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Chapter 11

Sensors and Information Spaces

Up until now it has been assumed everywhere that the current state is known.
What if the state is not known? In this case, information regarding the state
is obtained from sensors during the execution of a plan. This situation arises in
most applications that involve interaction with the physical world. For example, in
robotics it is virtually impossible for a robot to precisely know its state, except in
some limited cases. What should be done if there is limited information regarding
the state? A classical approach is to take all of the information available and try to
estimate the state. In robotics, the state may include both the map of the robot’s
environment and the robot configuration. If the estimates are sufficiently reliable,
then we may safely pretend that there is no uncertainty in state information. This
enables many of the planning methods introduced so far to be applied with little
or no adaptation.

The more interesting case occurs when state estimation is altogether avoided.
It may be surprising, but many important tasks can be defined and solved without
ever requiring that specific states are sensed, even though a state space is defined
for the planning problem. To achieve this, the planning problem will be expressed
in terms of an information space. Information spaces serve the same purpose for
sensing problems as the configuration spaces of Chapter 4 did for problems that
involve geometric transformations. Each information space represents the place
where a problem that involves sensing uncertainty naturally lives. Successfully
formulating and solving such problems depends on our ability to manipulate, sim-
plify, and control the information space. In some cases elegant solutions exist, and
in others there appears to be no hope at present of efficiently solving them. There
are many exciting open research problems associated with information spaces and
sensing uncertainty in general.

Recall the situation depicted in Figure 11.1, which was also shown in Section
1.4. It is assumed that the state of the environment is not known. There are three
general sources of information regarding the state:

1. The initial conditions can provide powerful information before any actions
are applied. It might even be the case that the initial state is given. At the
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Figure 11.1: The state of the environment is not known. The only information
available to make inferences is the history of sensor observations, actions that have
been applied, and the initial conditions. This history becomes the information
state.

other extreme, the initial conditions might contain no information.

2. The sensor observations provide measurements related to the state during
execution. These measurements are usually incomplete or involve distur-
bances that distort their values.

3. The actions already executed in the plan provide valuable information re-
garding the state. For example, if a robot is commanded to move east (with
no other uncertainties except an unknown state), then it is expected that
the state is further east than it was previously. Thus, the applied actions
provide important clues for deducing possible states.

Keep in mind that there are generally two ways to use the information space:

1. Take all of the information available, and try to estimate the state. This is
the classical approach. Pretend that there is no longer any uncertainty in
state, but prove (or hope) that the resulting plan works under reasonable
estimation error. A plan is generally expressed as π : X → U .

2. Solve the task entirely in terms of an information space. Many tasks may be
achieved without ever knowing the exact state. The goals and analysis are
formulated in the information space, without the need to achieve particular
states. For many problems this results in dramatic simplifications. A plan
is generally expressed as π : I → U for an information space, I.

The first approach may be considered somewhat traditional and can be handled
by the concepts of Chapter 8 once a good estimation technique is defined. Most
of the focus of the chapter is on the second approach, which represents a powerful
way to express and solve planning problems.

For brevity, “information” will be replaced by “I” in many terms. Hence, infor-
mation spaces and information states become I-spaces and I-states, respectively.
This is similar to the shortening of configuration spaces to C-spaces.

Sections 11.1 to 11.3 first cover information spaces for discrete state spaces.
This case is much easier to formulate than information spaces for continuous
spaces. In Sections 11.4 to 11.6, the ideas are extended from discrete state spaces
to continuous state spaces. It is helpful to have a good understanding of the
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discrete case before proceeding to the continuous case. Section 11.7 extends the
formulation of information spaces to game theory, in which multiple players inter-
act over the same state space. In this case, each player in the game has its own
information space over which it makes decisions.

11.1 Discrete State Spaces

11.1.1 Sensors

As the name suggests, sensors are designed to sense the state. Throughout all of
this section it is assumed that the state space, X, is finite or countably infinite,
as in Formulations 2.1 and 2.3. A sensor is defined in terms of two components:
1) an observation space, which is the set of possible readings for the sensor, and
2) a sensor mapping, which characterizes the readings that can be expected if
the current state or other information is given. Be aware that in the planning
model, the state is not really given; it is only assumed to be given when modeling
a sensor. The sensing model given here generalizes the one given in Section 9.2.3.
In that case, the sensor provided information regarding θ instead of x because
state spaces were not needed in Chapter 9.

Let Y denote an observation space, which is a finite or countably infinite set.
Let h denote the sensor mapping. Three different kinds of sensor mappings will
be considered, each of which is more complicated and general than the previous
one:

1. State sensor mapping: In this case, h : X → Y , which means that given
the state, the observation is completely determined.

2. State-nature sensor mapping: In this case, a finite set, Ψ(x), of nature
sensing actions is defined for each x ∈ X. Each nature sensing action,
ψ ∈ Ψ(x), interferes with the sensor observation. Therefore, the state-
nature mapping, h, produces an observation, y = h(x, ψ) ∈ Y , for every
x ∈ X and ψ ∈ Ψ(x). The particular ψ chosen by nature is assumed to be
unknown during planning and execution. However, it is specified as part of
the sensing model.

3. History-based sensor mapping: In this case, the observation could be
based on the current state or any previous states. Furthermore, a nature
sensing action could be applied. Suppose that the current stage is k. The
set of nature sensing actions is denoted by Ψk(x), and the particular nature
sensing action is ψk ∈ Ψk(x). This yields a very general sensor mapping,

yk = hk(x1, . . . , xk, ψk), (11.1)

in which yk is the observation obtained in stage k. Note that the mapping is
denoted as hk because the domain is different for each k. In general, any of the
sensor mappings may be stage-dependent, if desired.
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Many examples of sensors will now be given. These are provided to illustrate
the definitions and to provide building blocks that will be used in later examples
of I-spaces. Examples 11.1 to 11.6 all involve state sensor mappings.

Example 11.1 (Odd/Even Sensor) Let X = Z, the set of integers, and let
Y = {0, 1}. The sensor mapping is

y = h(x) =

{
0 if x is even
1 if x is odd.

(11.2)

The limitation of this sensor is that it only tells whether x ∈ X is odd or even.
When combined with other information, this might be enough to infer the state,
but in general it provides incomplete information. �

Example 11.2 (Mod Sensor) Example 11.1 can be easily generalized to yield
the remainder when x is divided by k for some fixed integer k. Let X = Z, and
let Y = {0, 1, . . . , k − 1}. The sensor mapping is

y = h(x) = xmod k. (11.3)

�

Example 11.3 (Sign Sensor) Let X = Z, and let Y = {−1, 0, 1}. The sensor
mapping is

y = h(x) = sgn x. (11.4)

This sensor provides very limited information because it only indicates on which
side of the boundary x = 0 the state may lie. It can, however, precisely determine
whether x = 0. �

Example 11.4 (Selective Sensor) Let X = Z × Z, and let (i, j) ∈ X denote
a state in which i, j ∈ Z. Suppose that only the first component of (i, j) can be
observed. This yields the sensor mapping

y = h(i, j) = i. (11.5)

An obvious generalization can be made for any state space that is formed from
Cartesian products. The sensor may reveal the values of one or more components,
and the rest remain hidden. �

Example 11.5 (Bijective Sensor) Let X be any state space, and let Y = X.
Let the sensor mapping be any bijective function h : X → Y . This sensor provides
information that is equivalent to knowing the state. Since h is bijective, it can be
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inverted to obtain h−1 : Y → X. For any y ∈ Y , the state can be determined as
x = h−1(y).

A special case of the bijective sensor is the identity sensor, for which h is the
identity function. This was essentially assumed to exist for all planning problems
covered before this chapter because it immediately yields the state. However, any
bijective sensor could serve the same purpose. �

Example 11.6 (Null Sensor) Let X be any state space, and let Y = {0}. The
null sensor is obtained by defining the sensor mapping as h(x) = 0. The sensor
reading remains fixed and hence provides no information regarding the state. �

From the examples so far, it is tempting to think about partitioningX based on
sensor observations. Suppose that in general a state mapping, h, is not bijective,
and let H(y) denote the following subset of X:

H(y) = {x ∈ X | y = h(x)}, (11.6)

which is the preimage of y. The set of preimages, one for each y ∈ Y , forms
a partition of X. In some sense, this indicates the “resolution” of the sensor.
A bijective sensor partitions X into singleton sets because it contains perfect
information. At the other extreme, the null sensor partitions X into a single set,
X itself. The sign sensor appears slightly more useful because it partitions X
into three sets: H(1) = {1, 2, . . .}, H(−1) = {. . . ,−2,−1}, and H(0) = {0}.
The preimages of the selective sensor are particularly interesting. For each i ∈ Z,
H(i) = Z. The partitions induced by the preimages may remind those with an
algebra background of the construction of quotient groups via homomorphisms
[34].

Next consider some examples that involve a state-action sensor mapping.
There are two different possibilities regarding the model for the nature sensing
action:

1. Nondeterministic: In this case, there is no additional information regard-
ing which ψ ∈ Ψ(x) will be chosen.

2. Probabilistic: A probability distribution is known. In this case, the prob-
ability, P (ψ|x), that ψ will be chosen is known for each ψ ∈ Ψ(x).

These two possibilities also appeared in Section 10.1.1, for nature actions that
interfere with the state transition equation.

It is sometimes useful to consider the state-action sensor model as a probability
distribution over Y for a given state. Recall the conversion from P (ψ|θ) to P (y|θ)
in (9.28). By replacing Θ by X, the same idea can be applied here. Assume that
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if the domain of h is restricted to some x ∈ X, it forms an injective (one-to-one)
mapping from Ψ to Y . In this case,

P (y|x) =
{
P (ψ|x) for the unique ψ such that y = h(x, ψ).
0 if no such ψ exists.

(11.7)

If the injective assumption is lifted, then P (ψ|x) is replaced by a sum over all ψ
for which y = h(x, ψ).

