
Chapter 9

Basic Decision Theory

Steven M. LaValle

University of Illinois

Copyright Steven M. LaValle 2006

Available for downloading at http://planning.cs.uiuc.edu/

Published by Cambridge University Press

Chapter 9

Basic Decision Theory

This chapter serves as a building block for modeling and solving planning problems
that involve more than one decision maker. The focus is on making a single
decision in the presence of other decision makers that may interfere with the
outcome. The planning problems in Chapters 10 to 12 will be viewed as a sequence
of decision-making problems. The ideas presented in this chapter can be viewed as
making a one-stage plan. With respect to Chapter 2, the present chapter reduces
the number of stages down to one and then introduces more sophisticated ways
to model a single stage. Upon returning to multiple stages in Chapter 10, it will
quickly be seen that many algorithms from Chapter 2 extend nicely to incorporate
the decision-theoretic concepts of this chapter.

Since there is no information to carry across stages, there will be no need for
a state space. Instead of designing a plan for a robot, in this chapter we will
refer to designing a strategy for a decision maker (DM). The planning problem
reduces down to a decision-making problem. In later chapters, which describe
sequential decision making, planning terminology will once again be used. It does
not seem appropriate yet in this chapter because making a single decision appears
too degenerate to be referred to as planning.

A consistent theme throughout Part III will be the interaction of multiple
DMs. In addition to the primary DM, which has been referred to as the robot,
there will be one or more other DMs that cannot be predicted or controlled by
the robot. A special DM called nature will be used as a universal way to model
uncertainties. Nature will usually be fictitious in the sense that it is not a true
entity that makes intelligent, rational decisions for its own benefit. The intro-
duction of nature merely serves as a convenient modeling tool to express many
different forms of uncertainty. In some settings, however, the DMs may actually
be intelligent opponents who make decisions out of their own self-interest. This
leads to game theory, in which all decision makers (including the robot) can be
called players.

Section 9.1 provides some basic review and perspective that will help in under-
standing and relating later concepts in the chapter. Section 9.2 covers making a
single decision under uncertainty, which is typically referred to as decision theory.

437

438 S. M. LaValle: Planning Algorithms

Sections 9.3 and 9.4 address game theory, in which two or more DMs make their
decisions simultaneously and have conflicting interests. In zero-sum game theory,
which is covered in Section 9.3, there are two DMs that have diametrically op-
posed interests. In nonzero-sum game theory, covered in Section 9.4, any number
of DMs come together to form a noncooperative game, in which any degree of
conflict or competition is allowable among them. Section 9.5 concludes the chap-
ter by covering justifications and criticisms of the general models formulated in
this chapter. It useful when trying to apply decision-theoretic models to planning
problems in general.

This chapter was written without any strong dependencies on Part II. In fact,
even the concepts from Chapter 2 are not needed because there are no stages or
state spaces. Occasional references to Part II will be given, but these are not vital
to the understanding. Most of the focus in this chapter is on discrete spaces.

9.1 Preliminary Concepts

9.1.1 Optimization

Optimizing a single objective

Before progressing to complicated decision-making models, first consider the sim-
ple case of a single decision maker that must make the best decision. This leads
to a familiar optimization problem, which is formulated as follows.

Formulation 9.1 (Optimization)

1. A nonempty set U called the action space. Each u ∈ U is referred to as an
action.

2. A function L : U → R ∪ {∞} called the cost function.

Compare Formulation 9.1 to Formulation 2.2. State space, X, and state transition
concepts are no longer needed because there is only one decision. Since there is
no state space, there is also no notion of initial and goal states. A strategy simply
consists of selecting the best action.

What does it mean to be the “best” action? If U is finite, then the best action,
u∗ ∈ U is

u∗ = argmin
u∈U

{

L(u)
}

. (9.1)

If U is infinite, then there are different cases. Suppose that U = (−1, 1) and
L(u) = u. Which action produces the lowest cost? We would like to declare that
−1 is the lowest cost, but −1 6∈ U . If we had instead defined U = [−1, 1], then this
would work. However, if U = (−1, 1) and L(u) = u, then there is no action that
produces minimum cost. For any action u ∈ U , a second one, u′ ∈ U , can always
be chosen for which L(u′) < L(u). However, if U = (−1, 1) and L(u) = |u|, then

9.1. PRELIMINARY CONCEPTS 439

(9.1) correctly reports that u = 0 is the best action. There is no problem in this
case because the minimum occurs in the interior, as opposed to on the boundary
of U . In general it is important to be aware that an optimal value may not exist.

There are two ways to fix this frustrating behavior. One is to require that U
is a closed set and is bounded (both were defined in Section 4.1). Since closed
sets include their boundary, this problem will be avoided. The bounded condition
prevents a problem such as optimizing U = R, and L(u) = u. What is the best
u ∈ U? Smaller and smaller values can be chosen for u to produce a lower cost,
even though R is a closed set.

The alternative way to fix this problem is to define and use the notion of an
infimum, denoted by inf. This is defined as the largest lower bound that can be
placed on the cost. In the case of U = (−1, 1) and L(u) = u, this is

inf
u∈(−1,1)

{

L(u)
}

= −1. (9.2)

The only difficulty is that there is no action u ∈ U that produces this cost. The
infimum essentially uses the closure of U to evaluate (9.2). If U happened to be
closed already, then u would be included in U . Unbounded problems can also be
handled. The infimum for the case of U = R and L(u) = u is −∞.

As a general rule, if you are not sure which to use, it is safer to write inf in
the place were you would use min. The infimum happens to yield the minimum
whenever a minimum exists. In addition, it gives a reasonable answer when no
minimum exists. It may look embarrassing, however, to use inf in cases where it
is obviously not needed (i.e., in the case of a finite U).

It is always possible to make an “upside-down” version of an optimization
problem by multiplying L by −1. There is no fundamental change in the result,
but sometimes it is more natural to formulate a problem as one of maximization
instead of minimization. This will be done, for example, in the discussion of utility
theory in Section 9.5.1. In such cases, a reward function, R, is defined instead of
a cost function. The task is to select an action u ∈ U that maximizes the reward.
It will be understood that a maximization problem can easily be converted into a
minimization problem by setting L(u) = −R(u) for all u ∈ U . For maximization
problems, the infimum can be replaced by the supremum, sup, which is the least
upper bound on R(u) over all u ∈ U .

For most problems in this book, the selection of an optimal u ∈ U in a single
decision stage is straightforward; planning problems are instead complicated by
many other aspects. It is important to realize, however, that optimization itself
is an extremely challenging if U and L are complicated. For example, U may be
finite but extremely large, or U may be a high-dimensional (e.g., 1000) subset
of Rn. Also, the cost function may be extremely difficult or even impossible to
express in a simple closed form. If the function is simple enough, then standard
calculus tools based on first and second derivatives may apply. It most real-world
applications, however, more sophisticated techniques are needed. Many involve
a form of gradient descent and therefore only ensure that a local minimum is

440 S. M. LaValle: Planning Algorithms

found. In many cases, sampling-based techniques are needed. In fact, many of
the sampling ideas of Section 5.2, such as dispersion, were developed in the context
of optimization. For some classes of problems, combinatorial solutions may exist.
For example, linear programming involves finding the min or max of a collection
of linear functions, and many combinatorial approaches exist [11, 13, 24, 30]. This
optimization problem will appear in Section 9.4.

Given the importance of sampling-based and combinatorial methods in opti-
mization, there are interesting parallels to motion planning. Chapters 5 and 6 each
followed these two philosophies, respectively. Optimal motion planning actually
corresponds to an optimization problem on the space of paths, which is extremely
difficult to characterize. In some special cases, as in Section 6.2.4, it is possible to
find optimal solutions, but in general, such problems are extremely challenging.
Calculus of variations is a general approach for addressing optimization problems
over a space of paths that must satisfy differential constraints [37]; this will be
covered in Section 13.4.1.

Multiobjective optimization

Suppose that there is a collection of cost functions, each of which evaluates an
action. This leads to a generalization of Formulation 9.1 to multiobjective opti-
mization.

Formulation 9.2 (Multiobjective Optimization)

1. A nonempty set U called the action space. Each u ∈ U is referred to as an
action.

2. A vector-valued cost function of the form L : U → R
d for some integer d. If

desired, ∞ may also be allowed for any of the cost components.

A version of this problem was considered in Section 7.7.2, which involved
the optimal coordination of multiple robots. Two actions, u and u′, are called
equivalent if L(u) = L(u′). An action u is said to dominate an action u′ if they
are not equivalent and Li(u) ≤ Li(u

′) for all i such that 1 ≤ i ≤ d. This defines
a partial ordering, ≤, on the set of actions. Note that many actions may be
incomparable. An action is called Pareto optimal if it is not dominated by any
others. This means that it is minimal with respect to the partial ordering.

Example 9.1 (Simple Example of Pareto Optimality) Suppose that U =
{1, 2, 3, 4, 5} and d = 2. The costs are assigned as L(1) = (4, 0), L(2) = (3, 3),
L(3) = (2, 2), L(4) = (5, 7), and L(5) = (9, 0). The actions 2, 4, and 5 can be
eliminated because they are dominated by other actions. For example, (3, 3) is
dominated by (2, 2); hence, action u = 3 is preferable to u = 2. The remaining
two actions, u = 1 and u = 3, are Pareto optimal. �

9.1. PRELIMINARY CONCEPTS 441

Based on this simple example, the notion of Pareto optimality seems mostly
aimed at discarding dominated actions. Although there may be multiple Pareto-
optimal solutions, it at least narrows down U to a collection of the best alterna-
tives.

Example 9.2 (Pennsylvania Turnpike) Imagine driving across the state of
Pennsylvania and being confronted with the Pennsylvania Turnpike, which is a toll
highway that once posted threatening signs about speed limits and the according
fines for speeding. Let U = {50, 51, . . . , 100} represent possible integer speeds,
expressed in miles per hour (mph). A posted sign indicates that the speeding
fines are 1) $50 for being caught driving between 56 and 65 mph, 2) $100 for
being caught between 66 and 75, 3) $200 between 76 and 85, and 4) $500 between
86 and 100. Beyond 100 mph, it is assumed that the penalty includes jail time,
which is so severe that it will not be considered.

The two criteria for a driver are 1) the time to cross the state, and 2) the
amount of money spent on tickets. It is assumed that you will be caught violating
the speed limit. The goal is to minimize both. What are the resulting Pareto-
optimal driving speeds? Compare driving 56 mph to driving 57 mph. Both cost
the same amount of money, but driving 57 mph takes less time. Therefore, 57
mph dominates 56 mph. In fact, 65 mph dominates all speeds down to 56 mph
because the cost is the same, and it reduces the time the most. Based on this
argument, the Pareto-optimal driving speeds are 55, 65, 75, 85, and 100. It is up
to the individual drivers to decide on the particular best action for them; however,
it is clear that no speeds outside of the Pareto-optimal set are sensible. �

The following example illustrates the main frustration with Pareto optimal-
ity. Removing nondominated solutions may not be useful enough. In come cases,
there may even be a continuum of Pareto-optimal solutions. Therefore, the Pareto-
optimal concept is not always useful. Its value depends on the particular applica-
tion.

Example 9.3 (A Continuum of Pareto-Optimal Solutions) Let U = [0, 1]
and d = 2. Let L(u) = (u, 1 − u). In this case, every element of U is Pareto
optimal. This can be seen by noting that a slight reduction in one criterion causes
an increase in the other. Thus, any two actions are incomparable. �

9.1.2 Probability Theory Review

This section reviews some basic probability concepts and introduces notation that
will be used throughout Part III.

442 S. M. LaValle: Planning Algorithms

Probability space A probability space is a three-tuple, (S,F , P), in which the
three components are

1. Sample space: A nonempty set S called the sample space, which represents
all possible outcomes.

2. Event space: A collection F of subsets of S, called the event space. If S
is discrete, then usually F = pow(S). If S is continuous, then F is usually
a sigma-algebra on S, as defined in Section 5.1.3.

3. Probability function: A function, P : F → R, that assigns probabilities
to the events in F . This will sometimes be referred to as a probability
distribution over S.

The probability function, P , must satisfy several basic axioms:

1. P (E) ≥ 0 for all E ∈ F .

2. P (S) = 1.

3. P (E ∪ F) = P (E) + P (F) if E ∩ F = ∅, for all E,F ∈ F .

If S is discrete, then the definition of P over all of F can be inferred from its
definition on single elements of S by using the axioms. It is common in this case
to write P (s) for some s ∈ S, which is slightly abusive because s is not an event.
It technically should be P ({s}) for some {s} ∈ F .

Example 9.4 (Tossing a Die) Consider tossing a six-sided cube or die that has
numbers 1 to 6 painted on its sides. When the die comes to rest, it will always
show one number. In this case, S = {1, 2, 3, 4, 5, 6} is the sample space. The
event space is pow(S), which is all 26 subsets of S. Suppose that the probabil-
ity function is assigned to indicate that all numbers are equally likely. For any
individual s ∈ S, P ({s}) = 1/6. The events include all subsets so that any proba-
bility statement can be formulated. For example, what is the probability that an
even number is obtained? The event E = {2, 4, 6} has probability P (E) = 1/2 of
occurring. �

The third probability axiom looks similar to the last axiom in the definition of
a measure space in Section 5.1.3. In fact, P is technically a special kind of measure
space as mentioned in Example 5.12. If S is continuous, however, this measure
cannot be captured by defining probabilities over the singleton sets. The proba-
bilities of singleton sets are usually zero. Instead, a probability density function,
p : S → R, is used to define the probability measure. The probability function,
P , for any event E ∈ F can then be determined via integration:

P (E) =

∫

E

p(x)dx, (9.3)

9.1. PRELIMINARY CONCEPTS 443

in which x ∈ E is the variable of integration. Intuitively, P indicates the total
probability mass that accumulates over E.

Conditional probability A conditional probability is expressed as P (E|F) for
any two events E,F ∈ F and is called the “probability of E, given F .” Its
definition is

P (E|F) = P (E ∩ F)
P (F)

. (9.4)

Two events, E and F , are called independent if and only if P (E∩F) = P (E)P (F);
otherwise, they are called dependent. An important and sometimes misleading
concept is conditional independence. Consider some third event, G ∈ F . It might
be the case that E and F are dependent, but when G is given, they become inde-
pendent. Thus, P (E∩F) 6= P (E)P (F); however, P (E∩F |G) = P (E|G)P (F |G).
Such examples occur frequently in practice. For example, E might indicate some-
one’s height, and F is their reading level. These will generally be dependent
events because children are generally shorter and have a lower reading level. If
we are given the person’s age as an event G, then height is no longer important.
It seems intuitive that there should be no correlation between height and reading
level once the age is given.

The definition of conditional probability, (9.4), imposes the constraint that

P (E ∩ F) = P (F)P (E|F) = P (E)P (F |E), (9.5)

which nicely relates P (E|F) to P (F |E). This results in Bayes’ rule, which is a
convenient way to swap E and F :

P (F |E) = P (E|F)P (F)
P (E)

. (9.6)

The probability distribution, P (F), is referred to as the prior, and P (F |E) is the
posterior. These terms indicate that the probabilities come before and after E is
considered, respectively.

If all probabilities are conditioned on some event, G ∈ F , then conditional
Bayes’ rule arises, which only differs from (9.6) by placing the condition G on all
probabilities:

P (F |E,G) = P (E|F,G)P (F |G)
P (E|G) . (9.7)

Marginalization Let the events F1, F2, . . . , Fn be any partition of S. The prob-
ability of an event E can be obtained through marginalization as

P (E) =
n

∑

i=1

P (E|Fi)P (Fi). (9.8)

444 S. M. LaValle: Planning Algorithms

One of the most useful applications of marginalization is in the denominator of
Bayes’ rule. A substitution of (9.8) into the denominator of (9.6) yields

P (F |E) = P (E|F)P (F)
n

∑

i=1

P (E|Fi)P (Fi)

. (9.9)

This form is sometimes easier to work with because P (E) appears to be eliminated.

Random variables Assume that a probability space (S,F , P) is given. A ran-
dom variable1 X is a function that maps S into R. Thus, X assigns a real value
to every element of the sample space. This enables statistics to be conveniently
computed over a probability space. If S is already a subset of R, X may by default
represent the identity function.

Expectation The expectation or expected value of a random variable X is de-
noted by E[X]. It can be considered as a kind of weighted average for X, in which
the weights are obtained from the probability distribution. If S is discrete, then

E[X] =
∑

s∈S

X(s)P (s). (9.10)

If S is continuous, then2

E[X] =

∫

S

X(s)p(s)ds. (9.11)

One can then define conditional expectation, which applies a given condition to
the probability distribution. For example, if S is discrete and an event F is given,
then

E[X|F] =
∑

s∈S

X(s)P (s|F). (9.12)

Example 9.5 (Tossing Dice) Returning to Example 9.4, the elements of S are
already real numbers. Hence, a random variableX can be defined by simply letting
X(s) = s. Using (9.11), the expected value, E[X], is 3.5. Note that the expected
value is not necessarily a value that is “expected” in practice. It is impossible
to actually obtain 3.5, even though it is not contained in S. Suppose that the
expected value of X is desired only over trials that result in numbers greater
then 3. This can be described by the event F = {4, 5, 6}. Using conditional
expectation, (9.12), the expected value is E[X|F] = 5.

