
Chapter 7

Extensions of Basic Motion Planning

Steven M. LaValle

University of Illinois

Copyright Steven M. LaValle 2006

Available for downloading at http://planning.cs.uiuc.edu/

Published by Cambridge University Press

Chapter 7

Extensions of Basic Motion
Planning

This chapter presents many extensions and variations of the motion planning
problem considered in Chapters 3 to 6. Each one of these can be considered
as a “spin-off” that is fairly straightforward to describe using the mathematical
concepts and algorithms introduced so far. Unlike the previous chapters, there
is not much continuity in Chapter 7. Each problem is treated independently;
therefore, it is safe to jump to whatever sections in the chapter you find interesting
without fear of missing important details.

In many places throughout the chapter, a state space X will arise. This is con-
sistent with the general planning notation used throughout the book. In Chapter
4, the C-space, C, was introduced, which can be considered as a special state
space: It encodes the set of transformations that can be applied to a collection
of bodies. Hence, Chapters 5 and 6 addressed planning in X = C. The C-space
alone is insufficient for many of the problems in this chapter; therefore, X will
be used because it appears to be more general. For most cases in this chapter,
however, X is derived from one or more C-spaces. Thus, C-space and state space
terminology will be used in combination.

7.1 Time-Varying Problems

This section brings time into the motion planning formulation. Although the
robot has been allowed to move, it has been assumed so far that the obstacle
region O and the goal configuration, qG ∈ Cfree, are stationary for all time. It
is now assumed that these entities may vary over time, although their motions
are predictable. If the motions are not predictable, then some form of feedback is
needed to respond to observations that are made during execution. Such problems
are much more difficult and will be handled in Chapters 8 and throughout Part
IV.

311

312 S. M. LaValle: Planning Algorithms

7.1.1 Problem Formulation

The formulation is designed to allow the tools and concepts learned so far to be
applied directly. Let T ⊂ R denote the time interval, which may be bounded or
unbounded. If T is bounded, then T = [0, tf], in which 0 is the initial time and tf
is the final time. If T is unbounded, then T = [0,∞). An initial time other than
0 could alternatively be defined without difficulty, but this will not be done here.

Let the state space X be defined as X = C × T , in which C is the usual C-
space of the robot, as defined in Chapter 4. A state x is represented as x = (q, t),
to indicate the configuration q and time t components of the state vector. The
planning will occur directly in X, and in many ways it can be treated as any
C-space seen to far, but there is one critical difference: Time marches forward.
Imagine a path that travels through X. If it first reaches a state (q1, 5), and then
later some state (q2, 3), some traveling backward through time is required! There
is no mathematical problem with allowing such time travel, but it is not realistic
for most applications. Therefore, paths in X are forced to follow a constraint that
they must move forward in time.

Now consider making the following time-varying versions of the items used in
Formulation 4.1 for motion planning.

Formulation 7.1 (The Time-Varying Motion Planning Problem)

1. A world W in which either W = R2 or W = R3. This is the same as in
Formulation 4.1.

2. A time interval T ⊂ R that is either bounded to yield T = [0, tf] for some
final time, tf > 0, or unbounded to yield T = [0,∞).

3. A semi-algebraic, time-varying obstacle region O(t) ⊂ W for every t ∈ T . It
is assumed that the obstacle region is a finite collection of rigid bodies that
undergoes continuous, time-dependent rigid-body transformations.

4. The robot A (or A1, . . ., Am for a linkage) and configuration space C defini-
tions are the same as in Formulation 4.1.

5. The state space X is the Cartesian product X = C ×T and a state x ∈ X is
denoted as x = (q, t) to denote the configuration q and time t components.
See Figure 7.1. The obstacle region, Xobs, in the state space is defined as

Xobs = {(q, t) ∈ X | A(q) ∩ O(t) 6= ∅}, (7.1)

and Xfree = X \ Xobs. For a given t ∈ T , slices of Xobs and Xfree are
obtained. These are denoted as Cobs(t) and Cfree(t), respectively, in which
(assuming A is one body)

Cobs(t) = {q ∈ C | A(q) ∩ O(t) 6= ∅} (7.2)

and Cfree = C \ Cobs.

7.1. TIME-VARYING PROBLEMS 313

Cfree(t1) Cfree(t2) Cfree(t3)

t3t2t1

xt

yt

qG

t

Figure 7.1: A time-varying example with piecewise-linear obstacle motion.

6. A state xI ∈ Xfree is designated as the initial state, with the constraint that
xI = (qI , 0) for some qI ∈ Cfree(0). In other words, at the initial time the
robot cannot be in collision.

7. A subset XG ⊂ Xfree is designated as the goal region. A typical definition
is to pick some qG ∈ C and let XG = {(qG, t) ∈ Xfree | t ∈ T}, which means
that the goal is stationary for all time.

8. A complete algorithm must compute a continuous, time-monotonic path,
τ [0, 1] → Xfree, such that τ(0) = xI and τ(1) ∈ XG, or correctly report
that such a path does not exist. To be time-monotonic implies that for any
s1, s2 ∈ [0, 1] such that s1 < s2, we have t1 < t2, in which (q1, t1) = τ(s1)
and (q2, t2) = τ(s2).

Example 7.1 (Piecewise-Linear Obstacle Motion) Figure 7.1 shows an ex-
ample of a convex, polygonal robot A that translates in W = R2. There is a
single, convex, polygonal obstacle O. The two of these together yield a convex,

314 S. M. LaValle: Planning Algorithms

polygonal C-space obstacle, Cobs(t), which is shown for times t1, t2, and t3. The
obstacle moves with a piecewise-linear motion model, which means that transfor-
mations applied to O are a piecewise-linear function of time. For example, let
(x, y) be a fixed point on the obstacle. To be a linear motion model, this point
must transform as (x+c1t, y+c2t) for some constants c1, c2 ∈ R. To be piecewise-
linear, it may change to a different linear motion at a finite number of critical
times. Between these critical times, the motion must remain linear. There are
two critical times in the example. If Cobs(t) is polygonal, and a piecewise-linear
motion model is used, then Xobs is polyhedral, as depicted in Figure 7.1. A sta-
tionary goal is also shown, which appears as a line that is parallel to the T -axis.
�

In the general formulation, there are no additional constraints on the path,
τ , which means that the robot motion model allows infinite acceleration and
unbounded speed. The robot velocity may change instantaneously, but the path
through C must always be continuous. These issues did not arise in Chapter 4
because there was no need to mention time. Now it becomes necessary.1

7.1.2 Direct Solutions

Sampling-based methods Many sampling-based methods can be adapted from
C to X without much difficulty. The time dependency of obstacle models must
be taken into account when verifying that path segments are collision-free; the
techniques from Section 5.3.4 can be extended to handle this. One important
concern is the metric for X. For some algorithms, it may be important to permit
the use of a pseudometric because symmetry is broken by time (going backward
in time is not as easy as going forward).

For example, suppose that the C-space C is a metric space, (C, ρ). The metric
can be extended across time to obtain a pseudometric, ρX , as follows. For a pair
of states, x = (q, t) and x′ = (q′, t′), let

ρX(x, x
′) =

0 if q = q′

∞ if q 6= q′ and t′ ≤ t
ρ(q, q′) otherwise.

(7.3)

Using ρX , several sampling-based methods naturally work. For example, RDTs
from Section 5.5 can be adapted to X. Using ρX for a single-tree approach ensures
that all path segments travel forward in time. Using bidirectional approaches

1The infinite acceleration and unbounded speed assumptions may annoy those with mechanics
and control backgrounds. In this case, assume that the present models approximate the case in
which every body moves slowly, and the dynamics can be consequently neglected. If this is still
not satisfying, then jump ahead to Part IV, where general nonlinear systems are considered. It
is still helpful to consider the implications derived from the concepts in this chapter because the
issues remain for more complicated problems that involve dynamics.

7.1. TIME-VARYING PROBLEMS 315

is more difficult for time-varying problems because XG is usually not a single
point. It is not clear which (q, t) should be the starting vertex for the tree from
the goal; one possibility is to initialize the goal tree to an entire time-invariant
segment. The sampling-based roadmap methods of Section 5.6 are perhaps the
most straightforward to adapt. The notion of a directed roadmap is needed, in
which every edge must be directed to yield a time-monotonic path. For each pair
of states, (q, t) and (q′, t′), such that t 6= t′, exactly one valid direction exists for
making a potential edge. If t = t′, then no edge can be attempted because it would
require the robot to instantaneously “teleport” from one part of W to another.
Since forward time progress is already taken into account by the directed edges,
a symmetric metric may be preferable instead of (7.3) for the sampling-based
roadmap approach.

Combinatorial methods In some cases, combinatorial methods can be used
to solve time-varying problems. If the motion model is algebraic (i.e., expressed
with polynomials), then Xobs is semi-algebraic. This enables the application of
general planners from Section 6.4, which are based on computational real alge-
braic geometry. The key issue once again is that the resulting roadmap must be
directed with all edges being time-monotonic. For Canny’s roadmap algorithm,
this requirement seems difficult to ensure. Cylindrical algebraic decomposition is
straightforward to adapt, provided that time is chosen as the last variable to be
considered in the sequence of projections. This yields polynomials in Q[t], and R

is nicely partitioned into time intervals and time instances. Connections can then
be made for a cell of one cylinder to an adjacent cell of a cylinder that occurs
later in time.

If Xobs is polyhedral as depicted in Figure 7.1, then vertical decomposition can
be used. It is best to first sweep the plane along the time axis, stopping at the
critical times when the linear motion changes. This yields nice sections, which are
further decomposed recursively, as explained in Section 6.3.3, and also facilitates
the connection of adjacent cells to obtain time-monotonic path segments. It is not
too difficult to imagine the approach working for a four-dimensional state space,
X, for which Cobs(t) is polyhedral as in Section 6.3.3, and time adds the fourth
dimension. Again, performing the first sweep with respect to the time axis is
preferable.

If X is not decomposed into cylindrical slices over each noncritical time inter-
val, then cell decompositions may still be used, but be careful to correctly connect
the cells. Figure 7.2 illustrates the problem, for which transitivity among adjacent
cells is broken. This complicates sample point selection for the cells.

Bounded speed There has been no consideration so far of the speed at which
the robot must move to avoid obstacles. It is obviously impractical in many
applications if the solution requires the robot to move arbitrarily fast. One step
toward making a realistic model is to enforce a bound on the speed of the robot.

316 S. M. LaValle: Planning Algorithms

C2

C3

C1

q

t

Figure 7.2: Transitivity is broken if the cells are not formed in cylinders over T .
A time-monotonic path exists from C1 to C2, and from C2 to C3, but this does
not imply that one exists from C1 to C3.

(More steps towards realism are taken in Chapter 13.) For simplicity, suppose
C = R2, which corresponds to a translating rigid robot, A, that moves in W = R2.
A configuration, q ∈ C, is represented as q = (y, z) (since x already refers to the
whole state vector). The robot velocity is expressed as v = (ẏ, ż) ∈ R2, in which
ẏ = dy/dt and ż = dz/dt. The robot speed is ‖v‖ =

√

ẏ2 + ż2. A speed bound, b,
is a positive constant, b ∈ (0,∞), for which ‖v‖ ≤ b.

In terms of Figure 7.1, this means that the slope of a solution path τ is
bounded. Suppose that the domain of τ is T = [0, tf] instead of [0, 1]. This
yields τ : T → X and τ(t) = (y, z, t). Using this representation, dτ1/dt = ẏ and
dτ2/dt = ż, in which τi denotes the ith component of τ (because it is a vector-
valued function). Thus, it can seen that b constrains the slope of τ(t) in X. To
visualize this, imagine that only motion in the y direction occurs, and suppose
b = 1. If τ holds the robot fixed, then the speed is zero, which satisfies any
bound. If the robot moves at speed 1, then dτ1/dt = 1 and dτ2/dt = 0, which
satisfies the speed bound. In Figure 7.1 this generates a path that has slope 1 in
the yt plane and is horizontal in the zt plane. If dτ1/dt = dτ2/dt = 1, then the
bound is exceeded because the speed is

√
2. In general, the velocity vector at any

state (y, z, t) points into a cone that starts at (y, z) and is aligned in the positive
t direction; this is depicted in Figure 7.3. At time t + ∆t, the state must stay
within the cone, which means that

(

y(t+∆t)− y(t)
)2

+
(

z(t+∆t)− z(t)
)2 ≤ b2(∆t)2. (7.4)

This constraint makes it considerably more difficult to adapt the algorithms of
Chapters 5 and 6. Even for piecewise-linear motions of the obstacles, the problem
has been established to be PSPACE-hard [116, 117, 129]. A complete algorithm
is presented in [117] that is similar to the shortest-path roadmap algorithm of
Section 6.2.4. The sampling-based roadmap of Section 5.6 is perhaps one of the

7.1. TIME-VARYING PROBLEMS 317

t

y

Figure 7.3: A projection of the cone constraint for the bounded-speed problem.

easiest of the sampling-based algorithms to adapt for this problem. The neighbors
of point q, which are determined for attempted connections, must lie within the
cone that represents the speed bound. If this constraint is enforced, a resolution
complete or probabilistically complete planning algorithm results.

7.1.3 The Velocity-Tuning Method

An alternative to defining the problem in C × T is to decouple it into a path
planning part and a motion timing part [82]. Algorithms based on this method
are not complete, but velocity tuning is an important idea that can be applied
elsewhere. Suppose there are both stationary obstacles and moving obstacles.
For the stationary obstacles, suppose that some path τ : [0, 1] → Cfree has been
computed using any of the techniques described in Chapters 5 and 6.

The timing part is then handled in a second phase. Design a timing function
(or time scaling), σ : T → [0, 1], that indicates for time, t, the location of the
robot along the path, τ . This is achieved by defining the composition φ = τ ◦ σ,
which maps from T to Cfree via [0, 1]. Thus, φ : T → Cfree. The configuration at
time t ∈ T is expressed as φ(t) = τ(σ(t)).

A 2D state space can be defined as shown in Figure 7.4. The purpose is to
convert the design of σ (and consequently φ) into a familiar planning problem.
The robot must move along its path from τ(0) to τ(1) while an obstacle, O(t),
moves along its path over the time interval T . Let S = [0, 1] denote the domain
of τ . A state space, X = T ×S, is shown in Figure 7.4b, in which each point (t, s)
indicates the time t ∈ T and the position along the path, s ∈ [0, 1]. The obstacle
region in X is defined as

Xobs = {(t, s) ∈ X | A(τ(s)) ∩ O(t) 6= ∅}. (7.5)

Once again, Xfree is defined as Xfree = X \Xobs. The task is to find a continuous
path g : [0, 1] → Xfree. If g is time-monotonic, then a position s ∈ S is assigned
for every time, t ∈ T . These assignments can be nicely organized into the timing
function, σ : T → S, from which φ is obtained by φ = τ ◦ σ to determine where

318 S. M. LaValle: Planning Algorithms

O(t)

A

t

1

0

s

(a) (b)

Figure 7.4: An illustration of path tuning. (a) If the robot follows its computed
path, it may collide with the moving obstacle. (b) The resulting state space.

the robot will be at each time. Being time-monotonic in this context means that
the path must always progress from left to right in Figure 7.4b. It can, however,
be nonmonotonic in the positive s direction. This corresponds to moving back
and forth along τ , causing some configurations to be revisited.

Any of the methods described in Formulation 7.1 can be applied here. The
dimension of X in this case is always 2. Note that Xobs is polygonal if A and O
are both polygonal regions and their paths are piecewise-linear. In this case, the
vertical decomposition method of Section 6.2.2 can be applied by sweeping along
the time axis to yield a complete algorithm (it is complete after having committed
to τ , but it is not complete for Formulation 7.1). The result is shown in Figure
7.5. The cells are connected only if it is possible to reach one from the other
by traveling in the forward time direction. As an example of a sampling-based
approach that may be preferable when Xobs is not polygonal, place a grid over X
and apply one of the classical search algorithms described in Section 5.4.2. Once
again, only path segments in X that move forward in time are allowed.

7.2 Multiple Robots

Suppose that multiple robots share the same world, W . A path must be computed
for each robot that avoids collisions with obstacles and with other robots. In
Chapter 4, each robot could be a rigid body, A, or it could be made of k attached
bodies, A1, . . ., Ak. To avoid confusion, superscripts will be used in this section
to denote different robots. The ith robot will be denoted by Ai. Suppose there
are m robots, A1, A2, . . ., Am. Each robot, Ai, has its associated C-space, Ci,
and its initial and goal configurations, qiinit and qigoal, respectively.

7.2. MULTIPLE ROBOTS 319

t

1

0

s

Figure 7.5: Vertical cell decomposition can solve the path tuning problem. Note
that this example is not in general position because vertical edges exist. The goal
is to reach the horizontal line at the top, which can be accomplished from any
adjacent 2-cell. For this example, it may even be accomplished from the first 2-cell
if the robot is able to move quickly enough.

