that it
is even NEXPTIME-hard.7

Backprojections Erdmann proposed a practical way to compute effective mo-
tion commands by separating the reachability and recognizability issues [90, 91].
Reachability refers to characterizing the set of points that are guaranteed to be
reachable. Recognizability refers to knowing that the subgoal has been reached
based on the history I-state. Another way to interpret the separation is that the
effects of nature on the configuration transitions is separated from the effects of
nature on sensing.

For reachability analysis, the sensing uncertainty is neglected. The notions
of forward projections and backprojections from Section 10.1.2 can then be used.
The only difference here is that they are applied to continuous spaces and mo-
tion commands (instead of u). Let S denote a subset of cl(Cfree). Both weak
backprojections, WB(S, µ), and strong backprojections, SB(S, µ), can be defined.
Furthermore, nondirectional backprojections [76], WB(S) and SB(S), can be de-
fined, which are analogous to (10.25) and (10.26), respectively.

6Note that this open-loop plan is composed of closed-loop motion commands. This is perfectly
acceptable using hierarchical modeling.

7NEXPTIME is the complexity class of all problems that can be solved in nondeterministic
exponential time. This is beyond the complexity classes shown in Figure 6.40.
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Goal edge

Figure 12.46: A simple example that resembles the peg-in-hole problem.

Figure 12.46 shows a simple problem in which the task is to reach a goal edge
with a motion command that points downward. This is inspired by the peg-in-hole
problem. Figure 12.47 illustrates several backprojections from the goal region for
the problem in Figure 12.46. The action is u = 3π/2; however, the actual motion
lies within the shown cone due to nature. First suppose that contact with the
obstacle is not allowed, except at the goal region. The strong backprojection
is given in Figure 12.47a. Starting from any point in the triangular region, the
goal is guaranteed to be reached in spite of nature. The weak backprojection
is the unbounded region shown in Figure 12.47b. This indicates configurations
from which it is possible to reach the goal. The weak backprojection will not
be considered further because it is important here to guarantee that the goal is
reached. This is accomplished by the strong backprojection. From here onward,
it will be assumed that backprojection by default means a strong backprojection.
Using weak backprojections, it is possible to develop an alternative framework of
error detection and recovery (EDR), which was introduced by Donald in [75].

Now assume that compliant motions are possible along the obstacle boundary.
This has the effect of enlarging the backprojections. Suppose for simplicity that
there is no friction (α = 0 in Figure 12.44a). The backprojection is shown in Figure
12.47c. As the robot comes into contact with the side walls, it slides down until
the goal is reached. It is not important to keep track of the exact configuration
while this occurs. This illustrates the power of compliant motions in reducing
uncertainty. This point will be pursued further in Section 12.5.2. Figure 12.47d
shows the backprojection for a different motion command.

Now consider computing backprojections in a more general setting. The back-
projection can be defined from any subset of cl(Cfree) and may allow a friction
cone with parameter α. To be included in a backprojection, points from which
sticking is possible must be avoided. Note that sticking is possible even if α = 0.
For example, in Figure 12.46, nature may allow the motion to be exactly perpen-
dicular to the obstacle boundary. In this case, sticking occurs on horizontal edges
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Figure 12.47: Several backprojections are shown for the peg-in-hole problem.

because there is no tangential motion. In general, it must be determined whether
sticking is possible at each edge and vertex of Cobs. Possible sticking from an edge
depends on u, α, and the maximum directional error contributed by nature. The
robot can become stuck at a vertex if it is possible to become stuck at either
incident edge.

Computing backprojections Many algorithms have been developed to com-
pute backprojections. The first algorithm was given in [90, 91]. Assume that the
goal region is one or more segments contained in edges of Ccon. The algorithm
proceeds for a fixed motion command, µ, which is based on a direction u ∈ U as
follows:

1. Mark every obstacle vertex at which sticking is possible. Also mark any
point on the boundary of the goal region if it is possible to slide away from
the goal.