1This is a terrible name, which often causes confusion. A random variable is not “random,”
nor is it a “variable.” It is simply a function, X : S → R. To make matters worse, a capital
letter is usually used to denote it, whereas lowercase letters are usually used to denote functions.

2Using the language of measure theory, both definitions are just special cases of the Lebesgue
integral. Measure theory nicely unifies discrete and continuous probability theory, thereby avoid-
ing the specification of separate cases. See [18, 22, 35].

9.1. PRELIMINARY CONCEPTS 445

Now consider tossing two dice in succession. Each element s ∈ S is expressed
as s = (i, j) in which i, j ∈ {1, 2, 3, 4, 5, 6}. Since S 6⊂ R, the random variable
needs to be slightly more interesting. One common approach is to count the sum
of the dice, which yields X(s) = i+ j for any s ∈ S. In this case, E[X] = 7. �

9.1.3 Randomized Strategies

Up until now, any actions taken in a plan have been deterministic. The plans in
Chapter 2 specified actions with complete certainty. Formulation 9.1 was solved
by specifying the best action. It can be viewed as a strategy that trivially makes
the same decision every time.

In some applications, the decision maker may not want to be predictable. To
achieve this, randomization can be incorporated into the strategy. If U is discrete,
a randomized strategy, w, is specified by a probability distribution, P (u), over U .
Let W denote the set of all possible randomized strategies. When the strategy
is applied, an action u ∈ U is chosen by sampling according to the probability
distribution, P (u). We now have to make a clear distinction between defining the
strategy and applying the strategy. So far, the two have been equivalent; however,
a randomized strategy must be executed to determine the resulting action. If the
strategy is executed repeatedly, it is assumed that each trial is independent of
the actions obtained in previous trials. In other words, P (uk|ui) = P (uk), in
which P (uk|ui) represents the probability that the strategy chooses action uk in
trial k, given that ui was chosen in trial i for some i < k. If U is continuous,
then a randomized strategy may be specified by a probability density function,
p(u). In decision-theory and game-theory literature, deterministic and randomized
strategies are often referred to as pure and mixed, respectively.

Example 9.6 (Basing Decisions on a Coin Toss) Let U = {a, b}. A ran-
domized strategy w can be defined as

1. Flip a fair coin, which has two possible outcomes: heads (H) or tails (T).

2. If the outcome is H, choose a; otherwise, choose b.

Since the coin is fair, w is defined by assigning P (a) = P (b) = 1/2. Each time the
strategy is applied, it not known what action will be chosen. Over many trials,
however, it converges to choosing a half of the time. �

A deterministic strategy can always be viewed as a special case of a random-
ized strategy, if you are not bothered by events that have probability zero. A
deterministic strategy, ui ∈ U , can be simulated by a random strategy by assign-
ing P (u) = 1 if u = ui, and P (u) = 0 otherwise. Only with probability zero can
different actions be chosen (possible, but not probable!).

446 S. M. LaValle: Planning Algorithms

Imagine using a randomized strategy to solve a problem expressed using For-
mulation 9.1. The first difficulty appears to be that the cost cannot be predicted.
If the strategy is applied numerous times, then we can define the average cost. As
the number of times tends to infinity, this average would converge to the expected
cost, denoted by L̄(w), if L is treated as a random variable (in addition to the
cost function). If U is discrete, the expected cost of a randomized strategy w is

L̄(w) =
∑

u∈U

L(u)P (u) =
∑

u∈U

L(u)wi, (9.13)

in which wi is the component of w corresponding to the particular u ∈ U .

An interesting question is whether there exists some w ∈ W such that L̄(w) <
L(u), for all u ∈ U . In other words, do there exist randomized strategies that are
better than all deterministic strategies, using Formulation 9.1? The answer is no
because the best strategy is always to assign probability one to the action, u∗, that
minimizes L. This is equivalent to using a deterministic strategy. If there are two
or more actions that obtain the optimal cost, then a randomized strategy could
arbitrarily distribute all of the probability mass between these. However, there
would be no further reduction in cost. Therefore, randomization seems pointless
in this context, unless there are other considerations.

One important example in which a randomized strategy is of critical impor-
tance is when making decisions in competition with an intelligent adversary. If the
problem is repeated many times, an opponent could easily learn any deterministic
strategy. Randomization can be used to weaken the prediction capabilities of an
opponent. This idea will be used in Section 9.3 to obtain better ways to play
zero-sum games.

Following is an example that illustrates the advantage of randomization when
repeatedly playing against an intelligent opponent.

Example 9.7 (Matching Pennies) Consider a game in which two players re-
peatedly play a simple game of placing pennies on the table. In each trial, the
players must place their coins simultaneously with either heads (H) facing up or
tails (T) facing up. Let a two-letter string denote the outcome. If the outcome is
HH or TT (the players choose the same), then Player 1 pays Player 2 one Peso; if
the outcome is HT or TH, then Player 2 pays Player 1 one Peso. What happens
if Player 1 uses a deterministic strategy? If Player 2 can determine the strategy,
then he can choose his strategy so that he always wins the game. However, if
Player 1 chooses the best randomized strategy, then he can expect at best to
break even on average. What randomized strategy achieves this?

A generalization of this to three actions is the famous game of Rock-Paper-
Scissors [45]. If you want to design a computer program that repeatedly plays this
game against smart opponents, it seems best to incorporate randomization. �

9.2. A GAME AGAINST NATURE 447

9.2 A Game Against Nature

9.2.1 Modeling Nature

For the first time in this book, uncertainty will be directly modeled. There are
two DMs:

Robot: This is the name given to the primary DM throughout the book.
So far, there has been only one DM. Now that there are two, the name is
more important because it will be used to distinguish the DMs from each
other.

Nature: This DM is a mysterious force that is unpredictable to the robot.
It has its own set of actions, and it can choose them in a way that interferes
with the achievements of the robot. Nature can be considered as a synthetic
DM that is constructed for the purposes of modeling uncertainty in the
decision-making or planning process.

Imagine that the robot and nature each make a decision. Each has a set
of actions to choose from. Suppose that the cost depends on which actions are
chosen by each. The cost still represents the effect of the outcome on the robot;
however, the robot must now take into account the influence of nature on the cost.
Since nature is unpredictable, the robot must formulate a model of its behavior.
Assume that the robot has a set, U , of actions, as before. It is now assumed that
nature also has a set of actions. This is referred to as the nature action space and
is denoted by Θ. A nature action is denoted as θ ∈ Θ. It now seems appropriate
to call U the robot action space; however, for convenience, it will often be referred
to as the action space, in which the robot is implied.

This leads to the following formulation, which extends Formulation 9.1.

Formulation 9.3 (A Game Against Nature)

1. A nonempty set U called the (robot) action space. Each u ∈ U is referred
to as an action.

2. A nonempty set Θ called the nature action space. Each θ ∈ Θ is referred to
as a nature action.

3. A function L : U ×Θ → R ∪ {∞}, called the cost function.

The cost function, L, now depends on u ∈ U and θ ∈ Θ. If U and Θ are finite,
then it is convenient to specify L as a |U | × |Θ| matrix called the cost matrix.

Example 9.8 (A Simple Game Against Nature) Suppose that U and Θ each
contain three actions. This results in nine possible outcomes, which can be spec-
ified by the following cost matrix:

448 S. M. LaValle: Planning Algorithms

Θ

U

1 −1 0
−1 2 −2
2 −1 1

The robot action, u ∈ U , selects a row, and the nature action, θ ∈ Θ, selects a
column. The resulting cost, L(u, θ), is given by the corresponding matrix entry. �

In Formulation 9.3, it appears that both DMs act at the same time; nature
does not know the robot action before deciding. In many contexts, nature may
know the robot action. In this case, a different nature action space can be defined
for every u ∈ U . This generalizes Formulation 9.3 to obtain:

Formulation 9.4 (Nature Knows the Robot Action)

1. A nonempty set U called the action space. Each u ∈ U is referred to as an
action.

2. For each u ∈ U , a nonempty set Θ(u) called the nature action space.

3. A function L : U ×Θ → R ∪ {∞}, called the cost function.

If the robot chooses an action u ∈ U , then nature chooses from Θ(u).

9.2.2 Nondeterministic vs. Probabilistic Models

What is the best decision for the robot, given that it is engaged in a game against
nature? This depends on what information the robot has regarding how nature
chooses its actions. It will always be assumed that the robot does not know the
precise nature action to be chosen; otherwise, it is pointless to define nature. Two
alternative models that the robot can use for nature will be considered. From the
robot’s perspective, the possible models are

Nondeterministic: I have no idea what nature will do.

Probabilistic: I have been observing nature and gathering statistics.

Under both models, it is assumed that the robot knows Θ in Formulation 9.3 or
Θ(u) for all u ∈ U in Formulation 9.4. The nondeterministic and probabilistic
terminology are borrowed from Erdmann [17]. In some literature, the term pos-
sibilistic is used instead of nondeterministic. This is an excellent term, but it is
unfortunately too similar to probabilistic in English.

Assume first that Formulation 9.3 is used and that U and Θ are finite. Under
the nondeterministic model, there is no additional information. One reasonable
approach in this case is to make a decision by assuming the worst. It can even be
imagined that nature knows what action the robot will take, and it will spitefully

9.2. A GAME AGAINST NATURE 449

choose a nature action that drives the cost as high as possible. This pessimistic
view is sometimes humorously referred to as Murphy’s Law (“If anything can go
wrong, it will.”) [9] or Sod’s Law. In this case, the best action, u∗ ∈ U , is selected
as

u∗ = argmin
u∈U

{

max
θ∈Θ

{

L(u, θ)
}}

. (9.14)

The action u∗ is the lowest cost choice using worst-case analysis. This is sometimes
referred to as a minimax solution because of the min and max in (9.14). If U or
Θ is infinite, then the min or max may not exist and should be replaced by inf or
sup, respectively.

Worst-case analysis may seem too pessimistic in some applications. Perhaps
the assumption that all actions in Θ are equally likely may be preferable. This
can be handled as a special case of the probabilistic model, which is described
next.

Under the probabilistic model, it is assumed that the robot has gathered
enough data to reliably estimate P (θ) (or p(θ) if Θ is continuous). In this case, it
is imagined that nature applies a randomized strategy, as defined in Section 9.1.3.
It assumed that the applied nature actions have been observed over many trials,
and in the future they will continue to be chosen in the same manner, as predicted
by the distribution P (θ). Instead of worst-case analysis, expected-case analysis is
used. This optimizes the average cost to be received over numerous independent
trials. In this case, the best action, u∗ ∈ U , is

u∗ = argmin
u∈U

{

Eθ

[

L(u, θ)
]}

, (9.15)

in which Eθ indicates that the expectation is taken according to the probability
distribution (or density) over θ. Since Θ and P (θ) together form a probability
space, L(u, θ) can be considered as a random variable for each value of u (it assigns
a real value to each element of the sample space).3 Using P (θ), the expectation
in (9.15) can be expressed as

Eθ[L(u, θ)] =
∑

θ∈Θ

L(u, θ)P (θ). (9.16)

Example 9.9 (Nondeterministic vs. Probabilistic) Return to Example 9.8.
Let U = {u1, u2, u3} represent the robot actions, and let Θ = {θ1, θ2, θ3} represent
the nature actions.

Under the nondeterministic model of nature, u∗ = u1, which results in L(u∗, θ) =
1 in the worst case using (9.14). Under the probabilistic model, let P (θ1) = 1/5,
P (θ2) = 1/5, and P (θ3) = 3/5. To find the optimal action, (9.15) can be used.

3Alternatively, a random variable may be defined over U × Θ, and conditional expectation
would be taken, in which u is given.

450 S. M. LaValle: Planning Algorithms

This involves computing the expected cost for each action:

Eθ[L(u1, θ)] = (1)1/5 + (−1)1/5 + (0)3/5 = 0

Eθ[L(u2, θ)] = (−1)1/5 + (2)1/5 + (−2)3/5 = −1

Eθ[L(u3, θ)] = (2)1/5 + (−1)1/5 + (1)3/5 = 4/5.

(9.17)

The best action is u∗ = u2, which produces the lowest expected cost, −1.
If the probability distribution had instead been P = [1/10 4/5 1/10], then

u∗ = u1 would have been obtained. Hence the best decision depends on P (θ); if
this information is statistically valid, then it enables more informed decisions to
be made. If such information is not available, then the nondeterministic model
may be more suitable.

It is possible, however, to assign P (θ) as a uniform distribution in the absence
of data. This means that all nature actions are equally likely; however, conclu-
sions based on this are dangerous; see Section 9.5. �

In Formulation 9.4, the nature action space Θ(u) depends on u ∈ U , the robot
action. Under the nondeterministic model, (9.14) simply becomes

u∗ = argmin
u∈U

{

max
θ∈Θ(u)

L(u, θ)
}

. (9.18)

Unfortunately, these problems do not have a nice matrix representation because
the size of Θ(u) can vary for different u ∈ U . In the probabilistic case, P (θ) is
replaced by a conditional probability distribution P (θ|u). Estimating this distri-
bution requires observing numerous independent trials for each possible u ∈ U .
The behavior of nature can now depend on the robot action; however, nature is
still characterized by a randomized strategy. It does not adapt its strategy across
multiple trials. The expectation in (9.16) now becomes

Eθ

[

L(u, θ)
]

=
∑

θ∈Θ(u)

L(u, θ)P (θ|u), (9.19)

which replaces P (θ) by P (θ|u).

Regret It is important to note that the models presented here are not the only
accepted ways to make good decisions. In game theory, the key idea is to minimize
“regret.” This is the feeling you get after making a bad decision and wishing that
you could change it after the game is finished. Suppose that after you choose
some u ∈ U , you are told which θ ∈ Θ was applied by nature. The regret is the
amount of cost that you could have saved by picking a different action, given the
nature action that was applied.

For each combination of u ∈ U and θ ∈ Θ, the regret, T , is defined as

T (u, θ) = max
u′∈U

{

L(u, θ)− L(u′, θ)
}

. (9.20)

9.2. A GAME AGAINST NATURE 451

For Formulation 9.3, if U and Θ are finite, then a |Θ| × |U | regret matrix can be
defined.

Suppose that minimizing regret is the primary concern, as opposed to the
actual cost received. Under the nondeterministic model, the action that minimizes
the worst-case regret is

u∗ = argmin
u∈U

{

max
θ∈Θ

{

T (u, θ)
}}

. (9.21)

In the probabilistic model, the action that minimizes the expected regret is

u∗ = argmin
u∈U

{

Eθ

[

T (u, θ)
]}

. (9.22)

The only difference with respect to (9.14) and (9.15) is that L has been replaced
by T . In Section 9.3.2, regret will be discussed in more detail because it forms
the basis of optimality concepts in game theory.

Example 9.10 (Regret Matrix) The regret matrix for Example 9.8 is

Θ

U

2 0 2
0 3 0
3 0 3

Using the nondeterministic model, u∗ = u1, which results in a worst-case regret of
2 using (9.21). Under the probabilistic model, let P (θ1) = P (θ2) = P (θ3) = 1/3.
In this case, u∗ = u1, which yields the optimal expected regret, calculated as 1
using (9.22).

9.2.3 Making Use of Observations

Formulations 9.3 and 9.4 do not allow the robot to receive any information (other
than L) prior to making its decision. Now suppose that the robot has a sensor
that it can check just prior to choosing the best action. This sensor provides
an observation or measurement that contains information about which nature
action might be chosen. In some contexts, the nature action can be imagined
as a kind of state that has already been selected. The observation then provides
information about this. For example, nature might select the current temperature
in Bangkok. An observation could correspond to a thermometer in Bangkok that
takes a reading.

Formulating the problem Let Y denote the observation space, which is the
set of all possible observations, y ∈ Y . For convenience, suppose that Y , U , and Θ
are all discrete. It will be assumed as part of the model that some constraints on

452 S. M. LaValle: Planning Algorithms

θ are known once y is given. Under the nondeterministic model a set Y (θ) ⊆ Y
is specified for every θ ∈ Θ. The set Y (θ) indicates the possible observations,
given that the nature action is θ. Under the probabilistic model a conditional
probability distribution, P (y|θ), is specified. Examples of sensing models will
be given in Section 9.2.4. Many others appear in Sections 11.1.1 and 11.5.1,
although they are expressed with respect to a state space X that reduces to Θ in
this section. As before, the probabilistic case also requires a prior distribution,
P (Θ), to be given. This results in the following formulation.

Formulation 9.5 (A Game Against Nature with an Observation)

1. A finite, nonempty set U called the action space. Each u ∈ U is referred to
as an action.

2. A finite, nonempty set Θ called the nature action space.

3. A finite, nonempty set Y called the observation space.

4. A set Y (θ) ⊆ Y or probability distribution P (y|θ) specified for every θ ∈ Θ.
This indicates which observations are possible or probable, respectively, if
θ is the nature action. In the probabilistic case a prior, P (θ), must also be
specified.