7.2.1 Problem Formulation

A state space is defined that considers the configurations of all robots simultane-
ously,

X = C1 × C2 × · · · × Cm. (7.6)

A state x ∈ X specifies all robot configurations and may be expressed as x =
(q1, q2, . . . , qm). The dimension of X is N , which is N =

∑m

i=1
dim(Ci).

There are two sources of obstacle regions in the state space: 1) robot-obstacle
collisions, and 2) robot-robot collisions. For each i such that 1 ≤ i ≤ m, the subset
of X that corresponds to robot Ai in collision with the obstacle region, O, is

X i
obs = {x ∈ X | Ai(qi) ∩ O 6= ∅}. (7.7)

This only models the robot-obstacle collisions.
For each pair, Ai and Aj, of robots, the subset of X that corresponds to Ai

in collision with Aj is

X ij
obs = {x ∈ X | Ai(qi) ∩ Aj(qj) 6= ∅}. (7.8)

Both (7.7) and (7.8) will be combined in (7.10) later to yield Xobs.

Formulation 7.2 (Multiple-Robot Motion Planning)

1. The world W and obstacle region O are the same as in Formulation 4.1.

320 S. M. LaValle: Planning Algorithms

2. There are m robots, A1, . . ., Am, each of which may consist of one or more
bodies.

3. Each robot Ai, for i from 1 to m, has an associated configuration space, Ci.

4. The state space X is defined as the Cartesian product

X = C1 × C2 × · · · × Cm. (7.9)

The obstacle region in X is

Xobs =

(

m
⋃

i=1

X i
obs

)

⋃

(

⋃

ij, i 6=j

X ij
obs

)

, (7.10)

in whichX i
obs andX ij

obs are the robot-obstacle and robot-robot collision states
from (7.7) and (7.8), respectively.

5. A state xI ∈ Xfree is designated as the initial state, in which xI = (q1I , . . . , q
m
I).

For each i such that 1 ≤ i ≤ m, qiI specifies the initial configuration of Ai.

6. A state xG ∈ Xfree is designated as the goal state, in which xG = (q1G, . . . , q
m
G).

7. The task is to compute a continuous path τ : [0, 1] → Xfree such that
τ(0) = xinit and τ(1) ∈ xgoal.

An ordinary motion planning problem? On the surface it may appear that
there is nothing unusual about the multiple-robot problem because the formu-
lations used in Chapter 4 already cover the case in which the robot consists of
multiple bodies. They do not have to be attached; therefore, X can be considered
as an ordinary C-space. The planning algorithms of Chapters 5 and 6 may be
applied without adaptation. The main concern, however, is that the dimension
of X grows linearly with respect to the number of robots. For example, if there
are 12 rigid bodies for which each has Ci = SE(3), then the dimension of X is
6 · 12 = 72. Complete algorithms require time that is at least exponential in
dimension, which makes them unlikely candidates for such problems. Sampling-
based algorithms are more likely to scale well in practice when there many robots,
but the dimension of X might still be too high.

Reasons to study multi-robot motion planning Even though multiple-
robot motion planning can be handled like any other motion planning problem,
there are several reasons to study it separately:

1. The motions of the robots can be decoupled in many interesting ways. This
leads to several interesting methods that first develop some kind of partial
plan for the robots independently, and then consider the plan interactions
to produce a solution. This idea is referred to as decoupled planning.

7.2. MULTIPLE ROBOTS 321

X
X iXj X ijobs

Figure 7.6: The set X ij
obs and its cylindrical structure on X.

2. The part of Xobs due to robot-robot collisions has a cylindrical structure,
depicted in Figure 7.6, which can be exploited to make more efficient plan-
ning algorithms. Each X ij

obs defined by (7.8) depends only on two robots. A
point, x = (q1, . . . , qm), is in Xobs if there exists i, j such that 1 ≤ i, j ≤ m
and Ai(qi) ∩Aj(qj) 6= ∅, regardless of the configurations of the other m− 2
robots. For some decoupled methods, this even implies that Xobs can be
completely characterized by 2D projections, as depicted in Figure 7.9.

3. If optimality is important, then a unique set of issues arises for the case
of multiple robots. It is not a standard optimization problem because the
performance of each robot has to be optimized. There is no clear way to
combine these objectives into a single optimization problem without los-
ing some critical information. It will be explained in Section 7.7.2 that
Pareto optimality naturally arises as the appropriate notion of optimality
for multiple-robot motion planning.

Assembly planning One important variant of multiple-robot motion planning
is called assembly planning; recall from Section 1.2 its importance in applications.
In automated manufacturing, many complicated objects are assembled step-by-
step from individual parts. It is convenient for robots to manipulate the parts
one-by-one to insert them into the proper locations (see Section 7.3.2). Imagine
a collection of parts, each of which is interpreted as a robot, as shown in Figure
7.7a. The goal is to assemble the parts into one coherent object, such as that
shown in Figure 7.7b. The problem is generally approached by starting with
the goal configuration, which is tightly constrained, and working outward. The
problem formulation may allow that the parts touch, but their interiors cannot
overlap. In general, the assembly planning problem with arbitrarily many parts

322 S. M. LaValle: Planning Algorithms

A1 A2

A7

A3

A5

A6A4

A1

A2

A3

A4

A5

A6
A7

(a) (b)

Figure 7.7: (a) A collection of pieces used to define an assembly planning problem;
(b) assembly planning involves determining a sequence of motions that assembles
the parts. The object shown here is assembled from the parts.

is NP-hard. Polynomial-time algorithms have been developed in several special
cases. For the case in which parts can be removed by a sequence of straight-line
paths, a polynomial-time algorithm is given in [133, 134].

7.2.2 Decoupled planning

Decoupled approaches first design motions for the robots while ignoring robot-
robot interactions. Once these interactions are considered, the choices available
to each robot are already constrained by the designed motions. If a problem arises,
these approaches are typically unable to reverse their commitments. Therefore,
completeness is lost. Nevertheless, decoupled approaches are quite practical, and
in some cases completeness can be recovered.

Prioritized planning A straightforward approach to decoupled planning is to
sort the robots by priority and plan for higher priority robots first [50, 130]. Lower
priority robots plan by viewing the higher priority robots as moving obstacles.
Suppose the robots are sorted as A1, . . ., Am, in which A1 has the highest priority.

Assume that collision-free paths, τi : [0, 1] → Ci
free, have been computed for i

from 1 to n. The prioritized planning approach proceeds inductively as follows:

Base case: Use any motion planning algorithm from Chapters 5 and 6 to
compute a collision-free path, τ1 : [0, 1] → C1

free for A1. Compute a timing
function, σ1, for τ1, to yield φ1 = τ1 ◦ σ1 : T → C1

free.

Inductive step: Suppose that φ1, . . ., φi−1 have been designed for A1, . . .,
Ai−1, and that these functions avoid robot-robot collisions between any of
the first i − 1 robots. Formulate the first i − 1 robots as moving obstacles
in W . For each t ∈ T and j ∈ {1, . . . , i − 1}, the configuration qj of each
Aj is φj(t). This yields Aj(φj(t)) ⊂ W , which can be considered as a subset
of the obstacle O(t). Design a path, τi, and timing function, σi, using any
of the time-varying motion planning methods from Section 7.1 and form
φi = τi ◦ σi.

7.2. MULTIPLE ROBOTS 323

A2 A1

Figure 7.8: If A1 neglects the query for A2, then completeness is lost when using
the prioritized planning approach. This example has a solution in general, but
prioritized planning fails to find it.

Although practical in many circumstances, Figure 7.8 illustrates how completeness
is lost.

A special case of prioritized planning is to design all of the paths, τ1, τ2, . . .,
τm, in the first phase and then formulate each inductive step as a velocity tuning
problem. This yields a sequence of 2D planning problems that can be solved
easily. This comes at a greater expense, however, because the choices are even
more constrained. The idea of preplanned paths, and even roadmaps, for all robots
independently can lead to a powerful method if the coordination of the robots is
approached more carefully. This is the next topic.

Fixed-path coordination Suppose that each robot Ai is constrained to follow
a path τi : [0, 1] → Ci

free, which can be computed using any ordinary motion plan-
ning technique. For m robots, an m-dimensional state space called a coordination
space is defined that schedules the motions of the robots along their paths so that
they will not collide [109]. One important feature is that time will only be implic-
itly represented in the coordination space. An algorithm must compute a path in
the coordination space, from which explicit timings can be easily extracted.

For m robots, the coordination space X is defined as the m-dimensional unit
cube X = [0, 1]m. Figure 7.9 depicts an example for which m = 3. The ith
coordinate of X represents the domain, Si = [0, 1], of the path τi. Let si denote
a point in Si (it is also the ith component of x). A state, x ∈ X, indicates the
configuration of every robot. For each i, the configuration qi ∈ Ci is given by
qi = τi(si). At state (0, . . . , 0) ∈ X, every robot is in its initial configuration,
qiI = τi(0), and at state (1, . . . , 1) ∈ X, every robot is in its goal configuration,
qiG = τi(1). Any continuous path, h : [0, 1] → X, for which h(0) = (0, . . . , 0) and
h(1) = (1, . . . , 1), moves the robots to their goal configurations. The path h does
not even need to be monotonic, in contrast to prioritized planning.

One important concern has been neglected so far. What prevents us from
designing h as a straight-line path between the opposite corners of [0, 1]m? We
have not yet taken into account the collisions between the robots. This forms
an obstacle region Xobs that must be avoided when designing a path through X.

324 S. M. LaValle: Planning Algorithms

s1

s2

s3

s1

s2

s1

s3

s2

s3

Figure 7.9: The obstacles that arise from coordinating m robots are always cylin-
drical. The set of all 1

2
m(m − 1) axis-aligned 2D projections completely charac-

terizes Xobs.

Thus, the task is to design h : [0, 1] → Xfree, in which Xfree = X \Xobs.
The definition of Xobs is very similar to (7.8) and (7.10), except that here the

state-space dimension is much smaller. Each qi is replaced by a single parameter.
The cylindrical structure, however, is still retained, as shown in Figure 7.9. Each
cylinder of Xobs is

X ij
obs = {(s1, . . . , sm) ∈ X | Ai(τi(si)) ∩ Aj(τj(sj)) 6= ∅}, (7.11)

which are combined to yield

Xobs =
⋃

ij, i 6=j

X ij
obs. (7.12)

Standard motion planning algorithms can be applied to the coordination space
because there is no monotonicity requirement on h. If 1) W = R2, 2) m = 2

7.2. MULTIPLE ROBOTS 325

(two robots), 3) the obstacles and robots are polygonal, and 4) the paths, τi, are
piecewise-linear, then Xobs is a polygonal region in X. This enables the methods
of Section 6.2, for a polygonal Cobs, to directly apply after the representation of
Xobs is explicitly constructed. For m > 2, the multi-dimensional version of vertical
cell decomposition given for m = 3 in Section 6.3.3 can be applied. For general
coordination problems, cylindrical algebraic decomposition or Canny’s roadmap
algorithm can be applied. For the problem of robots in W = R2 that either
translate or move along circular paths, a resolution complete planning method
based on the exact determination of Xobs using special collision detection methods
is given in [123].

For very challenging coordination problems, sampling-based solutions may
yield practical solutions. Perhaps one of the simplest solutions is to place a
grid over X and adapt the classical search algorithms, as described in Section
5.4.2 [93, 109]. Other possibilities include using the RDTs of Section 5.5 or, if
the multiple-query framework is appropriate, then the sampling-based roadmap
methods of 5.6 are suitable. Methods for validating the path segments, which
were covered in Section 5.3.4, can be adapted without trouble to the case of co-
ordination spaces.

Thus far, the particular speeds of the robots have been neglected. For expla-
nation purposes, consider the case of m = 2. Moving vertically or horizontally in
X holds one robot fixed while the other moves at some maximum speed. Moving
diagonally in X moves both robots, and their relative speeds depend on the slope
of the path. To carefully regulate these speeds, it may be necessary to reparam-
eterize the paths by distance. In this case each axis of X represents the distance
traveled, instead of [0, 1].

Fixed-roadmap coordination The fixed-path coordination approach still may
not solve the problem in Figure 7.8 if the paths are designed independently. For-
tunately, fixed-path coordination can be extended to enable each robot to move
over a roadmap or topological graph. This still yields a coordination space that
has only one dimension per robot, and the resulting planning methods are much
closer to being complete, assuming each robot utilizes a roadmap that has many
alternative paths. There is also motivation to study this problem by itself because
of automated guided vehicles (AGVs), which often move in factories on a network
of predetermined paths. In this case, coordinating the robots is the planning
problem, as opposed to being a simplification of Formulation 7.2.

One way to obtain completeness for Formulation 7.2 is to design the indepen-
dent roadmaps so that each robot has its own garage configuration. The conditions
for a configuration, qi, to be a garage for Ai are 1) while at configuration qi, it is
impossible for any other robots to collide with it (i.e., in all coordination states for
which the ith coordinate is qi, no collision occurs); and 2) qi is always reachable
by Ai from xI . If each robot has a roadmap and a garage, and if the planning
method for X is complete, then the overall planning algorithm is complete. If the

326 S. M. LaValle: Planning Algorithms

planning method in X uses some weaker notion of completeness, then this is also
maintained. For example, a resolution complete planner for X yields a resolution
complete approach to the problem in Formulation 7.2.

Cube complex How is the coordination space represented when there are mul-
tiple paths for each robot? It turns out that a cube complex is obtained, which is
a special kind of singular complex (recall from Section 6.3.1). The coordination
space for m fixed paths can be considered as a singular m-simplex. For example,
the problem in Figure 7.9 can be considered as a singular 3-simplex, [0, 1]3 → X.
In Section 6.3.1, the domain of a k-simplex was defined using Bk, a k-dimensional
ball; however, a cube, [0, 1]k, also works because Bk and [0, 1]k are homeomorphic.

For a topological space, X, let a k-cube (which is also a singular k-simplex),
�k, be a continuous mapping σ : [0, 1]k → X. A cube complex is obtained by
connecting together k-cubes of different dimensions. Every k-cube for k ≥ 1 has
2k faces, which are (k − 1)-cubes that are obtained as follows. Let (s1, . . . , sk)
denote a point in [0, 1]k. For each i ∈ {1, . . . , k}, one face is obtained by setting
si = 0 and another is obtained by setting si = 1.

The cubes must fit together nicely, much in the same way that the simplexes
of a simplicial complex were required to fit together. To be a cube complex, K
must be a collection of simplexes that satisfy the following requirements:

1. Any face, �k−1, of a cube �k ∈ K is also in K.

2. The intersection of the images of any two k-cubes �k,�
′
k ∈ K, is either

empty or there exists some cube, �i ∈ K for i < k, which is a common face
of both �k and �

′
k.

Let Gi denote a topological graph (which may also be a roadmap) for robot
Ai. The graph edges are paths of the form τ : [0, 1] → Ci

free. Before covering
formal definitions of the resulting complex, consider Figure 7.10a, in which A1

moves along three paths connected in a “T” junction and A2 moves along one
path. In this case, three 2D fixed-path coordination spaces are attached together
along one common edge, as shown in Figure 7.10b. The resulting cube complex is
defined by three 2-cubes (i.e., squares), one 1-cube (i.e., line segment), and eight
0-cubes (i.e., corner points).

Now suppose more generally that there are two robots, A1 and A2, with asso-
ciated topological graphs, G1(V1, E1) and G2(V2, E2), respectively. Suppose that G
and G2 have n1 and n2 edges, respectively. A 2D cube complex, K, is obtained as
follows. Let τi denote the ith path of G1, and let σj denote the jth path of G2. A
2-cube (square) exists in K for every way to select an edge from each graph. Thus,
there are n1n2 2-cubes, one for each pair (τi, σj), such that τi ∈ E1 and σj ∈ E2.
The 1-cubes are generated for pairs of the form (vi, σj) for vi ∈ V1 and σj ∈ E2,
or (τi, vj) for τi ∈ E1 and vj ∈ V2. The 0-cubes (corner points) are reached for
each pair (vi, vj) such that vi ∈ V1 and vj ∈ V2.

7.3. MIXING DISCRETE AND CONTINUOUS SPACES 327

τ2

τ1

C1

free

τ3

C2

free

τ ′

1

s3

s′
1

s2

s1

(a) (b)

Figure 7.10: (a) An example in which A1 moves along three paths, and A2 moves
along one. (b) The corresponding coordination space.

If there are m robots, then an m-dimensional cube complex arises. Every
m-cube corresponds to a unique combination of paths, one for each robot. The
(m − 1)-cubes are the faces of the m-cubes. This continues iteratively until the
0-cubes are reached.

Planning on the cube complex Once again, any of the planning methods
described in Chapters 5 and 6 can be adapted here, but the methods are slightly
complicated by the fact that X is a complex. To use sampling-based methods,
a dense sequence should be generated over X. For example, if random sampling
is used, then an m-cube can be chosen at random, followed by a random point
in the cube. The local planning method (LPM) must take into account the con-
nectivity of the cube complex, which requires recognizing when branches occur in
the topological graph. Combinatorial methods must also take into account this
connectivity. For example, a sweeping technique can be applied to produce a ver-
tical cell decomposition, but the sweep-line (or sweep-plane) must sweep across
the various m-cells of the complex.