Example 11.7 (Sensor Disturbance) Let X = Z, Y = Z, and Ψ = {−1, 0, 1}.
The idea is to construct a sensor that would be the identity sensor if it were not
for the interference of nature. The sensor mapping is

y = h(x, ψ) = x+ ψ. (11.8)

It is always known that |x−y| ≤ 1. Therefore, if y is received as a sensor reading,
one of the following must be true: x = y − 1, x = y, or x = y + 1. �

Example 11.8 (Disturbed Sign Sensor) Let X = Z, Y = {−1, 0, 1}, and
Ψ = {−1, 0, 1}. Let the sensor mapping be

y = h(x, ψ) = sgn(x+ ψ). (11.9)

In this case, if y = 0, it is no longer known for certain whether x = 0. It is possible
that x = −1 or x = 1. If x = 0, then it is possible for the sensor to read −1, 0, or
1. �

Example 11.9 (Disturbed Odd/Even Sensor) It is not hard to construct ex-
amples for which some mild interference from nature destroys all of the informa-
tion. Let X = Z, Y = {0, 1}, and Ψ = {0, 1}. Let the sensor mapping be

y = h(x, ψ) =

{
0 if x+ ψ is even.
1 if x+ ψ is odd.

(11.10)

Under the nondeterministic model for the nature sensing action, the sensor pro-
vides no useful information regarding the state. Regardless of the observation, it
is never known whether x is even or odd. Under a probabilistic model, however,
this sensor may provide some useful information. �

It is once again informative to consider preimages. For a state-action sensor
mapping, the preimage is

H(y) = {x ∈ X | ∃ψ ∈ Ψ(x) for which y = h(x, ψ)}. (11.11)
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Figure 11.2: In each stage, k, an observation, yk ∈ Y , is received and an action
uk ∈ U is applied. The state, xk, however, is hidden from the decision maker.

In comparison to state sensor mappings, the preimage sets are larger for state-
action sensor mappings. Also, they do not generally form a partition of X. For
example, the preimages of Example 11.8 are H(1) = {0, 1, . . .}, H(0) = {−1, 0, 1},
and H(−1) = {. . . ,−2,−1, 0}. This is not a partition because every preimage
contains 0. If desired, H(y) can be directly defined for each y ∈ Y , instead of
explicitly defining nature sensing actions.

Finally, one example of a history-based sensor mapping is given.

Example 11.10 (Delayed-Observation Sensor) Let X = Y = Z. A delayed-
observation sensor can be defined for some fixed positive integer i as yk = xk−i.
It indicates what the state was i stages ago. In this case, it gives a perfect mea-
surement of the old state value. Many other variants are possible. For example,
it might only give the sign of the state from i stages ago. �

11.1.2 Defining the History Information Space

This section defines the most basic and natural I-space. Many others will be
derived from it, which is the topic of Section 11.2. Suppose that X, U , and f have
been defined as in Formulation 10.1, and the notion of stages has been defined
as in Formulation 2.2. This yields a state sequence x1, x2, . . ., and an action
sequence u1, u2, . . ., during the execution of a plan. However, in the current
setting, the state sequence is not known. Instead, at every stage, an observation,
yk, is obtained. The process depicted in Figure 11.2.

In previous formulations, the action space, U(x), was generally allowed to
depend on x. Since x is unknown in the current setting, it would seem strange to
allow the actions to depend on x. This would mean that inferences could be made
regarding the state by simply noticing which actions are available.1 Instead, it
will be assumed by default that U is fixed for all x ∈ X. In some special contexts,
however, U(x) may be allowed to vary.

Initial conditions As stated at the beginning of the chapter, the initial condi-
tions provide one of the three general sources of information regarding the state.
Therefore, three alternative types of initial conditions will be allowed:

1Such a problem could be quite interesting to study, but it will not be considered here.
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1. Known State: The initial state, x1 ∈ X, is given. This initializes the
problem with perfect state information. Assuming nature actions interfere
with the state transition function, f , uncertainty in the current state will
generally develop.

2. Nondeterministic: A set of states, X1 ⊂ X, is given. In this case, the
initial state is only known to lie within a particular subset of X. This can be
considered as a generalization of the first type, which only allowed singleton
subsets.

3. Probabilistic: A probability distribution, P (x1), over X is given.

In general, let η0 denote the initial condition, which may be any one of the three
alternative types.

History Suppose that the kth stage has passed. What information is available?
It is assumed that at every stage, a sensor observation is made. This results in a
sensing history,

ỹk = (y1, y2, . . . , yk). (11.12)

At every stage an action can also be applied, which yields an action history,

ũk−1 = (u1, u2, . . . , uk−1). (11.13)

Note that the action history only runs to uk−1; if uk is applied, the state xk+1 and
stage k+1 are obtained, which lie beyond the current stage, k. By combining the
sensing and action histories, the history at stage k is (ũk−1, ỹk).

History information states The history, (ũk−1, ỹk), in combination with the
initial condition, η0, yields the history I-state, which is denoted by ηk. This
corresponds to all information that is known up to stage k. In spite of the fact
that the states, x1, . . ., xk, might not be known, the history I-states are always
known because they are defined directly in terms of available information. Thus,
the history I-state is

ηk = (η0, ũk−1, ỹk). (11.14)

When representing I-spaces, we will generally ignore the problem of nesting paren-
theses. For example, (11.14) is treated a single sequence, instead of a sequence
that contains two sequences. This distinction is insignificant for the purposes of
decision making.

The history I-state, ηk, can also be expressed as

ηk = (ηk−1, uk−1, yk), (11.15)

by noticing that the history I-state at stage k contains all of the information from
the history I-state at stage k − 1. The only new information is the most recently
applied action, uk−1, and the current sensor observation, yk.
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The history information space The history I-space is simply the set of all
possible history I-states. Although the history I-states appear to be quite compli-
cated, it is helpful to think of them abstractly as points in a new space. To define
the set of all possible history I-states, the sets of all initial conditions, actions,
and observations must be precisely defined.

The set of all observation histories is denoted as Ỹk and is obtained by a
Cartesian product of k copies of the observation space:

Ỹk = Y × Y . . .× Y
︸ ︷︷ ︸

k

. (11.16)

Similarly, the set of all action histories is Ũk−1, the Cartesian product of k − 1
copies of the action space U .

It is slightly more complicated to define the set of all possible initial conditions
because three different types of initial conditions are possible. Let I0 denote the
initial condition space. Depending on which of the three types of initial conditions
are used, one of the following three definitions of I0 is used:

1. Known State: If the initial state, x1, is given, then I0 ⊆ X. Typically,
I0 = X; however, it might be known in some instances that certain initial
states are impossible. Therefore, it is generally written that I0 ⊆ X.

2. Nondeterministic: If X1 is given, then I0 ⊆ pow(X) (the power set of
X). Again, a typical situation is I0 = pow(x); however, it might be known
that certain subsets of X are impossible as initial conditions.

3. Probabilistic: Finally, if P (x) is given, then I0 ⊆ P(X), in which P(x) is
the set of all probability distributions over X.

The history I-space at stage k is expressed as

Ik = I0 × Ũk−1 × Ỹk. (11.17)

Each ηk ∈ Ik yields an initial condition, an action history, and an observation
history. It will be convenient to consider I-spaces that do not depend on k. This
will be defined by taking a union (be careful not to mistakenly think of this
construction as a Cartesian product). If there are K stages, then the history
I-space is

Ihist = I0 ∪ I1 ∪ I2 ∪ · · · ∪ IK . (11.18)

Most often, the number of stages is not fixed. In this case, Ihist is defined to be
the union of Ik over all k ∈ {0} ∪ N:

Ihist = I0 ∪ I1 ∪ I2 ∪ · · · . (11.19)

This construction is related to the state space obtained for time-varying motion
planning in Section 7.1. The history I-space is stage-dependent because infor-
mation accumulates over time. In the discrete model, the reference to time is
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only implicit through the use of stages. Therefore, stage-dependent I-spaces are
defined. Taking the union of all of these is similar to the state space that was
formed in Section 7.1 by making time be one axis of the state space. For the
history I-space, Ihist, the stage index k can be imagined as an “axis.”

One immediate concern regarding the history I-space Ihist is that its I-states
may be arbitrarily long because the history grows linearly with the number of
stages. For now, it is helpful to imagine Ihist abstractly as another kind of state
space, without paying close attention to how complicated each η ∈ Ihist may be
to represent. In many contexts, there are ways to simplify the I-space. This is the
topic of Section 11.2.

11.1.3 Defining a Planning Problem

Planning problems will be defined directly on the history I-space, which makes it
appear as an ordinary state space in many ways. Keep in mind, however, that it
was derived from another state space for which perfect state observations could
not be obtained. In Section 10.1, a feedback plan was defined as a function of the
state. Here, a feedback plan is instead a function of the I-state. Decisions cannot
be based on the state because it will be generally unknown during the execution of
the plan. However, the I-state is always known; thus, it is logical to base decisions
on it.

Let πK denote a K-step information-feedback plan, which is a sequence (π1,
π2, . . ., πK) of K functions, πk : Ik → U . Thus, at every stage k, the I-state
ηk ∈ Ik is used as a basis for choosing the action uk = πk(ηk). Due to interference
of nature through both the state transition equation and the sensor mapping, the
action sequence (u1, . . . , uK) produced by a plan, πK , will not be known until the
plan terminates.

As in Formulation 2.3, it will be convenient to assume that U contains a termi-
nation action, uT . If uT is applied at stage k, then it is repeatedly applied forever.
It is assumed once again that the state xk remains fixed after the termination con-
dition is applied. Remember, however, xk is still unknown in general; it becomes
fixed but unknown. Technically, based on the definition of the history I-space, the
I-state must change after uT is applied because the history grows. These changes
can be ignored, however, because no new decisions are made after uT is applied. A
plan that uses a termination condition can be specified as π = (π1, π2, . . .) because
the number of stages may vary each time the plan is executed. Using the history
I-space definition in (11.19), an information-feedback plan is expressed as

π : Ihist → U. (11.20)

We are almost ready to define the planning problem. This will require the spec-
ification of a cost functional. The cost depends on the histories of states x̃ and
actions ũ as in Section 10.1. The planning formulation involves the following com-
ponents, summarizing most of the concepts introduced so far in Section 11.1 (see
Formulation 10.1 for similarities):
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Formulation 11.1 (Discrete Information Space Planning)

1. A nonempty state space X that is either finite or countably infinite.

2. A nonempty, finite action space U . It is assumed that U contains a special
termination action, which has the same effect as defined in Formulation 2.3.