5. A function L : U ×Θ → R ∪ {∞}, called the cost function.

Consider solving Formulation 9.5. A strategy is now more complicated than
simply specifying an action because we want to completely characterize the be-
havior of the robot before the observation has been received. This is accomplished
by defining a strategy as a function, π : Y → U . For each possible observation,
y ∈ Y , the strategy provides an action. We now want to search the space of
possible strategies to find the one that makes the best decisions over all possible
observations. In this section, Y is actually a special case of an information space,
which is the main topic of Chapters 11 and 12. Eventually, a strategy (or plan)
will be conditioned on an information state, which generalizes an observation.

Optimal strategies Now consider finding the optimal strategy, denoted by π∗,
under the nondeterministic model. The sets Y (θ) for each θ ∈ Θ must be used
to determine which nature actions are possible for each observation, y ∈ Y . Let
Θ(y) denote this, which is obtained as

Θ(y) = {θ ∈ Θ | y ∈ Y (θ)}. (9.23)

The optimal strategy, π∗, is defined by setting

π∗(y) = argmin
u∈U

{

max
θ∈Θ(y)

{

L(u, θ)
}}

, (9.24)

9.2. A GAME AGAINST NATURE 453

for each y ∈ Y . Compare this to (9.14), in which the maximum was taken over
all Θ. The advantage of having the observation, y, is that the set is restricted to
Θ(y) ⊆ Θ.

Under the probabilistic model, an operation analogous to (9.23) must be per-
formed. This involves computing P (θ|y) from P (y|θ) to determine the information
that y contains regarding θ. Using Bayes’ rule, (9.9), with marginalization on the
denominator, the result is

P (θ|y) = P (y|θ)P (θ)
∑

θ∈Θ

P (y|θ)P (θ)
. (9.25)

To see the connection between the nondeterministic and probabilistic cases, define
a probability distribution, P (y|θ), that is nonzero only if y ∈ Y (θ) and use a
uniform distribution for P (θ). In this case, (9.25) assigns nonzero probability
to precisely the elements of Θ(y) as given in (9.23). Thus, (9.25) is just the
probabilistic version of (9.23). The optimal strategy, π∗, is specified for each
y ∈ Y as

π∗(y) = argmin
u∈U

{

Eθ

[

L(u, θ)
∣

∣

∣
y
]}

= argmin
u∈U

{

∑

θ∈Θ

L(u, θ)P (θ|y)
}

. (9.26)

This differs from (9.15) and (9.16) by replacing P (θ) with P (θ|y). For each u, the
expectation in (9.26) is called the conditional Bayes’ risk. The optimal strategy,
π∗, always selects the strategy that minimizes this risk. Note that P (θ|y) in (9.26)
can be expressed using (9.25), for which the denominator (9.26) represents P (y)
and does not depend on u; therefore, it does not affect the optimization. Due to
this, P (y|θ)P (θ) can be used in the place of P (θ|y) in (9.26), and the same π∗ will
be obtained. If the spaces are continuous, then probability densities are used in
the place of all probability distributions, and the method otherwise remains the
same.

Nature acts twice A convenient, alternative formulation can be given by al-
lowing nature to act twice:

1. First, a nature action, θ ∈ Θ, is chosen but is unknown to the robot.

2. Following this, a nature observation action is chosen to interfere with the
robot’s ability to sense θ.

Let ψ denote a nature observation action, which is chosen from a nature obser-
vation action space, Ψ(θ). A sensor mapping, h, can now be defined that yields
y = h(θ, ψ) for each θ ∈ Θ and ψ ∈ Ψ(θ). Thus, for each of the two kinds of
nature actions, θ ∈ Θ and ψ ∈ Ψ, an observation, y = h(θ, ψ), is given. This
yields an alternative way to express Formulation 9.5:

454 S. M. LaValle: Planning Algorithms

Formulation 9.6 (Nature Interferes with the Observation)

1. A nonempty, finite set U called the action space.

2. A nonempty, finite set Θ called the nature action space.

3. A nonempty, finite set Y called the observation space.

4. For each θ ∈ Θ, a nonempty set Ψ(θ) called the nature observation action
space.

5. A sensor mapping h : Θ×Ψ → Y .

6. A function L : U ×Θ → R ∪ {∞} called the cost function.

This nicely unifies the nondeterministic and probabilistic models with a single
function h. To express a nondeterministic model, it is assumed that any ψ ∈ Ψ(θ)
is possible. Using h,

Θ(y) = {θ ∈ Θ | ∃ψ ∈ Ψ(θ) such that y = h(θ, ψ)}. (9.27)

For a probabilistic model, a distribution P (ψ|θ) is specified (often, this may reduce
to P (ψ)). Suppose that when the domain of h is restricted to some θ ∈ Θ, then it
forms an injective mapping from Ψ to Y . In other words, every nature observation
action leads to a unique observation, assuming θ is fixed. Using P (ψ) and h, P (y|θ)
is derived as

P (y|θ) =
{

P (ψ|θ) for the unique ψ such that y = h(θ, ψ).
0 if no such ψ exists.

(9.28)

If the injective assumption is lifted, then P (ψ|θ) is replaced by a sum over all ψ
for which y = h(θ, ψ). In Formulation 9.6, the only difference between the nonde-
terministic and probabilistic models is the characterization of ψ, which represents
a kind of measurement interference. A strategy still takes the form π : Θ → U .
A hybrid model is even possible in which one nature action is modeled nondeter-
ministically and the other probabilistically.

Receiving multiple observations Another extension of Formulation 9.5 is to
allow multiple observations, y1, y2, . . ., yn, before making a decision. Each yi is
assumed to belong to an observation space, Yi. A strategy, π, now depends on all
observations:

π : Y1 × Y2 × · · · × Yn → U. (9.29)

Under the nondeterministic model, Yi(θ) is specified for each i and θ ∈ Θ. The
set Θ(y) is replaced by

Θ(y1) ∩Θ(y2) ∩ · · · ∩Θ(yn) (9.30)

9.2. A GAME AGAINST NATURE 455

in (9.24) to obtain the optimal action, π∗(y1, . . . , yn).
Under the probabilistic model, P (yi|θ) is specified instead. It is often assumed

that the observations are conditionally independent given θ. This means for any
yi, θ, and yj such that i 6= j, P (yi|θ, yj) = P (yi|θ). The condition P (θ|y) in (9.26)
is replaced by P (θ|y1, . . . , yn). Applying Bayes’ rule, and using the conditional
independence of the yi’s given θ, yields

P (θ|y1, . . . , yn) =
P (y1|θ)P (y2|θ) · · ·P (yn|θ)P (θ)

P (y1, . . . , yn)
. (9.31)

The denominator can be treated as a constant factor that does not affect the
optimization. Therefore, it does not need to be explicitly computed unless the
optimal expected cost is needed in addition to the optimal action.

Conditional independence allows a dramatic simplification that avoids the full
specification of P (y|θ). Sometimes the conditional independence assumption is
used when it is incorrect, just to exploit this simplification. Therefore, a method
that uses conditional independence of observations is often called naive Bayes.

9.2.4 Examples of Optimal Decision Making

The framework presented so far characterizes statistical decision theory, which
covers a broad range of applications and research issues. Virtually any context in
which a decision must be made automatically, by a machine or a person following
specified rules, is a candidate for using these concepts. In Chapters 10 through
12, this decision problem will be repeatedly embedded into complicated planning
problems. Planning will be viewed as a sequential decision-making process that
iteratively modifies states in a state space. Most often, each decision step will
be simpler than what usually arises in common applications of decision theory.
This is because planning problems are complicated by many other factors. If
the decision step in a particular application is already too hard to solve, then an
extension to planning appears hopeless.

It is nevertheless important to recognize the challenges in general that arise
when modeling and solving decision problems under the framework of this section.
Some examples are presented here to help illustrate its enormous power and scope.

Pattern classification

An active field over the past several decades in computer vision and machine
learning has been pattern classification [15, 16, 28]. The general problem involves
using a set of data to perform classifications. For example, in computer vision, the
data correspond to information extracted from an image. These indicate observed
features of an object that are used by a vision system to try to classify the object
(e.g., “I am looking at a bowl of Vietnamese noodle soup”).

The presentation here represents a highly idealized version of pattern clas-
sification. We will assume that all of the appropriate model details, including

456 S. M. LaValle: Planning Algorithms

the required probability distributions, are available. In some contexts, these can
be obtained by gathering statistics over large data sets. In many applications,
however, obtaining such data is expensive or inaccessible, and classification tech-
niques must be developed in lieu of good information. Some problems are even
unsupervised, which means that the set of possible classes must also be discov-
ered automatically. Due to issues such as these, pattern classification remains a
challenging research field.

The general model is that nature first determines the class, then observations
are obtained regarding the class, and finally the robot action attempts to guess
the correct class based on the observations. The problem fits under Formulation
9.5. Let Θ denote a finite set of classes. Since the robot must guess the class,
U = Θ. A simple cost function is defined to measure the mismatch between u
and θ:

L(u, θ) =

{

0 if u = θ (correct classification

1 if u 6= θ (incorrect classification) .
(9.32)

The nondeterministic model yields a cost of 1 if it is possible that a classification
error can be made using action u. Under the probabilistic model, the expectation
of (9.32) gives the probability that a classification error will be made given an
action u.

The next part of the formulation considers information that is used to make
the classification decision. Let Y denote a feature space, in which each y ∈ Y is
called a feature or feature vector (often y ∈ R

n). The feature in this context is just
an observation, as given in Formulation 9.5. The best classifier or classification
rule is a strategy π : Y → U that provides the smallest classification error in the
worst case or expected case, depending on the model.

A Bayesian classifier The probabilistic approach is most common in pattern
classification. This results in a Bayesian classifier. Here it is assumed that P (y|θ)
and P (θ) are given. The distribution of features for a given class is indicated by
P (y|θ). The overall frequency of class occurrences is given by P (θ). If large, pre-
classified data sets are available, then these distributions can be reliably learned.
The feature space is often continuous, which results in a density p(y|θ), even
though P (θ) remains a discrete probability distribution. An optimal classifier, π∗,
is designed according to (9.26). It performs classification by receiving a feature
vector, y, and then declaring that the class is u = π∗(y). The expected cost using
(9.32) is the probability of error.

Example 9.11 (Optical Character Recognition) An example of classifica-
tion is given by a simplified optical character recognition (OCR) problem. Sup-
pose that a camera creates a digital image of a page of text. Segmentation is first
performed to determine the location of each letter. Following this, the individ-
ual letters must be classified correctly. Let Θ = {A,B,C,D,E, F,G,H}, which
would ordinarily include all of the letters of the alphabet.

9.2. A GAME AGAINST NATURE 457

Shape 0 A E F H
1 B C D G

Ends 0 B D
1
2 A C G
3 F E
4 H

Holes 0 C E F G H
1 A D
2 B

Figure 9.1: A mapping from letters to feature values.

Suppose that there are three different image processing algorithms:

Shape extractor: This returns s = 0 if the letter is composed of straight
edges only, and s = 1 if it contains at least one curve.

End counter: This returns e, the number of segment ends. For example,
O has none and X has four.

Hole counter: This returns h, the number of holes enclosed by the char-
acter. For example, X has none and O has one.

The feature vector is y = (s, e, h). The values that should be reported under ideal
conditions are shown in Figure 9.1. These indicate Θ(s), Θ(e), and Θ(h). The
intersection of these yields Θ(y) for any combination of s, e, and h.

Imagine doing classification under the nondeterministic model, with the as-
sumption that the features always provide correct information. For y = (0, 2, 1),
the only possible letter is A. For y = (1, 0, 2), the only letter is B. If each
(s, e, h) is consistent with only one or no letters, then a perfect classifier can be
constructed. Unfortunately, (0, 3, 0) is consistent with both E and F . In the worst
case, the cost of using (9.32) is 1.

One way to fix this is to introduce a new feature. Suppose that an image
processing algorithm is used to detect corners. These are places at which two
segments meet at a right (90 degrees) angle. Let c denote the number of corners,
and let the new feature vector be y = (s, e, h, c). The new algorithm nicely
distinguishes E from F , for which c = 2 and c = 1, respectively. Now all letters
can be correctly classified without errors.

Of course, in practice, the image processing algorithms occasionally make mis-
takes. A Bayesian classifier can be designed to maximize the probability of suc-
cess. Assume conditional independence of the observations, which means that the
classifier can be considered naive. Suppose that the four image processing algo-
rithms are run over a training data set and the results are recorded. In each case,

458 S. M. LaValle: Planning Algorithms

the correct classification is determined by hand to obtain probabilities P (s|θ),
P (e|θ), P (h|θ), and P (c|θ). For example, suppose that the hole counter receives
the letter A as input. After running the algorithm over many occurrences of A
in text, it may be determined that P (h = 1| θ = A) = 0.9, which is the cor-
rect answer. With smaller probabilities, perhaps P (h = 0| θ = A) = 0.09 and
P (h = 2| θ = A) = 0.01. Assuming that the output of each image processing al-
gorithm is independent given the input letter, a joint probability can be assigned
as

P (y|θ) = P (s, e, h, c| θ) = P (s|θ)P (e|θ)P (h|θ)P (c|θ). (9.33)

The value of the prior P (θ) can be obtained by running the classifier over large
amounts of hand-classified text and recording the relative numbers of occurrences
of each letter. It is interesting to note that some context-specific information can
be incorporated. If the text is known to be written in Spanish, then P (θ) should
be different than from text written in English. Tailoring P (θ) to the type of text
that will appear improves the performance of the resulting classifier.

The classifier makes its decisions by choosing the action that minimizes the
probability of error. This error is proportional to

∑

θ∈Θ

P (s|θ)P (e|θ)P (h|θ)P (c|θ)P (θ), (9.34)

by neglecting the constant P (y) in the denominator of Bayes’ rule in (9.26). �

Parameter estimation

Another important application of the decision-making framework of this section is
parameter estimation [5, 14]. In this case, nature selects a parameter, θ ∈ Θ, and
Θ represents a parameter space. Through one or more independent trials, some
observations are obtained. Each observation should ideally be a direct measure-
ment of Θ, but imperfections in the measurement process distort the observation.
Usually, Θ ⊆ Y , and in many cases, Y = Θ. The robot action is to guess the
parameter that was chosen by nature. Hence, U = Θ. In most applications, all of
the spaces are continuous subsets of Rn. The cost function is designed to increase
as the error, ‖u− θ‖, becomes larger.

Example 9.12 (Parameter Estimation) Suppose that U = Y = Θ = R. Na-
ture therefore chooses a real-valued parameter, which is estimated. The cost of
making a mistake is

L(u, θ) = (u− θ)2. (9.35)

Suppose that a Bayesian approach is taken. The prior probability density p(θ)
is given as uniform over an interval [a, b] ⊂ R. An observation is received, but it
is noisy. The noise can be modeled as a second action of nature, as described in

9.3. TWO-PLAYER ZERO-SUM GAMES 459

Section 9.2.3. This leads to a density p(y|θ). Suppose that the noise is modeled
with a Gaussian, which results in

p(y|θ) = 1√
2πσ2

e−(y−θ)2/2σ2

, (9.36)

in which the mean is θ and the standard deviation is σ.
The optimal parameter estimate based on y is obtained by selecting u ∈ R to

minimize
∫

∞

−∞

L(u, θ)p(θ|y)dθ, (9.37)

in which

p(θ|y) = p(y|θ)p(θ)
p(y)

, (9.38)

by Bayes’ rule. The term p(y) does not depend on θ, and it can therefore be ignored
in the optimization. Using the prior density, p(θ) = 0 outside of [a, b]; hence, the
domain of integration can be restricted to [a, b]. The value of p(θ) = 1/(b− a) is
also a constant that can be ignored in the optimization. Using (9.36), this means
that u is selected to optimize

∫ b

a

L(u, θ)p(y|θ)dθ, (9.39)

which can be expressed in terms of the standard error function, erf(x) (the integral
from 0 to a constant, of a Gaussian density over an interval).

If a sequence, y1, . . ., yk, of independent observations is obtained, then (9.39)
is replaced by

∫ b

a

L(u, θ)p(y1|θ) · · · p(yk|θ)dθ. (9.40)

�

9.3 Two-Player Zero-Sum Games

Section 9.2 involved one real decision maker (DM), the robot, playing against a
fictitious DM called nature. Now suppose that the second DM is a clever opponent
that makes decisions in the same way that the robot would. This leads to a
symmetric situation in which two decision makers simultaneously make a decision,
without knowing how the other will act. It is assumed in this section that the
DMs have diametrically opposing interests. They are two players engaged in a
game in which a loss for one player is a gain for the other, and vice versa. This
results in the most basic form of game theory, which is referred to as a zero-sum
game.