2. For every marked vertex, extend two rays with directions based on the max-

704 S. M. LaValle: Planning Algorithms

Goal edge

Figure 12.48: Erdmann’s backprojection algorithm traces out the boundary after
constructing cones based on friction.

imum possible deviations allowed by nature when executing u. This inverts
the cone shown in Figure 12.45a. The extended rays are shown in Figure
12.48 for the frictionless case (α = 0).

3. Starting at every goal edge, trace out the boundary of the backprojection
region. Every edge encountered defines a half-plane of configurations from
which the robot is guaranteed to move into. In Figure 12.48, this corresponds
to being below a ray. When tracing out the backprojection boundary, the
direction at each intersection vertex is determined based on including the
points in the half-plane.

The resulting backprojection is shown in Figure 12.49. A more general algorithm
that applies to goal regions that include polygonal regions in Cfree was given in
[76] (some details are also covered in [158]). It uses the plane-sweep principle
(presented in Section 6.2.2) to yield an algorithm that computes the backprojec-
tion in time O(n lg n), in which n is the number of edges used to define Cobs. The
backprojection itself has no more than O(n) edges. Algorithms for computing
nondirectional backprojections are given in [39, 76]. One difficulty in this case
is that the backprojection boundary may be quite complicated. An incremental
algorithm for computing a nondirectional backprojection of size O(n2) in time
O(n2 lg n) is given in [39].

Once an algorithm that computes backprojections has been obtained, it needs
to be adapted to compute preimages. Using the sensing model shown in Figure
12.45b, a preimage can be obtained by shrinking the subgoal region G. Let ǫ
denote the radius of the ball in Figure 12.45b. Let G′ ⊂ G denote a subset of the
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Figure 12.49: The computed backprojection. Sliding is guaranteed from the
steeper edge of the triangle; hence, it is included in the backprojection. From
the other top edge, sticking is possible.

subgoal in which a strip of thickness ǫ has been removed. If the sensor returns
y ∈ G′, then it is guaranteed that q ∈ G. This yields a method of obtaining
preimages by shrinking the subgoals. If ǫ is too large, however, this may fail to
yield a successful plan, even though one exists.

The high-level plan can be found by performing a backward search that com-
putes backprojections from the goal region (reduced by ǫ). There is still the
difficulty of M being too large, which controls the branching factor in the search.
One possibility is to compute nondirectional backprojections. Another possibility
is to discretize M. For example, in [158, 159], M is reduced to four principle
directions, and plans are computed for complicated environments by using stick-
ing edges as subgoals. Using discretization, however, it becomes more difficult to
ensure the completeness of the planning algorithm.

The preimage planning framework may seem to apply only to a very specific
model, but it can be extended and adapted to a much more general setting. It
was extended to semi-algebraic obstacle models in [48], which gives a planning
method that runs in time doubly exponential in the C-space dimension (based on
cylindrical algebraic decomposition, which was covered in Section 6.4.2). In [43],
probabilistic backprojections were introduced by assigning a uniform probability
density function to the nature action spaces considered in this section. This was
in turn generalized further to define backprojections and preimages as the level
sets of optimal cost-to-go functions in [161, 166]. Dynamic programming methods
can then be applied to compute plans.

12.5.2 Nonprehensile Manipulation

Manipulation by grasping is very restrictive. People manipulate objects in many
interesting ways that do not involve grasping. Objects may be pushed, flipped,
thrown, squeezed, twirled, smacked, blown, and so on. A classic example from the
kitchen is flipping a pancake over by a flick of the wrist while holding the skillet.
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These are all examples of nonprehensile manipulation, which means manipulation
without grasping.