7.3 Mixing Discrete and Continuous Spaces

Many important applications involve a mixture of discrete and continuous vari-
ables. This results in a state space that is a Cartesian product of the C-space
and a finite set called the mode space. The resulting space can be visualized as
having layers of C-spaces that are indexed by the modes, as depicted in Figure
7.11. The main application given in this section is manipulation planning; many
others exist, especially when other complications such as dynamics and uncertain-
ties are added to the problem. The framework of this section is inspired mainly
from hybrid systems in the control theory community [69], which usually model
mode-dependent dynamics. The main concern in this section is that the allowable
robot configurations and/or the obstacles depend on the mode.

328 S. M. LaValle: Planning Algorithms

m = 4

m = 1 m = 2

m = 3

m = 4

m = 3

m = 2

m = 1

C

C

C

C

Modes Layers

Figure 7.11: A hybrid state space can be imagined as having layers of C-spaces
that are indexed by modes.

7.3.1 Hybrid Systems Framework

As illustrated in Figure 7.11, a hybrid system involves interaction between dis-
crete and continuous spaces. The formal model will first be given, followed by
some explanation. This formulation can be considered as a combination of the
components from discrete feasible planning, Formulation 2.1, and basic motion
planning, Formulation 4.1.

Formulation 7.3 (Hybrid-System Motion Planning)

1. The W and C components from Formulation 4.1 are included.

2. A nonempty mode space, M that is a finite or countably infinite set of modes.

3. A semi-algebraic obstacle region O(m) for each m ∈ M .

4. A semi-algebraic robot A(m), for each m ∈ M . It may be a rigid robot or
a collection of links. It is assumed that the C-space is not mode-dependent;
only the geometry of the robot can depend on the mode. The robot, trans-
formed to configuration q, is denoted as A(q,m).

5. A state space X is defined as the Cartesian product X = C ×M . A state is
represented as x = (q,m), in which q ∈ C and m ∈ M . Let

Xobs = {(q,m) ∈ X | A(q,m) ∩ O(m) 6= ∅}, (7.13)

and Xfree = X \Xobs.

6. For each state, x ∈ X, there is a finite action space, U(x). Let U denote the
set of all possible actions (the union of U(x) over all x ∈ X).

7.3. MIXING DISCRETE AND CONTINUOUS SPACES 329

7. There is a mode transition function fm that produces a mode, fm(x, u) ∈ M ,
for every x ∈ X and u ∈ U(x). It is assumed that fm is defined in a way that
does not produce race conditions (oscillations of modes within an instant of
time). This means that if q is fixed, the mode can change at most once. It
then remains constant and can change only if q is changed.

8. There is a state transition function, f , that is derived from fm by changing
the mode and holding the configuration fixed. Thus, f(x, u) = (q, fm(x, u)).

9. A configuration xI ∈ Xfree is designated as the initial state.

10. A set XG ∈ Xfree is designated as the goal region. A region is defined instead
of a point to facilitate the specification of a goal configuration that does not
depend on the final mode.

11. An algorithm must compute a (continuous) path τ : [0, 1] → Xfree and an
action trajectory σ : [0, 1] → U such that τ(0) = xI and τ(1) ∈ XG, or the
algorithm correctly reports that such a combination of a path and an action
trajectory does not exist.

The obstacle region and robot may or may not be mode-dependent, depending
on the problem. Examples of each will be given shortly. Changes in the mode
depend on the action taken by the robot. From most states, it is usually assumed
that a “do nothing” action exists, which leaves the mode unchanged. From certain
states, the robot may select an action that changes the mode as desired. An
interesting degenerate case exists in which there is only a single action available.
This means that the robot has no control over the mode from that state. If the
robot arrives in such a state, a mode change could unavoidably occur.

The solution requirement is somewhat more complicated because both a path
and an action trajectory need to be specified. It is insufficient to specify a path
because it is important to know what action was applied to induce the correct
mode transitions. Therefore, σ indicates when these occur. Note that τ and σ
are closely coupled; one cannot simply associate any σ with a path τ ; it must
correspond to the actions required to generate τ .

Example 7.2 (The Power of the Portiernia) In this example, a robot, A, is
modeled as a square that translates in W = R2. Therefore, C = R2. The obstacle
region in W is mode-dependent because of two doors, which are numbered “1”
and “2” in Figure 7.12a. In the upper left sits the portiernia,2 which is able to
give a key to the robot, if the robot is in a configuration as shown in Figure 7.12b.
The portiernia only trusts the robot with one key at a time, which may be either
for Door 1 or Door 2. The robot can return a key by revisiting the portiernia. As
shown in Figures 7.12c and 7.12d, the robot can open a door by making contact
with it, as long as it holds the correct key.

2This is a place where people guard the keys at some public facilities in Poland.

330 S. M. LaValle: Planning Algorithms

1

2A

1

2

A

(a) (b)

1

2

A

2

A

(c) (d)

Figure 7.12: In the upper left (at the portiernia), the robot can pick up and drop
off keys that open one of two doors. If the robot contacts a door while holding
the correct key, then it opens.

The set, M , of modes needs to encode which key, if any, the robot holds, and
it must also encode the status of the doors. The robot may have: 1) the key to
Door 1; 2) the key to Door 2; or 3) no keys. The doors may have the status: 1)
both open; 2) Door 1 open, Door 2 closed; 3) Door 1 closed, Door 2 open; or 4)
both closed. Considering keys and doors in combination yields 12 possible modes.

If the robot is at a portiernia configuration as shown in Figure 7.12b, then its
available actions correspond to different ways to pick up and drop off keys. For
example, if the robot is holding the key to Door 1, it can drop it off and pick
up the key to Door 2. This changes the mode, but the door status and robot
configuration must remain unchanged when f is applied. The other locations in
which the robot may change the mode are when it comes in contact with Door 1
or Door 2. The mode changes only if the robot is holding the proper key. In all
other configurations, the robot only has a single action (i.e., no choice), which
keeps the mode fixed.

The task is to reach the configuration shown in the lower right with dashed

7.3. MIXING DISCRETE AND CONTINUOUS SPACES 331

lines. The problem is solved by: 1) picking up the key for Door 1 at the portiernia;
2) opening Door 1; 3) swapping the key at the portiernia to obtain the key for
Door 2; or 4) entering the innermost room to reach the goal configuration. As a
final condition, we might want to require that the robot returns the key to the
portiernia. �

A

A

Elongated

Compressed

Figure 7.13: An example in which the robot must reconfigure itself to solve the
problem. There are two modes: elongated and compressed.

A A

Elongated mode Compressed mode

Figure 7.14: When the robot reconfigures itself, Cfree(m) changes, enabling the
problem to be solved.

Example 7.2 allows the robot to change the obstacles in O. The next example
involves a robot that can change its shape. This is an illustrative example of
a reconfigurable robot. The study of such robots has become a popular topic of
research [33, 63, 88, 137]; the reconfiguration possibilities in that research area
are much more complicated than the simple example considered here.

Example 7.3 (Reconfigurable Robot) To solve the problem shown in Figure
7.13, the robot must change its shape. There are two possible shapes, which
correspond directly to the modes: elongated and compressed. Examples of each
are shown in the figure. Figure 7.14 shows how Cfree(m) appears for each of the
two modes. Suppose the robot starts initially from the left while in the elongated
mode and must travel to the last room on the right. This problem must be solved
by 1) reconfiguring the robot into the compressed mode; 2) passing through the

332 S. M. LaValle: Planning Algorithms

corridor into the center; 3) reconfiguring the robot into the elongated mode; and
4) passing through the corridor to the rightmost room. The robot has actions
that directly change the mode by reconfiguring itself. To make the problem more
interesting, we could require the robot to reconfigure itself in specific locations
(e.g., where there is enough clearance, or possibly at a location where another
robot can assist it).

The examples presented so far barely scratch the surface on the possible hybrid
motion planning problems that can be defined. Many such problems can arise, for
example, in the context making automated video game characters or digital actors.
To solve these problems, standard motion planning algorithms can be adapted if
they are given information about how to change the modes. Locations in X
from which the mode can be changed may be expressed as subgoals. Much of the
planning effort should then be focused on attempting to change modes, in addition
to trying to directly reach the goal. Applying sampling-based methods requires
the definition of a metric on X that accounts for both changes in the mode and the
configuration. A wide variety of hybrid problems can be formulated, ranging from
those that are impossible to solve in practice to those that are straightforward
extensions of standard motion planning. In general, the hybrid motion planning
model is useful for formulating a hierarchical approach, as described in Section
1.4. One particularly interesting class of problems that fit this model, for which
successful algorithms have been developed, will be covered next.

7.3.2 Manipulation Planning

This section presents an overview of manipulation planning; the concepts ex-
plained here are mainly due to [7, 8]. Returning to Example 7.2, imagine that the
robot must carry a key that is so large that it changes the connectivity of Cfree.
For the manipulation planning problem, the robot is called a manipulator, which
interacts with a part. In some configurations it is able to grasp the part and move
it to other locations in the environment. The manipulation task usually requires
moving the part to a specified location in W , without particular regard as to
how the manipulator can accomplish the task. The model considered here greatly
simplifies the problems of grasping, stability, friction, mechanics, and uncertain-
ties and instead focuses on the geometric aspects (some of these issues will be
addressed in Section 12.5). For a thorough introduction to these other important
aspects of manipulation planning, see [101]; see also Sections 13.1.3 and 12.5.

Admissible configurations Assume that W , O, and A from Formulation 4.1
are used. For manipulation planning, A is called the manipulator, and let Ca

refer to the manipulator configuration space. Let P denote a part, which is a
rigid body modeled in terms of geometric primitives, as described in Section 3.1.
It is assumed that P is allowed to undergo rigid-body transformations and will
therefore have its own part configuration space, Cp = SE(2) or Cp = SE(3). Let

7.3. MIXING DISCRETE AND CONTINUOUS SPACES 333

qp ∈ Cp denote a part configuration. The transformed part model is denoted as
P(qp).

O

A(qa)

O

P(qp) P(qp)

A(qa)

q ∈ Ca
obs q ∈ Cp

obs q ∈ Cap
obs

P(q p
)

A(q a
)

P(qp) P(qp)

A(qa)

q ∈ Cgr q ∈ Csta q ∈ Ctra

Figure 7.15: Examples of several important subsets of C for manipulation plan-
ning.

The combined configuration space, C, is defined as the Cartesian product

C = Ca × Cp, (7.14)

in which each configuration q ∈ C is of the form q = (qa, qp). The first step is
to remove all configurations that must be avoided. Parts of Figure 7.15 show
examples of these sets. Configurations for which the manipulator collides with
obstacles are

Ca
obs = {(qa, qp) ∈ C | A(qa) ∩ O 6= ∅}. (7.15)

The next logical step is to remove configurations for which the part collides with
obstacles. It will make sense to allow the part to “touch” the obstacles. For
example, this could model a part sitting on a table. Therefore, let

Cp
obs = {(qa, qp) ∈ C | int(P(qp)) ∩ O 6= ∅} (7.16)

denote the open set for which the interior of the part intersects O. Certainly, if
the part penetrates O, then the configuration should be avoided.

334 S. M. LaValle: Planning Algorithms

Consider C \(Ca
obs∪Cp

obs). The configurations that remain ensure that the robot
and part do not inappropriately collide with O. Next consider the interaction
between A and P . The manipulator must be allowed to touch the part, but
penetration is once again not allowed. Therefore, let

Cap
obs = {(qa, qp) ∈ C | A(qa) ∩ int(P(qp)) 6= ∅}. (7.17)

Removing all of these bad configurations yields

Cadm = C \ (Ca
obs ∪ Cp

obs ∪ Cap
obs), (7.18)

which is called the set of admissible configurations.

Stable and grasped configurations Two important subsets of Cadm are used
in the manipulation planning problem. See Figure 7.15. Let Cp

sta denote the set of
stable part configurations, which are configurations at which the part can safely
rest without any forces being applied by the manipulator. This means that a part
cannot, for example, float in the air. It also cannot be in a configuration from
which it might fall. The particular stable configurations depend on properties
such as the part geometry, friction, mass distribution, and so on. These issues
are not considered here. From this, let Csta ⊆ Cadm be the corresponding stable
configurations, defined as

Csta = {(qa, qp) ∈ Cadm | qp ∈ Cp
sta}. (7.19)

The other important subset of Cadm is the set of all configurations in which the
robot is grasping the part (and is capable of carrying it, if necessary). Let
this denote the grasped configurations, denoted by Cgr ⊆ Cadm. For every con-
figuration, (qa, qp) ∈ Cgr, the manipulator touches the part. This means that
A(qa) ∩ P(qp) 6= ∅ (penetration is still not allowed because Cgr ⊆ Cadm). In gen-
eral, many configurations at which A(qa) contacts P(qp) will not necessarily be
in Cgr. The conditions for a point to lie in Cgr depend on the particular charac-
teristics of the manipulator, the part, and the contact surface between them. For
example, a typical manipulator would not be able to pick up a block by making
contact with only one corner of it. This level of detail is not defined here; see [101]
for more information about grasping.

We must always ensure that either x ∈ Csta or x ∈ Cgr. Therefore, let
Cfree = Csta ∪ Cgr, to reflect the subset of Cadm that is permissible for manip-
ulation planning.

The mode space, M , contains two modes, which are named the transit mode
and the transfer mode. In the transit mode, the manipulator is not carrying the
part, which requires that q ∈ Csta. In the transfer mode, the manipulator carries
the part, which requires that q ∈ Cgr. Based on these simple conditions, the only
way the mode can change is if q ∈ Csta ∩ Cgr. Therefore, the manipulator has two
available actions only when it is in these configurations. In all other configurations

7.3. MIXING DISCRETE AND CONTINUOUS SPACES 335

the mode remains unchanged. For convenience, let Ctra = Csta∩Cgr denote the set
of transition configurations, which are the places in which the mode may change.

Using the framework of Section 7.3.1, the mode space, M , and C-space, C, are
combined to yield the state space, X = C ×M . Since there are only two modes,
there are only two copies of C, one for each mode. State-based sets, Xfree, Xtra,
Xsta, and Xgr, are directly obtained from Cfree, Ctra, Csta, and Cgr by ignoring the
mode. For example,

Xtra = {(q,m) ∈ X | q ∈ Ctra}. (7.20)

The sets Xfree, Xsta, and Xgr are similarly defined.
The task can now be defined. An initial part configuration, qpinit ∈ Csta, and

a goal part configuration, qpgoal ∈ Csta, are specified. Compute a path τ : [0, 1] →
Xfree such that τ(0) = qpinit and τ(1) = qpgoal. Furthermore, the action trajectory σ :
[0, 1] → U must be specified to indicate the appropriate mode changes whenever
τ(s) ∈ Xtra. A solution can be considered as an alternating sequence of transit
paths and transfer paths, whose names follow from the mode. This is depicted in
Figure 7.16.

Transfer

Transit

C

C

Figure 7.16: The solution to a manipulation planning problem alternates between
the two layers of X. The transitions can only occur when x ∈ Xtra.

Manipulation graph The manipulation planning problem generally can be
solved by forming a manipulation graph, Gm [7, 8]. Let a connected component of
Xtra refer to any connected component of Ctra that is lifted into the state space by
ignoring the mode. There are two copies of the connected component of Ctra, one
for each mode. For each connected component of Xtra, a vertex exists in Gm. An
edge is defined for each transfer path or transit path that connects two connected
components of Xtra. The general approach to manipulation planning then is as
follows:

1. Compute the connected components of Xtra to yield the vertices of Gm.

2. Compute the edges of Gm by applying ordinary motion planning methods
to each pair of vertices of Gm.

3. Apply motion planning methods to connect the initial and goal states to
every possible vertex of Xtra that can be reached without a mode transition.

336 S. M. LaValle: Planning Algorithms

4. Search Gm for a path that connects the initial and goal states. If one exists,
then extract the corresponding solution as a sequence of transit and transfer
paths (this yields σ, the actions that cause the required mode changes).

This can be considered as an example of hierarchical planning, as described in
Section 1.4.

Figure 7.17: This example was solved in [41] using the manipulation planning
framework and the visibility-based roadmap planner. It is very challenging be-
cause the same part must be regrasped in many places.

Multiple parts The manipulation planning framework nicely generalizes to
multiple parts, P1, . . ., Pk. Each part has its own C-space, and C is formed
by taking the Cartesian product of all part C-spaces with the manipulator C-
space. The set Cadm is defined in a similar way, but now part-part collisions also
have to be removed, in addition to part-manipulator, manipulator-obstacle, and
part-obstacle collisions. The definition of Csta requires that all parts be in stable
configurations; the parts may even be allowed to stack on top of each other. The
definition of Cgr requires that one part is grasped and all other parts are stable.
There are still two modes, depending on whether the manipulator is grasping a
part. Once again, transitions occur only when the robot is in Ctra = Csta ∩ Cgr.