3. A finite nature action space Θ(x, u) for each x ∈ X and u ∈ U .

4. A state transition function f that produces a state, f(x, u, θ), for every
x ∈ X, u ∈ U , and θ ∈ Θ(x, u).

5. A finite or countably infinite observation space Y .

6. A finite nature sensing action space Ψ(x) for each x ∈ X.

7. A sensor mapping h which produces an observation, y = h(x, ψ), for each x ∈
X and ψ ∈ Ψ(x). This definition assumes a state-nature sensor mappings. A
state sensor mapping or history-based sensor mapping, as defined in Section
11.1.1, could alternatively be used.

8. A set of stages, each denoted by k, which begins at k = 1 and continues
indefinitely.

9. An initial condition η0, which is an element of an initial condition space, I0.

10. A history I-space Ihist which is the union of I0 and Ik = I0 × Ũk−1 × Ỹk for
every stage k ∈ N.

11. Let L denote a stage-additive cost functional, which may be applied to any
pair (x̃K+1, ũK) of state and action histories to yield

L(x̃K+1, ũK) =
K∑

k=1

l(xk, uk) + lF (xK+1). (11.21)

If the termination action uT is applied at some stage k, then for all i ≥ k,
ui = uT , xi = xk, and l(xi, uT ) = 0. Either a feasible or optimal planning
problem can be defined, as in Formulation 10.1; however, the plan here is
specified as π : I → U .

A goal set may be defined as XG ⊂ X. Alternatively, the goal could be expressed
as a desirable set of history I-states. After Section 11.2, it will be seen that the
goal can be expressed in terms of I-states that are derived from histories.

Some immediate extensions of Formulation 11.1 are possible, but we avoid
them here simplify notation in the coming concepts. One extension is to allow
different action sets, U(x), for each x ∈ X. Be careful, however, because infor-
mation regarding the current state can be inferred if the action set U(x) is given,
and it varies depending on x. Another extension is to allow the costs to depend
on nature, to obtain l(xk, uk, θk), instead of l(xk, uk) in (11.21).
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The cost of a plan The next task is to extend the definition of the cost-to-go
under a fixed plan, which was given in Section 10.1.3, to the case of imperfect
state information. Consider evaluating the quality of a plan, so that the “best”
one might be selected. Suppose that the nondeterministic uncertainty is used to
model nature and that a nondeterministic initial condition is given. If a plan
π is fixed, some state and action trajectories are possible, and others are not.
It is impossible to know in general what histories will occur; however, the plan
constrains the choices substantially. Let H(π, η0) denote the set of state-action
histories that could arise from π applied to the initial condition η0.

The cost of a plan π from an initial condition η0 is measured using worst-case
analysis as

Gπ(η0) = max
(x̃,ũ)∈H(π,η0)

{

L(x̃, ũ)
}

. (11.22)

Note that x̃ includes x1, which is usually not known. It may be known only to lie
in X1, as specified by η0. Let Π denote the set of all possible plans. An optimal
plan using worst-case analysis is any plan for which (11.22) is minimized over all
π ∈ Π and η0 ∈ I0. In the case of feasible planning, there are usually numerous
equivalent alternatives.

Under probabilistic uncertainty, the cost of a plan can be measured using
expected-case analysis as

Gπ(η0) = EH(π,η0)

[

L(x̃, ũ)
]

, (11.23)

in which E denotes the mathematical expectation of the cost, with the probability
distribution taken over H(π, η0). The task is to find a plan π ∈ Π that minimizes
(11.23).

The information space is just another state space It will become impor-
tant throughout this chapter and Chapter 12 to view the I-space as an ordinary
state space. It only seems special because it is derived from another state space,
but once this is forgotten, it exhibits many properties of an ordinary state space in
planning. One nice feature is that the state in this special space is always known.
Thus, by converting from an original state space to its I-space, we also convert
from having imperfect state information to always knowing the state, albeit in a
larger state space.

One important consequence of this interpretation is that the state transition
equation can be lifted into the I-space to obtain an information transition function,
fI . Suppose that there are no sensors, and therefore no observations. In this case,
future I-states are predictable, which leads to

ηk+1 = fI(ηk, uk). (11.24)

The function fI generates ηk+1 by concatenating uk onto ηk.
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Now suppose that there are observations, which are generally unpredictable.
In Section 10.1, the nature action θk ∈ Θ(x, u) was used to model the unpre-
dictability. In terms of the information transition equation, yk+1 serves the same
purpose. When the decision is made to apply uk, the observation yk+1 is not
yet known (just as θk is unknown in Section 10.1). In a sequential game against
nature with perfect state information, xk+1 is directly observed at the next stage.
For the information transition equation, yk+1 is instead observed, and ηk+1 can be
determined. Using the history I-state representation, (11.14), simply concatenate
uk and yk+1 onto the histories in ηk to obtain ηk+1. The information transition
equation is expressed as

ηk+1 = fI(ηk, uk, yk+1), (11.25)

with the understanding that yk+1 plays the same role as θk in the case of perfect
state information and unpredictable future states. Even though nature causes
future I-states to be unpredictable, the current I-state is always known. A plan,
π : I → U , now seems like a state-feedback plan, if the I-space is viewed as a
state space. The transitions are all specified by fI .

The costs in this new state space can be derived from the original cost func-
tional, but a maximization or expectation is needed over all possible states given
the current information. This will be covered in Section 12.1.

11.2 Derived Information Spaces

The history I-space appears to be quite complicated. Every I-state corresponds
to a history of actions and observations. Unfortunately, the length of the I-state
sequence grows linearly with the number of stages. To overcome this difficultly, it
is common to map history I-states to some simpler space. In many applications,
the ability to perform this simplification is critical to finding a practical solution.
In some cases, the simplification fully preserves the history I-space, meaning that
completeness, and optimality if applicable, is not lost. In other cases, we are
willing to tolerate a simplification that destroys much of the structure of the
history I-space. This may be necessary to obtain a dramatic reduction in the size
of the I-space.

11.2.1 Information Mappings

Consider a function that maps the history I-space into a space that is simpler to
manage. Formally, let κ : Ihist → Ider denote a function from a history I-space,
Ihist, to a derived I-space, Ider. The function, κ, is called an information mapping,
or I-map. The derived I-space may be any set; hence, there is great flexibility in
defining an I-map.2 Figure 11.3 illustrates the idea. The starting place is Ihist,

2Ideally, the mapping should be onto Ider; however, to facilitate some definitions, this will
not be required.
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Figure 11.3: Many alternative information mappings may be proposed. Each
leads to a derived information space.

and mappings are made to various derived I-spaces. Some generic mappings, κ1,
κ2, and κ3, are shown, along with some very important kinds, Iest, Indet and Iprob.
The last two are the subjects of Sections 11.2.2 and 11.2.3, respectively. The other
important I-map is κest, which uses the history to estimate the state; hence, the
derived I-space is X (see Example 11.11). In general, an I-map can even map any
derived I-space to another, yielding κ : Ider → I ′

der, for any I-spaces Ider and I ′

der.
Note that any composition of I-maps yields an I-map. The derived I-spaces I2

and I3 from Figure 11.3 are obtained via compositions.

Making smaller information-feedback plans The primary use of an I-map
is to simplify the description of a plan. In Section 11.1.3, a plan was defined as a
function on the history I-space, Ihist. Suppose that an I-map, κ, is introduced that
maps from Ihist to Ider. A feedback plan on Ider is defined as π : Ider → U . To
execute a plan defined on Ider, the derived I-state is computed at each stage k by
applying κ to ηk to obtain κ(ηk) ∈ Ider. The action selected by π is π(κ(ηk)) ∈ U .

To understand the effect of using Ider instead of Ihist as the domain of π,
consider the set of possible plans that can be represented over Ider. Let Πhist and
Πder be the sets of all plans over Ihist and Ider, respectively. Any π ∈ Πder can be
converted into an equivalent plan, π′ ∈ Πhist, as follows: For each η ∈ Ihist, define
π′(η) = π(κ(η)).

It is not always possible, however, to construct a plan, π ∈ Πder, from some
π′ ∈ Ihist. The problem is that there may exist some η1, η2 ∈ Ihist for which
π′(η1) 6= π′(η2) and κ(η1) = κ(η2). In words, this means that the plan in Πhist

requires that two histories cause different actions, but in the derived I-space the
histories cannot be distinguished. For a plan in Πder, both histories must yield
the same action.

An I-map κ has the potential to collapse Ihist down to a smaller I-space by
inducing a partition of Ihist. For each ηder ∈ Ider, let the preimage κ−1(ηder) be
defined as

κ−1(ηder) = {η ∈ Ihist | ηder = κ(η)}. (11.26)

This yields the set of history I-states that map to ηder. The induced partition
can intuitively be considered as the “resolution” at which the history I-space is
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characterized. If the sets in (11.26) are large, then the I-space is substantially
reduced. The goal is to select κ to make the sets in the partition as large as
possible; however, one must be careful to avoid collapsing the I-space so much
that the problem can no longer be solved.

Example 11.11 (State Estimation) In this example, the I-map is the classical
approach that is conveniently taken in numerous applications. Suppose that a
technique has been developed that uses the history I-state η ∈ Ihist to compute
an estimate of the current state. In this case, the I-map is κest : Ihist → X. The
derived I-space happens to be X in this case! This means that a plan is specified
as π : X → U , which is just a state-feedback plan.

Consider the partition of Ihist that is induced by κest. For each x ∈ X, the
set κ−1

est(x), as defined in (11.26), is the set of all histories that lead to the same
state estimate. A plan on X can no longer distinguish between various histories
that led to the same state estimate. One implication is that the ability to encode
the amount of uncertainty in the state estimate has been lost. For example, it
might be wise to make the action depend on the covariance in the estimate of
x; however, this is not possible because decisions are based only on the estimate
itself. �

Example 11.12 (Stage Indices) Consider an I-map, κstage, that returns only
the current stage index. Thus, κstage(ηk) = k. The derived I-space is the set
of stages, which is N. A feedback plan on the derived I-space is specified as
π : N → U . This is equivalent to specifying a plan as an action sequence,
(u1, u2, . . . , ), as in Section 2.3.2. Since the feedback is trivial, this is precisely
the original case of planning without feedback, which is also refereed to as an
open-loop plan. �

Constructing a derived information transition equation As presented so
far, the full history I-state is needed to determine a derived I-state. It may be
preferable, however, to discard histories and work entirely in the derived I-space.
Without storing the histories on the machine or robot, a derived information
transition equation needs to be developed. The important requirement in this
case is as follows:

If ηk is replaced by κ(ηk), then κ(ηk+1) must be correctly determined
using only κ(ηk), uk, and yk+1.