460 S. M. LaValle: Planning Algorithms

9.3.1 Game Formulation

Suppose there are two players, P1 and P2, that each have to make a decision. Each
has a finite set of actions, U and V , respectively. The set V can be viewed as
the “replacement” of Θ from Formulation 9.3 by a set of actions chosen by a true
opponent. Each player has a cost function, which is denoted as Li : U × V → R

for i = 1, 2. An important constraint for zero-sum games is

L1(u, v) = −L2(u, v), (9.41)

which means that a cost for one player is a reward for the other. This is the basis
of the term zero sum, which means that the two costs can be added to obtain
zero. In zero-sum games the interests of the players are completely opposed. In
Section 9.4 this constraint will be lifted to obtain more general games.

In light of (9.41) it is pointless to represent two cost functions. Instead, the
superscript will be dropped, and L will refer to the cost, L1, of P1. The goal of
P1 is to minimize L. Due to (9.41), the goal of P2 is to maximize L. Thus, L can
be considered as a reward for P2, but a cost for P1.

A formulation can now be given:

Formulation 9.7 (A Zero-Sum Game)

1. Two players, P1 and P2.

2. A nonempty, finite set U called the action space for P1. For convenience in
describing examples, assume that U is a set of consecutive integers from 1
to |U |. Each u ∈ U is referred to as an action of P1.

3. A nonempty, finite set V called the action space for P2. Assume that V is
a set of consecutive integers from 1 to |V |. Each v ∈ V is referred to as an
action of P2.

4. A function L : U × V → R∪ {−∞,∞} called the cost function for P1. This
also serves as a reward function for P2 because of (9.41).

Before discussing what it means to solve a zero-sum game, some additional
assumptions are needed. Assume that the players know each other’s cost functions.
This implies that the motivation of the opponent is completely understood. The
other assumption is that the players are rational, which means that they will try
to obtain the best cost whenever possible. P1 will not choose an action that leads
to higher cost when a lower cost action is available. Likewise, P2 will not choose
an action that leads to lower cost. Finally, it is assumed that both players make
their decisions simultaneously. There is no information regarding the decision of
P1 that can be exploited by P2, and vice versa.

Formulation 9.7 is often referred to as a matrix game because L can be ex-
pressed with a cost matrix, as was done in Section 9.2. Here the matrix indicates

9.3. TWO-PLAYER ZERO-SUM GAMES 461

costs for P1 and P2, instead of the robot and nature. All of the required in-
formation from Formulation 9.7 is specified by a single matrix; therefore, it is a
convenient form for expressing zero-sum games.

Example 9.13 (Matrix Representation of a Zero-Sum Game) Suppose that
U , the action set for P1, contains three actions and V contains four actions. There
should be 3× 4 = 12 values in the specification of the cost function, L. This can
be expressed as a cost matrix,

V

U
1 3 3 2
0 -1 2 1
-2 2 0 1

, (9.42)

in which each row corresponds to some u ∈ U , and each column corresponds to
some v ∈ V . Each entry yields L(u, v), which is the cost for P1. This representa-
tion is similar to that shown in Example 9.8, except that the nature action space,
Θ, is replaced by V . The cost for P2 is −L(u, v). �

9.3.2 Deterministic Strategies

What constitutes a good solution to Formulation 9.7? Consider the game from
the perspective of P1. It seems reasonable to apply worst-case analysis when
trying to account for the action that will be taken by P2. This results in a choice
that is equivalent to assuming that P2 is nature acting under the nondeterministic
model, as considered in Section 9.2.2. For a matrix game, this is computed by first
determining the maximum cost over each row. Selecting the action that produces
the minimum among these represents the lowest cost that P1 can guarantee for
itself. Let this selection be referred to as a security strategy for P1.

For the matrix game in (9.42), the security strategy is illustrated as

V

U
1 3 3 2 → 3
0 -1 2 1 → 2
-2 2 0 1 → 2

, (9.43)

in which u = 2 and u = 3 are the best actions. Each yields a cost no worse than
2, regardless of the action chosen by P2.

This can be formalized using the existing notation. A security strategy, u∗, for
P1 is defined in general as

u∗ = argmin
u∈U

{

max
v∈V

{

L(u, v)
}}

. (9.44)

462 S. M. LaValle: Planning Algorithms

There may be multiple security strategies that satisfy the argmin; however, this
does not cause trouble, as will be explained shortly. Let the resulting worst-case
cost be denoted by L

∗

, and let it be called the upper value of the game. This is
defined as

L
∗

= max
v∈V

{

L(u∗, v)
}

. (9.45)

Now swap roles, and consider the game from the perspective of P2, which
would like to maximize L. It can also use worst-case analysis, which means that
it would like to select an action that guarantees a high cost, in spite of the action
of P1 to potentially reduce it. A security strategy, v∗, for P2 is defined as

v∗ = argmax
v∈V

{

min
u∈U

{

L(u, v)
}}

. (9.46)

Note the symmetry with respect to (9.44). There may be multiple security strate-
gies for P2. A security strategy v∗ is just an “upside-down” version of the worst-
case analysis applied in Section 9.2.2. The lower value, L∗, is defined as

L∗ = min
u∈U

{

L(u, v∗)
}

. (9.47)

Returning to the matrix game in (9.42), the last column is selected by applying
(9.46):

V

U

1 3 3 2
0 -1 2 1
-2 2 0 1
↓ ↓ ↓ ↓
-2 -1 0 1

. (9.48)

An interesting relationship between the upper and lower values is that L∗ ≤ L
∗

for any game using Formulation 9.7. This is shown by observing that

L∗ = min
u∈U

{

L(u, v∗)
}

≤ L(u∗, v∗) ≤ max
v∈V

{

L(u∗, v)
}

= L
∗

, (9.49)

in which L(u∗, v∗) is the cost received when the players apply their respective
security strategies. If the game is played by rational DMs, then the resulting cost
always lies between L∗ and L

∗

.

Regret Suppose that the players apply security strategies, u∗ = 2 and v∗ = 4.
This results in a cost of L(2, 4) = 1. How do the players feel after the outcome?
P1 may feel satisfied because given that P2 selected v∗ = 4, it received the lowest
cost possible. On the other hand, P2 may regret its decision in light of the action
chosen by P1. If it had known that u = 2 would be chosen, then it could have
picked v = 2 to receive cost L(2, 2) = 2, which is better than L(2, 4) = 1. If the

9.3. TWO-PLAYER ZERO-SUM GAMES 463

≥

≤ L∗ ≤

≥

Figure 9.2: A saddle point can be detected in a matrix by finding a value L∗ that
is lowest among all elements in its column and greatest among all elements in its
row.

game were to be repeated, then P2 would want to change its strategy in hopes of
tricking P1 to obtain a higher reward.

Is there a way to keep both players satisfied? Any time there is a gap between
L∗ and L

∗

, there is regret for one or both players. If r1 and r2 denote the amount
of regret experienced by P1 and P2, respectively, then the total regret is

r1 + r2 = L
∗ − L∗. (9.50)

Thus, the only way to satisfy both players is to obtain upper and lower values
such that L∗ = L

∗

. These are properties of the game, however, and they are not
up to the players to decide. For some games, the values are equal, but for many
L∗ < L

∗

. Fortunately, by using randomized strategies, the upper and lower values
always coincide; this is covered in Section 9.3.3.

Saddle points If L∗ = L
∗

, the security strategies are called a saddle point, and
L∗ = L∗ = L

∗

is called the value of the game. If this occurs, the order of the max
and min can be swapped without changing the value:

L∗ = min
u∈U

{

max
v∈V

{

L(u, v)
}}

= max
v∈V

{

min
u∈U

{

L(u, v)
}}

. (9.51)

A saddle point is sometimes referred to as an equilibrium because the players
have no incentive to change their choices (because there is no regret). A saddle
point is defined as any u∗ ∈ U and v∗ ∈ V such that

L(u∗, v) ≤ L(u∗, v∗) ≤ L(u, v∗) (9.52)

for all u ∈ U and v ∈ V . Note that L∗ = L(u∗, v∗). When looking at a matrix
game, a saddle point is found by finding the simple pattern shown in Figure 9.2.

464 S. M. LaValle: Planning Algorithms

≥ ≥
≤ L∗ ≤ L∗ ≤

≥ ≥
≤ L∗ ≤ L∗ ≤

≥ ≥

Figure 9.3: A matrix could have more than one saddle point, which may seem
to lead to a coordination problem between the players. Fortunately, there is no
problem, because the same value will be received regardless of which saddle point
is selected by each player.

Example 9.14 (A Deterministic Saddle Point) Here is a matrix game that
has a saddle point:

V

U
3 3 5
1 -1 7
0 -2 4

. (9.53)

By applying (9.52) (or using Figure 9.2), the saddle point is obtained when u = 3
and v = 3. The result is that L∗ = 4. In this case, neither player has regret
after the game is finished. P1 is satisfied because 4 is the lowest cost it could have
received, given that P2 chose the third column. Likewise, 4 is the highest cost
that P2 could have received, given that P1 chose the bottom row. �

What if there are multiple saddle points in the same game? This may appear
to be a problem because the players have no way to coordinate their decisions.
What if P1 tries to achieve one saddle point while P2 tries to achieve another? It
turns out that if there is more than one saddle point, then there must at least be
four, as shown in Figure 9.3. As soon as we try to make two “+” patterns like
the one shown in Figure 9.2, they intersect, and four saddle points are created.
Similar behavior occurs as more saddle points are added.

Example 9.15 (Multiple Saddle Points) This game has multiple saddle points
and follows the pattern in Figure 9.3:

V

U

4 3 5 1 2
-1 0 -2 0 -1
-4 1 4 3 5
-3 0 -1 0 -2
3 2 -7 3 8

. (9.54)

Let (i, j) denote the pair of choices for P1 and P2, respectively. Both (2, 2) and
(4, 4) are saddle points with value V = 0. What if P1 chooses u = 2 and P2 chooses

9.3. TWO-PLAYER ZERO-SUM GAMES 465

v = 4? This is not a problem because (2, 4) is also a saddle point. Likewise, (4, 2)
is another saddle point. In general, no problems are caused by the existence of
multiple saddle points because the resulting cost is independent of which saddle
point is attempted by each player. �

9.3.3 Randomized Strategies

The fact that some zero-sum games do not have a saddle point is disappointing
because regret is unavoidable in these cases. Suppose we slightly change the rules.
Assume that the same game is repeatedly played by P1 and P2 over numerous
trials. If they use a deterministic strategy, they will choose the same actions every
time, resulting in the same costs. They may instead switch between alternative
security strategies, which causes fluctuations in the costs. What happens if they
each implement a randomized strategy? Using the idea from Section 9.1.3, each
strategy is specified as a probability distribution over the actions. In the limit,
as the number of times the game is played tends to infinity, an expected cost is
obtained. One of the most famous results in game theory is that on the space of
randomized strategies, a saddle point always exists for any zero-sum matrix game;
however, expected costs must be used. Thus, if randomization is used, there will
be no regrets. In an individual trial, regret may be possible; however, as the costs
are averaged over all trials, both players will be satisfied.

Extending the formulation

Since a game under Formulation 9.7 can be nicely expressed as a matrix, it is
tempting to use linear algebra to conveniently express expected costs. Let |U | = m
and |V | = n. As in Section 9.1.3, a randomized strategy for P1 can be represented
as an m-dimensional vector,

w = [w1 w2 . . . wm]. (9.55)

The probability axioms of Section 9.1.2 must be satisfied: 1) wi ≥ 0 for all
i ∈ {1, . . . ,m}, and 2) w1 + · · · + wm = 1. If w is considered as a point in R

m,
then the two constraints imply that it must lie on an (m−1)-dimensional simplex
(recall Section 6.3.1). If m = 3, this means that w lies in a triangular subset of
R

3. Similarly, let z represent a randomized strategy for P2 as an n-dimensional
vector,

z = [z1 z2 . . . zn]
T , (9.56)

that also satisfies the probability axioms. In (9.56), T denotes transpose, which
yields a column vector that satisfies the dimensional constraints required for an
upcoming matrix multiplication.

466 S. M. LaValle: Planning Algorithms

Let L̄(w, z) denote the expected cost that will be received if P1 plays w and
P2 plays z. This can be computed as

L̄(w, z) =
m
∑

i=1

n
∑

j=1

L(i, j)wizj. (9.57)

Note that the cost, L(i, j), makes use of the assumption in Formulation 9.7 that the
actions are consecutive integers. The expected cost can be alternatively expressed
using the cost matrix, A. In this case

L̄(w, z) = wAz, (9.58)

in which the product wAz yields a scalar value that is precisely (9.57). To see
this, first consider the product Az. This yields an m-dimensional vector in which
the ith element is the expected cost that P1 would receive if it tries u = i. Thus, it
appears that P1 views P2 as a nature player under the probabilistic model. Once
w and Az are multiplied, a scalar value is obtained, which averages the costs in
the vector Az according the probabilities of w.

Let W and Z denote the set of all randomized strategies for P1 and P2, re-
spectively. These spaces include strategies that are equivalent to the deterministic
strategies considered in Section 9.3.2 by assigning probability one to a single ac-
tion. Thus, W and Z can be considered as expansions of the set of possible
strategies in comparison to what was available in the deterministic setting. Using
W and Z, randomized security strategies for P1 and P2 are defined as

w∗ = argmin
w∈W

{

max
z∈Z

{

L̄(w, z)
}}

(9.59)

and

z∗ = argmax
z∈Z

{

min
w∈W

{

L̄(w, z)
}}

, (9.60)

respectively. These should be compared to (9.44) and (9.46). The differences are
that the space of strategies has been expanded, and expected cost is now used.

The randomized upper value is defined as

L∗

= max
z∈Z

{

L̄(w∗, z)
}

, (9.61)

and the randomized lower value is

L∗ = min
w∈W

{

L̄(w, z∗)
}

. (9.62)

SinceW and Z include the deterministic security strategies, L∗ ≤ L
∗

and L∗ ≥ L∗.
These inequalities imply that the randomized security strategies may have some
hope in closing the gap between the two values in general.

9.3. TWO-PLAYER ZERO-SUM GAMES 467

The most fundamental result in zero-sum game theory was shown by von
Neumann [43, 44], and it states that L∗ = L∗

for any game in Formulation 9.7.
This yields the randomized value L∗ = L∗ = L∗

for the game. This means that
there will never be expected regret if the players stay with their security strategies.
If the players apply their randomized security strategies, then a randomized saddle
point is obtained. This saddle point cannot be seen as a simple pattern in the
matrix A because it instead exists over W and Z.

The guaranteed existence of a randomized saddle point is an important re-
sult because it demonstrates the value of randomization when making decisions
against an intelligent opponent. In Example 9.7, it was intuitively argued that
randomization seems to help when playing against an intelligent adversary. When
playing the game repeatedly with a deterministic strategy, the other player could
learn the strategy and win every time. Once a randomized strategy is used, the
players will not experience regret.

Computation of randomized saddle points

So far it has been established that a randomized saddle point always exists, but
how can one be found? Two key observations enable a combinatorial solution to
the problem:

1. The security strategy for each player can be found by considering only de-
terministic strategies for the opposing player.

2. If the strategy for the other player is fixed, then the expected cost is a linear
function of the undetermined probabilities.

First consider the problem of determining the security strategy for P1. The first
observation means that (9.59) does not need to consider randomized strategies for
P2. Inside of the argmin, w is fixed. What randomized strategy, z ∈ Z, maximizes
L̄(w, z) = wAz? If w is fixed, then wA can be treated as a constant n-dimensional
vector, s. This means L̄(w, z) = s · z, in which · is the inner (dot) product. Now
the task is to select z to maximize s ·z. This involves selecting the largest element
of s; suppose this is si. The maximum cost over all z ∈ Z is obtained by placing
all of the probability mass at action i. Thus, the strategy zi = 1 and zj = 0 for
i 6= j gives the highest cost, and it is deterministic.

Using the first observation, for each w ∈ W , only n possible responses by P2

need to be considered. These are the n deterministic strategies, each of which
assigns zi = 1 for a unique i ∈ {1, . . . , n}.

Now consider the second observation. The expected cost, L̄(w, z) = wAz, is
a linear function of w, if z is fixed. Since z only needs to be fixed at n different
values due to the first observation, w is selected at the point at which the smallest
maximum value among the n linear functions occurs. This is the minimum value
of the upper envelope of the collection of linear functions. Such envelopes were
mentioned in Section 6.5.2. Example 9.16 will illustrate this. The domain for

468 S. M. LaValle: Planning Algorithms

this optimization can conveniently be set as a triangle in R
m−1. Even though

W ⊂ R
m, the last coordinate, wm, is not needed because it is always wm =

1− (w1+ · · ·+wm−1). The resulting optimization falls under linear programming,
for which many combinatorial algorithms exist [11, 13, 24, 30].