7.4. PLANNING FOR CLOSED KINEMATIC CHAINS 337

Figure 7.18: This manipulation planning example was solved in [127] and involves
90 movable pieces of furniture. Some of them must be dragged out of the way to
solve the problem. Paths for two different queries are shown.

The task involves moving each part from one configuration to another. This is
achieved once again by defining a manipulation graph and obtaining a sequence
of transit paths (in which no parts move) and transfer paths (in which one part is
carried and all other parts are fixed). Challenging manipulation problems solved
by motion planning algorithms are shown in Figures 7.17 and 7.18.

Other generalizations are possible. A generalization to k robots would lead to
2k modes, in which each mode indicates whether each robot is grasping the part.
Multiple robots could even grasp the same object. Another generalization could
allow a single robot to grasp more than one object.

7.4 Planning for Closed Kinematic Chains

This section continues where Section 4.4 left off. The subspace of C that results
from maintaining kinematic closure was defined and illustrated through some ex-

338 S. M. LaValle: Planning Algorithms

amples. Planning in this context requires that paths remain on a lower dimensional
variety for which a parameterization is not available. Many important applica-
tions require motion planning while maintaining these constraints. For example,
consider a manipulation problem that involves multiple manipulators grasping
the same object, which forms a closed loop as shown in Figure 7.19. A loop
exists because both manipulators are attached to the ground, which may itself
be considered as a link. The development of virtual actors for movies and video
games also involves related manipulation problems. Loops also arise in this con-
text when more than one human limb is touching a fixed surface (e.g., two feet on
the ground). A class of robots called parallel manipulators are intentionally de-
signed with internal closed loops [103]. For example, consider the Stewart-Gough
platform [67, 126] illustrated in Figure 7.20. The lengths of each of the six arms,
A1, . . ., A6, can be independently varied while they remain attached via spherical
joints to the ground and to the platform, which is A7. Each arm can actually be
imagined as two links that are connected by a prismatic joint. Due to the total
of 6 degrees of freedom introduced by the variable lengths, the platform actu-
ally achieves the full 6 degrees of freedom (hence, some six-dimensional region in
SE(3) is obtained for A7). Planning the motion of the Stewart-Gough platform,
or robots that are based on the platform (the robot shown in Figure 7.27 uses a
stack of several of these mechanisms), requires handling many closure constraints
that must be maintained simultaneously. Another application is computational
biology, in which the C-space of molecules is searched, many of which are derived
from molecules that have closed, flexible chains of bonds [42].

7.4.1 Adaptation of Motion Planning Algorithms

All of the components from the general motion planning problem of Formulation
4.1 are included: W , O, A1, . . ., Am, C, qI , and qG. It is assumed that the robot
is a collection of r links that are possibly attached in loops.

It is assumed in this section that C = Rn. If this is not satisfactory, there are
two ways to overcome the assumption. The first is to represent SO(2) and SO(3)
as S1 and S3, respectively, and include the circle or sphere equation as part of the
constraints considered here. This avoids the topology problems. The other option
is to abandon the restriction of using Rn and instead use a parameterization of C
that is of the appropriate dimension. To perform calculus on such manifolds, a
smooth structure is required, which is introduced in Section 8.3.2. In the presenta-
tion here, however, vector calculus on Rn is sufficient, which intentionally avoids
these extra technicalities.

Closure constraints The closure constraints introduced in Section 4.4 can be
summarized as follows. There is a set, P , of polynomials f1, . . ., fk that belong
to Q[q1, . . . , qn] and express the constraints for particular points on the links of
the robot. The determination of these is detailed in Section 4.4.3. As mentioned

7.4. PLANNING FOR CLOSED KINEMATIC CHAINS 339

Figure 7.19: Two or more manipulators manipulating the same object causes
closed kinematic chains. Each black disc corresponds to a revolute joint.

previously, polynomials that force points to lie on a circle or sphere in the case of
rotations may also be included in P .

Let n denote the dimension of C. The closure space is defined as

Cclo = {q ∈ C | ∀fi ∈ P , fi(q1, . . . , qn) = 0}, (7.21)

which is an m-dimensional subspace of C that corresponds to all configurations
that satisfy the closure constants. The obstacle set must also be taken into ac-
count. Once again, Cobs and Cfree are defined using (4.34). The feasible space is
defined as Cfea = Cclo ∩ Cfree, which are the configurations that satisfy closure
constraints and avoid collisions.

The motion planning problem is to find a path τ : [0, 1] → Cfea such that τ(0) =
qI and τ(1) = qG. The new challenge is that there is no explicit parameterization
of Cfea, which is further complicated by the fact that m < n (recall that m is the
dimension of Cclo).

Combinatorial methods Since the constraints are expressed with polynomi-
als, it may not be surprising that the computational algebraic geometry methods
of Section 6.4 can solve the general motion planning problem with closed kinematic
chains. Either cylindrical algebraic decomposition or Canny’s roadmap algorithm
may be applied. As mentioned in Section 6.5.3, an adaptation of the roadmap
algorithm that is optimized for problems in which m < n is given in [18].

340 S. M. LaValle: Planning Algorithms

A5

A6

A4

A3
A2

A1

A7

Figure 7.20: An illustration of the Stewart-Gough platform (adapted from a figure
made by Frank Sottile).

Sampling-based methods Most of the methods of Chapter 5 are not easy to
adapt because they require sampling in Cfea, for which a parameterization does
not exist. If points in a bounded region of Rn are chosen at random, the proba-
bility is zero that a point on Cfea will be obtained. Some incremental sampling
and searching methods can, however, be adapted by the construction of a local
planning method (LPM) that is suited for problems with closure constraints. The
sampling-based roadmap methods require many samples to be generated directly
on Cfea. Section 7.4.2 presents some techniques that can be used to generate
such samples for certain classes of problems, enabling the development of efficient
sampling-based planners and also improving the efficiency of incremental search
planners. Before covering these techniques, we first present a method that leads
to a more general sampling-based planner and is easier to implement. However, if
designed well, planners based on the techniques of Section 7.4.2 are more efficient.

Now consider adapting the RDT of Section 5.5 to work for problems with
closure constraints. Similar adaptations may be possible for other incremental
sampling and searching methods covered in Section 5.4, such as the randomized
potential field planner. A dense sampling sequence, α, is generated over a bounded
n-dimensional subset of Rn, such as a rectangle or sphere, as shown in Figure 7.21.

7.4. PLANNING FOR CLOSED KINEMATIC CHAINS 341C = Rn
Clo

Figure 7.21: For the RDT, the samples can be drawn from a region in Rn, the
space in which Cclo is embedded.

The samples are not actually required to lie on Cclo because they do not necessarily
become part of the topological graph, G. They mainly serve to pull the search
tree in different directions. One concern in choosing the bounding region is that it
must include Cclo (at least the connected component that includes qI) but it must
not be unnecessarily large. Such bounds are obtained by analyzing the motion
limits for a particular linkage.

Stepping along Cclo The RDT algorithm given Figure 5.21 can be applied
directly; however, the stopping-configuration function in line 4 must be
changed to account for both obstacles and the constraints that define Cclo. Figure
7.22 shows one general approach that is based on numerical continuation [9]. An
alternative is to use inverse kinematics, which is part of the approach described
in Section 7.4.2. The nearest RDT vertex, q ∈ C, to the sample α(i) is first com-
puted. Let v = α(i) − q, which indicates the direction in which an edge would
be made from q if there were no constraints. A local motion is then computed
by projecting v into the tangent plane3 of Cclo at the point q. Since Cclo is gen-
erally nonlinear, the local motion produces a point that is not precisely on Cclo.
Some numerical tolerance is generally accepted, and a small enough step is taken
to ensure that the tolerance is maintained. The process iterates by computing
v with respect to the new point and moving in the direction of v projected into
the new tangent plane. If the error threshold is surpassed, then motions must
be executed in the normal direction to return to Cclo. This process of executing
tangent and normal motions terminates when progress can no longer be made,
due either to the alignment of the tangent plane (nearly perpendicular to v) or
to an obstacle. This finally yields qs, the stopping configuration. The new path
followed in Cfea is no longer a “straight line” as was possible for some problems in
Section 5.5; therefore, the approximate methods in Section 5.5.2 should be used

3Tangent planes are defined rigorously in Section 8.3.

342 S. M. LaValle: Planning Algorithms

α(i)

Cclo

Cq

Figure 7.22: For each sample α(i) the nearest point, qn ∈ C, is found, and then
the local planner generates a motion that lies in the local tangent plane. The
motion is the project of the vector from qn to α(i) onto the tangent plane.

to create intermediate vertices along the path.
In each iteration, the tangent plane computation is computed at some q ∈ Cclo

as follows. The differential configuration vector dq lies in the tangent space of a
constraint fi(q) = 0 if

∂fi(q)

∂q1
dq1 +

∂fi(q)

∂q2
dq2 + · · ·+ ∂fi(q)

∂qn
dqn = 0. (7.22)

This leads to the following homogeneous system for all of the k polynomials in P
that define the closure constraints

∂f1(q)

∂q1

∂f1(q)

∂q2
· · · ∂f1(q)

∂qn

∂f2(q)

∂q1

∂f2(q)

∂q2
· · · ∂f2(q)

∂qn
...

...
...

∂fk(q)

∂q1

∂fk(q)

∂q2
· · · ∂fk(q)

∂qn

dq1
dq2
...

dqn

= 0. (7.23)

If the rank of the matrix is m ≤ n, then m configuration displacements can be
chosen independently, and the remaining n − m parameters must satisfy (7.23).
This can be solved using linear algebra techniques, such as singular value decom-
position (SVD) [66, 131], to compute an orthonormal basis for the tangent space
at q. Let e1, . . ., em, denote these n-dimensional basis vectors. The components

7.4. PLANNING FOR CLOSED KINEMATIC CHAINS 343

of the motion direction are obtained from v = α(i)−qn. First, construct the inner
products, a1 = v · e1, a2 = v · e2, . . ., am = v · em. Using these, the projection of v
in the tangent plane is the n-dimensional vector w given by

w =
m
∑

i

aiei, (7.24)

which is used as the direction of motion. The magnitude must be appropriately
scaled to take sufficiently small steps. Since Cclo is generally curved, a linear
motion leaves Cclo. A motion in the inward normal direction is then required to
move back onto Cclo.

Since the dimension m of Cclo is less than n, the procedure just described can
only produce numerical approximations to paths in Cclo. This problem also arises
in implicit curve tracing in graphics and geometric modeling [77]. Therefore, each
constraint fi(q1, . . . , qn) = 0 is actually slightly weakened to |fi(q1, . . . , qn)| < ǫ for
some fixed tolerance ǫ > 0. This essentially “thickens” Cclo so that its dimension
is n. As an alternative to computing the tangent plane, motion directions can
be sampled directly inside of this thickened region without computing tangent
planes. This results in an easier implementation, but it is less efficient [136].

7.4.2 Active-Passive Link Decompositions

An alternative sampling-based approach is to perform an active-passive decom-
position, which is used to generate samples in Cclo by directly sampling active
variables, and computing the closure values for passive variables using inverse
kinematics methods. This method was introduced in [72] and subsequently im-
proved through the development of the random loop generator in [41, 43]. The
method serves as a general framework that can adapt virtually any of the meth-
ods of Chapter 5 to handle closed kinematic chains, and experimental evidence
suggests that the performance is better than the method of Section 7.4.1. One
drawback is that the method requires some careful analysis of the linkage to de-
termine the best decomposition and also bounds on its mobility. Such analysis
exists for very general classes of linkages [41].

Active and passive variables In this section, let C denote the C-space ob-
tained from all joint variables, instead of requiring C = Rn, as in Section 7.4.1.
This means that P includes only polynomials that encode closure constraints, as
opposed to allowing constraints that represent rotations. Using the tree repre-
sentation from Section 4.4.3, this means that C is of dimension n, arising from
assigning one variable for each revolute joint of the linkage in the absence of any
constraints. Let q ∈ C denote this vector of configuration variables. The active-
passive decomposition partitions the variables of q to form two vectors, qa, called
the active variables and qp, called the passive variables. The values of passive
variables are always determined from the active variables by enforcing the closure

344 S. M. LaValle: Planning Algorithms

constraints and using inverse kinematics techniques. If m is the dimension of Cclo,
then there are always m active variables and n−m passive variables.

θ2

θ4

θ5 θ6

θ1
θ7

θ3

Figure 7.23: A chain of links in the plane. There are seven links and seven joints,
which are constrained to form a loop. The dimension of C is seven, but the
dimension of Cclo is four.

Temporarily, suppose that the linkage forms a single loop as shown in Figure
7.23. One possible decomposition into active qa and passive qp variables is given in
Figure 7.24. If constrained to form a loop, the linkage has four degrees of freedom,
assuming the bottom link is rigidly attached to the ground. This means that values
can be chosen for four active joint angles qa and the remaining three qp can be
derived from solving the inverse kinematics. To determine qp, there are three
equations and three unknowns. Unfortunately, these equations are nonlinear and
fairly complicated. Nevertheless, efficient solutions exist for this case, and the 3D
generalization [100]. For a 3D loop formed of revolute joints, there are six passive
variables. The number, 3, of passive links in R2 and the number 6 for R3 arise
from the dimensions of SE(2) and SE(3), respectively. This is the freedom that
is stripped away from the system by enforcing the closure constraints. Methods
for efficiently computing inverse kinematics in two and three dimensions are given
in [12]. These can also be applied to the RDT stepping method in Section 7.4.1,
instead of using continuation.

If the maximal number of passive variables is used, there is at most a finite
number of solutions to the inverse kinematics problem; this implies that there are
often several choices for the passive variable values. It could be the case that
for some assignments of active variables, there are no solutions to the inverse
kinematics. An example is depicted in Figure 7.25. Suppose that we want to
generate samples in Cclo by selecting random values for qa and then using inverse
kinematics for qp. What is the probability that a solution to the inverse kinematics

7.4. PLANNING FOR CLOSED KINEMATIC CHAINS 345

qp2

qa1
qa2 qa3

qa7
qp3

Passive joints qp1

Figure 7.24: Three of the joint variables can be determined automatically by
inverse kinematics. Therefore, four of the joints be designated as active, and the
remaining three will be passive.

exists? For the example shown, it appears that solutions would not exist in most
trials.

Loop generator The random loop generator greatly improves the chance of
obtaining closure by iteratively restricting the range on each of the active variables.
The method requires that the active variables appear sequentially along the chain
(i.e., there is no interleaving of active and passive variables). Them coordinates of
qa are obtained sequentially as follows. First, compute an interval, I1, of allowable
values for qa1 . The interval serves as a loose bound in the sense that, for any value
qa1 6∈ I1, it is known for certain that closure cannot be obtained. This is ensured
by performing a careful geometric analysis of the linkage, which will be explained
shortly. The next step is to generate a sample in qa1 ∈ I1, which is accomplished
in [41] by picking a random point in I1. Using the value qa1 , a bounding interval
I2 is computed for allowable values of qa2 . The value qa2 is obtained by sampling
in I2. This process continues iteratively until Im and qam are obtained, unless it
terminates early because some Ii = ∅ for i < m. If successful termination occurs,
then the active variables qa are used to find values qp for the passive variables.
This step still might fail, but the probability of success is now much higher. The
method can also be applied to linkages in which there are multiple, common loops,
as in the Stewart-Gough platform, by breaking the linkage into a tree and closing
loops one at a time using the loop generator. The performance depends on how
the linkage is decomposed [41].

346 S. M. LaValle: Planning Algorithms

Figure 7.25: In this case, the active variables are chosen in a way that makes it
impossible to assign passive variables that close the loop.

Computing bounds on joint angles The main requirement for successful
application of the method is the ability to compute bounds on how far a chain
of links can travel in W over some range of joint variables. For example, for a
planar chain that has revolute joints with no limits, the chain can sweep out a
circle as shown in Figure 7.26a. Suppose it is known that the angle between links
must remain between −π/6 and π/6. A tighter bounding region can be obtained,
as shown in Figure 7.26b. Three-dimensional versions of these bounds, along
with many necessary details, are included in [41]. These bounds are then used to
compute Ii in each iteration of the sampling algorithm.

Now that there is an efficient method that generates samples directly in Cclo,
it is straightforward to adapt any of the sampling-based planning methods of
Chapter 5. In [41] many impressive results are obtained for challenging problems
that have the dimension of C up to 97 and the dimension of Cclo up to 25; see
Figure 7.27. These methods are based on applying the new sampling techniques
to the RDTs of Section 5.5 and the visibility sampling-based roadmap of Section
5.6.2. For these algorithms, the local planning method is applied to the active
variables, and inverse kinematics algorithms are used for the passive variables
in the path validation step. This means that inverse kinematics and collision
checking are performed together, instead of only collision checking, as described
in Section 5.3.4.