Whether this requirement can be met depends on the particular I-map. An-
other way to express the requirement is that if κ(ηk) is given, then the full history
η does not contain any information that could further constrain κ(ηk+1). The
information provided by κ is sufficient for determining the next derived I-states.
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Figure 11.4: (a) For an I-map to be sufficient, the same result must be reached in
the lower right, regardless of the path taken from the upper left. (b) The problem
is that κ images may contain many histories, which eventually map to multiple
derived I-states.

This is similar to the concept of a sufficient statistic, which arises in decision
theory [4]. If the requirement is met, then κ is called a sufficient I-map. One
peculiarity is that the sufficiency is relative to Ider, as opposed to being absolute
in some sense. For example, any I-map that maps onto Ider = {0} is sufficient
because κ(ηk+1) is always known (it remains fixed at 0). Thus, the requirement
for sufficiency depends strongly on the particular derived I-space.

For a sufficient I-map, a derived information transition equation is determined
as

κ(ηk+1) = fIder(κ(ηk), uk, yk+1). (11.27)

The implication is that Ider is the new I-space in which the problem “lives.” There
is no reason for the decision maker to consider histories. This idea is crucial to
the success of many planning algorithms. Sections 11.2.2 and 11.2.3 introduce
nondeterministic I-spaces and probabilistic I-spaces, which are two of the most
important derived I-spaces and are obtained from sufficient I-maps. The I-map
κstage from Example 11.12 is also sufficient. The estimation I-map from Example
11.11 is usually not sufficient because some history is needed to provide a better
estimate.

The diagram in Figure 11.4a indicates the problem of obtaining a sufficient
I-map. The top of the diagram shows the history I-state transitions before the
I-map was introduced. The bottom of the diagram shows the attempted derived
information transition equation, fIder. The requirement is that the derived I-state
obtained in the lower right must be the same regardless of which path is followed
from the upper left. Either fI can be applied to η, followed by κ, or κ can be
applied to η, followed by some fIder. The problem with the existence of fIder is
that κ is usually not invertible. The preimage κ−1(ηder) of some derived I-state
ηder ∈ Ider yields a set of histories in Ihist. Applying fI to all of these yields a set of



11.2. DERIVED INFORMATION SPACES 575

possible next-stage history I-states. Applying κ to these may yield a set of derived
I-states because of the ambiguity introduced by κ−1. This chain of mappings is
shown in Figure 11.4b. If a singleton is obtained under all circumstances, then
this yields the required values of fIder. Otherwise, new uncertainty arises about
the current derived I-state. This could be handled by defining an information
space over the information space, but this nastiness will be avoided here.

Since I-maps can be defined from any derived I-space to another, the concepts
presented in this section do not necessarily require Ihist as the starting point. For
example, an I-map, κ : Ider → I ′

der, may be called sufficient with respect to Ider
rather than with respect to Ihist.

11.2.2 Nondeterministic Information Spaces

This section defines the I-map κndet from Figure 11.3, which converts each history
I-state into a subset of X that corresponds to all possible current states. Nature
is modeled nondeterministically, which means that there is no information about
what actions nature will choose, other than that they will be chosen from Θ and
Ψ. Assume that the state-action sensor mapping from Section 11.1.1 is used.
Consider what inferences may be drawn from a history I-state, ηk = (η0, ũk−1, ỹk).
Since the model does not involve probabilities, let η0 represent a set X1 ⊆ X. Let
κndet(ηk) be the minimal subset of X in which xk is known to lie given ηk. This
subset is referred to as a nondeterministic I-state. To remind you that κndet(ηk)
is a subset of X, it will now be denoted as Xk(ηk). It is important that Xk(ηk)
be as small as possible while consistent with ηk.

Recall from (11.6) that for every observation yk, a set H(yk) ⊆ X of possible
values for xk can be inferred. This could serve as a crude estimate of the nondeter-
ministic I-state. It is certainly known that Xk(ηk) ⊆ H(yk); otherwise, xk, would
not be consistent with the current sensor observation. If we carefully progress
from the initial conditions while applying constraints due to the state transition
equation, the appropriate subset of H(yk) will be obtained.

From the state transition function f , define a set-valued function F that yields
a subset of X for every x ∈ X and u ∈ U as

F (x, u) = {x′ ∈ X | ∃θ ∈ Θ(x, u) for which x′ = f(x, u, θ)}. (11.28)

Note that both F and H are set-valued functions that eliminate the direct ap-
pearance of nature actions. The effect of nature is taken into account in the set
that is obtained when these functions are applied. This will be very convenient
for computing the nondeterministic I-state.

An inductive process will now be described that results in computing the
nondeterministic I-state, Xk(ηk), for any stage k. The base case, k = 1, of the
induction proceeds as

X1(η1) = X1(η0, y1) = X1 ∩H(y1). (11.29)
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The first part of the equation replaces η1 with (η0, y1), which is a longer way to
write the history I-state. There are not yet any actions in the history. The second
part applies set intersection to make consistent the two pieces of information: 1)
The initial state lies in X1, which is the initial condition, and 2) the states in
H(y1) are possible given the observation y1.

Now assume inductively that Xk(ηk) ⊆ X has been computed and the task is
to compute Xk+1(ηk+1). From (11.15), ηk+1 = (ηk, uk, yk+1). Thus, the only new
pieces of information are that uk was applied and yk+1 was observed. These will
be considered one at a time.

Consider computing Xk+1(ηk, uk). If xk was known, then after applying uk, the
state could lie anywhere within F (xk, uk), using (11.28). Although xk is actually
not known, it is at least known that xk ∈ Xk(ηk). Therefore,

Xk+1(ηk, uk) =
⋃

xk∈Xk(ηk)

F (xk, uk). (11.30)

This can be considered as the set of all states that can be reached by starting
from some state in Xk(ηk) and applying any actions uk ∈ U and θk ∈ Θ(xk, uk).
See Figure 11.5.
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Figure 11.5: The first step in computing the nondeterministic I-state is to take
the union of F (xk, uk) over all possible xk ∈ Xk(ηk).

The next step is to take into account the observation yk+1. This information
alone indicates that xk+1 lies in H(yk+1). Therefore, an intersection is performed
to obtain the nondeterministic I-state,

Xk+1(ηk+1) = Xk+1(ηk, uk, yk+1) = Xk+1(ηk, uk) ∩H(yk+1). (11.31)

Thus, it has been shown how to compute Xk+1(ηk+1) from Xk(ηk). After start-
ing with (11.29), the nondeterministic I-states at any stage can be computed by
iterating (11.30) and (11.31) as many times as necessary.

Since the nondeterministic I-state is always a subset of X, the nondetermin-
istic I-space, Indet = pow(X), is obtained (shown in Figure 11.3). If X is finite,
then Indet is also finite, which was not the case with Ihist because the histories
continued to grow with the number of stages. Thus, if the number of stages is
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unbounded or large in comparison to the size of X, then nondeterministic I-states
seem preferable. It is also convenient that κndet is a sufficient I-map, as defined in
Section 11.2.1. This implies that a planning problem can be completely expressed
in terms of Indet without maintaining the histories. The goal region, XG, can be
expressed directly as a nondeterministic I-state. In this way, the planning task is
to terminate in a nondeterministic I-state, Xk(ηk), for which Xk(ηk) ⊆ XG.

The sufficiency of κndet is obtained because (11.30) and (11.31) show that
Xk+1(ηk+1) can be computed from Xk(ηk), uk, and yk+1. This implies that a
derived information transition equation can be formed. The nondeterministic
I-space can also be treated as “just another state space.” Although many his-
tory I-states may map to the same nondeterministic I-state, it has been assumed
for decision-making purposes that particular history is irrelevant, once Xk(ηk) is
given.

The following example is not very interesting in itself, but it is simple enough
to illustrate the concepts.

Example 11.13 (Three-State Example) Let X = {0, 1, 2}, U = {−1, 0, 1},
and Θ(x, u) = {0, 1} for all x ∈ X and u ∈ U . The state transitions are given
by f(x, u, θ) = (x + u + θ) mod 3. Regarding sensing, Y = {0, 1, 2, 3, 4} and
Ψ(x) = {0, 1, 2} for all x ∈ X. The sensor mapping is y = h(x, ψ) = x+ ψ.

The history I-space appears very cumbersome for this example, which only
involves three states. The nondeterministic I-space for this example is

Indet = {∅, {0}, {1}, {2}, {0, 1}, {1, 2}, {0, 2}, {0, 1, 2}}, (11.32)

which is the power set of X = {0, 1, 2}. Note, however, that the empty set, ∅, can
usually be deleted from Indet.3 Suppose that the initial condition is X1 = {0, 2}
and that the initial state is x1 = 0. The initial state is unknown to the decision
maker, but it is needed to ensure that valid observations are made in the example.

Now consider the execution over a number of stages. Suppose that the first
observation is y1 = 2. Based on the sensor mapping, H(y1) = H(2) = {0, 1, 2},
which is not very helpful because H(2) = X. Applying (11.29) yields X1(η1) =
{0, 2}. Now suppose that the decision maker applies the action u1 = 1 and nature
applies θ1 = 1. Using f , this yields x2 = 2. The decision maker does not know
θ1 and must therefore take into account any nature action that could have been
applied. It uses (11.30) to infer that

X2(η1, u1) = F (2, 1) ∪ F (0, 1) = {0, 1} ∪ {1, 2} = {0, 1, 2}. (11.33)

Now suppose that y2 = 3. From the sensor mapping, H(3) = {1, 2}. Applying
(11.31) yields

X2(η2) = X2(η1, u1) ∩H(y2) = {0, 1, 2} ∩ {1, 2} = {1, 2}. (11.34)

3One notable exception is in the theory of nondeterministic finite automata, in which it is
possible that all copies of the machine die and there is no possible current state [36].
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This process may be repeated for as many stages as desired. A path is generated
through Indet by visiting a sequence of nondeterministic I-states. If the observa-
tion yk = 4 is ever received, the state, xk, becomes immediately known because
H(4) = {2}. �

11.2.3 Probabilistic Information Spaces

This section defines the I-map κprob from Figure 11.3, which converts each history
I-state into a probability distribution over X. A Markov, probabilistic model is
assumed in the sense that the actions of nature only depend on the current state
and action, as opposed to state or action histories. The set union and intersection
of (11.30) and (11.31) are replaced in this section by marginalization and Bayes’
rule, respectively. In a sense, these are the probabilistic equivalents of union and
intersection. It will be very helpful to compare the expressions from this section
to those of Section 11.2.2.