In the explanation above, there is nothing particular to P1 when trying to find
its security strategy. The same method can be applied to determine the security
strategy for P2; however, every minimization is replaced by a maximization, and
vice versa. In summary, the min in (9.60) needs only to consider the deterministic
strategies in W . If w becomes fixed, then L̄(w, z) = wAz is once again a linear
function, but this time it is linear in z. The best randomized action is chosen by
finding the point z ∈ Z that gives the highest minimum value among m linear
functions. This is the minimum value of the lower envelope of the collection of
linear functions. The optimization occurs over Rn−1 because the last coordinate,
zn, is obtained directly from zn = 1− (z1 + · · ·+ zn−1).

This computation method is best understood through an example.

Example 9.16 (Computing a Randomized Saddle Point) The simplest case
is when both players have only two actions. Let the cost matrix be defined as

V

U
3 0
-1 1

. (9.63)

Consider computing the security strategy for P1. Note that W and Z are only
one-dimensional subsets of R2. A randomized strategy for P1 is w = [w1 w2],
with w1 ≥ 0, w2 ≥ 0, and w1 + w2 = 1. Therefore, the domain over which
the optimization is performed is w1 ∈ [0, 1] because w2 can always be derived
as w2 = 1 − w1. Using the first observation above, only the two deterministic
strategies for P2 need to be considered. When considered as linear functions of
w, these are

(3)w1 + (−1)(1− w1) = 4w1 − 1 (9.64)

for z1 = 1 and

(0)w1 + (1)(1− w1) = 1− w1 (9.65)

for z2 = 1. The lines are plotted in Figure 9.4a. The security strategy is deter-
mined by the minimum point along the upper envelope shown in the figure. This
is indicated by the thickened line, and it is always a piecewise-linear function in
general. The lowest point occurs at w1 = 2/5, and the resulting value is L∗ = 3/5.
Therefore, w∗ = [2/5 3/5].

A similar procedure can be used to obtain z∗. The lines that correspond to
the deterministic strategies of P1 are shown in Figure 9.4b. The security strategy
is obtained by finding the maximum value along the lower envelope of the lines,
which is shown as the thickened line in the figure. This results in z∗ = [1/5 4/5]T ,
and once again, the value is observed as L∗ = 3/5 (this must coincide with the

9.4. NONZERO-SUM GAMES 469

0 1

w1

2/5

z1 = 1

z2 = 1

L∗
= 3/5

−1

0

2

3

1

z1

0 11/5

L∗
= 3/5

w1 = 1

3

1

0

−1

2

w2 = 1

(a) (b)

Figure 9.4: (a) Computing the randomized security strategy, w∗, for P1. (b)
Computing the randomized security strategy, z∗, for P2.

previous one because the randomized upper and lower values are the same!). �

This procedure appears quite simple if there are only two actions per player.
If n = m = 100, then the upper and lower envelopes are piecewise-linear func-
tions in R

99. This may be computationally impractical because all existing linear
programming algorithms have running time at least exponential in dimension [13].

9.4 Nonzero-Sum Games

This section parallels the development of Section 9.3, except that the more general
case of nonzero-sum games is considered. This enables games with any desired
degree of conflict to be modeled. Some decisions may even benefit all players. One
of the main applications of the subject is in economics, where it helps to explain
the behavior of businesses in competition.

The saddle-point solution will be replaced by the Nash equilibrium, which again
is based on eliminating regret. Since the players do not necessarily oppose each
other, it is possible to model a game that involves any number of players. For
nonzero games, new difficulties arise, such as the nonuniqueness of Nash equilibria
and the computation of randomized Nash equilibria does not generally fit into
linear programming.

470 S. M. LaValle: Planning Algorithms

9.4.1 Two-Player Games

To help make the connection to Section 9.3 smoother, two-player games will be
considered first. This case is also easier to understand because the notation is
simpler. The ideas are then extended without difficulty from two players to many
players. The game is formulated as follows.

Formulation 9.8 (A Two-Player Nonzero-Sum Game)

1. The same components as in Formulation 9.7, except the cost function.

2. A function, L1 : U × V → R ∪ {∞}, called the cost function for P1.

3. A function, L2 : U × V → R ∪ {∞}, called the cost function for P2.

The only difference with respect to Formulation 9.7 is that now there are two,
independent cost functions, L1 and L2, one for each player. Each player would
like to minimize its cost. There is no maximization in this problem; that appeared
in zero-sum games because P2 had opposing interests from P1. A zero-sum game
can be modeled under Formulation 9.7 by setting L1 = L and L2 = −L.

Paralleling Section 9.3, first consider applying deterministic strategies to solve
the game. As before, one possibility is that a player can apply its security strategy.
To accomplish this, it does not even need to look at the cost function of the other
player. It seems somewhat inappropriate, however, to neglect the consideration of
both cost functions when making a decision. In most cases, the security strategy
results in regret, which makes it inappropriate for nonzero-sum games.

A strategy that avoids regret will now be given. A pair (u∗, v∗) of actions is
defined to be a Nash equilibrium if

L1(u
∗, v∗) = min

u∈U

{

L1(u, v
∗)
}

(9.66)

and
L2(u

∗, v∗) = min
v∈V

{

L2(u
∗, v)

}

. (9.67)

These expressions imply that neither P1 nor P2 has regret. Equation (9.66) indi-
cates that P1 is satisfied with its action, u∗, given the action, v∗, chosen by P2.
P1 cannot reduce its cost any further by changing its action. Likewise, (9.67)
indicates that P2 is satisfied with its action v∗.

The game in Formulation 9.8 can be completely represented using two cost
matrices. Let A and B denote the cost matrices for P1 and P2, respectively.
Recall that Figure 9.2 showed a pattern for detecting a saddle point. A Nash
equilibrium can be detected as shown in Figure 9.5. Think about the relationship
between the two. If A = −B, then B can be negated and superimposed on top
of A. This will yield the pattern in Figure 9.2 (each ≥ becomes ≤ because of
negation). The values L∗

a and L∗

b coincide in this case. This observation implies
that if A = −B, then the Nash equilibrium is actually the same concept as a
saddle point. It applies, however, to much more general games.

9.4. NONZERO-SUM GAMES 471

A:

≥

L∗

a

≥

B: ≥ L∗

b ≥

Figure 9.5: A Nash equilibrium can be detected in a pair of matrices by finding
some (i, j) such that L∗

a = L1(i, j) is the lowest among all elements in column j
of A, and L∗

b = L2(i, j) is the lowest among all elements in row i of B. Compare
this with Figure 9.2.

Example 9.17 (A Deterministic Nash Equlibrium) Consider the game spec-
ified by the cost matrices A and B:

A :

V

U
9 4 7
6 -1 5
1 4 2

B :

V

U
2 1 6
5 0 2
2 2 5

. (9.68)

By applying (9.66) and (9.67), or by using the patterns in Figure 9.5, it can be
seen that u = 3 and v = 1 is a Nash equilibrium. The resulting costs are L1 = 1
and L2 = 2. Another Nash equilibrium appears at u = 2 and v = 2. This yields
costs L1 = −1 and L2 = 0, which is better for both players.

For zero-sum games, the existence of multiple saddle points did not cause any
problem; however, for nonzero-sum games, there are great troubles. In the ex-
ample shown here, one Nash equilibrium is clearly better than the other for both
players. Therefore, it may seem reasonable that a rational DM would choose the
better one. The issue of multiple Nash equilibria will be discussed next. �

Dealing with multiple Nash equilibria

Example 9.17 was somewhat disheartening due to the existence of multiple Nash
equilibria. In general, there could be any number of equilibria. How can each
player know which one to play? If they each choose a different one, they are not
guaranteed to fall into another equilibrium as in the case of saddle points of zero-
sum games. Many of the equilibria can be eliminated by using Pareto optimality,
which was explained in Section 9.1.1 and also appeared in Section 7.7.2 as a way
to optimally coordinate multiple robots. The idea is to formulate the selection as
a multi-objective optimization problem, which fits into Formulation 9.2.

Consider two-dimensional vectors of the form (xi, yi), in which x and y repre-
sent the costs L1 and L2 obtained under the implementation of a Nash equilibrium

472 S. M. LaValle: Planning Algorithms

denoted by πi. For two different equilibria π1 and π2, the cost vectors (x1, y1) and
(x2, y2) are obtained. In Example 9.17, these were (1, 2) and (−1, 0). In general,
π1 is said to be better than π2 if x1 ≤ x2, y1 ≤ y2, and at least one of the inequal-
ities is strict. In Example 9.17, the equilibrium that produces (−1, 0) is clearly
better than obtaining (1, 2) because both players benefit.

The definition of “better” induces a partial ordering on the space of Nash
equilibria. It is only partial because some vectors are incomparable. Consider, for
example, (−1, 1) and (1,−1). The first one is preferable to P1, and the second
is preferred by P2. In game theory, the Nash equilibria that are minimal with
respect to this partial ordering are called admissible. They could alternatively be
called Pareto optimal.

The best situation is when a game has one Nash equilibrium. If there are
multiple Nash equilibria, then there is some hope that only one of them is admis-
sible. In this case, it is hoped that the rational players are intelligent enough to
figure out that any nonadmissible equilibria should be discarded. Unfortunately,
there are many games that have multiple admissible Nash equilibria. In this case,
analysis of the game indicates that the players must communicate or collaborate
in some way to eliminate the possibility of regret. Otherwise, regret is unavoid-
able in the worst case. It is also possible that there are no Nash equilibria, but,
fortunately, by allowing randomized strategies, a randomized Nash equilibrium is
always guaranteed to exist. This will be covered after the following two examples.

Example 9.18 (The Battle of the Sexes) Consider a game specified by the
cost matrices A and B:

A :

V

U
-2 0
0 -1

B :

V

U
-1 0
0 -2

. (9.69)

This is a famous game called the “Battle of the Sexes.” Suppose that a man and
a woman have a relationship, and they each have different preferences on how to
spend the evening. The man prefers to go shopping, and the woman prefers to
watch a football match. The game involves selecting one of these two activities.
The best case for either one is to do what they prefer while still remaining to-
gether. The worst case is to select different activities, which separates the couple.
This game is somewhat unrealistic because in most situations some cooperation
between them is expected.

Both u = v = 1 and u = v = 2 are Nash equilibria, which yield cost vectors
(−2,−1) and (−1,−2), respectively. Neither solution is better than the other;
therefore, they are both admissible. There is no way to avoid the possibility of
regret unless the players cooperate (you probably already knew this). �

The following is one of the most famous nonzero-sum games.

9.4. NONZERO-SUM GAMES 473

Example 9.19 (The Prisoner’s Dilemma) The following game is very simple
to express, yet it illustrates many interesting issues. Imagine that a heinous crime
has been committed by two people. The authorities know they are guilty, but
they do not have enough evidence to convict them. Therefore, they develop a
plan to try to trick the suspects. Each suspect (or player) is placed in an isolated
prison cell and given two choices. Each player can cooperate with the authorities,
u = 1 or v = 1, or refuse, u = 2 or v = 2. By cooperating, the player admits
guilt and turns over evidence to the authorities. By refusing, the player claims
innocence and refuses to help the authorities.

The cost Li represents the number of years that the player will be sentenced
to prison. The cost matrices are assigned as

A :

V

U
8 0
30 2

B :

V

U
8 30
0 2

. (9.70)

The motivation is that both players receive 8 years if they both cooperate, which is
the sentence for being convicted of the crime and being rewarded for cooperating
with the authorities. If they both refuse, then they receive 2 years because the
authorities have insufficient evidence for a longer term. The interesting cases
occur if one refuses and the other cooperates. The one who refuses is in big
trouble because the evidence provided by the other will be used against him. The
one who cooperates gets to go free (the cost is 0); however, the other is convicted
on the evidence and spends 30 years in prison.

What should the players do? What would you do? If they could make a
coordinated decision, then it seems that a good choice would be for both to refuse,
which results in costs (2, 2). In this case, however, there would be regret because
each player would think that he had a chance to go free (receiving cost 0 by
refusing). If they were to play the game a second time, they might be inclined to
change their decisions.

The Nash equilibrium for this problem is for both of them to cooperate, which
results in (8, 8). Thus, they pay a price for not being able to communicate and
coordinate their strategy. This solution is also a security strategy for the players,
because it achieves the lowest cost using worst-case analysis. �

Randomized Nash equilibria

What happens if a game has no Nash equilibrium over the space of deterministic
strategies? Once again the problem can be alleviated by expanding the strategy
space to include randomized strategies. In Section 9.3.3 it was explained that
every zero-sum game under Formulation 9.7 has a randomized saddle point on
the space of randomized strategies. It was shown by Nash that every nonzero-
sum game under Formulation 9.8 has a randomized Nash equilibrium [29]. This

474 S. M. LaValle: Planning Algorithms

is a nice result; however, there are a couple of concerns. There may still exist
other admissible equilibria, which means that there is no reliable way to avoid
regret unless the players collaborate. The other concern is that randomized Nash
equilibria unfortunately cannot be computed using the linear programming ap-
proach of Section 9.3.3. The required optimization is instead a form of nonlinear
programming [6, 24, 30], which does not necessarily admit a nice, combinatorial
solution.

Recall the definition of randomized strategies from Section 9.3.3. For a pair
(w, z) of randomized strategies, the expected costs, L̄1(w, z) and L̄2(w, z), can be
computed using (9.57). A pair (w∗, z∗) of strategies is said to be a randomized
Nash equilibrium if

L̄1(w∗, z∗) = min
w∈W

{

L̄1(w, z∗)
}

(9.71)

and

L̄2(w∗, z∗) = min
z∈Z

{

L̄2(w∗, z)
}

. (9.72)

In game-theory literature, this is usually referred to as a mixed Nash equilibrium.
Note that (9.71) and (9.72) are just generalizations of (9.66) and (9.67) from the
space of deterministic strategies to the space of randomized strategies.

Using the cost matrices A and B, the Nash equilibrium conditions can be
written as

w∗Az∗ = min
w∈W

{

wAz∗
}

(9.73)

and

w∗Bz∗ = min
z∈Z

{

w∗Bz
}

. (9.74)

Unfortunately, the computation of randomized Nash equilibria is considerably
more challenging than computing saddle points. The main difficulty is that Nash
equilibria are not necessarily security strategies. By using security strategies, it is
possible to decouple the decisions of the players into separate linear programming
problems, as was seen in Example 9.16. For the randomized Nash equilibrium, the
optimization between the players remains coupled. The resulting optimization is
often referred to as the linear complementarity problem. This can be formulated
as a nonlinear programming problem [24, 30], which means that it is a nonlinear
optimization that involves both equality and inequality constraints on the domain
(in this particular case, a bilinear programming problem is obtained [3]).

Example 9.20 (Finding a Randomized Nash Equilibrium) To get an idea
of the kind of optimization that is required, recall Example 9.18. A randomized
Nash equilibrium that is distinct from the two deterministic equilibria can be
found. Using the cost matrices from Example 9.18, the expected cost for P1 given

9.4. NONZERO-SUM GAMES 475

randomized strategies w and z is

L̄1(w, z) = wAz

=
(

w1 w2

)

(

−2 0
0 −1

)(

z1
z2

)

=− 2w1z1 − w2z2

=− 3w1z1 + w1 + z1,

(9.75)

in which the final step uses the fact that w2 = 1− w1 and z2 = 1− z1. Similarly,
the expected cost for P2 is

L̄2(w, z) = wBz

=
(

w1 w2

)

(

−1 0
0 −2

)(

z1
z2

)

=− w1z1 − 2w2z2

=− 3w1z1 + 2w1 + 2z1.

(9.76)

If z is fixed, then the final equation in (9.75) is linear in w; likewise, if w is
fixed, then (9.76) is linear in z. In the case of computing saddle points for zero-
sum games, we were allowed to make this assumption; however, it is not possible
here. We must choose (w∗, z∗) to simultaneously optimize (9.75) while z = z∗ and
(9.76) while w = w∗.

It turns out that this problem is simple enough to solve with calculus. Using
the classical optimization method of taking derivatives, a candidate solution can
be found by computing

∂L̄1(w1, z1)

∂w1

= 1− 3z1 (9.77)

and
∂L̄2(w1, z1)

∂z1
= 2− 3w1. (9.78)

Extrema occur when both of these simultaneously become 0. Solving 1− 3z1 = 0
and 2− 3w1 = 0 yields (w∗, z∗) = (2/3, 1/3), which is a randomized Nash equilib-
rium. The deterministic Nash equilibria are not detected by this method because
they occur on the boundary of W and Z, where the derivative is not defined. �

The computation method in Example 9.20 did not appear too difficult because
there were only two actions per player, and half of the matrix costs were 0. In gen-
eral, two complicated equations must be solved simultaneously. The expressions,
however, are always second-degree polynomials. Furthermore, they each become
linear with respect to the other variables if w or z is held fixed.

476 S. M. LaValle: Planning Algorithms

Summary of possible solutions The solution possibilities to remember for a
nonzero-sum game under Formulation 9.8 are as follows.

1. There may be multiple, admissible (deterministic) Nash equilibria.

2. There may be no (deterministic) Nash equilibria.

3. There is always at least one randomized Nash equilibrium.

9.4.2 More Than Two Players

The ideas of Section 9.4.1 easily generalize to any number of players. The main
difficulty is that complicated notation makes the concepts appear more difficult.
Keep in mind, however, that there are no fundamental differences. A nonzero-sum
game with n players is formulated as follows.