One important issue that has been neglected in this section is the existence of
kinematic singularities, which cause the dimension of Cclo to drop in the vicinity of
certain points. The methods presented here have assumed that solving the motion
planning problem does not require passing through a singularity. This assump-

7.5. FOLDING PROBLEMS IN ROBOTICS AND BIOLOGY 347

(a) (b)

Figure 7.26: (a) If any joint angle is possible, then the links sweep out a circle in
the limit. (b) If there are limits on the joint angles, then a tighter bound can be
obtained for the reachability of the linkage.

tion is reasonable for robot systems that have many extra degrees of freedom,
but it is important to understand that completeness is lost in general because
the sampling-based methods do not explicitly handle these degeneracies. In a
sense, they occur below the level of sampling resolution. For more information on
kinematic singularities and related issues, see [103].

7.5 Folding Problems in Robotics and Biology

A growing number of motion planning applications involve some form of folding.
Examples include automated carton folding, computer-aided drug design, protein
folding, modular reconfigurable robots, and even robotic origami. These problems
are generally modeled as a linkage in which all bodies are connected by revolute
joints. In robotics, self-collision between pairs of bodies usually must be avoided.
In biological applications, energy functions replace obstacles. Instead of crisp
obstacle boundaries, energy functions can be imagined as “soft” obstacles, in which
a real value is defined for every q ∈ C, instead of defining a set Cobs ⊂ C. For a given
threshold value, such energy functions can be converted into an obstacle region
by defining Cobs to be the configurations that have energy above the threshold.
However, the energy function contains more information because such thresholds
are arbitrary. This section briefly shows some examples of folding problems and
techniques from the recent motion planning literature.

Carton folding An interesting application of motion planning to the automated
folding of boxes is presented in [98]. Figure 7.28 shows a carton in its original
flat form and in its folded form. As shown in Figure 7.29, the problem can be

348 S. M. LaValle: Planning Algorithms

Figure 7.27: Planning for the Logabex LX4 robot [31]. This solution was com-
puted in less than a minute by applying active-passive decomposition to an RDT-
based planner [41]. In this example, the dimension of C is 97 and the dimension
of Cclo is 25.

modeled as a tree of bodies connected by revolute joints. Once this model has
been formulated, many methods from Chapters 5 and 6 can be adapted for this
problem. In [98], a planning algorithm optimized particularly for box folding
is presented. It is an adaptation of an approximate cell decomposition algorithm
developed for kinematic chains in [97]. Its complexity is exponential in the degrees
of freedom of the carton, but it gives good performance on practical examples.
One such solution that was found by motion planning is shown in Figure 7.30. To
use these solutions in a factory, the manipulation problem has to be additionally
considered. For example, as demonstrated in [98], a manipulator arm robot can be
used in combination with a well-designed set of fixtures. The fixtures help hold

Figure 7.28: An important packaging problem is to automate the folding of a
perforated sheet of cardboard into a carton.

7.5. FOLDING PROBLEMS IN ROBOTICS AND BIOLOGY 349

Figure 7.29: The carton can be cleverly modeled as a tree of bodies that are
attached by revolute joints.

Figure 7.30: A folding sequence that was computed using the algorithm in [98].

350 S. M. LaValle: Planning Algorithms

the carton in place while the manipulator applies pressure in the right places,
which yields the required folds. Since the feasibility with fixtures depends on
the particular folding path, the planning algorithm generates all possible distinct
paths from the initial configuration (at which the box is completely unfolded).

Simplifying knots A knot is a closed curve that does not intersect itself, is
embedded in R3, and cannot be untangled to produce a simple loop (such as a
circular path). If the knot is allowed to intersect itself, then any knot can be
untangled; therefore, a careful definition of what it means to untangle a knot is
needed. For a closed curve, τ : [0, 1] → R3, embedded in R3 (it cannot intersect
itself), let the set R3 \ τ([0, 1]) of points not reached by the curve be called the
ambient space of τ . In knot theory, an ambient isotopy between two closed curves,
τ1 and τ2, embedded in R3 is a homeomorphism between their ambient spaces.
Intuitively, this means that τ1 can be warped into τ2 without allowing any self-
intersections. Therefore, determining whether two loops are equivalent seems
closely related to motion planning. Such equivalence gives rise to groups that
characterize the space of knots and are closely related to the fundamental group
described in Section 4.1.3. For more information on knot theory, see [4, 75, 83].

A motion planning approach was developed in [89] to determine whether a
closed curve is equivalent to the unknot, which is completely untangled. This
can be expressed as a curve that maps onto S1, embedded in R3. The algorithm
takes as input a knot expressed as a circular chain of line segments embedded in
R3. In this case, the unknot can be expressed as a triangle in R3. One of the
most challenging examples solved by the planner is shown in Figure 7.31. The
planner is sampling-based and shares many similarities with the RDT algorithm
of Section 5.5 and the Ariadne’s clew and expansive space planners described in
Section 5.4.4. Since the task is not to produce a collision-free path, there are
several unique aspects in comparison to motion planning. An energy function is
defined over the collection of segments to try to guide the search toward simpler
configurations. There are two kinds of local operations that are made by the
planner: 1) Try to move a vertex toward a selected subgoal in the ambient space.
This is obtained by using random sampling to grow a search tree. 2) Try to delete
a vertex, and connect the neighboring vertices by a straight line. If no collision
occurs along the intermediate configurations, then the knot has been simplified.
The algorithm terminates when it is unable to further simplify the knot.

Drug design A sampling-based motion planning approach to pharmaceutical
drug design is taken in [92]. The development of a drug is a long, incremental
process, typically requiring years of research and experimentation. The goal is
to find a relatively small molecule called a ligand, typically comprising a few
dozen atoms, that docks with a receptor cavity in a specific protein [94]; Figure
1.14 (Section 1.2) illustrated this. Examples of drug molecules were also given
in Figure 1.14. Protein-ligand docking can stimulate or inhibit some biological

7.5. FOLDING PROBLEMS IN ROBOTICS AND BIOLOGY 351

Figure 7.31: The planner in [89] untangles the famous Ochiai unknot benchmark
in a few minutes on a standard PC.

activity, ultimately leading to the desired pharmacological effect. The problem
of finding suitable ligands is complicated due to both energy considerations and
the flexibility of the ligand. In addition to satisfying structural considerations,
factors such as synthetic accessibility, drug pharmacology and toxicology greatly
complicate and lengthen the search for the most effective drug molecules.

One popular model used by chemists in the context of drug design is a phar-
macophore, which serves as a template for the desired ligand [40, 52, 62, 121]. The
pharmacophore is expressed as a set of features that an effective ligand should pos-
sess and a set of spatial constraints among the features. Examples of features are
specific atoms, centers of benzene rings, positive or negative charges, hydrophobic
or hydrophilic centers, and hydrogen bond donors or acceptors. Features gener-
ally require that parts of the molecule must remain fixed in R3, which induces
kinematic closure constraints. These features are developed by chemists to en-
capsulate the assumption that ligand binding is due primarily to the interaction
of some features of the ligand to “complementary” features of the receptor. The
interacting features are included in the pharmacophore, which is a template for
screening candidate drugs, and the rest of the ligand atoms merely provide a scaf-
fold for holding the pharmacophore features in their spatial positions. Figure 7.32
illustrates the pharmacophore concept.

352 S. M. LaValle: Planning Algorithms

(x2, y2, z2)

(x1, y1, z1)
(x3, y3, z3)

(0, 0, 0)

Figure 7.32: A pharmacophore is a model used by chemists to simplify the in-
teraction process between a ligand (candidate drug molecule) and a protein. It
often amounts to holding certain features of the molecule fixed in R3. In this
example, the positions of three atoms must be fixed relative to the body frame
of an arbitrarily designated root atom. It is assumed that these features interact
with some complementary features in the cavity of the protein.

Candidate drug molecules (ligands), such as the ones shown in Figure 1.14,
can be modeled as a tree of bodies as shown in Figure 7.33. Some bonds can
rotate, yielding revolute joints in the model; other bonds must remain fixed. The
drug design problem amounts to searching the space of configurations (called
conformations) to try to find a low-energy configuration that also places certain
atoms in specified locations in R3. This additional constraint arises from the
pharmacophore and causes the planning to occur on Cclo from Section 7.4 because
the pharmacophores can be expressed as closure constraints.

An energy function serves a purpose similar to that of a collision detector. The
evaluation of a ligand for drug design requires determining whether it can achieve
low-energy conformations that satisfy the pharmacophore constraints. Thus, the
task is different from standard motion planning in that there is no predetermined
goal configuration. One of the greatest difficulties is that the energy functions are
extremely complicated, nonlinear, and empirical. Here is typical example (used
in [92]):

e(q)=
∑

bonds
1

2
Kb(R− R′)2 +

∑

ang
1

2
Ka(α− α′)2+

∑

torsionsKd[1 + cos(pθ − θ′)] +

∑

i,j

{

4ǫij

[

(

σij

rij

)12

−
(

σij

rij

)6
]

+
cicj
ǫrij

}

.

(7.25)

7.5. FOLDING PROBLEMS IN ROBOTICS AND BIOLOGY 353

θ1
θ2

θ3

θ5

θ6

θ4

Root Atom

Figure 7.33: The modeling of a flexible molecule is similar to that of a robot. One
atom is designated as the root, and the remaining bodies are arranged in a tree.
If there are cyclic chains in the molecules, then constraints as described in Section
4.4 must be enforced. Typically, only some bonds are capable of rotation, whereas
others must remain rigid.

The energy accounts for torsion-angle deformations, van der Waals potential, and
Coulomb potentials. In (7.25), the first sum is taken over all bonds, the second
over all bond angles, the third over all rotatable bonds, and the last is taken
over all pairs of atoms. The variables are the force constants, Kb, Ka, and Kd;
the dielectric constant, ǫ; a periodicity constant, p; the Lennard-Jones radii, σij ;
well depth, ǫij; partial charge, ci; measured bond length, R; equilibrium bond
length, R′; measured bond angle, α; equilibrium bond angle, α′; measured tor-
sional angle, θ; equilibrium torsional angle, θ′; and distance between atom centers,
rij. Although the energy expression is very complicated, it only depends on the
configuration variables; all others are constants that are estimated in advance.

Protein folding In computational biology, the problem of protein folding shares
many similarities with drug design in that the molecules have rotatable bonds and
energy functions are used to express good configurations. The problems are much
more complicated, however, because the protein molecules are generally much
larger than drug molecules. Instead of a dozen degrees of freedom, which is typi-
cal for a drug molecule, proteins have hundreds or thousands of degrees of freedom.
When proteins appear in nature, they are usually in a folded, low-energy config-
uration. The structure problem involves determining precisely how the protein is
folded so that its biological activity can be completely understood. In some stud-
ies, biologists are even interested in the pathway that a protein takes to arrive in

354 S. M. LaValle: Planning Algorithms

its folded state [10, 11]. This leads directly to an extension of motion planning
that involves arriving at a goal state in which the molecule is folded. In [10, 11],
sampling-based planning algorithms were applied to compute folding pathways
for proteins. The protein starts in an unfolded configuration and must arrive in a
specified folded configuration without violating energy constraints along the way.
Figure 7.34 shows an example from [11]. That work also draws interesting con-
nections between protein folding and box folding, which was covered previously.

Figure 7.34: Protein folding for a polypeptide, computed by a sampling-based
roadmap planning algorithm [10]

7.6 Coverage Planning

Imagine automating the motion of a lawnmower for an estate that has many obsta-
cles, such as a house, trees, garage, and a complicated property boundary. What
are the best zig-zag motions for the lawnmower? Can the amount of redundant
traversals be minimized? Can the number of times the lawnmower needs to be
stopped and rotated be minimized? This is one example of coverage planning,
which is motivated by applications such as lawn mowing, automated farming,
painting, vacuum cleaning, and mine sweeping. A survey of this area appears in
[37]. Even for a region in W = R2, finding an optimal-length solution to coverage
planning is NP-hard, by reduction to the closely related Traveling Salesman Prob-
lem [15, 106]. Therefore, we are willing to tolerate approximate or even heuristic
solutions to the general coverage problem, even in R2.

Boustrophedon decomposition One approach to the coverage problem is to
decompose Cfree into cells and perform boustrophedon (from the Greek “ox turn-
ing”) motions in each cell as shown in Figure 7.35 [38]. It is assumed that the
robot is a point in W = R2, but it carries a tool of thickness ǫ that hangs evenly
over the sides of the robot. This enables it to paint or mow part of Cfree up to
distance ǫ/2 from either side of the robot as it moves forward. Such motions are
often used in printers to reduce the number of carriage returns.

7.6. COVERAGE PLANNING 355

Figure 7.35: An example of the ox plowing motions.

(a) (b)

Figure 7.36: (a) Only the first case from Figure 6.2 is needed: extend upward
and downward. All other cases are neglected. (b) The resulting decomposition
is shown, which has fewer cells than that of the vertical decomposition in Figure
6.3.

If Cobs is polygonal, a reasonable decomposition can be obtained by adapting
the vertical decomposition method of Section 6.2.2. In that algorithm, critical
events were defined for several cases, some of which are not relevant for the bous-
trophedon motions. The only events that need to be handled are shown in Figure
7.36a [36]. This produces a decomposition that has fewer cells, as shown in Fig-
ure 7.36b. Even though the cells are nonconvex, they can always be sliced nicely
into vertical strips, which makes them suitable for boustrophedon motions. The
original vertical decomposition could also be used, but the extra cell boundaries
would cause unnecessary repositioning of the robot. A similar method, which
furthermore optimizes the number of robot turns, is presented in [79].

Spanning tree covering An interesting approximate method was developed
by Gabriely and Rimon; it places a tiling of squares inside of Cfree and computes
the spanning tree of the resulting connectivity graph [58, 59]. Suppose again that
Cfree is polygonal. Consider the example shown in Figure 7.37a. The first step is

356 S. M. LaValle: Planning Algorithms

(a) (b)

(c) (d)

Figure 7.37: (a) An example used for spanning tree covering. (b) The first step is
to tile the interior with squares. (c) The spanning tree of a roadmap formed from
grid adjacencies. (d) The resulting coverage path.

7.7. OPTIMAL MOTION PLANNING 357

Figure 7.38: A circular path is made by doubling the resolution and following the
perimeter of the spanning tree.

to tile the interior of Cfree with squares, as shown in Figure 7.37b. Each square
should be of width ǫ, for some constant ǫ > 0. Next, construct a roadmap G
by placing a vertex in the center of each square and by defining an edge that
connects the centers of each pair of adjacent cubes. The next step is to compute
a spanning tree of G. This is a connected subgraph that has no cycles and touches
every vertex of G; it can be computed in O(n) time, if G has n edges [102]. There
are many possible spanning trees, and a criterion can be defined and optimized
to induce preferences. One possible spanning tree is shown Figure 7.37c.

Once the spanning tree is made, the robot path is obtained by starting at a
point near the spanning tree and following along its perimeter. This path can be
precisely specified as shown in Figure 7.38. Double the resolution of the tiling,
and form the corresponding roadmap. Part of the roadmap corresponds to the
spanning tree, but also included is a loop path that surrounds the spanning tree.
This path visits the centers of the new squares. The resulting path for the example
of Figure 7.37a is shown in Figure 7.37d. In general, the method yields an optimal
route, once the approximation is given. A bound on the uncovered area due to
approximation is given in [58]. Versions of the method that do not require an
initial map are also given in [58, 59]; this involves reasoning about information
spaces, which are covered in Chapter 11.

7.7 Optimal Motion Planning

This section can be considered transitional in many ways. The main concern so far
with motion planning has been feasibility as opposed to optimality. This placed
the focus on finding any solution, rather than further requiring that a solution be
optimal. In later parts of the book, especially as uncertainty is introduced, opti-
mality will receive more attention. Even the most basic forms of decision theory
(the topic of Chapter 9) center on making optimal choices. The requirement of
optimality in very general settings usually requires an exhaustive search over the
state space, which amounts to computing continuous cost-to-go functions. Once
such functions are known, a feedback plan is obtained, which is much more power-
ful than having only a path. Thus, optimality also appears frequently in the design

358 S. M. LaValle: Planning Algorithms

Figure 7.39: For a polyhedral environment, the shortest paths do not have to
cross vertices. Therefore, the shortest-path roadmap method from Section 6.2.4
does not extend to three dimensions.

of feedback plans because it sometimes comes at no additional cost. This will be-
come clearer in Chapter 8. The quest for optimal solutions also raises interesting
issues about how to approximate a continuous problem as a discrete problem.
The interplay between time discretization and space discretization becomes very
important in relating continuous and discrete planning problems.