Rather than write κprob(η), standard probability notation will be applied to
obtain P (x|η). Most expressions in this section of the form P (xk|·) have an
analogous expression in Section 11.2.2 of the form Xk(·). It is helpful to recognize
the similarities.

The first step is to construct probabilistic versions of H and F . These are
P (xk|yk) and P (xk+1|xk, uk), respectively. The latter term was given in Section
10.1.1. To obtain P (xk|yk), recall from Section 11.1.1 that P (yk|xk) is easily
derived from P (ψk|xk). To obtain P (xk|yk), Bayes’ rule is applied:

P (xk|yk) =
P (yk|xk)P (xk)

P (yk)
=

P (yk|xk)P (xk)
∑

xk∈X

P (yk|xk)P (xk)
. (11.35)

In the last step, P (yk) was rewritten using marginalization, (9.8). In this case
xk appears as the sum index; therefore, the denominator is only a function of
yk, as required. Bayes’ rule requires knowing the prior, P (xk). In the coming
expressions, this will be replaced by a probabilistic I-state.

Now consider defining probabilistic I-states. Each is a probability distribution
over X and is written as P (xk|ηk). The initial condition produces P (x1). As for
the nondeterministic case, probabilistic I-states can be computed inductively. For
the base case, the only new piece of information is y1. Thus, the probabilistic
I-state, P (x1|η1), is P (x1|y1). This is computed by letting k = 1 in (11.35) to
yield

P (x1|η1) = P (x1|y1) =
P (y1|x1)P (x1)
∑

x1∈X

P (y1|x1)P (x1)
. (11.36)

Now consider the inductive step by assuming that P (xk|ηk) is given. The task
is to determine P (xk+1|ηk+1), which is equivalent to P (xk+1|ηk, uk, yk+1). As in
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Section 11.2.2, this will proceed in two parts by first considering the effect of uk,
followed by yk+1. The first step is to determine P (xk+1|ηk, uk) from P (xk|ηk).
First, note that

P (xk+1|ηk, xk, uk) = P (xk+1|xk, uk) (11.37)

because ηk contains no additional information regarding the prediction of xk+1

once xk is given. Marginalization, (9.8), can be used to eliminate xk from P (xk+1|xk, uk).
This must be eliminated because it is not given. Putting these steps together yields

P (xk+1|ηk, uk) =
∑

xk∈X

P (xk+1|xk, uk, ηk)P (xk|ηk)

=
∑

xk∈X

P (xk+1|xk, uk)P (xk|ηk),
(11.38)

which expresses P (xk+1|ηk, uk) in terms of given quantities. Equation (11.38) can
be considered as the probabilistic counterpart of (11.30).

The next step is to take into account the observation yk+1. This is accomplished
by making a version of (11.35) that is conditioned on the information accumulated
so far: ηk and uk. Also, k is replaced with k + 1. The result is

P (xk+1|yk+1, ηk, uk) =
P (yk+1|xk+1, ηk, uk)P (xk+1|ηk, uk)
∑

xk+1∈X

P (yk+1|xk+1, ηk, uk)P (xk+1|ηk, uk)
. (11.39)

This can be considered as the probabilistic counterpart of (11.31). The left side
of (11.39) is equivalent to P (xk+1|ηk+1), which is the probabilistic I-state for stage
k + 1, as desired. There are two different kinds of terms on the right. The
expression for P (xk+1|ηk, uk) is given in (11.38). Therefore, the only remaining
term to calculate is P (yk+1|xk+1, ηk, uk). Note that

P (yk+1|xk+1, ηk, uk) = P (yk+1|xk+1) (11.40)

because the sensor mapping depends only on the state (and the probability model
for the nature sensing action, which also depends only on the state). Since
P (yk+1|xk+1) is specified as part of the sensor model, we have now determined
how to obtain P (xk+1|ηk+1) from P (xk|ηk), uk, and yk+1. Thus, Iprob is another
I-space that can be treated as just another state space.

The probabilistic I-space Iprob (shown in Figure 11.3) is the set of all probabil-
ity distributions over X. The update expressions, (11.38) and (11.39), establish
that the I-map κprob is sufficient, which means that the planning problem can be
expressed entirely in terms of Iprob, instead of maintaining histories. A goal re-
gion can be specified as constraints on the probabilities. For example, from some
particular x ∈ X, the goal might be to reach any probabilistic I-state for which
P (xk|ηk) > 1/2.
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Figure 11.6: The probabilistic I-space for the three-state example is a 2-simplex
embedded in R

3. This simplex can be projected into R
2 to yield the depicted

triangular region in R
2.

Example 11.14 (Three-State Example Revisited) Now return to Example
11.13, but this time use probabilistic models. For a probabilistic I-state, let pi
denote the probability that the current state is i ∈ X. Any probabilistic I-
state can be expressed as (p0, p1, p2) ∈ R

3. This implies that the I-space can be
nicely embedded in R

3. By the axioms of probability (given in Section 9.1.2),
p0+ p1+ p2 = 1, which can be interpreted as a plane equation in R

3 that restricts
Iprob to a 2D set. Also following the axioms of probability, for each i ∈ {0, 1, 2},
0 ≤ pi ≤ 1. This means that Iprob is restricted to a triangular region in R

3.
The vertices of this triangular region are (0, 0, 1), (0, 1, 0), and (1, 0, 0); these
correspond to the three different ways to have perfect state information. In a sense,
the distance away from these points corresponds to the amount of uncertainty in
the state. The uniform probability distribution (1/3, 1/3, 1/3) is equidistant from
the three vertices. A projection of the triangular region into R

2 is shown in Figure
11.6. The interpretation in this case is that p0 and p1 specify a point in R

2, and
p2 is automatically determined from p2 = 1− p0 − p1.

The triangular region in R
3 is an uncountably infinite set, even though the

history I-space is countably infinite for a fixed initial condition. This may seem
strange, but there is no mistake because for a fixed initial condition, it is generally
impossible to reach all of the points in Iprob. If the initial condition can be any
point in Iprob, then all of the probabilistic I-space is covered because I0 = Iprob,
in which I0 is the initial condition space.. �

11.2.4 Limited-Memory Information Spaces

Limiting the amount of memory provides one way to reduce the sizes of history
I-states. Except in special cases, this usually does not preserve the feasibility or
optimality of the original problem. Nevertheless, such I-maps are very useful in
practice when there appears to be no other way to reduce the size of the I-space.
Furthermore, they occasionally do preserve the desired properties of feasibility,
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and sometimes even optimality.

Previous i stages Under this model, the history I-state is truncated. Any
actions or observations received earlier than i stages ago are dropped from memory.
An I-map, κi, is defined as

κi(ηk) = (uk−i, . . . , uk−1, yk−i+1, . . . , yk), (11.41)

for any integer i > 0 and k > i. If i ≤ k, then the derived I-state is the full
history I-state, (11.14). The advantage of this approach, if it leads to a solution,
is that the length of the I-state no longer grows with the number of stages. If X
and U are finite, then the derived I-space is also finite. Note that κi is sufficient
in the sense defined in Section 11.2.1 because enough history is passed from stage
to stage to determine the derived I-states.

Sensor feedback An interesting I-map is obtained by removing all but the last
sensor observation from the history I-state. This yields an I-map, κsf : Ihist → Y ,
which is defined as κsf (ηk) = yk. The model is referred to as sensor feedback. In
this case, all decisions are made directly in terms of the current sensor observation.
The derived I-space is Y , and a plan on the derived I-space is π : Y → U , which
is called a sensor-feedback plan. In some literature, this may be referred to as
a purely reactive plan. Many problems for which solutions exist in the history
I-space cannot be solved using sensor feedback. Neglecting history prevents the
complicated deductions that are often needed regarding the state. In some sense,
sensor feedback causes short-sightedness that could unavoidably lead to repeating
the same mistakes indefinitely. However, it may be worth determining whether
such a sensor-feedback solution plan exists for some particular problem. Such
plans tend to be simpler to implement in practice because the actions can be
connected directly to the sensor output. Certainly, if a sensor-feedback solution
plan exists for a problem, and feasibility is the only concern, then it is pointless
to design and implement a plan in terms of the history I-space or some larger
derived I-space. Note that this I-map is sufficient, even though it ignores the
entire history.

11.3 Examples for Discrete State Spaces

11.3.1 Basic Nondeterministic Examples

First, we consider a simple example that uses the sign sensor of Example 11.3.

Example 11.15 (Using the Sign Sensor) This example is similar to Example
10.1, except that it involves sensing uncertainty instead of prediction uncertainty.
Let X = Z, U = {−1, 1, uT}, Y = {−1, 0, 1}, and y = h(x) = sgnx. For the state
transition equation, xk+1 = f(xk, uk) = xk + uk. No nature actions interfere with

582 S. M. LaValle: Planning Algorithms

the state transition equation or the sensor mapping. Therefore, future history
I-states are predictable. The information transition equation is ηk+1 = fI(ηk, uk).
Suppose that initially, η0 = X, which means that any initial state is possible. The
goal is to terminate at 0 ∈ X.

The general expression for a history I-state at stage k is

ηk = (X, u1, . . . , uk−1, y1, . . . , yk). (11.42)

A possible I-state is η5 = (X,−1, 1, 1,−1, 1, 1, 1, 1, 0). Using the nondeterministic
I-space from Section 11.2.2, Indet = pow(X), which is uncountably infinite. By
looking carefully at the problem, however, it can be seen that most of the nonde-
terministic I-states are not reachable. If yk = 0, it is known that xk = 0; hence,
Xk(ηk) = {0}. If yk = 1, it will always be the case that Xk(ηk) = {1, 2, . . .} unless
0 is observed. If yk = −1, then Xk(ηk) = {. . . ,−2,−1}. From this a plan, π, can
be specified over the three nondeterministic I-states mentioned above. For the
first one, π(Xk(ηk)) = uT . For the other two, π(Xk(ηk)) = −1 and π(Xk(ηk)) = 1,
respectively. Based on the sign, the plan tries to move toward 0. If different
initial conditions are allowed, then more nondeterministic I-states can be reached,
but this was not required as the problem was defined. Note that optimal-length
solutions are produced by the plan.