Formulation 9.9 (An n-Player Nonzero-Sum Game)

1. A set of n players, P1, P2, . . ., Pn.

2. For each player Pi, a finite, nonempty set U i called the action space for Pi.
For convenience, assume that each U i is a set of consecutive integers from 1
to |U i|. Each ui ∈ U i is referred to as an action of Pi.

3. For each player Pi, a function, Li : U
1 × U2 × · · · × Un → R ∪ {∞} called

the cost function for Pi.

A matrix formulation of the costs is no longer possible because there are too many
dimensions. For example, if n = 3 and |U i| = 2 for each player, then Li(u

1, u2, u3)
is specified by a 2 × 2 × 2 cube of 8 entries. Three of these cubes are needed to
specify the game. Thus, it may be helpful to just think of Li as a multivariate
function and avoid using matrices.4

The Nash equilibrium idea generalizes by requiring that each Pi experiences
no regret, given the actions chosen by the other n − 1 players. Formally, a set
(u1∗, . . . , un∗) of actions is said to be a (deterministic) Nash equilibrium if

Li(u
1∗, . . . , ui∗, . . . , un∗) = min

ui∈U i

{

Li(u
1∗, . . . , u(i−1)∗, ui, u(i+1)∗, . . . , un∗)

}

(9.79)

for every i ∈ {1, . . . , n}.
For n > 2, any of the situations summarized at the end of Section 9.4.1 can

occur. There may be no deterministic Nash equilibria or multiple Nash equilib-
ria. The definition of an admissible Nash equilibrium is extended by defining the
notion of better over n-dimensional cost vectors. Once again, the minimal vectors

4If you enjoy working with tensors, these could be used to capture n-player cost functions
[7].

9.4. NONZERO-SUM GAMES 477

with respect to the resulting partial ordering are considered admissible (or Pareto
optimal). Unfortunately, multiple admissible Nash equilibria may still exist.

It turns out that for any game under Formulation 9.9, there exists a randomized
Nash equilibrium. Let zi denote a randomized strategy for Pi. The expected cost
for each Pi can be expressed as

L̄i(z1, z2, . . . , zn) =

m1
∑

i1=1

m2
∑

i2=1

· · ·
mn
∑

in=1

Li(i1, i2, . . . , in)z
1
i1
z2i2 · · · znin . (9.80)

Let Zi denote the space of randomized strategies for Pi. An assignment,
(z1∗, . . . , zn∗), of randomized strategies to all of the players is called a randomized
Nash equilibrium if

L̄i(z1∗, . . . , zi∗, . . . , zn∗) = min
zi∈Zi

{

L̄i(z1∗, . . . , z(i−1)∗, zi, z(i+1)∗, . . . , zn∗)
}

(9.81)

for all i ∈ {1, . . . , n}.
As might be expected, computing a randomized Nash equilibrium for n > 2

is even more challenging than for n = 2. The method of Example 9.20 can be
generalized to n-player games; however, the expressions become even more com-
plicated. There are n equations, each of which appears linear if the randomized
strategies are fixed for the other n−1 players. The result is a collection of n-degree
polynomials over which n optimization problems must be solved simultaneously.

Example 9.21 (A Three-Player Nonzero-Sum Game) Suppose there are three
players, P1, P2, and P3, each of which has two actions, 1 and 2. A deterministic
strategy is specified by a vector such as (1, 2, 1), which indicates u1 = 1, u2 = 2,
and u3 = 1.

Now some costs will be defined. For convenience, let

L(i, j, k) =
(

L1(i, j, k), L2(i, j, k), L3(i, j, k)
)

(9.82)

for each i, j, k ∈ {1, 2}. Let the costs be

L(1, 1, 1) = (1, 1,−2) L(1, 1, 2) = (−4, 3, 1)

L(1, 2, 1) = (2,−4, 2) L(1, 2, 2) = (−5,−5, 10) (9.83)

L(2, 1, 1) = (3,−2,−1) L(2, 1, 2) = (−6,−6, 12)

L(2, 2, 1) = (2, 2,−4) L(2, 2, 2) = (−2, 3,−1).

There are two deterministic Nash equilibria, which yield the costs (2,−4, 2) and
(3,−2,−1). These can be verified using (9.79). Each player is satisfied with the
outcome given the actions chosen by the other players. Unfortunately, both Nash
equilibria are both admissible. Therefore, some collaboration would be needed
between the players to ensure that no regret will occur. �

478 S. M. LaValle: Planning Algorithms

9.5 Decision Theory Under Scrutiny

Numerous models for decision making were introduced in this chapter. These
provide a foundation for planning under uncertainty, which is the main focus of
Part III. Before constructing planning models with this foundation, it is important
to critically assess how appropriate it may be in applications. You may have had
many questions while reading Sections 9.1 to 9.4. How are the costs determined?
Why should we believe that optimizing the expected cost is the right thing to do?
What happens if prior probability distributions are not available? Is worst-case
analysis too conservative? Can we be sure that players in a game will follow
the assumed rational behavior? Is it realistic that players know each other’s
cost functions? The purpose of this section is to help shed some light on these
questions. A building is only as good as its foundation. Any mistakes made by
misunderstanding the limitations of decision theory will ultimately work their way
into planning formulations that are constructed from them.

9.5.1 Utility Theory and Rationality

This section provides some justification for using cost functions and then minimiz-
ing their expected value under Formulations 9.3 and 9.4. The resulting framework
is called utility theory, which is usually formulated using rewards instead of costs.
As stated in Section 9.1.1, a cost can be converted into a reward by multiplying by
−1 and then swapping each maximization with minimization. We will therefore
talk about a reward R with the intuition that a higher reward is better.

Comparing rewards

Imagine assigning reward values to various outcomes of a decision-making pro-
cess. In some applications numerical values may come naturally. For example,
the reward might be the amount of money earned in a financial investment. In
robotics applications, one could negate time to execute a task or the amount of en-
ergy consumed. For example, the reward could indicate the amount of remaining
battery life after a mobile robot builds a map.

In some applications the source of rewards may be subjective. For example,
what is the reward for washing dishes, in comparison to sweeping the floor? Each
person would probably assign different rewards, which may even vary from day
to day. It may be based on their enjoyment or misery in performing the task,
the amount of time each task would take, the perceptions of others, and so on.
If decision theory is used to automate the decision process for a human “client,”
then it is best to consult carefully with the client to make sure you know their
preferences. In this situation, it may be possible to sort their preferences and then
assign rewards that are consistent with the ordering.

Once the rewards are assigned, consider making a decision under Formulation
9.1, which does not involve nature. Each outcome corresponds directly to an

9.5. DECISION THEORY UNDER SCRUTINY 479

action, u ∈ U . If the rewards are given by R : U → R, then the cost, L, can be
defined as L(u) = −R(u) for every u ∈ U . Satisfying the client is then a matter
of choosing u to minimize L.

Now consider a game against nature. The decision now involves comparing
probability distributions over the outcomes. The space of all probability distri-
butions may be enormous, but this is simplified by using expectation to map
each probability distribution (or density) to a real value. The concern should be
whether this projection of distributions onto real numbers will fail to reflect the
true preferences of the client. The following example illustrates the effect of this.

Example 9.22 (Do You Like to Gamble?) Suppose you are given three choices:

1. You can have 1000 Euros.

2. We will toss an unbiased coin, and if the result is heads, then you will receive
2000 Euros. Otherwise, you receive nothing.

3. With probability 2/3, you can have 3000 Euros; however, with probability
1/3, you have to give me 3000 Euros.

The expected reward for each of these choices is 1000 Euros, but would you really
consider these to be equivalent? Your love or disdain for gambling is not being
taken into account by the expectation. How should such an issue be considered
in games against nature? �

To begin to fix this problem, it is helpful to consider another scenario. Many
people would probably agree that having more money is preferable (if having too
much worries you, then you can always give away the surplus to your favorite char-
ities). What is interesting, however, is that being wealthy decreases the perceived
value of money. This is illustrated in the next example.

Example 9.23 (Reality Television) Suppose you are lucky enough to appear
on a popular reality television program. The point of the show is to test how far
you will go in making a fool out of yourself, or perhaps even torturing yourself,
to earn some money. You are asked to do some unpleasant task (such as eating
cockroaches, or holding your head under water for a long time, and so on.). Let
u1 be the action to agree to do the task, and let u2 mean that you decline the
opportunity. The prizes are expressed in U.S. dollars. Imagine that you are a
starving student on a tight budget.

Below are several possible scenarios that could be presented on the television
program. Consider how you would react to each one.

1. Suppose that u1 earns you $1 and u2 earns you nothing. Purely optimizing
the reward would lead to choosing u1, which means performing the unpleas-
ant task. However, is this worth $1? The problem so far is that we are not

480 S. M. LaValle: Planning Algorithms

taking into account the amount of discomfort in completing a task. Perhaps
it might make sense to make a reward function that shifts the dollar values
by subtracting the amount for which you would be just barely willing to
perform the task.

2. Suppose that u1 earns you $10,000 and u2 earns you nothing. $10,000 is
assumed to be an enormous amount of money, clearly worth enduring any
torture inflicted by the television program. Thus, u1 is preferable.

3. Now imagine that the television host first gives you $10 million just for
appearing on the program. Are you still willing to perform the unpleasant
task for an extra $10,000? Probably not. What is happening here? Your
sense of value assigned to money seems to decrease as you get more of it,
right? It would not be too interesting to watch the program if the contestants
were all wealthy oil executives.

4. Suppose that you have performed the task and are about to win the prize.
Just to add to the drama, the host offers you a gambling opportunity. You
can select action u1 and receive $10,000, or be a gambler by selecting u2
and have probability 1/2 of winning $25,000 by the tossing of a fair coin.
In terms of the expected reward, the clear choice is u2. However, you just
completed the unpleasant task and expect to earn money. The risk of losing
it all may be intolerable. Different people will have different preferences in
this situation.

5. Now suppose once again that you performed the task. This time your choices
are u1, to receive $100, or u2, to have probability 1/2 of receiving $250 by
tossing a fair coin. The host is kind enough, though, to let you play 100
times. In this case, the expected totals for the two actions are $10,000 and
$12,500, respectively. This time it seems clear that the best choice is to gam-
ble. After 100 independent trials, we would expect that, with extremely high
probability, over $10,000 would be earned. Thus, reasoning by expected-case
analysis seems valid if we are allowed numerous, independent trials. In this
case, with high probability a value close to the expected reward should be
received.

�

Based on these examples, it seems that the client or evaluator of the decision-
making system must indicate preferences between probability distributions over
outcomes. There is a formal way to ensure that once these preferences are assigned,
a cost function can be designed for which its expectation faithfully reflects the
preferences over distributions. This results in utility theory, which involves the
following steps:

9.5. DECISION THEORY UNDER SCRUTINY 481

1. Require that the client is rational when assigning preferences. This notion
is defined through axioms.

2. If the preferences are assigned in a way that is consistent with the axioms,
then a utility function is guaranteed to exist. When expected utility is
optimized, the preferences match exactly those of the client.

3. The cost function can be derived from the utility function.

The client must specify preferences among probability distributions of out-
comes. Suppose that Formulation 9.2 is used. For convenience, assume that U and
Θ are finite. Let X denote a state space based on outcomes.5 Let f : U ×Θ → X
denote a mapping that assigns a state to every outcome. A simple example is to
declare that X = U × Θ and make f the identity map. This makes the outcome
space and state space coincide. It may be convenient, though, to use f to collapse
the space of outcomes down to a smaller set. If two outcomes map to the same
state using f , then it means that the outcomes are indistinguishable as far as
rewards or costs are concerned.

Let z denote a probability distribution over X, and let Z denote the set of all
probability distributions over X. Every z ∈ Z is represented as an n-dimensional
vector of probabilities in which n = |X|; hence, it is considered as an element of Rn.
This makes it convenient to “blend” two probability distributions. For example,
let α ∈ (0, 1) be a constant, and let z1 and z2 be any two probability distributions.
Using scalar multiplication, a new probability distribution, αz1 + (1 − α)z2, is
obtained, which is a blend of z1 and z2. Conveniently, there is no need to normalize
the result. It is assumed that z1 and z2 initially have unit magnitude. The blend
has magnitude α + (1− α) = 1.

The modeler of the decision process must consult the client to represent pref-
erences among elements of Z. Let z1 ≺ z2 mean that z2 is strictly preferred over
z1. Let z1 ≈ z2 mean that z1 and z2 are equivalent in preference. Let z1 � z2 mean
that either z1 ≺ z2 or z1 ≈ z2. The following example illustrates the assignment
of preferences.

Example 9.24 (Indicating Preferences) Suppose that U = Θ = {1, 2}, which
leads to four possible outcomes: (1, 1), (1, 2), (2, 1), and (2, 2). Imagine that na-
ture represents a machine that generates 1 or 2 according to a probability distri-
bution. The action is to guess the number that will be generated by the machine.
If you pick the same number, then you win that number of gold pieces. If you do
not pick the same number, then you win nothing, but also lose nothing.

Consider the construction of the state space X by using f . The outcomes
(2, 1) and (1, 2) are identical concerning any conceivable reward. Therefore, these
should map to the same state. The other two outcomes are distinct. The state
space therefore needs only three elements and can be defined as X = {0, 1, 2}.

5In most utility theory literature, this is referred to as a reward space, R [5].

482 S. M. LaValle: Planning Algorithms

Let f(2, 1) = f(1, 2) = 0, f(1, 1) = 1, and f(2, 2) = 2. Thus, the last two states
indicate that some gold will be earned.

The set Z of probability distributions over X is now considered. Each z ∈ Z is
a three-dimensional vector. As an example, z1 = [1/2 1/4 1/4] indicates that the
state will be 0 with probability 1/2, 1 with probability 1/4, and 2 with probability
1/4. Suppose z2 = [1/3 1/3 1/3]. Which distribution would you prefer? It seems
in this case that z2 is uniformly better than z1 because there is a greater chance
of winning gold. Thus, we declare z1 ≺ z2. The distribution z3 = [1 0 0] seems
to be the worst imaginable. Hence, we can safely declare z3 ≺ z1 and z1 ≺ z2.

The procedure of determining the preferences can become quite tedious for
complicated problems. In the current example, Z is a 2D subset of R3. This
subset can be partitioned into a finite set of regions over which the client may be
able to clearly indicate preferences. One of the major criticisms of this framework
is the impracticality of determining preferences over Z [34].

After the preferences are determined, is there a way to ensure that a real-value
function on X exists for which the expected value exactly reflects the preferences?
If the axioms of rationality are satisfied by the assignment of preferences, then
the answer is yes. These axioms are covered next. �

Axioms of rationality

To meet the goal of designing a utility function, it turns out that the preferences
must follow rules called the axioms of rationality. They are sensible statements
of consistency among the preferences. As long as these are followed, then a util-
ity function is guaranteed to exist (detailed arguments appear in [14, 34]). The
decision maker is considered rational if the following axioms are followed when
defining ≺ and ≈:6

1. If z1, z2 ∈ Z, then either z1 � z2 or z2 � z1.
“You must be able to make up your mind.”

2. If z1 � z2 and z2 � z3, then z1 � z3.
“Preferences must be transitive.”

3. If z1 ≺ z2, then
αz1 + (1− α)z3 ≺ αz2 + (1− α)z3, (9.84)

for any z3 ∈ Z and α ∈ (0, 1).
“Evenly blending in a new distribution does not alter preference.”

4. If z1 ≺ z2 ≺ z3, then there exists some α ∈ (0, 1) and β ∈ (0, 1) such that

αz1 + (1− α)z3 ≺ z2 (9.85)

6Alternative axiom systems exist [14, 36].

9.5. DECISION THEORY UNDER SCRUTINY 483

and
z2 ≺ βz1 + (1− β)z3. (9.86)

“There is no heaven or hell.”

Each axiom has an intuitive interpretation that makes practical sense. The first
one simply indicates that the preference direction can always be inferred for a pair
of distributions. The second axiom indicates that preferences must be transitive.7

The last two axioms are somewhat more complicated. In the third axiom, z2 is
strictly preferred to z1. An attempt is made to cause confusion by blending in a
third distribution, z3. If the same “amount” of z3 is blended into both z1 and z2,
then the preference should not be affected. The final axiom involves z1, z2, and
z3, each of which is strictly better than its predecessor. The first equation, (9.85),
indicates that if z2 is strictly better than z1, then a tiny amount of z3 can be
blended into z1, with z2 remaining preferable. If z3 had been like “heaven” (i.e.,
infinite reward), then this would not be possible. Similarly, (9.86) indicates that
a tiny amount of z1 can be blended into z3, and the result remains better than z2.
This means that z1 cannot be “hell,” which would have infinite negative reward.8

Constructing a utility function

If the preferences have been determined in a way consistent with the axioms, then
it can be shown that a utility function always exists. This means that there exists
a function U : X → R such that, for all z1, z2 ∈ Z,

z1 ≺ z2 if and only if Ez1 [U] < Ez2 [U], (9.87)

in which Ezi denotes the expected value of U , which is being treated as a random
variable under the probability distribution zi. The existence of U implies that it
is safe to determine the best action by maximizing the expected utility.