7.7.1 Optimality for One Robot

Euclidean shortest paths One of the most straightforward notions of opti-
mality is the Euclidean shortest path in R2 or R3. Suppose that A is a rigid body
that translates only in either W = R2 or W = R3, which contains an obstacle
region O ⊂ W . Recall that, ordinarily, Cfree is an open set, which means that any
path, τ : [0, 1] → Cfree, can be shortened. Therefore, shortest paths for motion
planning must be defined on the closure cl(Cfree), which allows the robot to make
contact with the obstacles; however, their interiors must not intersect.

For the case in which Cobs is a polygonal region, the shortest-path roadmap
method of Section 6.2.4 has already been given. This can be considered as a
kind of multiple-query approach because the roadmap completely captures the
structure needed to construct the shortest path for any query. It is possible to
make a single-query algorithm using the continuous Dijkstra paradigm [73, 105].
This method propagates a wavefront from qI and keeps track of critical events
in maintaining the wavefront. As events occur, the wavefront becomes composed
of wavelets, which are arcs of circles centered on obstacle vertices. The possible
events that can occur are 1) a wavelet disappears, 2) a wavelet collides with an
obstacle vertex, 3) a wavelet collides with another wavelet, or 4) a wavelet collides
with a point in the interior of an obstacle edge. The method can be made to run
in time O(n lg n) and uses O(n lg n) space. A roadmap is constructed that uses
O(n) space. See Section 8.4.3 for a related method.

Such elegant methods leave the impression that finding shortest paths is not
very difficult, but unfortunately they do not generalize nicely to R3 and a polyhe-
dral Cobs. Figure 7.39 shows a simple example in which the shortest path does not
have to cross a vertex of Cobs. It may cross anywhere in the interior of an edge;

7.7. OPTIMAL MOTION PLANNING 359

therefore, it is not clear where to draw the bitangent lines that would form the
shortest-path roadmap. The lower bounds for this problem are also discouraging.
It was shown in [28] that the 3D shortest-path problem in a polyhedral environ-
ment is NP-hard. Most of the difficulty arises because of the precision required to
represent 3D shortest paths. Therefore, efficient polynomial-time approximation
algorithms exist [35, 110].

General optimality criteria It is difficult to even define optimality for more
general C-spaces. What does it mean to have a shortest path in SE(2) or SE(3)?
Consider the case of a planar, rigid robot that can translate and rotate. One
path could minimize the amount of rotation whereas another tries to minimize
the amount of translation. Without more information, there is no clear preference.
Ulam’s distance is one possibility, which is to minimize the distance traveled by
k fixed points [80]. In Chapter 13, differential models will be introduced, which
lead to meaningful definitions of optimality. For example, the shortest paths for a
slow-moving car are shown in Section 15.3; these require a precise specification of
the constraints on the motion of the car (it is more costly to move a car sideways
than forward).

This section formulates some optimal motion planning problems, to provide
a smooth transition into the later concepts. Up until now, actions were used in
Chapter 2 for discrete planning problems, but they were successfully avoided for
basic motion planning by directly describing paths that map into Cfree. It will be
convenient to use them once again. Recall that they were convenient for defining
costs and optimal planning in Section 2.3.

To avoid for now the complications of differential equations, consider making
an approximate model of motion planning in which every path must be composed
of a sequence of shortest-path segments in Cfree. Most often these are line seg-
ments; however, for the case of SO(3), circular arcs obtained by spherical linear
interpolation may be preferable. Consider extending Formulation 2.3 from Section
2.3.2 to the problem of motion planning.

Let the C-space C be embedded in Rm (i.e., C ⊂ Rm). An action will be defined
shortly as anm-dimensional vector. Given a scaling constant ǫ and a configuration
q, an action u produces a new configuration, q′ = q + ǫu. This can be considered
as a configuration transition equation, q′ = f(q, u). The path segment represented
by the action u is the shortest path (usually a line segment) between q and q′.
Following Section 2.3, let πK denote a K-step plan, which is a sequence (u1, u2,
. . ., uK) of K actions. Note that if πK and qI are given, then a sequence of states,
q1, q2, . . ., qK+1, can be derived using f . Initially, q1 = qI , and each following
state is obtained by qk+1 = f(qk, uk). From this a path, τ : [0, 1] → C, can be
derived.

An approximate optimal planning problem is formalized as follows:

Formulation 7.4 (Approximate Optimal Motion Planning)

360 S. M. LaValle: Planning Algorithms

1. The following components are defined the same as in Formulation 4.1: W , O,
A, C, Cobs, Cfree, and qI . It is assumed that C is an n-dimensional manifold.

2. For each q ∈ C, a possibly infinite action space, U(q). Each u ∈ U is an
n-dimensional vector.

3. A positive constant ǫ > 0 called the step size.

4. A set of stages, each denoted by k, which begins at k = 1 and continues
indefinitely. Each stage is indicated by a subscript, to obtain qk and uk.

5. A configuration transition function f(q, u) = q + ǫu in which q + ǫu is com-
puted by vector addition on Rm.

6. Instead of a goal state, a goal region XG is defined.

7. Let L denote a real-valued cost functional, which is applied to a K-step
plan, πK . This means that the sequence (u1, . . . , uK) of actions and the
sequence (q1, . . . , qK+1) of configurations may appear in an expression of L.
Let F = K + 1. The cost functional is

L(πK) =
K
∑

k=1

l(qk, uk) + lF (qF). (7.26)

The final term lF (qF) is outside of the sum and is defined as lF (qF) = 0
if qF ∈ XG and lF (qF) = ∞ otherwise. As in Formulation 2.3, K is not
necessarily a constant.

8. Each U(q) contains the special termination action uT , which behaves the
same way as in Formulation 2.3. If uT is applied to qk at stage k, then the
action is repeatedly applied forever, the configuration remains in qk forever,
and no more cost accumulates.

The task is to compute a sequence of actions that optimizes (7.26). Formu-
lation 7.4 can be used to define a variety of optimal planning problems. The
parameter ǫ can be considered as the resolution of the approximation. In many
formulations it can be interpreted as a time step, ǫ = ∆t; however, note that no
explicit time reference is necessary because the problem only requires constructing
a path through Cfree. As ǫ approaches zero, the formulation approaches an exact
optimal planning problem. To properly express the exact problem, differential
equations are needed. This is deferred until Part IV.

Example 7.4 (Manhattan Motion Model) Suppose that in addition to uT ,
the action set U(q) contains 2n vectors in which only one component is nonzero
and must take the value 1 or −1. For example, if C = R2, then

U(q) = {(1, 0), (−1, 0), (0,−1), (0, 1), uT}. (7.27)

7.7. OPTIMAL MOTION PLANNING 361

Figure 7.40: Under the Manhattan (L1) motion model, all monotonic paths that
follow the grid directions have equivalent length.

Independent
Joint

EuclideanManhattan

Figure 7.41: Depictions of the action sets, U(q), for Examples 7.4, 7.5, and 7.6.

When used in the configuration transition equation, this set of actions produces
“up,” “down,” “left,” and “right” motions and a “terminate” command. This pro-
duces a topological graph according to the 1-neighborhood model, (5.37), which
was given in Section 5.4.2. The action set for this example and the following
two examples are shown in Figure 7.41 for comparison. The cost term l(qk, uk) is
defined to be 1 for all qk ∈ Cfree and uk. If qk ∈ Cobs, then l(qk, uk) = ∞. Note
that the set of configurations reachable by these actions lies on a grid, in which
the spacing between 1-neighbors is ǫ. This corresponds to a convenient special
case in which time discretization (implemented by ǫ) leads to a regular space dis-
cretization. Consider Figure 7.40. It is impossible to take a shorter path along
a diagonal because the actions do not allow it. Therefore, all monotonic paths
along the grid produce the same costs.

Optimal paths can be obtained by simply applying the dynamic programming
algorithms of Chapter 2. This example provides a nice unification of concepts from
Section 2.2, which introduced grid search, and Section 5.4.2, which explained how
to adapt search methods to motion planning. In the current setting, only algo-
rithms that produce optimal solutions on the corresponding graph are acceptable.

This form of optimization might not seem relevant because it does not represent
the Euclidean shortest-path problem for R2. The next model adds more actions,

362 S. M. LaValle: Planning Algorithms

and does correspond to an important class of optimization problems in robotics.
�

Example 7.5 (Independent-Joint Motion Model) Now suppose that U(q)
includes uT and the set of all 3n vectors for which every element is either −1, 0,
or 1. Under this model, a path can be taken along any diagonal. This still does
not change the fact that all reachable configurations lie on a grid. Therefore, the
standard grid algorithms can be applied once again. The difference is that now
there are 3n− 1 edges emanating from every vertex, as opposed to 2n in Example
7.4. This model is appropriate for robots that are constructed from a collection
of links attached by revolute joints. If each joint is operated independently, then
it makes sense that each joint could be moved either forward, backward, or held
stationary. This corresponds exactly to the actions. However, this model cannot
nicely approximate Euclidean shortest paths; this motivates the next example. �

Example 7.6 (Euclidean Motion Model) To approximate Euclidean short-
est paths, let U(q) = Sn−1∪{uT}, in which Sn−1 is the m-dimensional unit sphere
centered at the origin of Rn. This means that in k stages, any piecewise-linear
path in which each segment has length ǫ can be formed by a sequence of inputs.
Therefore, the set of reachable states is no longer confined to a grid. Consider
taking ǫ = 1, and pick any point, such as (π, π) ∈ R2. How close can you come to
this point? It turns out that the set of points reachable with this model is dense
in Rn if obstacles are neglected. This means that we can come arbitrarily close to
any point in Rn. Therefore, a finite grid cannot be used to represent the problem.
Approximate solutions can still be obtained by numerically computing an optimal
cost-to-go function over C. This approach is presented in Section 8.5.2.

One additional issue for this problem is the precision defined for the goal. If
the goal region is very small relative to ǫ, then complicated paths may have to be
selected to arrive precisely at the goal. �

Example 7.7 (Weighted-Region Problem) In outdoor and planetary navi-
gation applications, it does not make sense to define obstacles in the crisp way
that has been used so far. For each patch of terrain, it is more convenient to
associate a cost that indicates the estimated difficulty of its traversal. This is
sometimes considered as a “grayscale” model of obstacles. The model can be
easily captured in the cost term l(qk, uk). The action spaces can be borrowed
from Examples 7.4 or 7.5. Stentz’s algorithm [125], which is introduced in Section
12.3.2, generates optimal navigation plans for this problem, even assuming that
the terrain is initially unknown. Theoretical bounds for optimal weighted-region
planning problems are given in [106, 107]. An approximation algorithm appears

7.7. OPTIMAL MOTION PLANNING 363

A2A1

Figure 7.42: There are two Pareto-optimal coordination plans for this problem,
depending on which robot has to wait.

in [118]. �

7.7.2 Multiple-Robot Optimality

Suppose that there are two robots as shown in Figure 7.42. There is just enough
room to enable the robots to translate along the corridors. Each would like to
arrive at the bottom, as indicated by arrows; however, only one can pass at a
time through the horizontal corridor. Suppose that at any instant each robot can
either be on or off. When it is on, it moves at its maximum speed, and when it
is off, it is stopped.4 Now suppose that each robot would like to reach its goal as
quickly as possible. This means each would like to minimize the total amount of
time that it is off. In this example, there appears to be only two sensible choices:
1) A1 stays on and moves straight to its goal while A2 is off just long enough
to let A1 pass, and then moves to its goal. 2) The opposite situation occurs, in
which A2 stays on and A1 must wait. Note that when a robot waits, there are
multiple locations at which it can wait and still yield the same time to reach the
goal. The only important information is how long the robot was off.

Thus, the two interesting plans are that either A2 is off for some amount of
time, toff > 0, or A1 is off for time toff . Consider a vector of costs of the form
(L1, L2), in which each component represents the cost for each robot. The costs
of the plans could be measured in terms of time wasted by waiting. This yields

4This model allows infinite acceleration. Imagine that the speeds are slow enough to allow
this approximation. If this is still not satisfactory, then jump ahead to Chapter 13.

364 S. M. LaValle: Planning Algorithms

(0, toff) and (toff , 0) for the cost vectors associated with the two plans (we could
equivalently define cost to be the total time traveled by each robot; the time
on is the same for both robots and can be subtracted from each for this simple
example). The two plans are better than or equivalent to any others. Plans with
this property are called Pareto optimal (or nondominated). For example, if A2

waits 1 second too long for A1 to pass, then the resulting costs are (0, toff + 1),
which is clearly worse than (0, toff). The resulting plan is not Pareto optimal.
More details on Pareto optimality appear in Section 9.1.1.

Another way to solve the problem is to scalarize the costs by mapping them
to a single value. For example, we could find plans that optimize the average
wasted time. In this case, one of the two best plans would be obtained, yield-
ing toff average wasted time. However, no information is retained about which
robot had to make the sacrifice. Scalarizing the costs usually imposes some kind
of artificial preference or prioritization among the robots. Ultimately, only one
plan can be chosen, which might make it seem inappropriate to maintain multiple
solutions. However, finding and presenting the alternative Pareto-optimal solu-
tions could provide valuable information if, for example, these robots are involved
in a complicated application that involves many other time-dependent processes.
Presenting the Pareto-optimal solutions is equivalent to discarding all of the worse
plans and showing the best alternatives. In some applications, priorities between
robots may change, and if a scheduler of robots has access to the Pareto-optimal
solutions, it is easy to change priorities by switching between Pareto-optimal plans
without having to generate new plans each time.

Now the Pareto-optimality concept will be made more precise and general.
Suppose there are m robots, A1, . . ., Am. Let γ refer to a motion plan that
gives the paths and timing functions for all robots. For each Ai, let Li denote
its cost functional, which yields a value Li(γ) ∈ [0,∞] for a given plan, γ. An
m-dimensional vector, L(γ), is defined as

L(γ) = (L1(γ), L2(γ), . . . , Lm(γ)). (7.28)

Two plans, γ and γ′, are called equivalent if L(γ) = L(γ′). A plan γ is said
to dominate a plan γ′ if they are not equivalent and Li(γ) ≤ Li(γ

′) for all i
such that 1 ≤ i ≤ m. A plan is called Pareto optimal if it is not dominated
by any others. Since many Pareto-optimal plans may be equivalent, the task is
to determine one representative from each equivalence class. This will be called
finding the unique Pareto-optimal plans. For the example in Figure 7.42, there
are two unique Pareto-optimal plans, which were already given.

Scalarization For the motion planning problem, a Pareto-optimal solution is
also optimal for a scalar cost functional that is constructed as a linear combination
of the individual costs. Let α1, . . ., αm be positive real constants, and let

l(γ) =
m
∑

i=1

αiLi(γ). (7.29)

7.7. OPTIMAL MOTION PLANNING 365

It is easy to show that any plan that is optimal with respect to (7.29) is also a
Pareto-optimal solution [93]. If a Pareto optimal solution is generated in this way,
however, there is no easy way to determine what alternatives exist.

Computing Pareto-optimal plans Since optimization for one robot is already
very difficult, it may not be surprising that computing Pareto-optimal plans is even
harder. For some problems, it is even possible that a continuum of Pareto-optimal
solutions exist (see Example 9.3), which is very discouraging. Fortunately, for the
problem of coordinating robots on topological graphs, as considered in Section
7.2.2, there is only a finite number of solutions [64]. A grid-based algorithm,
which is based on dynamic programming and computes all unique Pareto-optimal
coordination plans, is presented in [93]. For the special case of two polygonal
robots moving on a tree of piecewise-linear paths, a complete algorithm is pre-
sented in [34].

Further Reading

This chapter covered some of the most direct extensions of the basic motion planning
problem. Extensions that involve uncertainties are covered throughout Part III, and
the introduction of differential constraints to motion planning is the main focus of Part
IV. Numerous other extensions can be found by searching through robotics research
publications or the Internet.

The treatment of time-varying motion planning in Section 7.1 assumes that all
motions are predictable. Most of the coverage is based on early work [23, 82, 116, 117];
other related work includes [56, 57, 86, 115, 122, 124]. To introduce uncertainties into
this scenario, see Chapter 10. The logic-based representations of Section 2.4 have been
extended to temporal logics to allow time-varying aspects of discrete planning problems
(see Part IV of [61]).

For more on multiple-robot motion planning, see [6, 14, 16, 49, 50, 53, 55, 68, 93,
111, 123]. Closely related is the problem of planning for modular reconfigurable robots
[29, 33, 63, 88, 137]. In both contexts, nonpositive curvature (NPC) is an important
condition that greatly simplifies the structure of optimal paths [22, 63, 64]. For points
moving on a topological graph, the topology of Cfree is described in [1]. Over the last
few years there has also been a strong interest in the coordination of a team or swarm
of robots [26, 39, 45, 46, 47, 51, 54, 99].

The complexity of assembly planning is studied in [65, 85, 108, 132]. The problem
is generally NP-hard; however, for some special cases, polynomial-time algorithms have
been developed [5, 71, 133, 134]. Other works include [30, 70, 76, 78, 87].