The temptation to make robots grasp objects arises from the obsession with
estimating and controlling the state. This task is more daunting for nonprehensile
manipulation because there are times at which the object appears to be out of
direct control. This leads to greater uncertainty in predictability and a larger
sensing burden. By planning in the I-space, however, it may be possible to avoid
all of these problems. Several works have emerged which show that manipulation
goals can be achieved with little or no sensing at all. This leads to a form of
minimalism [49, 97, 189], in which the sensors are designed in a way that simpli-
fies the I-space, as opposed to worrying about accurate estimation. The search
for minimalist robotic systems is completely aligned with trying to find derived
I-spaces that are as small as possible, as mentioned in Section 11.2.1. Sensing
systems should be simple, yet still able to achieve the task. Preferably, com-
pleteness should not be lost. Most work in this area is concerned primarily with
finding feasible solutions, as opposed to optimal solutions. This enables further
simplifications of the I-space.

This section gives an example that represents an extreme version of this min-
imalism. A sensorless manipulation system is developed. At first this may seem
absurd. From the forward projections in Section 10.1.2, it may seem that uncer-
tainty can only grow if nature causes uncertainty in the configuration transitions
and there are no sensors. To counter the intuition, compliant motions have the
ability to reduce uncertainty. This is consistent with the discussion in Section
11.5.4. Simply knowing that some motion commands have been successfully ap-
plied may reduce the amount of uncertainty. In an early demonstration of sensor-
less manipulation, it was shown that an Allen wrench (L-shaped wrench) resting
in a tray can be placed into a known orientation by simply tilting the tray in a
few directions [97]. The same orientation is achieved in the end, regardless of the
initial wrench configuration. Also, no sensors are needed. This can be considered
as a more complicated extension of the ball rolling in a tray that was shown in
Figure 11.29. This is also an example of compliant motions, as shown in Figure
12.44; however, in the present setting F is caused by gravity.

Squeezing parts Another example of sensorless manipulation will now be de-
scribed, which was developed by Goldberg and Mason in [112, 113, 114]; see also
[189]. A Java implementation of the algorithm appears in [36]. Suppose that con-
vex, polygonal parts arrive individually along a conveyor belt in a factory. They
are to be used in an assembly operation and need to be placed into a given ori-
entation. Figure 12.50 shows a top view of a parallel-jaw gripper. The robot can
perform a squeeze operation by bringing the jaws together. Figure 12.50a shows
the part before squeezing, and Figure 12.50b shows it afterward. A simple model
is assumed for the mechanics. The jaws move at constant velocity toward each
other, and it is assumed that they move slowly enough so that dynamics can be
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d(θ)

(a) (b)

Figure 12.50: A parallel-jaw gripper can orient a part without using sensors.

neglected. To help slide the part into place, one of the jaws may be considered
as a frictionless contact (this is a real device; see [49]). The robot can perform
a squeeze operation at any orientation in [0, 2π) (actually, only [0, π) is needed
due to symmetry). Let U = [0, 2π) denote the set of all squeezing actions. Each
squeezing action terminates on its own after the part can be squeezed no further
(without crushing the part).

The planning problem can be modeled as a game against nature. The initial
orientation, x ∈ [0, 2π), of the part is chosen by nature and is unknown. The state
space is S1. For a given part, the task is to design a sequence,

π = (u1, u2, . . . , un), (12.35)

of squeeze operations that leads to a known orientation for the part, regardless
of its initial state. Note that there is no specific requirement on the final state.
After i motion commands have terminated, the history I-state is the sequence

η = (u1, u2, . . . , ui) (12.36)

of squeezes applied so far. The nondeterministic I-space Indet will now be used.
The requirement can be stated as obtaining a singleton, nondeterministic I-state
(includes only one possible orientation). If the part has symmetries, then the
task is instead to determine a single symmetry class (which includes only a finite
number of orientations)

Consider how a part in an unknown orientation behaves. Due to rotational
symmetry, it will be convenient to describe the effect of a squeeze operation based
on the relative angle between the part and the robot. Therefore, let α = u − x,
assuming arithmetic modulo 2π. Initially, α may assume any value in [0, 2π). It
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Figure 12.51: The diameter function for a rectangle.
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Figure 12.52: There are four regions of attraction, each of which represents an
interval of orientations.