The solution can even be implemented with sensor feedback because the action
depends only on the current sensor value. Let π : Y → U be defined as

π(y) =







−1 if y = 1
1 if y = −1
uT if y = 0.

(11.43)

This provides dramatic memory savings over defining a plan on Ihist. �

The next example provides a simple illustration of solving a problem without
ever knowing the current state. This leads to the goal recognizability problem [31]
(see Section 12.5.1).

Example 11.16 (Goal Recognizability) Let X = Z, U = {−1, 1, uT}, and
Y = Z. For the state transition equation, xk+1 = f(xk, uk) = xk + uk. Now
suppose that a variant of Example 11.7 is used to model sensing: y = h(x, ψ) =
x+ψ and Ψ = {−5,−4, . . . , 5}. Suppose that once again, η0 = X. In this case, it
is impossible to guarantee that a goal, XG = {0}, is reached because of the goal
recognizability problem. The disturbance in the sensor mapping does not allow
precise enough state measurements to deduce the precise achievement of the state.
If the goal region, XG, is enlarged to {−5,−4, . . . , 5}, then the problem can be
solved. Due to the disturbance, the nondeterministic I-state is always a subset of
a consecutive sequence of 11 states. It is simple to derive a plan that moves this
interval until the nondeterministic I-state becomes a subset of XG. When this
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Figure 11.7: An example that involves 19 states. There are no sensor observations;
however, actions can be chosen that enable the state to be estimated. The example
provides an illustration of reducing the I-space via I-maps.

occurs, then the plan applies uT . In solving this problem, the exact state never
had to be known. �

The problem shown in Figure 11.7 serves two purposes. First, it is an example
of sensorless planning [14, 18], which means that there are no observations (see
Sections 11.5.4 and 12.5.2). This is an interesting class of problems because it
appears that no information can be gained regarding the state. Contrary to
intuition, it turns out for this example and many others that plans can be designed
that estimate the state. The second purpose is to illustrate how the I-space
can be dramatically collapsed using the I-map concepts of Section 11.2.1. The
standard nondeterministic I-space for this example contains 219 I-states, but it can
be mapped to a much smaller derived I-space that contains only a few elements.

Example 11.17 (Moving in an L-shaped Corridor) The state space X for
the example shown in Figure 11.7 has 19 states, each of which corresponds to a
location on one of the white tiles. For convenience, let each state be denoted by
(i, j). There are 10 bottom states, denoted by (1, 1), (2, 1), . . ., (10, 1), and 10 left
states, denoted by (1, 1), (1, 2), . . ., (1, 10). Since (1, 1) is both a bottom state
and a left state, it is called the corner state.

There are no sensor observations for this problem. However, nature interferes
with the state transitions, which leads to a form of nondeterministic uncertainty.
If an action is applied that tries to take one step, nature may cause two or three
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steps to be taken. This can be modeled as follows. Let

U = {(1, 0), (−1, 0), (0, 1), (0,−1)} (11.44)

and let Θ = {1, 2, 3}. The state transition equation is defined as f(x, u, θ) = x+θu
whenever such motion is not blocked (by hitting a dead end). For example, if
x = (5, 1), u = (−1, 0), and θ = 2, then the resulting next state is (5, 1) +
2(−1, 0) = (3, 1). If blocking is possible, the state changes as much as possible
until it becomes blocked. Due to blocking, it is even possible that f(x, u, θ) = x.

Since there are no sensor observations, the history I-state at stage k is

ηk = (η0, u1, . . . , uk−1). (11.45)

Now use the nondeterministic I-space, Indet = pow(X). The initial state, x1 =
(10, 1), is given, which means that the initial I-state, η0, is {(10, 1)}. The goal is
to arrive at the I-state, {(1, 10)}, which means that the task is to design a plan
that moves from the lower right to the upper left.

With perfect information, this would be trivial; however, without sensors
the uncertainty may grow very quickly. For example, after applying the ac-
tion u1 = (−1, 0) from the initial state, the nondeterministic I-state becomes
{(7, 1), (8, 1), (9, 1)}. After u2 = (−1, 0) it becomes {(4, 1), . . . , (8, 1)}. A nice
feature of this problem, however, is that uncertainty can be reduced without sens-
ing. Suppose that for 100 stages, we repeatedly apply uk = (−1, 0). What is
the resulting I-state? As the corner state is approached, the uncertainty is re-
duced because the state cannot be further changed by nature. It is known that
each action, uk = (−1, 0), decreases the X coordinate by at least one each time.
Therefore, after nine or more stages, it is known that ηk = {(1, 1)}. Once this is
known, then the action (0, 1) can be applied. This will again increase uncertainty
as the state moves through the set of left states. If (0, 1) is applied nine or more
times, then it is known for certain that xk = (1, 10), which is the required goal
state.

A successful plan has now been obtained: 1) Apply (−1, 0) for nine stages, 2)
then apply (0, 1) for nine stages. This plan could be defined over Indet; however,
it is simpler to use the I-map κstage from Example 11.12 to define a plan as
π : N → U . For k such that 1 ≤ k ≤ 9, π(k) = (−1, 0). For k such that
10 ≤ k ≤ 18, π(k) = (0, 1). For k > 18, π(k) = uT . Note that the plan works
even if the initial condition is any subset of X. From this point onward, assume
that any subset may be given as the initial condition.

Some alternative plans will now be considered by making other derived I-spaces
from Indet. Let κ3 be an I-map from Indet to a set I3 of three derived I-states. Let
I3 = {g, l, a}, in which g denotes “goal,” l denotes “left,” and a denotes “any.”
The I-map, κ3, is

X(η) =







g if X(η) = {(1, 10)}
l if X(η) is a subset of the set of left states
a otherwise.

(11.46)
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Based on the successful plan described so far, a solution on I3 is defined as π(g) =
uT , π(l) = (0, 1), and π(a) = (−1, 0). This plan is simpler to represent than the
one on N; however, there is one drawback. The I-map κ3 is not sufficient. This
implies that more of the nondeterministic I-state needs to be maintained during
execution. Otherwise, there is no way to know when certain transitions occur.
For example, if (−1, 0) is applied from a, how can the robot determine whether
l or a is reached in the next stage? This can be easily determined from the
nondeterministic I-state.

To address this problem, consider a new I-map, κ19 : Indet → I19, which is
sufficient. There are 19 derived I-states, which include g as defined previously,
li for 1 ≤ j ≤ 9, and ai for 2 ≤ i ≤ 10. The I-map is defined as κ19(X(η)) =
g if X(η) = {(1, 10)}. Otherwise, κ19(X(η)) = li for the smallest value of i
such that X(η) is a subset of {(1, i), . . . , (1, 10)}. If there is no such value for
i, then κ19(X(η)) = ai, for the smallest value of i such that X(η) is a subset
of {(1, 1), . . . , (1, 10), (2, 1), . . . , (i, 1)}. Now the plan is defined as π(g) = uT ,
π(li) = (0, 1), and π(ai) = (−1, 0). Although the plan is larger, the robot does
not need to represent the full nondeterministic I-state during execution. The
correct transitions occur. For example, if uk = (−1, 0) is applied at a5, then a4
is obtained. If u = (−1, 0) is applied at a2, then l1 is obtained. From there,
u = (0, 1) is applied to yield l2. These actions can be repeated until eventually l9
and g are reached. The resulting plan, however, is not an improvement over the
original open-loop one. �

11.3.2 Nondeterministic Finite Automata

An interesting connection lies between the ideas of this chapter and the theory
of finite automata, which is part of the theory of computation (see [21, 36]). In
Section 2.1, it was mentioned that determining whether there exists some string
that is accepted by a DFA is equivalent to a discrete feasible planning problem.
If unpredictability is introduced into the model, then a nondeterministic finite
automaton (NFA) is obtained, as depicted in Figure 11.8. This represents one of
the simplest examples of nondeterminism in theoretical computer science. Such
nondeterministic models serve as a powerful tool for defining models of computa-
tion and their associated complexity classes. It turns out that these models give
rise to interesting examples of information spaces.

An NFA is typically described using a directed graph as shown in Figure
11.8b, and is considered as a special kind of finite state machine. Each vertex of
the graph represents a state, and edges represent possible transitions. An input
string of finite length is read by the machine. Typically, the input string is a
binary sequence of 0’s and 1’s. The initial state is designated by an inward arrow
that has no source vertex, as shown pointing into state a in Figure 11.8b. The
machine starts in this state and reads the first symbol of the input string. Based
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Figure 11.8: (a) An nondeterministic finite automaton (NFA) is a state machine
that reads an input string and decides whether to accept it. (b) A graphical
depiction of an NFA.

on its value, it makes appropriate transitions. For a DFA, the next state must be
specified for each of the two inputs 0 and 1 from each state. From a state in an
NFA, there may be any number of outgoing edges (including zero) that represent
the response to a single symbol. For example, there are two outgoing edges if 0 is
read from state c (the arrow from c to b actually corresponds to two directed edges,
one for 0 and the other for 1). There are also edges designated with a special ǫ
symbol. If a state has an outgoing ǫ, the state may immediately transition along
the edge without reading another symbol. This may be iterated any number of
times, for any outgoing ǫ edges that may be encountered, without reading the next
input symbol. The nondeterminism arises from the fact that there are multiple
choices for possible next states due to multiple edges for the same input and ǫ
transitions. There is no sensor that indicates which state is actually chosen.

The interpretation often given in the theory of computation is that when there
are multiple choices, the machine clones itself and one copy runs each choice. It is
like having multiple universes in which each different possible action of nature is
occurring simultaneously. If there are no outgoing edges for a certain combination
of state and input, then the clone dies. Any states that are depicted with a double
boundary, such as state a in Figure 11.8, are called accept states. When the input
string ends, the NFA is said to accept the input string if there exists at least one
alternate universe in which the final machine state is an accept state.

The formulation usually given for NFAs seems very close to Formulation 2.1 for
discrete feasible planning. Here is a typical NFA formulation [36], which formalizes
the ideas depicted in Figure 11.8:

Formulation 11.2 (Nondeterministic Finite Automaton)

1. A finite state space X.

2. A finite alphabet Σ which represents the possible input symbols. Let Σǫ =
Σ ∪ {ǫ}.
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3. A transition function, δ : X × Σǫ → pow(X). For each state and symbol, a
set of outgoing edges is specified by indicating the states that are reached.