A reward function can be defined using a utility function, U , as R(u, θ) =
U(f(u, θ)). The utility function can be converted to a cost function as L(u, θ) =
−R(u, θ) = −U(f(u, θ)). Minimizing the expected cost, as was recommended
under Formulations 9.3 and 9.4 with probabilistic uncertainty, now seems justified
under the assumption that U was constructed correctly to preserve preferences.

Unfortunately, establishing the existence of a utility function does not produce
a systematic way to construct it. In most circumstances, one is forced to design U
by a trial-and-error process that involves repeatedly checking the preferences. In
the vast majority of applications, people create utility and cost functions without
regard to the implications discussed in this section. Thus, undesirable conclusions

7For some reasonable problems, however, transitivity is not desirable. See the Candorcet and
Simpson paradoxes in [34].

8Some axiom systems allow infinite rewards, which lead to utility and cost functions with
infinite values, but this is not considered here.

484 S. M. LaValle: Planning Algorithms

U(x)

x

Figure 9.6: The utility of new amounts of money decreases as the total accumu-
lation of wealth increases. The utility function may even bounded.

may be reached in practice. Therefore, it is important not to be too confident
about the quality of an optimal decision rule.

Note that if worst-case analysis had been used, then most of the problems
discussed here could have been avoided. Worst-case analysis, however, has its
weaknesses, which will be discussed in Section 9.5.3.

Example 9.25 (The Utility of Money) We conclude the section by depicting
a utility function that is often applied to money. Suppose that the state space
X = R, which corresponds to the amount of U.S. dollars earned. The utility
of money applied by most people indicates that the value of new increments of
money decreases as the total accumulated wealth increases. The utility function
may even be bounded. Imagine there is some maximum dollar amount, such as
$10100, after which additional money has no value. A typical utility curve is shown
in Figure 9.6 [5]. �

9.5.2 Concerns Regarding the Probabilistic Model

Section 9.5.1 addressed the source of cost functions and the validity of taking
their expectations. This section raises concerns over the validity of the probability
distributions used in Section 9.2. The two main topics are criticisms of Bayesian
methods in general and problems with constructing probability distributions.

Bayesians vs. frequentists

For the past century and a half, there has been a fundamental debate among
statisticians on the meaning of probabilities. Virtually everyone is satisfied with
the axioms of probability, but beyond this, what is their meaning when making
inferences? The two main camps are the frequentists and the Bayesians. A form
of Bayes’ rule was published in 1763 after the death of Bayes [4]. During most of
the nineteenth century Bayesian analysis tended to dominate literature; however,

9.5. DECISION THEORY UNDER SCRUTINY 485

during the twentieth century, the frequentist philosophy became more popular as
a more rigorous interpretation of probabilities. In recent years, the credibility of
Bayesian methods has been on the rise again.

As seen so far, a Bayesian interprets probabilities as the degree of belief in
a hypothesis. Under this philosophy, it is perfectly valid to begin with a prior
distribution, gather a few observations, and then make decisions based on the
resulting posterior distribution from applying Bayes’ rule.

From a frequentist perspective, Bayesian analysis makes far too liberal use
of probabilities. The frequentist believes that probabilities are only defined as
the quantities obtained in the limit after the number of independent trials tends
to infinity. For example, if an unbiased coin is tossed over numerous trials, the
probability 1/2 represents the value to which the ratio between heads and the total
number of trials will converge as the number of trials tends to infinity. On the
other hand, a Bayesian might say that the probability that the next trial results
in heads is 1/2. To a frequentist, this interpretation of probability is too strong.

Frequentists have developed a version of decision theory based on their philos-
ophy; comparisons between the two appear in [34]. As an example, a frequentist
would advocate optimizing the following frequentist risk to obtain a decision rule:

R(θ, π) =

∫

y

L(π(y), θ)P (y|θ)dy, (9.88)

in which π represents the strategy, π : Y → U . The frequentist risk averages over
all data, rather than making a decision based on a single observation, as advocated
by Bayesians in (9.26). The probability P (y|θ) is assumed to be obtained in
the limit as the number of independent data trials tends to infinity. The main
drawback in using (9.88) is that the optimization depends on θ. The resulting
best decision rule must depend on θ, which is unknown. In some limited cases, it
may be possible to select some π that optimizes (9.88) for all θ, but this rarely
occurs. Thus, the frequentist risk can be viewed as a constraint on the desirability
of strategies, but it usually is not powerful enough to select a single one. This
problem is reminiscent of Pareto optimality, which was discussed in Section 9.1.1.
The frequentist approach attempts to be more conservative and rigorous, with the
result being that weaker statements are made regarding decisions.

The source of prior distributions

Suppose that the Bayesian method has been adopted. The most widespread con-
cern in all Bayesian analyses is the source of the prior distribution. In Section
9.2, this is represented as P (θ) (or p(θ)), which represents a distribution (or den-
sity) over the nature action space. The best way to obtain P (θ) is by estimating
the distribution over numerous independent trials. This brings its definition into
alignment with frequentist views. This was possible with Example 9.11, in which
P (θ) could be reliably estimated from the frequency of occurrence of letters across

486 S. M. LaValle: Planning Algorithms

numerous pages of text. The distribution could even be adapted to a particular
language or theme.

In most applications that use decision theory, however, it is impossible or too
costly to perform such experiments. What should be done in this case? If a prior
distribution is simply “made up,” then the resulting posterior probabilities may
be suspect. In fact, it may be invalid to call them probabilities at all. Sometimes
the term subjective probabilities is used in this case. Nevertheless, this is com-
monly done because there are few other options. One of these options is to resort
to frequentist decision theory, but, as mentioned, it does not work with single
observations.

Fortunately, as the number of observations increases, the influence of the prior
on the Bayesian posterior distributions diminishes. If there is only one observation,
or even none as in Formulation 9.3, then the prior becomes very influential. If
there is little or no information regarding P (θ), the distribution should be designed
as carefully as possible. It should also be understood that whatever conclusions
are made with this assumption, they are biased by the prior. Suppose this model
is used as the basis of a planning approach. You might feel satisfied computing the
“optimal” plan, but this notion of optimality could still depend on some arbitrary
initial bias due to the assignment of prior values.

If there is no information available, then it seems reasonable that P (θ) should
be as uniform as possible over Θ. This was referred to by Laplace as the “principle
of insufficient reason” [23]. If there is no reason to believe that one element is more
likely than another, then they should be assigned equal values. This can also be
justified by using Shannon’s entropy measure from information theory [2, 10, 39].
In the discrete case, this is

−
∑

θ∈Θ

P (θ) lgP (θ), (9.89)

and in the continuous case it is

−
∫

Θ

p(θ) lg p(θ)dθ. (9.90)

This entropy measure was developed in the context of communication systems
to estimate the minimum number of bits needed to encode messages delivered
through a noisy medium. It generally indicates the amount of uncertainty associ-
ated with the distribution. A larger value of entropy implies a greater amount of
uncertainty.

It turns out that the entropy function is maximized when P (θ) is a uniform
distribution, which seems to justify the principle of insufficient reason. This can be
considered as a noninformative prior. The idea is even applied quite frequently
when Θ = R, which leads to an improper prior. The density function cannot
maintain a constant, nonzero value over all of R because its integral would be
infinite. Since the decisions made in Section 9.2 do not depend on any normalizing

9.5. DECISION THEORY UNDER SCRUTINY 487

factors, a constant value can be assigned for p(θ) and the decisions are not affected
by the fact that the prior is improper.

The main difficulty with applying the entropy argument in the selection of a
prior is that Θ itself may be chosen in a number of arbitrary ways. Uniform as-
signments to different choices of Θ ultimately yield different information regarding
the priors. Consider the following example.

Example 9.26 (A Problem with Noninformative Priors) Consider a deci-
sion about what activities to do based on the weather. Imagine that there is
absolutely no information about what kind of weather is possible. One possible
assignment is Θ = {p, c}, in which p means “precipitation” and c means “clear.”
Maximizing (9.89) suggests assigning P (p) = P (c) = 1/2.

After thinking more carefully, perhaps we would like to distinguish between dif-
ferent kinds of precipitation. A better set of nature actions would be Θ = {r, s, c},
in which c still means “clear,” but precipitation p has been divided into r for “rain”
and s for “snow.” Now maximizing (9.89) assigns probability 1/3 to each nature
action. This is clearly different from the original assignment. Now that we distin-
guish between different kinds of precipitation, it seems that precipitation is much
more likely to occur. Does our preference to distinguish between different forms
of precipitation really affect the weather? �

Example 9.27 (Noninformitive Priors for Continuous Spaces) Similar trou-
bles can result in continuous spaces. Recall the parameter estimation problem
described in Example 9.12. Suppose instead that the task is to estimate a line
based on some data points that were supposed to fall on the line but missed due
to noise in the measurement process.

What initial probability density should be assigned to Θ, the set of all lines?
Suppose that the line lives in Z = R

2. The line equation can be expressed as

θ1z1 + θ2z2 + θ3 = 0. (9.91)

The problem is that if the parameter vector, θ = [θ1 θ2 θ3], is multiplied by
a scalar constant, then the same line is obtained. Thus, even though θ ∈ R

3, a
constraint must be added. Suppose we require that

θ21 + θ22 + θ13 = 1 (9.92)

and θ1 ≥ 0. This mostly fixes the problem and ensures that each parameter value
corresponds to a unique line (except for some duplicate cases at θ1 = 0, but these
can be safely neglected here). Thus, the parameter space is the upper half of a
sphere, S2. The maximum-entropy prior suggests assigning a uniform probability
density to Θ. This may feel like the right thing to do, but this notion of uniformity
is biased by the particular constraint applied to the parameter space to ensure
uniqueness. There are many other choices. For example, we could replace (9.92)

488 S. M. LaValle: Planning Algorithms

by constraints that force the points to lie on the upper half of the surface of cube,
instead of a sphere. A uniform probability density assigned in this new parameter
space certainly differs from one over the sphere.

In some settings, there is a natural representation of the parameter space that
is invariant to certain transformations. Section 5.1.4 introduced the notion of
Haar measure. If the Haar measure is used as a noninformative prior, then a
meaningful notion of uniformity may be obtained. For example, suppose that
the parameter space is SO(3). Uniform probability mass over the space of unit
quaternions, as suggested in Example 5.14, is an excellent choice for a noninfor-
mative prior because it is consistent with the Haar measure, which is invariant to
group operations applied to the events. Unfortunately, a Haar measure does not
exist for most spaces that arise in practice.9 �

Incorrect assumptions on conditional distributions

One final concern is that many times even the distribution P (y|θ) is incorrectly
estimated because it is assumed arbitrarily to belong to a family of distributions.
For example, it is often very easy to work with Gaussian densities. Therefore, it
is tempting to assume that p(y|θ) is Gaussian. Experiments can be performed to
estimate the mean and variance parameters. Even though some best fit will be
found, it does not necessarily imply that a Gaussian is a good representation. Con-
clusions based on this model may be incorrect, especially if the true distribution
has a different shape, such as having a larger tail or being multimodal. In many
cases, nonparametric methods may be needed to avoid such biases. Such methods
do not assume a particular family of distributions. For example, imagine estimat-
ing a probability distribution by making a histogram that records the frequency
of y occurrences for a fixed value of θ. The histogram can then be normalized
to contain a representation of the probability distribution without assuming an
initial form.

9.5.3 Concerns Regarding the Nondeterministic Model

Given all of the problems with probabilistic modeling, it is tempting to abandon
the whole framework and work strictly with the nondeterministic model. This only
requires specifying Θ, without indicating anything about the relative likelihoods
of various actions. Therefore, most of the complicated issues presented in Sections
9.5.1 and 9.5.2 vanish. Unfortunately, this advantage comes at a substantial price.
Making decisions with worst-case analysis under the nondeterministic model has
its own shortcomings. After considering the trade-offs, you can decide which is
most appropriate for a particular application of interest.

9A locally compact topological group is required [18, 35].

9.5. DECISION THEORY UNDER SCRUTINY 489

The first difficulty is to ensure that Θ is sufficiently large to cover all possi-
bilities. Consider Formulation 9.6, in which nature acts twice. Through a nature
observation action space, Ψ(θ), interference is caused in the measurement process.
Suppose that Θ = R and h(θ, ψ) = θ + ψ. In this case, Ψ(θ) can be interpreted
as the measurement error. What is the maximum amount of error that can oc-
cur? Perhaps a sonar is measuring the distance from the robot to a wall. Based
on the sensor specifications, it may be possible to construct a nice bound on the
error. Occasionally, however, the error may be larger than this bound. Sonars
sometimes fail to hear the required echo to compute the distance. In this case the
reported distance is ∞. Due to reflections, extremely large errors can sometimes
occur. Although such errors may be infrequent, if we want guaranteed perfor-
mance, then large or even infinite errors should be included in Ψ(θ). The problem
is that worst-case reasoning could always conclude that the sensor is useless by
reporting ∞. Any statistically valid information that could be gained from the
sensor would be ignored. Under the probabilistic model, it is easy to make Ψ(θ)
quite large and then assign very small probabilities to larger errors. The prob-
lem with nondeterministic uncertainty is that Ψ(θ) needs to be smaller to make
appropriate decisions; however, theoretically “guaranteed” performance may not
truly be guaranteed in practice.

Once a nondeterministic model is formulated, the optimal decision rule may
produce results that seem absurd for the intended application. The problem is
that the DM cannot tolerate any risk. An action is applied only if the result can
be guaranteed. The hope of doing better than the worst case is not taken into
account. Consider the following example:

Example 9.28 (A Problem with Conservative Decision Making) Suppose
that a friend offers you the choice of either a check for 1000 Euros or 1 Euro in
cash. With the check, you must take it to the bank, and there is a small chance
that your friend will have insufficient funds in the account. In this case, you will
receive nothing. If you select the 1 Euro in cash, then you are guaranteed to earn
something.

The following cost matrix reflects the outcomes (ignoring utility theory):

U

Θ
1 1000
1 0

. (9.93)

Using probabilistic analysis, we might conclude that it is best to take the check.
Perhaps the friend is even known to be very wealthy and responsible with bank-
ing accounts. This information, however, cannot be taken into account in the
decision-making process. Using worst-case analysis, the optimal action is to take
the 1 Euro in cash. You may not feel too good about it, though. Imagine the
regret if you later learn that the account had sufficient funds to cash the check
for 1000 Euros. �

490 S. M. LaValle: Planning Algorithms

Thus, it is important to remember the price that one must pay for wanting re-
sults that are absolutely guaranteed. The probabilistic model offers the flexibility
of incorporating statistical information. Sometimes the probabilistic model can
be viewed as a generalization of the nondeterministic model. If it is assumed that
nature acts after the robot, then the nature action can take this into account, as
incorporated into Formulation 9.4. In the nondeterministic case, Θ(u) is speci-
fied, and in the probabilistic case, P (θ|u) is specified. The distribution P (θ|u)
can be designed so that nature selects with very high probability the θ ∈ Θ that
maximizes L(u, θ). In Example 9.28, this would mean that the probability that
the check would bounce (resulting in no earnings) would by very high, such as
0.999999. In this case, even the optimal action under the probabilistic model is
to select the 1 Euro in cash. For virtually any decision problem that is modeled
using worst-case analysis, it is possible to work backward and derive possible pri-
ors for which the same decision would be made using probabilistic analysis. In
Example 9.4, it seemed as if the decision was based on assuming that with very
high probability, the check would bounce, even though there were no probabilistic
models.

This means that worst-case analysis under the nondeterministic model can be
considered as a special case of a probabilistic model in which the prior distribution
assigns high probabilities to the worst-case outcomes. The justification for this
could be criticized in the same way that other prior assignments are criticized in
Bayesian analysis. What is the basis of this particular assignment?

9.5.4 Concerns Regarding Game Theory

One of the most basic limitations of game theory is that each player must know the
cost functions of the other players. As established in Section 9.5.1, it is even quite
difficult to determine an appropriate cost function for a single decision maker. It
is even more difficult to determine costs and motivations of other players. In most
practical settings this information is not available. One possibility is to model
uncertainty associated with knowledge of the cost function of another player.
Bayesian analysis could be used to reason about the cost based on observations of
actions chosen by the player. Issues of assigning priors once again arise. One of
the greatest difficulties in allowing uncertainties in the cost functions is that a kind
of “infinite reflection” occurs [19]. For example, if I am playing a game, does the
other player know my cost function? I may be uncertain about this. Furthermore,
does the other player know that I do not completely know its cost function? This
kind of second-guessing can occur indefinitely, leading to a nightmare of nested
reasoning and assignments of prior distributions.10

The existence of saddle points or Nash equilibria was assured by using ran-

10Readers familiar with the movie The Princess Bride may remember the humorous dialog
between Vizzini and the Dread Pirate Roberts about which goblet contains the deadly Iocane
powder.