turns out that after one squeeze, α is always forced into one of a finite number of
values. This can be explained by representing the diameter function d(α), which
indicates the maximum thickness that can be obtained by taking a slice of the part
at orientation α. Figure 12.51 shows the slice for a rectangle. The local minima
of the distance function indicate orientations at which the part will stabilize as
shown in Figure 12.50b. As the part changes its orientation during the squeeze
operation, the α value changes in a way that gradually decreases d(α). Thus,
[0, 2π) can be divided into regions of attraction, as shown in Figure 12.52. These
behave much like the funnels in Section 8.5.1.

The critical observation to solve the problem without sensors is that with each
squeeze the uncertainty can grow no worse, and is usually reduced. Assume u is
fixed. For the state transition equation x′ = f(x, u), the same x′ will be produced
for an interval of values for x. Due to rotational symmetry, it is best to express
this in terms of α. Let s(α) denote relative orientation obtained after a squeeze.
Since α is a function of x and u, this can be expressed as a squeeze function,
s : S1 → S

1, defined as

s(α) = f(x, u)− u. (12.37)

The forward projection with respect to an interval, A, of α values can also be
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defined:
S(A) =

⋃

α∈A

s(α). (12.38)

Any interval A ⊂ [0, 2π) can be interpreted as a nondeterministic I-state,
based on the history of squeezes that have been performed. It is defined, however,
with respect to relative orientations, instead of the original states. The algorithms
discussed in Section 12.1.2 can be applied to Indet. A backward search algorithm is
given in [113] that starts with a singleton, nondeterministic I-state. The planning
proceeds by performing a backward search on Indet. In each iteration, the interval,
A, of possible relative orientations increases until eventually all of S1 is reached
(or the period of symmetry, if symmetries exist).

The algorithm is greedy in the sense that it attempts to force A to be as large
as possible in every step. Note from Figure 12.52 that the regions of attraction
are maximal at the minima of the diameter function. Therefore, only the minima
values are worth considering as choices for α. Let B denote the preimage of
the function s. In the first step, the algorithm finds the α for which B(α) is
largest (in terms of length in S

1). Let α0 denote this relative orientation, and let
A0 = B(α0). For each subsequent iteration, let Ai denote the largest interval in
[0, 2π) that satisfies

|S(Ai−1)| < |Ai|, (12.39)

in which | · | denotes interval length. This implies that there exists a squeeze
operation for which any relative orientation in S(Ai−1) can be forced into Ai by a
single squeeze. This iteration is repeated, generating A−1, A−2, and so on, until
the condition in (12.39) can no longer be satisfied. It was shown in [113] that
for any polygonal part, the Ai intervals increase until all of S1 (or the period of
symmetry) is obtained.

Suppose that the sequence (A−k, . . . , A0) has been computed. This must be
transformed into a plan that is expressed in terms of a fixed coordinate frame for
the robot. The k-step action sequence (u1, . . . , uk) is recovered from

ui = s(βi−1)− ai − 1
2
(|Ai−k| − |S(Ai−k−1)|) + ui−1 (12.40)

and u−k = 0 [113]. Each ai in (12.40) is the left endpoint of Ai. There is some
freedom of choice in the alignment, and the third term in (12.40) selects actions in
the middle to improve robustness with respect to orientation errors. By exploiting
a proof in [52] that no more than O(n) squeeze operations are needed for a part
with n edges, the complete algorithm runs in time O(n2).

Example 12.9 (Squeezing a Rectangle) Figure 12.53 shows a simple exam-
ple of a plan that requires two squeezes to orient the rectangular part when placed
in any initial orientation. Four different executions of the plan are shown, one in
each column. After the first squeeze, the part orientation is a multiple of π/2.
After the second squeeze, the orientation is known. Even though the execution
looks different every time, no feedback is necessary because the I-state contains
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Figure 12.53: A two-step squeeze plan [113].

no sensor information. �

Further Reading

The material from this chapter could easily be expanded into an entire book on planning
under sensing uncertainty. Several key topics were covered, but numerous others remain.
An incomplete set of suggestions for further reading is given here.