4. A start state x0 ∈ X.

5. A set A ⊆ X of accept states.

Example 11.18 (Three-State NFA) The example in Figure 11.8 can be ex-
pressed using Formulation 11.2. The components are X = {a, b, c}, Σ = {0, 1},
Σǫ = {0, 1, ǫ}, x0 = a, and A = {a}. The state transition equation requires the
specification of a state for every x ∈ X and symbol in Σǫ:

0 1 ǫ
a ∅ {c} {b}
b {a} ∅ ∅
c {b, c} {b} ∅ .

(11.47)

�

Now consider reformulating the NFA and its acceptance of strings as a kind
of planning problem. An input string can be considered as a plan that uses
no form of feedback; it is a fixed sequence of actions. The feasible planning
problem is to determine whether any string exists that is accepted by the NFA.
Since there is no feedback, there is no sensing model. The initial state is known,
but subsequent states cannot be measured. The history I-state ηk at stage k
reduces to ηk = ũk−1 = (u1, . . . , uk−1), the action history. The nondeterminism
can be accounted for by defining nature actions that interfere with the state
transitions. This results in the following formulation, which is described in terms
of Formulation 11.2.

Formulation 11.3 (An NFA Planning Problem)

1. A finite state space X.

2. An action space U = Σ ∪ {uT}.

3. A state transition function, F : X × U → pow(X). For each state and
symbol, a set of outgoing edges is specified by indicating the states that are
reached.

4. An initial state x0 = x1.

5. A set XG = A of goal states.

The history I-space Ihist is defined using

Ik = Ũk−1 (11.48)
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for each k ∈ N and taking the union as defined in (11.19). Assume that the initial
state of the NFA is always fixed; therefore, it does not appear in the definition of
Ihist.

For expressing the planning task, it is best to use the nondeterministic I-
space Indet = pow(X) from Section 11.2.2. Thus, each nondeterministic I-state,
X(η) ∈ Indet, is the subset of X that corresponds to the possible current states of
the machine. The initial condition could be any subset of X because ǫ transitions
can occur from x1. Subsequent nondeterministic I-states follow directly from F .
The task is to compute a plan of the form

π = (u1, u2, . . . , uK , uT ), (11.49)

which results in XK+1(ηK+1) ∈ Indet with XK+1(ηK+1) ∩ XG 6= ∅. This means
that at least one possible state of the NFA must lie in XG after the termination
action is applied. This condition is much weaker than a typical planning require-
ment. Using worst-case analysis, a typical requirement would instead be that
every possible NFA state lies in XG.

The problem given in Formulation 11.3 is not precisely a specialization of
Formulation 11.1 because of the state transition function. For convenience, F
was directly defined, instead of explicitly requiring that f be defined in terms
of nature actions, Θ(x, u), which in this context depend on both x and u for an
NFA. There is one other small issue regarding this formulation. In the planning
problems considered in this book, it is always assumed that there is a current
state. For an NFA, it was already mentioned that if there are no outgoing edges
for a certain input, then the clone of the machine dies. This means that potential
current states cease to exist. It is even possible that every clone dies, which leaves
no current state for the machine. This can be easily enabled by directly defining
F ; however, planning problems must always have a current state. To resolve this
issue, we could augment X in Formulation 11.3 to include an extra dead state,
which signifies the death of a clone when there are no outgoing edges. A dead
state can never lie in XG, and once a transition to a dead state occurs, the state
remains dead for all time. In this section, the state space will not be augmented
in this way; however, it is important to note that the NFA formulation can easily
be made consistent with Formulation 11.3.

The planning model can now be compared to the standard use of NFAs in the
theory of computation. A language of an NFA is defined to be the set of all input
strings that it accepts. The planning problem formulated here determines whether
there exists a string (which is a plan that ends with termination actions) that is
accepted by the NFA. Equivalently, a planning algorithm determines whether the
language of an NFA is empty. Constructing the set of all successful plans is
equivalent to determining the language of the NFA.

Example 11.19 (Planning for the Three-State NFA) The example in Fig-
ure 11.8 can be expressed using Formulation 11.2. The components are X =
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{a, b, c}, Σ = {0, 1}, Σǫ = {0, 1, ǫ}, x0 = a, and F = {a}. The function F (x, u) is
defined as

0 1
a ∅ {c}
b {a, b} ∅
c {b, c} {b}.

(11.50)

The nondeterministic I-space is

X(η) = {∅, {a}, {b}, {c}, {a, b}, {a, c}, {b, c}, {a, b, c}}, (11.51)

in which the initial condition is η0 = {a, b} because an ǫ transition occurs imme-
diately from a. An example plan that solves the problem is (1, 0, 0, uT , . . .). This
corresponds to sending an input string “100” through the NFA depicted in Figure
11.8. The sequence of nondeterministic I-states obtained during the execution of
the plan is

{a, b} 1→ {c} 0→ {b, c} 0→ {a, b, c} uT→ {a, b, c}. (11.52)

�

A basic theorem from the theory of finite automata states that for the set of
strings accepted by an NFA, there exists a DFA (deterministic) that accepts the
same set [36]. This is proved by constructing a DFA directly from the nondeter-
ministic I-space. Each nondeterministic I-state can be considered as a state of a
DFA. Thus, the DFA has 2n states, if the original NFA has n states. The state
transitions of the DFA are derived directly from the transitions between nondeter-
ministic I-states. When an input (or action) is given, then a transition occurs from
one subset of X to another. A transition is made between the two corresponding
states in the DFA. This construction is an interesting example of how the I-space
is a new state space that arises when the states of the original state space are
unknown. Even though the I-space is usually larger than the original state space,
its states are always known. Therefore, the behavior appears the same as in the
case of perfect state information. This idea is very general and may be applied to
many problems beyond DFAs and NFAs; see Section 12.1.2

11.3.3 The Probabilistic Case: POMDPs

Example 11.14 generalizes nicely to the case of n states. In operations research
and artificial intelligence literature, these are generally referred to as partially ob-
servable Markov decision processes or POMDPs (pronounced “pom dee peez”).
For the case of three states, the probabilistic I-space, Iprob, is a 2-simplex em-
bedded in R

3. In general, if |X| = n, then Iprob is an (n − 1)-simplex embedded
in R

n. The coordinates of a point are expressed as (p0, p1, . . . , pn−1) ∈ R
n. By

the axioms of probability, p0 + · · · + pn−1 = 1, which implies that Iprob is an
(n−1)-dimensional subspace of Rn. The vertices of the simplex correspond to the

590 S. M. LaValle: Planning Algorithms

n cases in which the state is known; hence, their coordinates are (0, 0, . . . , 0, 1),
(0, 0, . . . , 0, 1, 0), . . ., (1, 0, . . . , 0). For convenience, the simplex can be projected
into R

n−1 by specifying a point in R
n−1 for which p1 + · · · + pn−2 ≤ 1 and then

choosing the final coordinate as pn−1 = 1−p1+ · · ·+pn−2. Section 12.1.3 presents
algorithms for planning for POMDPs.

11.4 Continuous State Spaces

This section takes many of the concepts that have been developed in Sections
11.1 and 11.2 and generalizes them to continuous state spaces. This represents
an important generalization because the configuration space concepts, on which
motion planning was defined in Part II, are all based on continuous state spaces.
In this section, the state space might be a configuration space, X = C, as defined
in Chapter 4 or any other continuous state space. Since it may be a configuration
space, many interesting problems can be drawn from robotics.

During the presentation of the concepts of this section, it will be helpful to
recall analogous concepts that were already developed for discrete state spaces. In
many cases, the formulations appear identical. In others, the continuous case is
more complicated, but it usually maintains some of the properties from the discrete
case. It will be seen after introducing continuous sensing models in Section 11.5.1
that some problems formulated in continuous spaces are even more elegant and
easy to understand than their discrete counterparts.

11.4.1 Discrete-Stage Information Spaces

Assume here that there are discrete stages. Let X ⊆ R
m be an n-dimensional

manifold for n ≤ m called the state space.4 Let Y ⊆ R
m be an ny-dimensional

manifold for ny ≤ m called the observation space. For each x ∈ X, let Ψ(x) ⊆ R
m

be an nn-dimensional manifold for nn ≤ m called the set of nature sensing actions.
The three kinds of sensors mappings, h, defined in Section 11.1.1 are possible, to
yield either a state mapping, y = h(x), a state-nature mapping y = h(x, ψ),
or a history-based, y = hk(x1, . . . , xk, y). For the case of a state mapping, the
preimages, H(y), once again induce a partition of X. Preimages can also be
defined for state-action mappings, but they do not necessarily induce a partition
of X.

Many interesting sensing models can be formulated in continuous state spaces.
Section 11.5.1 provides a kind of sensor catalog. There is once again the choice of
nondeterministic or probabilistic uncertainty if nature sensing actions are used. If
nondeterministic uncertainty is used, the expressions are the same as the discrete
case. Probabilistic models are defined in terms of a probability density function,

4If you did not read Chapter 4 and are not familiar with manifold concepts, then assume
X = R

n; it will not make much difference. Make similar assumptions for Y , Ψ(x), U , and
Θ(x, u).
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p : Ψ → [0,∞),5 in which p(ψ) denotes the continuous-time replacement for P (ψ).
The model can also be expressed as p(y|x), in that same manner that P (y|x) was
obtained for discrete state spaces.

The usual three choices exist for the initial conditions: 1) Either x1 ∈ X is
given; 2) a subset X1 ∈ X is given; or 3) a probability density function, p(x), is
given. The initial condition spaces in the last two cases can be enormous. For
example, if X = [0, 1] and any subset is possible as an initial condition, then
I0 = pow(R), which has higher cardinality than R. If any probability density
function is possible, then I0 is a space of functions.6

The I-space definitions from Section 11.1.2 remain the same, with the under-
standing that all of the variables are continuous. Thus, (11.17) and (11.19) serve
as the definitions of Ik and I. Let U ⊆ R

m be an nu-dimensional manifold for
nu ≤ m. For each x ∈ X and u ∈ U , let Θ(x, u) be an nθ-dimensional manifold for
nθ ≤ m. A discrete-stage I-space planning problem over continuous state spaces
can be easily formulated by replacing each discrete variable in Formulation 11.1
by its continuous counterpart that uses the same notation. Therefore, the full
formulation is not given.