Hybrid systems have attracted widespread interest over the past decade. Most of
this work considers how to design control laws for piecewise-smooth systems [21, 95].
Early sources of hybrid control literature appear in [69]. The manipulation planning
framework of Section 7.3.2 is based on [7, 8, 27]. The manipulation planning frame-
work presented in this chapter ignores grasping issues. For analyses and algorithms for
grasping, see [44, 81, 101, 112, 113, 114, 119, 120, 128]. Manipulation on a microscopic
scale is considered in [20].

366 S. M. LaValle: Planning Algorithms

A1

A2

Figure 7.43: Two translating robots moving along piecewise-linear paths.

To read beyond Section 7.4 on sampling-based planning for closed kinematic chains,
see [41, 43, 72, 136]. A complete planner for some closed chains is presented in [104].
For related work on inverse kinematics, see [48, 103]. The power of redundant degrees
of freedom in robot systems was shown in [24].

Section 7.5 is a synthesis of several applications. The application of motion planning
techniques to problems in computational biology is a booming area; see [10, 11, 13, 42,
84, 91, 92, 96, 138] for some representative papers. The knot-planning coverage is based
on [90]. The box-folding presentation is based on [98]. A robotic system and planning
technique for creating origami is presented in [17].

The coverage planning methods presented in Section 7.6 are based on [38] and [58,
59]. A survey of coverage planning appears in [37]. Other references include [2, 3, 25,
60, 74, 79, 135]. For discrete environments, approximation algorithms for the problem
of optimally visiting all states in a goal set (the orienteering problem) are presented and
analyzed in [19, 32].

Beyond two dimensions, optimal motion planning is extremely difficult. See Section
8.5.2 for dynamic programming-based approximations. See [35, 110] for approximate
shortest paths in R3. The weighted region problem is considered in [106, 107]. Pareto-
optimal coordination is considered in [34, 64, 93].

Exercises

1. Consider the obstacle region, (7.1), in the state space for time-varying motion
planning.

(a) To ensure that Xobs is polyhedral, what kind of paths should be allowed?
Show how the model primitives Hi that define O are expressed in general,
using t as a parameter.

(b) Repeat the exercise, but for ensuring that Xobs is semi-algebraic.

2. Propose a way to adapt the sampling-based roadmap algorithm of Section 5.6 to
solve the problem of time-varying motion planning with bounded speed.

3. Develop an efficient algorithm for computing the obstacle region for two translat-
ing polygonal robots that each follow a linear path.

4. Sketch the coordination space for the two robots moving along the fixed paths
shown in Figure 7.43.

7.7. OPTIMAL MOTION PLANNING 367

5. Suppose there are two robots, and each moves on its own roadmap of three paths.
The paths in each roadmap are arranged end-to-end in a triangle.

(a) Characterize the fixed-roadmap coordination space that results, including a
description of its topology.

(b) Now suppose there are n robots, each on a triangular roadmap, and charac-
terize the fixed-roadmap coordination space.

6. Consider the state space obtained as the Cartesian product of the C-spaces of n
identical robots. Suppose that each robot is labeled with a unique integer. Show
that X can be partitioned nicely into n! regions in which Xobs appears identical
and the only difference is the labels (which indicate the particular robots that are
in collision).

7. Suppose there are two robots, and each moves on its own roadmap of three paths.
The paths in one roadmap are arranged end-to-end in a triangle, and the paths
in the other are arranged as a Y. Characterize the fixed-roadmap coordination
space that results, including a description of its topology.

8. Design an efficient algorithm that takes as input a graph representation of the
connectivity of a linkage and computes an active-passive decomposition. Assume
that all links are revolute. The algorithm should work for either 2D or 3D linkages
(the dimension is also an input). Determine the asymptotic running time of your
algorithm.

9. Consider the problem of coordinating the motion of two robots that move along
precomputed paths but in the presence of predictable moving obstacles. Develop
a planning algorithm for this problem.

10. Consider a manipulator in W = R2 made of four links connected in a chain by
revolute joints. There is unit distance between the joints, and the first joint is
attached at (0, 0) in W = R2. Suppose that the end of the last link, which is
position (1, 0) in its body frame, is held at (0, 2) ∈ W.

(a) Use kinematics expressions to express the closure constraints for a configu-
ration q ∈ C.

(b) Convert the closure constraints into polynomial form.

(c) Use differentiation to determine the constraints on the allowable velocities
that maintain closure at a configuration q ∈ C.

Implementations

11. Implement the vertical decomposition algorithm to solve the path-tuning problem,
as shown in Figure 7.5.

12. Use grid-based sampling and a search algorithm to compute collision-free motions
of three robots moving along predetermined paths.

7.7. OPTIMAL MOTION PLANNING i

13. Under the conditions of Exercise 12, compute Pareto-optimal coordination strate-
gies that optimize the time (number of stages) that each robot takes to reach its
goal. Design a wavefront propagation algorithm that keeps track of the com-
plete (ignoring equivalent strategies) set of minimal Pareto-optimal coordination
strategies at each reached state. Avoid storing entire plans at each discretized
state.

14. To gain an appreciation of the difficulties of planning for closed kinematic chains,
try motion planning for a point on a torus among obstacles using only the implicit
torus constraint given by (6.40). To simplify collision detection, the obstacles can
be a collection of balls in R3 that intersect the torus. Adapt a sampling-based
planning technique, such as the bidirectional RRT, to traverse the torus and solve
planning problems.

15. Implement the spanning-tree coverage planning algorithm of Section 7.6.

16. Develop an RRT-based planning algorithm that causes the robot to chase an
unpredictable moving target in a planar environment that contains obstacles.
The algorithm should run quickly enough so that replanning can occur during
execution. The robot should execute the first part of the most recently computed
path while simultaneously computing a better plan for the next time increment.

17. Modify Exercise 16 so that the robot assumes the target follows a predictable,
constant-velocity trajectory until some deviation is observed.

18. Show how to handle unexpected obstacles by using a fast enough planning algo-
rithm. For simplicity, suppose the robot is a point moving in a polygonal obstacle
region. The robot first computes a path and then starts to execute it. If the
obstacle region changes, then a new path is computed from the robot’s current
position. Use vertical decomposition or another algorithm of your choice (pro-
vided it is fast enough). The user should be able to interactively place or move
obstacles during plan execution.

19. Use the manipulation planning framework of Section 7.3.2 to develop an algorithm
that solves the famous Towers of Hanoi problem by a robot that carries the rings
[27]. For simplicity, suppose a polygonal robot moves polygonal parts in W = R2

and rotation is not allowed. Make three pegs, and initially place all parts on
one peg, sorted from largest to smallest. The goal is to move all of the parts to
another peg while preserving the sorting.

20. Use grid-based approximation to solve optimal planning problems for a point
robot in the plane. Experiment with using different neighborhoods and metrics.
Characterize the combinations under which good and bad approximations are
obtained.

ii S. M. LaValle: Planning Algorithms

Bibliography

[1] A. Abrams and R. Ghrist. Finding topology in a factory: Configuration
spaces. The American Mathematics Monthly, 109:140–150, February 2002.

[2] E. U. Acar and H. Choset. Complete sensor-based coverage with extended-
range detectors: A hierarchical decomposition in terms of critical points and
Voronoi diagrams. In Proceedings IEEE/RSJ International Conference on
Intelligent Robots and Systems, 2001.

[3] E. U. Acar and H. Choset. Robust sensor-based coverage of unstructured
environments. In Proceedings IEEE/RSJ International Conference on In-
telligent Robots and Systems, 2001.

[4] C. C. Adams. The Knot Book: An Elementary Introduction to the Mathe-
matical Theory of Knots. W. H. Freeman, New York, 1994.

[5] P. Agarwal, M. de Berg, D. Halperin, and M. Sharir. Efficient generation
of k-directional assembly sequences. In ACM Symposium on Discrete Algo-
rithms, pages 122–131, 1996.

[6] S. Akella and S. Hutchinson. Coordinating the motions of multiple robots
with specified trajectories. In Proceedings IEEE International Conference
on Robotics & Automation, pages 624–631, 2002.

[7] R. Alami, J.-P. Laumond, and T. Siméon. Two manipulation planning
algorithms. In J.-P. Laumond and M. Overmars, editors, Algorithms for
Robotic Motion and Manipulation. A.K. Peters, Wellesley, MA, 1997.

[8] R. Alami, T. Siméon, and J.-P. Laumond. A geometrical approach to
planning manipulation tasks. In Proceedings International Symposium on
Robotics Research, pages 113–119, 1989.

[9] G. Allgower and K. Georg. Numerical Continuation Methods. Springer-
Verlag, Berlin, 1990.

[10] N. M. Amato, K. A. Dill, and G. Song. Using motion planning to map pro-
tein folding landscapes and analyze folding kinetics of known native struc-
tures. In Proceedings 6th ACM International Conference on Computational
Molecular Biology (RECOMB), pages 2–11, 2002.

iii

iv BIBLIOGRAPHY

[11] N. M. Amato and G. Song. Using motion planning to study protein folding
pathways. Journal of Computational Biology, 9(2):149–168, 2002.

[12] J. Angeles. Fundamentals of Robotic Mechanical Systems: Theory, Methods,
and Algorithms. Springer-Verlag, Berlin, 2003.

[13] M. Apaydin, D. Brutlag, C. Guestrin, D. Hsu J.-C. Latombe, and C. Varm.
Stochastic roadmap simulation: An efficient representation and algorithm
for analyzing molecular motion. Journal of Computational Biology, 10:257–
281, 2003.

[14] M. D. Ardema and J. M. Skowronski. Dynamic game applied to coordination
control of two arm robotic system. In R. P. Hämäläinen and H. K. Ehtamo,
editors, Differential Games – Developments in Modelling and Computation,
pages 118–130. Springer-Verlag, Berlin, 1991.

[15] E. M. Arkin and R. Hassin. Approximation algorithms for the geometric
covering traveling salesman problem. Discrete Applied Mathematics, 55:194–
218, 1994.

[16] B. Aronov, M. de Berg, A. F. van der Stappen, P. Svestka, and J. Vleugels.
Motion planning for multiple robots. Discrete and Computational Geometry,
22:505–525, 1999.

[17] D. J. Balkcom and M. T. Mason. Introducing robotic origami folding.
In Proceedings IEEE International Conference on Robotics & Automation,
2004.

[18] S. Basu, R. Pollack, and M. F. Roy. Computing roadmaps of semi-algebraic
sets on a variety. Journal of the American Society of Mathematics, 3(1):55–
82, 1999.

[19] A. Blum, S. Chawla, D. Karger, T. Lane, A. Meyerson, and M. Minkoff.
Approximation algorithms for orienteering and discounted-reward TSP. In
Proceedings IEEE Symposium on Foundations of Computer Science, 2003.

[20] K.-F. Böhringer, B. R. Donald, and N. C. MacDonald. Upper and lower
bounds for programmable vector fields with applications to MEMS and vi-
bratory plate parts feeders. In J.-P. Laumond and M. Overmars, editors,
Algorithms for Robotic Motion and Manipulation. A.K. Peters, Wellesley,
MA, 1997.

[21] M. S. Branicky, V. S. Borkar, and S. K. Mitter. A unified framework for
hybrid control: Model and optimal control theory. IEEE Transactions on
Automatic Control, 43(1):31–45, 1998.

[22] M. Bridson and A. Haefliger. Metric Spaces of Non-Positive Curvature.
Springer-Verlag, Berlin, 1999.

BIBLIOGRAPHY v

[23] S. J. Buckley. Fast motion planning for multiple moving robots. In Pro-
ceedings IEEE International Conference on Robotics & Automation, pages
322–326, 1989.

[24] J. W. Burdick. Kinematic Analysis and Design of Redundant Manipulators.
PhD thesis, Stanford University, Stanford, CA, 1988.

[25] Z. J. Butler, A. A. Rizzi, and R. L. Hollis. Contact sensor-based coverage of
rectilinear environments. In IEEE Symposium on Intelligent Control, 1999.

[26] Z. J. Butler and D. Rus. Distributed motion planning for modular robots
with unit-compressible modules. International Journal of Robotics Research,
22(9):699–716, 2003.

[27] S. Cambon, F. Gravot, and R. Alami. A robot task planner and merges
symbolic and geometric reasoning. In Proceedings European Conference on
Artificial Intelligence, 2004.

[28] J. Canny and J. Reif. New lower bound techniques for robot motion planning
problems. In Proceedings IEEE Symposium on Foundations of Computer
Science, pages 49–60, 1987.

[29] A. Casal. Reconfiguration Planning for Modular Self-Reconfigurable Robots.
PhD thesis, Stanford University, Stanford, CA, 2002.

[30] H. Chang and T. Y. Li. Assembly maintainability study with motion plan-
ning. In Proceedings IEEE International Conference on Robotics & Automa-
tion, pages 1012–1019, 1995.

[31] S. Charentus. Modeling and Control of a Robot Manipulator Composed of
Several Stewart Platforms. PhD thesis, Université Paul Sabatier, Toulouse,
France, 1990. In French.

[32] S. Chawla. Graph Algorithms for Planning and Partitioning. PhD thesis,
Carnegie Mellon University, Pittsburgh, PA, June 2005.

[33] G. Chirikjian, A. Pamecha, and I. Ebert-Uphoff. Evaluating efficiency of self-
reconfiguration in a class of modular robots. Journal of Robotic Systems,
13(5):717–338, 1996.

[34] H. Chitsaz, J. M. O’Kane, and S. M. LaValle. Pareto-optimal coordination
of two translating polygonal robots on an acyclic roadmap. In Proceedings
IEEE International Conference on Robotics and Automation, 2004.

[35] J. Choi, J. Sellen, and C. K. Yap. Precision-sensitive Euclidean shortest path
in 3-space. In Proceedings ACM Symposium on Computational Geometry,
pages 350–359, 1995.

vi BIBLIOGRAPHY

[36] H. Choset. Coverage of known spaces: The boustrophedon cellular decom-
position. Autonomous Robots, 9:247–253, 2000.

[37] H. Choset. Coverage for robotics – A survey of recent results. Annals of
Mathematics and Artificial Intelligence, 31:113–126, 2001.

[38] H. Choset and P. Pignon. Cover path planning: The boustrophedron de-
composition. In Proceedings International Conference on Field and Service
Robotics, Canberra, Australia, December 1997.

[39] C. M. Clark, S. M. Rock, and J.-C. Latombe. Motion planning for multiple
mobile robots using dynamic networks. In Proceedings IEEE International
Conference on Robotics & Automation, 2003.

[40] D. E. Clark, G. Jones, P. Willett P. W. Kenny, and R. C. Glen. Pharma-
cophoric pattern matching in files of three-dimensional chemical structures:
Comparison of conformational searching algorithms for flexible searching.
Journal Chemical Information and Computational Sciences, 34:197–206,
1994.

[41] J. Cortés. Motion Planning Algorithms for General Closed-Chain Mecha-
nisms. PhD thesis, Institut National Polytechnique de Toulouse, Toulouse,
France, 2003.

[42] J. Cortés, T. Siméon M. Remaud-Siméon, and V. Tran. Geometric algo-
rithms for the conformational analysis of long protein loops. Journal of
Computational Chemistry, 25:956–967, 2004.

[43] J. Cortés, T. Siméon, and J.-P. Laumond. A random loop generator for plan-
ning the motions of closed kinematic chains using PRM methods. In Pro-
ceedings IEEE International Conference on Robotics & Automation, 2002.

[44] M. R. Cutkosky. Robotic Grasping and Fine Manipulation. Kluwer, Boston,
MA, 1985.

[45] D. V. Dimarogonas, M. M. Zavlanos, S. G. Loizou, and K. J. Kyriakopou-
los. Decentralized motion control of multiple holonomic agents under input
constraints. In Proceedings IEEE Conference Decision & Control, 2003.

[46] G. E. Dullerud and R. D’Andrea. Distributed control of heterogeneous
systems. IEEE Transactions on Automatic Control, 49(12):2113–2128, 2004.

[47] M. Egerstedt and X. Hu. Formation constrained multi-agent control. IEEE
Transactions on Robotics & Automation, 17(6):947–951, December 2001.

[48] I. Z. Emiris and B. Mourrain. Computer algebra methods for studying
and computing molecular conformations. Technical report, INRIA, Sophia-
Antipolis, France, 1997.

BIBLIOGRAPHY vii

[49] M. A. Erdmann and T. Lozano-Pérez. On multiple moving objects. In Pro-
ceedings IEEE International Conference on Robotics & Automation, pages
1419–1424, 1986.

[50] M. A. Erdmann and T. Lozano-Pérez. On multiple moving objects. Algo-
rithmica, 2:477–521, 1987.

[51] R. Fierro, A. Das, V. Kumar, and J. P. Ostrowski. Hybrid control of forma-
tions of robots. In Proceedings IEEE International Conference on Robotics
& Automation, pages 157–162, 2001.

[52] P. W. Finn, D. Halperin, L. E. Kavraki, J.-C. Latombe, R. Motwani, C. Shel-
ton, and S. Venkatasubramanian. Geometric manipulation of flexible lig-
ands. In M. C. Lin and D. Manocha, editors, Applied Computational Geom-
etry, pages 67–78. Springer-Verlag, Berlin, 1996. Lecture Notes in Computer
Science, 1148.