Since Section 12.1 involved converting the I-space into an ordinary state space, many
methods and references in Chapter 10 are applicable. For POMDPs, a substantial
body of work has been developed in operations research and stochastic control theory
[151, 175, 194, 264] and more recently in artificial intelligence [136, 173, 174, 203, 218,
226, 229, 230, 238, 299, 300]. Many of these algorithms compress or approximate Iprob,
possibly yielding nonoptimal solutions, but handling problems that involve dozens of
states.

Localization, the subject of Section 12.2, is one of the most fundamental problems
in robotics; therefore, there are hundreds of related references. Localization in a graph
has been considered [84, 102]. The combinatorial localization presentation was based
on [85, 120]. Ambiguities due to symmetry also appeared in [14]. Combinatorial local-
ization with very little sensing is presented in [206]. For further reading on probabilistic
localization, see [4, 64, 122, 124, 133, 135, 149, 171, 172, 207, 235, 256, 257, 288]. In
[275, 276], localization uncertainty is expressed in terms of a sensor-uncertainty field,
which is a derived I-space.

Section 12.3 was synthesized from many sources. For more on the maze searching
method from Section 12.3.1 and its extension to exploring a graph, see [35]. The issue
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of distinguishability and pebbles arises again in [19, 79, 80, 181, 241, 281]. For more on
competitive ratios and combinatorial approaches to on-line navigation, see [34, 66, 72,
100, 108, 141, 144, 185, 214, 233].

For more on Stentz’s algorithm and related work, see [146, 267]. A multi-resolution
approach to terrain exploration appears in [211]. For material on bug algorithms, see
[140, 154, 160, 179, 180, 231, 254]. Related sensor-based planning work based on gen-
eralized Voronoi diagrams appears in [54, 55]; also related is [236]. Gap navigation
trees were introduced in [280, 281, 282]. For other work on minimal mapping, see
[132, 234, 252]. Landmark-based navigation is considered in [107, 159, 255].

There is a vast body of literature on probabilistic methods for mapping and local-
ization, much of which is referred to as SLAM [279]; see also [50, 56, 74, 196, 217, 296].
One of the earliest works is [263]. An early application of dynamic programming in this
context appears in [157]. A well-known demonstration of SLAM techniques is described
in [46]. For an introduction to the EM algorithm, see [29]; its convergence is addressed
in [71, 293, 294]. For more on mobile robotics in general, see [37, 83].

The presentation of Section 12.4 was based mainly on [119, 167]. Pursuit-evasion
problems in general were first studied in differential game theory [9, 123, 129]. Pursuit-
evasion in a graph was introduced in [219], and related theoretical analysis appears
in [28, 155, 195]. Visibility-based pursuit-evasion was introduced in [273], and the
first complete algorithm appeared in [167]. An algorithm that runs in O(n2) for a
single pursuer in a simple polygon was given in [216]. Variations that consider curved
environments, beams of light, and other considerations appear in [53, 63, 87, 164, 170,
204, 258, 259, 272, 274, 295]. Pursuit-evasion in three dimensions is discussed in [169].
For versions that involve minimal sensing and no prior given map, see [121, 138, 231,
241, 298]. The problem of visually tracking a moving target both with [17, 116, 117,
163, 198, 199] and without [99, 127, 249] obstacles is closely related to pursuit-evasion.
For a survey of combinatorial algorithms for computing visibility information, see [209].
Art gallery and sensor placement problems are also related [40, 208, 253]. The bitangent
events also arise in the visibility complex [228] and in aspect graphs [224], which are
related visibility-based data structures.