9.5. DECISION THEORY UNDER SCRUTINY 491

domized strategies. Mathematically, this appears to be a clean solution to a frus-
trating problem; however, it also represents a substantial change to the model.
Many games are played just once. For the expected-case results to converge, the
game must be played an infinite number of times. If a game is played once, or
only a few times, then the players are very likely to experience regret, even though
the theory based on expected-case analysis indicates that regret is eliminated.

Another issue is that intelligent human players may fundamentally alter their
strategies after playing a game several times. It is very difficult for humans to
simulate a randomized strategy (assuming they even want to, which is unlikely).
There are even international tournaments in which the players repeatedly engage
in classic games such as Rock-Paper-Scissors or the Prisoner’s Dilemma. For an
interesting discussion of a tournament in which people designed programs that
repeatedly compete on the Prisoner’s Dilemma, see [41]. It was observed that
even some cooperation often occurs after many iterations, which secures greater
rewards for both players, even though they cannot communicate. A famous strat-
egy arose in this context called Tit-for-Tat (written by Anatol Rapoport), which
in each stage repeated the action chosen by the other player in the last stage. The
approach is simple yet surprisingly successful.

In the case of nonzero-sum games, it is particularly disheartening that multiple
Nash equilibria may exist. Suppose there is only one admissible equilibrium among
several Nash equilibria. Does it really seem plausible that an adversary would
think very carefully about the various Nash equilibria and pick the admissible
one? Perhaps some players are conservative and even play security strategies,
which completely destroys the assumptions of minimizing regret. If there are
multiple admissible Nash equilibria, it appears that regret is unavoidable unless
there is some collaboration between players. This result is unfortunate if such
collaboration is impossible.

Further Reading

Section 9.1 covered very basic concepts, which can be found in numerous books and on
the Internet. For more on Pareto optimality, see [38, 40, 42, 46]. Section 9.2 is inspired
mainly by decision theory books. An excellent introduction is [5]. Other sources include
[14, 15, 25, 34]. The “game against nature” view is based mainly on [8]. Pattern
classification, which is an important form of decision theory, is covered in [1, 15, 16, 28].
Bayesian networks [32] are a popular representation in artificial intelligence research
and often provide compact encodings of information for complicated decision-making
problems.

Further reading on the game theory concepts of Sections 9.3 and 9.4 can be found
in many books (e.g., [3, 31]). A fun book that has many examples and intuitions is [41].
For games that have infinite action sets, see [3]. The computation of randomized Nash
equilibria remains a topic of active research. A survey of methods appears in [26]; see
also [21, 27]. The coupled polynomial equations that appear in computing randomized
Nash equilibria may seem to suggest applying algorithms from computational algebraic

492 S. M. LaValle: Planning Algorithms

geometry, as were needed in Section 6.4 to solve this kind of problem in combinatorial
motion planning. An approach that uses such tools is given in [12]. Contrary to the
noncooperative games defined in Section 9.4, cooperative game theory investigates ways
in which various players can form coalitions to improve their rewards [33].

Parts of Section 9.5 were inspired by [5]. Utility theory appears in most decision
theory books (e.g., [5]) and in some artificial intelligence books (e.g., [36]). An in-depth
discussion of Bayesian vs. frequentist issues appears in [34]. For a thorough introduction
to constructing cost models for decision making, see [20].

Exercises

1. Suppose that a single-stage two-objective decision-making problem is defined in
which there are two objectives and a continuous set of actions, U = [−10, 10].
The cost vector is L = [u2 u− 1]. Determine the set of Pareto-optimal actions.

2. Let

Θ

U

−1 3 2 −1

−1 0 7 −1

1 5 5 −2

define the cost for each combination of choices by the decision maker and nature.
Let nature’s randomized strategy be [1/5 2/5 1/10 3/10].

(a) Use nondeterministic reasoning to find the minimax decision and worst-case
cost.

(b) Use probabilistic reasoning to find the best expected-case decision and ex-
pected cost.

3. Many reasonable decision rules are possible, other than those considered in this
chapter.

(a) Exercise 2(a) reflects extreme pessimism. Suppose instead that extreme
optimism is used. Select the choice that optimizes the best-case cost for the
matrix in Exercise 2.

(b) One approach is to develop a coefficient of optimism, α ∈ [0, 1], which allows
one to interpolate between the two extreme scenarios. Thus, a decision,
u ∈ U , is chosen by minimizing

α max
θ∈Θ

{

L(u, θ)
}

+ (1− α) min
θ∈Θ

{

L(u, θ)
}

. (9.94)

Determine the optimal decision for this scenario under all possible choices
for α ∈ [0, 1]. Give your answer as a list of choices, each with a specified
range of α.

9.5. DECISION THEORY UNDER SCRUTINY 493

4. Suppose that after making a decision, you observe the choice made by nature. How
does the cost that you received compare with the best cost that could have been
obtained if you chose something else, given this choice by nature? This difference
in costs can be considered as regret or minimum “Doh!”11 Psychologists have
argued that some people make choices based on minimizing regret. It reflects
how badly you wish you had done something else after making the decision.

(a) Develop an expression for the worst-case regret, and use it to make a mini-
max regret decision using the matrix from Exercise 2.

(b) Develop an expression for the expected regret, and use it to make a minimum
expected regret decision.

5. Using the matrix from Exercise 2, consider the set of all probability distributions
for nature. Characterize the set of all distributions for which the minimax decision
and the best expected decision results in the same choice. This indicates how to
provide reverse justification for priors.

6. Consider a Bayesian decision-theory scenario with cost function L. Show that the
decision rule never changes if L(u, θ) is replaced by aL(u, θ) + b, for any a > 0
and b ∈ R.

7. Suppose that there are two classes, Ω = {ω1, ω2}, with P (ω1) = P (ω2) =
1
2 . The

observation space, Y , is R. Recall from probability theory that the normal (or
Gaussian) probability density function is

p(y) =
1

σ
√
2π

e−(y−µ)2/2σ2

, (9.95)

in which µ denotes the mean and σ2 denotes the variance. Suppose that p(y|ω1)
is a normal density in which µ = 0 and σ2 = 1. Suppose that p(y|ω2) is a
normal density in which µ = 6 and σ2 = 4. Find the optimal classification rule,
γ : Y → Ω. You are welcome to solve the problem numerically (by computer) or
graphically (by careful function plotting). Carefully explain how you arrived at
the answer in any case.

8. Let

Θ

U

2 −2 −2 1

−1 −2 −2 6

4 0 −3 4

give the cost for each combination of choices by the decision maker and nature.
Let nature’s randomized strategy be [1/4 1/2 1/8 1/8].

(a) Use nondeterministic reasoning to find the minimax decision and worst-case
cost.

11In 2001, the Homer Simpson term“Doh!” was added to the Oxford English Dictionary as
an expression of regret.

494 S. M. LaValle: Planning Algorithms

(b) Use probabilistic reasoning to find the best expected-case decision and ex-
pected cost.

(c) Characterize the set of all probability distributions for which the minimax
decision and the best expected decision results in the same choice.

9. In a constant-sum game, the costs for any u ∈ U and v ∈ V add to yield

L1(u, v) + L2(u, v) = c (9.96)

for some constant c that is independent of u and v. Show that any constant-sum
game can be transformed into a zero-sum game, and that saddle point solutions
can be found using techniques for the zero-sum formulation.

10. Formalize Example 9.7 as a zero-sum game, and compute security strategies for
the players. What is the expected value of the game?

11. Suppose that for two zero-sum games, there exists some nonzero c ∈ R for which
the cost matrix of one game is obtained by multiplying all entries by c in the cost
matrix of the other. Prove that these two games must have the same deterministic
and randomized saddle points.

12. In the same spirit as Exercise 11, prove that two zero-sum games have the same
deterministic and randomized saddle points if c is added to all matrix entries.

13. Prove that multiple Nash equilibria of a nonzero-sum game specified by matrices
A and B are interchangeable if (A,B) as a game yields the same Nash equilibria
as the game (A,−A).

14. Analyze the game of Rock-Paper-Scissors for three players. For each player, assign
a cost of 1 for losing, 0 for a tie, and −1 for winning. Specify the cost functions.
Is it possible to avoid regret? Does it have a deterministic Nash equilibrium? Can
you find a randomized Nash equilibrium?

15. Compute the randomized equilibrium point for the following zero-sum game:

V

U
0 -1

-1 2

. (9.97)

Indicate the randomized strategies for the players and the resulting expected value
of the game.

Implementations

16. Consider estimating the value of an unknown parameter, θ ∈ R. The prior prob-
ability density is a normal,

p(θ) =
1

σ
√
2π

e−(θ−µ)2/2σ2

, (9.98)

9.5. DECISION THEORY UNDER SCRUTINY i

with µ = 0 and σ = 4. Suppose that a sequence, y1, y2, . . ., yk, of k observations
is made and that each p(yi|θ) is a normal density with µ = θ and σ = 9. Suppose
that u represents your guess of the parameter value. The task is select u to
minimize the expectation of the cost, L(u, θ) = (u− θ)2. Suppose that the “true”
value of θ is 4. Determine the u∗, the minimal action with respect to the expected
cost after observing: yi = 4 for every i ∈ {1, . . . , k}.

(a) Determine u∗ for k = 1.

(b) Determine u∗ for k = 10.

(c) Determine u∗ for k = 1000.

This experiment is not very realistic because the observations should be generated
by sampling from the normal density, p(yi|θ). Repeat the exercise using values
drawn with the normal density, instead of yk = 4, for each k.

17. Implement an algorithm that computes a randomized saddle point for zero-sum
games. Assume that one player has no more than two actions and the other may
have any finite number of actions.

18. Suppose that a K-stage decision-making problem is defined using multiple objec-
tives. There is a finite state space X and a finite action set U(x) for each x ∈ X.
A state transition equation, xk+1 = f(xk, uk), gives the next state from a current
state and input. There are N cost functionals of the form

Li(u1, . . . , uK) =
K
∑

k=1

l(xk, uk) + lF (xF), (9.99)

in which F = K+1. Assume that lF (xF) = ∞ if xF ∈ Xgoal (for some goal region
Xgoal ⊂ X) and lF (xF) = 0 otherwise. Assume that there is no termination action
(which simplifies the problem). Develop a value-iteration approach that finds the
complete set of Pareto-optimal plans efficiently as possible. If two or more plans
produce the same cost vector, then only one representative needs to be returned.

ii S. M. LaValle: Planning Algorithms

Bibliography

[1] E. Alpaydin. Machine Learning. MIT Press, Cambridge, MA, 2004.

[2] R. B. Ash. Information Theory. Dover, New York, 1990.

[3] T. Başar and G. J. Olsder. Dynamic Noncooperative Game Theory, 2nd Ed.
Academic, London, 1995.

[4] T. Bayes. An essay towards solving a problem in the doctrine of chances.
Philosophical Transactions of the Royal Society of London, 53, 1763.

[5] J. O. Berger. Statistical Decision Theory. Springer-Verlag, Berlin, 1980.

[6] D. P. Bertsekas. Nonlinear Programming. Athena Scientific, Belmont, MA,
1999.

[7] R. L. Bishop and S. I. Goldberg. Tensor Analysis on Manifolds. Dover, New
York, 1980.

[8] D. Blackwell and M. A. Girshik. Theory of Games and Statistical Decisions.
Dover, New York, 1979.

[9] A. Bloch. Murphy’s Law and Other Reasons Why Things Go Wrong. Price
Stern Sloan Adult, New York, 1977.

[10] T. M. Cover and J. A. Thomas. Elements of Information Theory. Wiley,
New York, 1991.

[11] G. B. Dantzig. Linear Programming and Extensions. Princeton University
Press, Princeton, NJ, 1963.

[12] R. S. Datta. Using computer algebra to compute Nash equilibria. In Pro-
ceedings International Symposium on Symbolic and Algebraic Computation,
2003.

[13] M. de Berg, M. van Kreveld, M. Overmars, and O. Schwarzkopf. Compu-
tational Geometry: Algorithms and Applications, 2nd Ed. Springer-Verlag,
Berlin, 2000.

[14] M. H. DeGroot. Optimal Statistical Decisions. McGraw-Hill, New York, 1970.

iii

iv BIBLIOGRAPHY

[15] P. A. Devijver and J. Kittler. Pattern Recognition: A Statistical Approach.
Prentice-Hall, Englewood Cliffs, NJ, 1982.

[16] R. O. Duda, P. E. Hart, and D. G. Stork. Pattern Classification, 2nd Ed.
Wiley, New York, 2000.

[17] M. A. Erdmann. On Probabilistic Strategies for Robot Tasks. PhD thesis,
Massachusetts Institute of Technology, Cambridge, MA, 1989.

[18] G. B. Folland. Real Analysis: Modern Techniques and Their Applications.
Wiley, New York, 1984.

[19] P. J. Gmytrasiewicz, E. H. Durfee, and D. K. Wehe. A decision-theoretic ap-
proach to coordinating multi-agent interactions. In Proceedings International
Joint Conference on Artificial Intelligence, pages 62–68, 1991.

[20] S. A. Klugman, H. H. Panjer, and G. E. Willmot. Loss Models: From Data
to Decisions, 2nd Ed. Wiley, New York, 2004.

[21] D. Koller, N. Megiddo, and B. von Stengel. Efficient computation of equilibria
for extensive two-person games. Games and Economic Behavior, 14:247–259,
1996.

[22] A. N. Kolmogorov and S. V. Fomin. Introductory Real Analysis. Dover, New
York, 1975.

[23] P.-S. Laplace. Théorie Analityque des Probabilités. Courceir, Paris, 1812.

[24] D. G. Luenberger. Introduction to Linear and Nonlinear Programming. Wiley,
New York, 1973.

[25] I. M. Makarov, T. M. Vinogradskaya, A. A. Rubchinsky, and V. B. Sokolov.
The Theory of Choice and Decision Making. Mir Publishers, Moscow, 1987.

[26] R. McKelvey and A. McLennan. Computation of equilibria in finite games.
In H. Amman, D. A. Kendrick, and J .Rust, editors, The Handbook of Com-
putational Economics, pages 87–142. Elsevier, New York, 1996.

[27] D. A. Miller and S. W. Zucker. Copositive-plus Lemke algorithm solves
polymatrix games. Operations Research Letters, 10:285–290, 1991.

[28] T. M. Mitchell. Machine Learning. McGraw-Hill, New York, 1997.

[29] J. Nash. Noncooperative games. Annals of Mathematics, 54(2):286–295,
1951.

[30] S. G. Nash and A. Sofer. Linear and Nonlinear Programming. McGraw-Hill,
New York, 1996.

BIBLIOGRAPHY v

[31] G. Owen. Game Theory. Academic, New York, 1982.

[32] J. Pearl. Probabilistic Reasoning in Intelligent Systems: Networks of Plausible
Inference. Morgan Kaufmann, San Francisco, CA, 1988.

[33] B. Peleg and P. Sudlölter. Introduction to the Theory of Cooperative Games.
Springer-Verlag, Berlin, 2003.

[34] C. P. Robert. The Bayesian Choice, 2nd. Ed. Springer-Verlag, Berlin, 2001.

[35] H. L. Royden. Real Analysis. MacMillan, New York, 1988.

[36] S. Russell and P. Norvig. Artificial Intelligence: A Modern Approach, 2nd
Edition. Prentice-Hall, Englewood Cliffs, NJ, 2003.

[37] H. Sagan. Introduction to the Calculus of Variations. Dover, New York, 1992.

[38] Y. Sawaragi, H. Nakayama, and T. Tanino. Theory of Multiobjective Opti-
mization. Academic, New York, 1985.

[39] C. E. Shannon. A mathematical theory of communication. Bell Systems
Technical Journal, 27:379–423, 1948.

[40] W. Stadler. Fundamentals of multicriteria optimization. In W. Stadler, ed-
itor, Multicriteria Optimization in Engineering and in the Sciences, pages
1–25. Plenum Press, New York, 1988.

[41] P. D. Straffin. Game Theory and Strategy. Mathematical Association of
America, Washington, DC, 1993.

[42] D. Vanderpooten. Multiobjective programming: Basic concepts and ap-
proaches. In R. Slowinski and J. Teghem, editors, Stochastic vs. Fuzzy
Approaches to Multiobjective Mathematical Programming under Uncertainty,
pages 7–22. Kluwer, Boston, MA, 1990.

[43] J. von Neumann. Zur Theorie der Gesellschaftsspiele. Mathematische An-
nalen, 100:295–320, 1928.

[44] J. von Neumann and O. Morgenstern. Theory of Games and Economic Be-
havior. Princeton University Press, Princeton, NJ, 1944.

[45] G. Walker and D. Walker. The Official Rock Paper Scissors Strategy Guide.
Fireside, 2004.

[46] S. Zionts. Multiple criteria mathematical programming: An overview and
several approaches. In P. Serafini, editor, Mathematics of Multi-Objective
Optimization, pages 227–273. Springer-Verlag, Berlin, 1985.