[53] H. Flordal, M. Fabian, and K. Akesson. Automatic implementation and
verification of coordinating PLC-code for robotcells. In Proceedings IFAC
Symposium of Information Control Problems in Manufacturing, 2004.

[54] E. Frazzoli and F. Bullo. Decentralized algorithms for vehicle routing in
a stochastic time-varying environment. In Proceedings IEEE Conference
Decision & Control, pages 3357–3363, 2004.

[55] E. Freund and H. Hoyer. Path finding in multi robot systems including
obstacle avoidance. International Journal of Robotics Research, 7(1):42–70,
February 1988.

[56] K. Fujimura and H. Samet. A hierarchical strategy for path planning among
moving obstacles. Technical Report CAR-TR-237, Center for Automation
Research, University of Maryland, November 1986.

[57] K. Fujimura and H. Samet. Planning a time-minimal motion among moving
obstacles. Algorithmica, 10:41–63, 1993.

[58] Y. Gabriely and E. Rimon. Spanning-tree based coverage of continuous
areas by a mobile robot. Technical report, Dept. of Mechanical Engineering,
Technion, Israel Institute of Technology, December 1999.

[59] Y. Gabriely and E. Rimon. Spanning-tree based coverage of continuous
areas by a mobile robot. In Proceedings IEEE International Conference on
Robotics & Automation, pages 1927–1933, 2001.

[60] Y. Gabriely and E. Rimon. Competitive on-line coverage of grid environ-
ments by a mobile robot. Computational Geometry: Theory and Applica-
tions, 24(3):197–224, April 2003.

viii BIBLIOGRAPHY

[61] M. Ghallab, D. Nau, and P. Traverso. Automated Planning: Theory and
Practice. Morgan Kaufman, San Francisco, CA, 2004.

[62] A. K. Ghose, M. E. Logan, A. M. Treasurywala, H. Wang, R. C. Wahl,
B. E. Tomczuk, M. R. Gowravaram, E. P. Jaeger, and J. J. Wendoloski.
Determination of pharmacophoric geometry for collagenase inhibitors using
a novel computational method and its verification using molecular dynam-
ics, NMR, and X-ray crystallography. Journal of the American Chemical
Society, 117:4671–4682, 1995.

[63] R. Ghrist. Shape complexes for metamorphic robot systems. In Proceedings
Workshop on Algorithmic Foundations of Robotics, December 2002.

[64] R. Ghrist, J. M. O’Kane, and S. M. LaValle. Computing Pareto Optimal Co-
ordinations on Roadmaps. The International Journal of Robotics Research,
24(11):997–1010, 2005.

[65] M. Goldwasser and R. Motwani. Intractability of assembly sequencing: Unit
disks in the plane. In F. Dehne, A. Rau-Chaplin, J.-R. Sack, and R. Tamas-
sia, editors, WADS ’97 Algorithms and Data Structures, pages 307–320.
Springer-Verlag, Berlin, 1997. Lecture Notes in Computer Science, 1272.

[66] G. H. Golub and C. F. Van Loan. Matrix Computations (3rd ed). Johns
Hopkins University Press, Baltimore, MD, 1996.

[67] V. E. Gough and S. G. Whitehall. Universal tyre test machine. In Proceed-
ings 9th International Technical Congress F.I.S.I.T.A., May 1962.

[68] E. J. Griffith and S. Akella. Coordinating multiple droplets in planar array
digital microfluidic systems. International Journal of Robotics Research,
24(11):933–949, 2005.

[69] R. Grossman, A. Nerode, A. Ravn, and H. Rischel (eds). Hybrid Systems.
Springer-Verlag, Berlin, 1993.

[70] D. Halperin, J.-C. Latombe, and R. H. Wilson. A general framework for
assembly planning: the motion space approach. In Proceedings ACM Sym-
posium on Computational Geometry, pages 9–18, 1998.

[71] D. Halperin and R. Wilson. Assembly partitioning along simple paths: the
case of multiple translations. In Proceedings IEEE International Conference
on Robotics & Automation, pages 1585–1592, 1995.

[72] L. Han and N. M. Amato. A kinematics-based probabilistic roadmap method
for closed chain systems. In B. R. Donald, K. M. Lynch, and D. Rus, editors,
Algorithmic and Computational Robotics: New Directions, pages 233–246.
A.K. Peters, Wellesley, MA, 2001.

BIBLIOGRAPHY ix

[73] J. Hershberger and S. Suri. Efficient computation of Euclidean shortest
paths in the plane. In Proceedings IEEE Symposium on Foundations of
Computer Science, pages 508–517, 1995.

[74] S. Hert, S. Tiwari, and V. Lumelsky. A terrain-covering algorithm for an
AUV. Autonomous Robots, 3:91–119, 1996.

[75] J. G. Hocking and G. S. Young. Topology. Dover, New York, 1988.

[76] R. L. Hoffman. Automated assembly in a CSG domain. In Proceedings
IEEE International Conference on Robotics & Automation, pages 210–215,
1989.

[77] C. M. Hoffmann. Geometric and Solid Modeling. Morgan Kaufmann, San
Francisco, CA, 1989.

[78] L. S. Homem de Mello and A. C. Sanderson. Representations of mechan-
ical assembly sequences. IEEE Transactions on Robotics & Automation,
7(2):211–227, 1991.

[79] W. Huang. Optimal line-sweep-based decompositions for coverage algo-
rithms. In Proceedings IEEE International Conference on Robotics & Au-
tomation, pages 27–32, 2001.

[80] C. Icking, G. Rote, E. Welzl, and C.-K. Yap. Shortest paths for line seg-
ments. Algorithmica, 10:182–200, 1992.

[81] Y.-B. Jia. Computation on parametric curves with an application in grasp-
ing. International Journal of Robotics Research, 23(7-8):825–855, 2004.

[82] K. Kant and S. W. Zucker. Toward efficient trajectory planning: The path-
velocity decomposition. International Journal of Robotics Research, 5(3):72–
89, 1986.

[83] L. Kauffman. Knots and Applications. World Scientific, River Edge, NJ,
1995.

[84] L. E. Kavraki. Geometry and the discovery of new ligands. In J.-P. Lau-
mond and M. H. Overmars, editors, Algorithms for Robotic Motion and
Manipulation, pages 435–445. A.K. Peters, Wellesley, MA, 1997.

[85] L. E. Kavraki and M. Kolountzakis. Partitioning a planar assembly into two
connected parts is NP-complete. Information Processing Letters, 55(3):159–
165, 1995.

[86] R. Kimmel, N. Kiryati, and A. M. Bruckstein. Multivalued distance maps
for motion planning on surfaces with moving obstacles. IEEE Transactions
on Robotics & Automation, 14(3):427–435, June 1998.

x BIBLIOGRAPHY

[87] D. E. Koditschek. An approach to autonomous robot assembly. Robotica,
12:137–155, 1994.

[88] K. Kotay, D. Rus, M. Vora, and C. McGray. The self-reconfiguring robotic
molecule: Design and control algorithms. In P. K. Agarwal, L. E. Kavraki,
and M. T. Mason, editors, Robotics: The Algorithmic Perspective. A.K.
Peters, Natick, MA, 1998.

[89] A. Ladd and L. E. Kavraki. Motion planning for knot untangling. In Pro-
ceedings Workshop on Algorithmic Foundations of Robotics, Nice, France,
December 2002.

[90] A. Ladd and L. E. Kavraki. Fast exploration for robots with dynamics. In
Proceedings Workshop on Algorithmic Foundations of Robotics, Zeist, The
Netherlands, July 2004.

[91] J.-C. Latombe. Motion planning: A journey of robots, molecules, digi-
tal actors, and other artifacts. International Journal of Robotics Research,
18(11):1119–1128, 1999.

[92] S. M. LaValle, P. Finn, L. Kavraki, and J.-C. Latombe. A randomized
kinematics-based approach to pharmacophore-constrained conformational
search and database screening. J. Computational Chemistry, 21(9):731–747,
2000.

[93] S. M. LaValle and S. A. Hutchinson. Optimal motion planning for multiple
robots having independent goals. IEEE Trans. on Robotics and Automation,
14(6):912–925, December 1998.

[94] A. R. Leach and I. D. Kuntz. Conformational analysis of flexible ligands
in macromolecular receptor sites. Journal of Computational Chemistry,
13(6):730–748, 1992.

[95] D. Liberzon. Switching in Systems and Control. Birkhäuser, Boston, MA,
2003.

[96] I. Lotan, H. van den Bedem, A. M. Deacon, and J.-C. Latombe. Computing
protein structures from electron density maps: The missing loop problem.
In Proceedings Workshop on Algorithmic Foundations of Robotics, 2004.

[97] T. Lozano-Pérez. A simple motion-planning algorithm for general robot
manipulators. IEEE Journal of Robotics & Automation, RA-3(3):224–238,
Jun 1987.

[98] L. Lu and S. Akella. Folding cartons with fixtures: A motion planning
approach. IEEE Transactions on Robotics & Automation, 16(4):346–356,
Aug 2000.

BIBLIOGRAPHY xi

[99] V. J. Lumelsky and K. R. Harinarayan. Decentralized motion planning for
multiple mobile robots: The cocktail party model. Autonomous Robots,
4(1):121–135, 1997.

[100] D. Manocha and J. Canny. Real time inverse kinematics of general 6R
manipulators. In Proceedings IEEE International Conference on Robotics &
Automation, pages 383–389, Nice, May 1992.

[101] M. T. Mason. Mechanics of Robotic Manipulation. MIT Press, Cambridge,
MA, 2001.

[102] J. Matousek and J. Nesetril. Invitation to Discrete Mathematics. Oxford
University Press, Oxford, U.K., 1998.

[103] J.-P. Merlet. Parallel Robots. Kluwer, Boston, MA, 2000.

[104] R. J. Milgram and J. C. Trinkle. Complete path planning for closed kine-
matic chains with spherical joints. International Journal of Robotics Re-
search, 21(9):773–789, 2002.

[105] J. S. B. Mitchell. Shortest paths among obstacles in the plane. International
Journal Computational Geometry & Applications, 6(3):309–332, 1996.

[106] J. S. B. Mitchell. Shortest paths and networks. In J. E. Goodman and
J. O’Rourke, editors, Handbook of Discrete and Computational Geometry,
2nd Ed., pages 607–641. Chapman and Hall/CRC Press, New York, 2004.

[107] J. S. B. Mitchell and C. H. Papadimitriou. The weighted region problem.
Journal of the ACM, 38:18–73, 1991.

[108] B. K. Natarajan. On planning assemblies. In Proceedings ACM Symposium
on Computational Geometry, pages 299–308, 1988.

[109] P. A. O’Donnell and T. Lozano-Pérez. Deadlock-free and collision-free co-
ordination of two robot manipulators. In Proceedings IEEE International
Conference on Robotics & Automation, pages 484–489, 1989.

[110] C. H. Papadimitriou. An algorithm for shortest-path planning in three
dimensions. Information Processing Letters, 20(5):259–263, 1985.

[111] J. Peng and S. Akella. Coordinating multiple robots with kinodynamic con-
straints along specified paths. In J.-D. Boissonnat, J. Burdick, K. Goldberg,
and S. Hutchinson, editors, Algorithmic Foundations of Robotics V (WAFR
2002), pages 221–237. Springer-Verlag, Berlin, 2002.

[112] J. Pertin-Troccaz. Grasping: A state of the art. In O. Khatib, J. J. Craig,
and T. Lozano-Pérez, editors, The Robotics Review 1. MIT Press, Cam-
bridge, MA, 1989.

xii BIBLIOGRAPHY

[113] J. Ponce and B. Faverjon. On computing three-finger force-closure grasps
of polygonal objects. IEEE Transactions on Robotics & Automation,
11(6):868–881, 1995.

[114] J. Ponce, S. Sullivan, A. Sudsang, J.-D. Boissonnat, and J.-P. Merlet. On
computing four-finger equilibrium and force-closure grasps of polyhedral ob-
jects. International Journal of Robotics Research, 16(1):11–35, February
1997.

[115] S. Ratering and M. Gini. Robot navigation in a known environment with
unknown moving obstacles. In Proceedings IEEE International Conference
on Robotics & Automation, pages 25–30, 1993.

[116] J. H. Reif and M. Sharir. Motion planning in the presence of moving obsta-
cles. In Proceedings IEEE Symposium on Foundations of Computer Science,
pages 144–154, 1985.

[117] J. H. Reif and M. Sharir. Motion planning in the presence of moving obsta-
cles. Journal of the ACM, 41:764–790, 1994.

[118] J. H. Reif and Z. Sun. An efficient approximation algorithm for weighted
region shortest path problem. In B. R. Donald, K. M. Lynch, and D. Rus,
editors, Algorithmic and Computational Robotics: New Directions, pages
191–203. A.K. Peters, Wellesley, MA, 2001.

[119] E. Rimon and J. W. Burdick. Mobility of bodies in contact–I: A 2nd order
mobility index for multiple-finger grasps. IEEE Transactions on Robotics &
Automation, 14(5):696–708, 1998.

[120] E. Rimon and J. W. Burdick. Mobility of bodies in contact–II: How forces
are generated by curvature effects. IEEE Transactions on Robotics & Au-
tomation, 14(5):709–717, 1998.

[121] N. F. Sepetov, V. Krchnak, M. Stankova, S. Wade, K. S. Lam, and M. Lebl.
Library of libraries: Approach to synthetic combinatorial library design and
screening of “pharmacophore” motifs. Proceedings of the National Academy
of Sciences, USA, 92:5426–5430, June 1995.

[122] C. L. Shih, T.-T. Lee, and W. A. Gruver. A unified approach for robot
motion planning with moving polyhedral obstacles. IEEE Transactions on
Systems, Man, & Cybernetics, 20:903–915, 1990.

[123] T. Siméon, S. Leroy, and J.-P. Laumond. Path coordination for multiple
mobile robots: A resolution complete algorithm. IEEE Transactions on
Robotics & Automation, 18(1), February 2002.

BIBLIOGRAPHY xiii

[124] R. Spence and S. A. Hutchinson. Dealing with unexpected moving obstacles
by integrating potential field planning with inverse dynamics control. In
Proceedings IEEE/RSJ International Conference on Intelligent Robots and
Systems, pages 1485–1490, 1992.

[125] A. Stentz. Optimal and efficient path planning for partially-known envi-
ronments. In Proceedings IEEE International Conference on Robotics &
Automation, pages 3310–3317, 1994.

[126] D. Stewart. A platform with six degrees of freedom. In Institution of Me-
chanical Engineers, Proceedings 1965-66, 180 Part 1, pages 371–386, 1966.

[127] M. Stilman and J. J. Kuffner. Navigation among movable obstacles: Real-
time reasoning in complex environments. In Proceedings 2004 IEEE Inter-
national Conference on Humanoid Robotics (Humanoids’04), 2004.

[128] A. Sudsang, J. Ponce, and N. Srinivasa. Grasping and in-hand manipulation:
Geometry and algorithms. Algorithmica, 26:466–493, 2000.

[129] K. Sutner and W. Maass. Motion planning among time dependent obstacles.
Acta Informatica, 26:93–122, 1988.

[130] J. van den Berg and M. Overmars. Prioritized motion planning for multiple
robots. In Proceedings IEEE/RSJ International Conference on Intelligent
Robots and Systems, pages 2217–2222, 2005.

[131] D. S. Watkins. Fundamentals of Matrix Computations, 2nd Ed. Wiley, New
York, 2002.

[132] R. Wilson, L. Kavraki, J.-C. Latombe, and T. Lozano-Pérez. Two-handed
assembly sequencing. International Journal of Robotics Research, 14(4):335–
350, 1995.

[133] R. H. Wilson. On Geometric Assembly Planning. PhD thesis, Stanford
University, Stanford, CA, March 1992.

[134] R. H. Wilson and J.-C. Latombe. Geometric reasoning about mechanical
assembly. Artificial Intelligence Journal, 71(2):371–396, 1994.

[135] S. C. Wong, L. Middleton, and B. A. MacDonald. Performance metrics for
robot coverage tasks. In Proceedings Australasian Conference on Robotics
and Automation, 2002.

[136] J. Yakey, S. M. LaValle, and L. E. Kavraki. Randomized path planning for
linkages with closed kinematic chains. IEEE Transactions on Robotics and
Automation, 17(6):951–958, December 2001.

xiv BIBLIOGRAPHY

[137] M. Yim. Locomotion with a Unit-Modular Reconfigurable Robot. PhD the-
sis, Stanford University, Stanford, CA, December 1994. Stanford Technical
Report STAN-CS-94-1536.

[138] M. Zhang, R. A. White, L. Wang, R. N. Goldman, L. E. Kavraki, and
B. Hassett. Improving conformational searches by geometric screening.
Bioinformatics, 21(5):624–630, 2005.