Section 12.5 was inspired mostly by the works in [76, 90, 97, 114, 177, 290]. Many
works are surveyed in [189]. A probabilistic version of preimage planning was considered
in [44, 45, 166]. Visual preimages are considered in [104]. Careful analysis of manipula-
tion uncertainty appears in [41, 42]. For more on preimage planning, see [158, 159]. The
error detection and recovery (EDR) framework uses many preimage planning ideas but
allows more problems to be solved by permitting fixable errors to occur during execu-
tion [75, 77, 78]. Compliant motions are also considered in [39, 76, 134, 186, 188, 221].
The effects of friction in the C-space are studied in [95]. For more work on orienting
parts, see [49, 98, 112, 113, 232, 291]. For more forms of nonprehensile manipulation,
see [1, 2, 32, 96, 182, 183, 269]. A humorous paper, which introduces the concept of the
“principle of virtual dirt,” is [187]; the idea later appears in [240] and in the Roomba
autonomous vacuum cleaner from the iRobot Corporation.
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Figure 12.54: An environment for grid-based localization.

Exercises

1. For the environment in Figure 12.1a, give the nondeterministic I-states for the
action sequence (L,L,F,B,F,R,F,F), if the initial state is the robot in position
3 facing north and the initial I-state is η0 = X.

2. Describe how to apply the algorithm from Figure 10.6 to design an information-
feedback plan that takes a map of a grid and performs localization.

3. Suppose that a robot operates in the environment shown in Figure 12.54 using
the same motion and sensing model as in Example 12.1. Design an information-
feedback plan that is as simple as possible and successfully localizes the robot,
regardless of its initial state. Assume the initial condition η0 = X.

4. Prove that the robot can use the latitude and orientation information to detect
the unique point of each obstacle boundary in the maze searching algorithm of
Section 12.3.1.

5. Suppose once again that a robot is placed into one of the six environments shown
in Figure 12.12. It is initially in the upper right cell facing north; however,
the initial condition is η0 = X. Determine the sequence of sensor observa-
tions and nondeterministic I-states as the robot executes the action sequence
(F,R,B,F,L,L,F).

6. Prove that the counter in the maze searching algorithm of Section 12.3.1 can be
replaced by two pebbles, and the robot can still solve the problem by simulating
the counter. The robot can place either pebble on a tile, detect them when the
robot is on the same tile, and can pick them up to move them to other tiles.

7. Continue the trajectory shown in Figure 12.23 until the goal is reached using the
Bug2 strategy.

8. Show that the competitive ratio for the doubling spiral motion applied to the
lost-cow problem of Figure 12.26 is 9.

9. Generalize the lost-cow problem so that there are n fences that emanate from the
current cow location (n = 2 for the original problem).

(a) If the cow is told that the gate is along only one unknown fence and is no
more than one unit away, what is the competitive ratio of the best plan that
you can think of?
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Figure 12.55: A path followed by the robot in an initially unknown environment.
The robot finishes in the lower right.
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Figure 12.56: Two pursuit-evasion problems that involve recontamination.

(b) Suppose the cow does not know the maximum distance to the gate. Propose
a plan that solves the problem and establish its competitive ratio.

10. Suppose a point robot is dropped into the environment shown in Figure 12.42.
Indicate the gap navigation trees that are obtained as the robot moves along the
path shown in Figure 12.55.

11. Construct an example for which the worst case bound, (12.25), for Bug1 is ob-
tained.

12. Some environments are so complicated that in the pursuit-evasion problem they
require the same region to be visited multiple times. Find a solution for a single
pursuer with omnidirectional visibility to the problem in Figure 12.56a.

13. Find a pursuit-evasion solution for a single pursuer with omnidirectional visibility
to the problem in Figure 12.56b, in which any number of pairs of “feet” may

714 S. M. LaValle: Planning Algorithms

appear on the bottom of the polygon.

14. Prove that for a polygonal environment, if there are three points, p1, p2, and
p3, for which V (V (p1)), V (V (p2)), and V (V (p3)) are pairwise-disjoint, then the
problem requires more than one pursuer.

15. Prove that the diameter function for the squeezing algorithm in Section 12.5.2
has no more than O(n2) vertices. Give a sequence of polygons that achieves this
bound. What happens for a regular polygon?

16. Develop versions of (12.8) and (12.9) for state-nature sensor mappings.

17. Develop versions of (12.8) and (12.9) for history-based sensor mappings.

18. Describe in detail the I-map used for maze searching in Section 12.3.1. Indicate
how this is an example of dramatically reducing the size of the I-space, as described
in Section 11.2. Is a sufficient I-map obtained?

19. Describe in detail the I-map used in the Bug1 algorithm. Is a sufficient I-map
obtained?

20. Suppose that several teams of point robots move around in a simple polygon.
Each robot has an omnidirectional visibility sensor and would like to keep track
of information for each shadow region. For each team and shadow region, it would
like to record one of three possibilities: 1) There are definitely no team members
in the region; 2) there may possibly be one or more; 3) there is definitely at least
one.

(a) Define a nondeterministic I-space based on labeling gaps that captures the
appropriate information. The I-space should be defined with respect to one
robot (each will have its own).

(b) Design an algorithm that keeps track of the nondeterministic I-state as the
robot moves through the environments and observes others.

21. Recall the sequence of connected corridors shown in Figure 12.40. Try to adapt
the polygons so that the same number of pursuers is needed, but there are fewer
polygon edges. Try to use as few edges as possible.

Implementations

22. Solve the probabilistic passive localization problem of Section 12.2.3 for 2D grids.
Implement your solution and demonstrate it on several interesting examples.

23. Implement the exact value-iteration method described in Section 12.1.3 to com-
pute optimal cost-to-go functions. Test the implementation on several small ex-
amples. How large can you make K, Θ, and Ψ?

24. Develop and implement a graph search algorithm that searches on Indet to per-
form robot localization on a 2D grid. Test the algorithm on several interesting
examples. Try developing search heuristics that improve the performance.
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25. Implement the Bug1, Bug2, and VisBug (with unlimited radius) algorithms. De-
sign a good set of examples for illustrating their relative strengths and weaknesses.

26. Implement software that computes probabilistic I-states for localization as the
robot moves in a grid.

27. Implement the method of Section 12.3.4 for simply connected environments and
demonstrate it in simulation for polygonal environments.

28. Implement the pursuit-evasion algorithm for a single pursuer in a simple polygon.

29. Implement the part-squeezing algorithm presented in Section 12.5.2.

ii S. M. LaValle: Planning Algorithms
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[8] T. Başar and P. R. Kumar. On worst case design strategies. Computers and
Mathematics with Applications, 13(1-3):239–245, 1987.
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[156] P.-S. Laplace. Théorie Analityque des Probabilités. Courceir, Paris, 1812.

[157] R. E. Larson and W. G. Keckler. Optimum adaptive control in an unknown
environment. IEEE Transactions on Automatic Control, 13(4):438–439, Au-
gust 1968.

[158] J.-C. Latombe. Robot Motion Planning. Kluwer, Boston, MA, 1991.

[159] J.-C. Latombe, A. Lazanas, and S. Shekhar. Robot motion planning with
uncertainty in control and sensing. Artificial Intelligence Journal, 52:1–47,
1991.



BIBLIOGRAPHY xv

[160] S. L. Laubach and J. W. Burdick. An autonomous sensor-based path-
planning for planetary microrovers. In Proceedings IEEE International Con-
ference on Robotics & Automation, 1999.

[161] S. M. LaValle. A Game-Theoretic Framework for Robot Motion Planning.
PhD thesis, University of Illinois, Urbana, IL, July 1995.

[162] S. M. LaValle. Robot motion planning: A game-theoretic foundation. Al-
gorithmica, 26(3):430–465, 2000.
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