11.4.2 Continuous-Time Information Spaces

Now assume that there is a continuum of stages. Most of the components of
Section 11.4.1 remain the same. The spaces X, Y , Ψ(x), U , and Θ(x, u) remain
the same. The sensor mapping also remains the same. The main difference occurs
in the state transition equation because the effect of nature must be expressed in
terms of velocities. This was already introduced in Section 10.6. In that context,
there was only uncertainty in predictability. In the current context there may be
uncertainties in both predictability and in sensing the current state.

For the discrete-stage case, the history I-states were based on action and ob-
servation sequences. For the continuous-time case, the history instead becomes a
function of time. As defined in Section 7.1.1, let T denote a time interval, which
may be bounded or unbounded. Let ỹt : [0, t] → Y be called the observation
history up to time t ∈ T . Similarly, let ũt : [0, t) → U and x̃t : [0, t] → X be called
the action history and state history, respectively, up to time t ∈ T .

Thus, the three kinds of sensor mappings in the continuous-time case are as
follows:

5Assume that all continuous spaces are measure spaces and all probability density functions
are measurable functions over these spaces.

6To appreciate of the size of this space, it can generally be viewed as an infinite-dimensional
vector space (recall Example 8.5). Consider, for example, representing each function with a
series expansion. To represent any analytic function exactly over [0, 1], an infinite sequence of
real-valued coefficients may be needed. Each sequence can be considered as an infinitely long
vector, and the set of all such sequences forms an infinite-dimensional vector space. See [15, 35]
for more background on function spaces and functional analysis.

592 S. M. LaValle: Planning Algorithms

1. A state-sensor mapping is expressed as y(t) = h(x(t)), in which x(t) and
y(t) are the state and observation, respectively, at time t ∈ T .

2. A state-nature mapping is expressed as y(t) = h(x(t), ψ(t)), which implies
that nature chooses some ψ(t) ∈ Ψ(x(t)) for each t ∈ T .

3. A history-based sensor mapping, which could depend on all of the states
obtained so far. Thus, it depends on the entire function x̃t. This could be
denoted as y(t) = h(x̃t, ψ(t)) if nature can also interfere with the observation.

If ũt and ỹt are combined with the initial condition η0, the history I-state at
time t is obtained as

ηt = (η0, ũt, ỹt). (11.53)

The history I-space at time t is the set of all possible ηt and is denoted as It.
Note that It is a space of functions because each ηt ∈ It is a function of time.
Recall that in the discrete-stage case, every Ik was combined into a single history
I-space, Ihist, using (11.18) or (11.19). The continuous-time analog is obtained as

Ihist =
⋃

t∈T

It, (11.54)

which is an irregular collection of functions because they have different domains;
this irregularity also occurred in the discrete-stage case, in which Ihist was com-
posed of sequences of varying lengths.

A continuous-time version of the cost functional in Formulation 11.1 can be
given to evaluate the execution of a plan. Let L denote a cost functional that may
be applied to any state-action history (x̃t, ũt) to yield

L(x̃t, ũt) =

∫ t

0

l(x(t′), u(t′))dt′ + lF (x(t)), (11.55)

in which l(x(t′), u(t′)) is the instantaneous cost and lF (x(t)) is a final cost.

11.4.3 Derived Information Spaces

For continuous state spaces, the motivation to construct derived I-spaces is even
stronger than in the discrete case because the I-space quickly becomes unwieldy.

Nondeterministic and probabilistic I-spaces for discrete stages

The concepts of I-maps and derived I-spaces from Section 11.2 extend directly to
continuous spaces. In the nondeterministic case, κndet once again transforms the
initial condition and history into a subset of X. In the probabilistic case, κprob
yields a probability density function over X. First, consider the discrete-stage
case.
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The nondeterministic I-states are obtained exactly as defined in Section 11.2.2,
except that the discrete sets are replaced by their continuous counterparts. For
example, F (x, u) as defined in (11.28) is now a continuous set, as are X and
Θ(x, u). Since probabilistic I-states are probability density functions, the deriva-
tion in Section 11.2.3 needs to be modified slightly. There are, however, no impor-
tant conceptual differences. Follow the derivation of Section 11.2.3 and consider
which parts need to be replaced.

The replacement for (11.35) is

p(xk|yk) =
p(yk|xk)p(xk)

∫

X

p(yk|xk)p(xk)dxk
, (11.56)

which is based in part on deriving p(yk|xk) from p(ψk|xk). The base of the induc-
tion, which replaces (11.36), is obtained by letting k = 1 in (11.56). By following
the explanation given from (11.37) to (11.40), but using instead probability den-
sity functions, the following update equations are obtained:

p(xk+1|ηk, uk) =
∫

X

p(xk+1|xk, uk, ηk)p(xk|ηk)dxk

=

∫

X

p(xk+1|xk, uk)p(xk|ηk)dxk,
(11.57)

and

p(xk+1|yk+1, ηk, uk) =
p(yk+1|xk+1)p(xk+1|ηk, uk)

∫

X

p(yk+1|xk+1)p(xk+1|ηk, uk)dxk+1

. (11.58)

Approximating nondeterministic and probabilistic I-spaces

Many other derived I-spaces extend directly to continuous spaces, such as the
limited-memory models of Section 11.2.4 and Examples 11.11 and 11.12. In the
present context, it is extremely useful to try to collapse the I-space as much
as possible because it tends to be unmanageable in most practical applications.
Recall that an I-map, κ : Ihist → Ider, partitions Ihist into sets over which a
constant action must be applied. The main concern is that restricting plans to
Ider does not inhibit solutions.

Consider making derived I-spaces that approximate nondeterministic or prob-
abilistic I-states. Approximations make sense because X is usually a metric space
in the continuous setting. The aim is to dramatically simplify the I-space while
trying to avoid the loss of critical information. A trade-off occurs in which the
quality of the approximation is traded against the size of the resulting derived I-
space. For the case of nondeterministic I-states, conservative approximations are
formulated, which are sets that are guaranteed to contain the nondeterministic
I-state. For the probabilistic case, moment-based approximations are presented,
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which are based on general techniques from probability and statistics to approxi-
mate probability densities. To avoid unnecessary complications, the presentation
will be confined to the discrete-stage model.

X2(η2) X3(η3)X1(η1)

Figure 11.9: The nondeterministic I-states may be complicated regions that are
difficult or impossible to compute.

X̂1 X̂2 X̂3

Figure 11.10: The nondeterministic I-states can be approximated by bounding
spheres.

Conservative approximations Suppose that nondeterministic uncertainty is
used and an approximation is made to the nondeterministic I-states. An I-map,
κapp : Indet → Iapp, will be defined in which Iapp is a particular family of subsets
of X. For example, Iapp could represent the set of all ball subsets of X. If
X = R

2, then the balls become discs, and only three parameters (x, y, r) are
needed to parameterize Iapp (x, y for the center and r for the radius). This implies
that Iapp ⊂ R

3; this appears to be much simpler than Indet, which could be
a complicated collection of regions in R

2. To make Iapp even smaller, it could
be required that x, y, and r are integers (or are sampled with some specified
dispersion, as defined in Section 5.2.3). If Iapp is bounded, then the number of
derived I-states would become finite. Of course, this comes an at expense because
Indet may be poorly approximated.

For a fixed sequence of actions (u1, u2, . . .) consider the sequence of nondeter-
ministic I-states:

X1(η1)
u1,y2−→ X2(η2)

u2,y3−→ X3(η3)
u3,y4−→ · · · , (11.59)

which is also depicted in Figure 11.9. The I-map Iapp must select a bounding
region for every nondeterministic I-state. Starting with a history I-state, η, the
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nondeterministic I-state Xk(ηk) can first be computed, followed by applying Iapp
to yield a bounding region. If there is a way to efficiently compute Xk(ηk) for any
ηk, then a plan on Iapp could be much simpler than those on Indet or Ihist.

If it is difficult to compute Xk(ηk), one possibility is to try to define a de-
rived information transition equation, as discussed in Section 11.2.1. The trouble,
however, is that Iapp is usually not a sufficient I-map. Imagine wanting to com-
pute κapp(Xk+1(ηk+1)), which is a bounding approximation to Xk+1(ηk+1). This
can be accomplished by starting with Xk(ηk), applying the update rules (11.30)
and (11.31), and then applying κapp to Xk+1(ηk+1). In general, this does not pro-
duce the same result as starting with the bounding volume Iapp(Xk(ηk)), applying
(11.30) and (11.31), and then applying κapp.

Thus, it is not possible to express the transitions entirely in Iapp without
some further loss of information. However, if this loss of information is tolerable,
then an information-destroying approximation may nevertheless be useful. The
general idea is to make a bounding region for the nondeterministic I-state in each
iteration. Let X̂k denote this bounding region at stage k. Be careful in using such
approximations. As depicted in Figures 11.9 and 11.10, the sequences of derived
I-states diverge. The sequence in Figure 11.10 is not obtained by simply bounding
each calculated I-state by an element of Iapp; the entire sequence is different.

Initially, X̂1 is chosen so that X1(η1) ⊆ X̂1. In each inductive step, X̂k is
treated as if it were the true nondeterministic I-state (not an approximation).
Using (11.30) and (11.31), the update for considering uk and yk+1 is

X̂ ′

k+1 =

(
⋃

xk∈X̂k

F (xk, uk)

)

∩H(yk+1). (11.60)

In general, X̂ ′

k+1(ηk+1) might not lie in Iapp. Therefore, a bounding region, X̂k+1 ∈
Iapp, must be selected to approximate X̂ ′ under the constraint that X̂ ′

k+1 ⊆ X̂k+1.
This completes the inductive step, which together with the base case yields a
sequence

X̂1
u1,y2−→ X̂2

u2,y3−→ X̂3
u3,y4−→ · · · , (11.61)

which is depicted in Figure 11.10.
Both a plan, π : Iapp → U , and information transitions can now be defined over

Iapp. To ensure that a plan is sound, the approximation must be conservative. If

in some iteration, X̂k+1(ηk+1) ⊂ X̂ ′

k+1(ηk+1), then the true state may not necessar-
ily be included in the approximate derived I-state. This could, for example, mean
that a robot is in a collision state, even though the derived I-state indicates that
this is impossible. This bad behavior is generally avoided by keeping conservative
approximations. At one extreme, the approximations can be made very conser-
vative by always assigning X̂k+1(ηk+1) = X. This, however, is useless because the
only possible plans must apply a single, fixed action for every stage. Even if the
approximations are better, it might still be impossible to cause transitions in the
approximated I-state. To ensure that solutions exist to the planning problem, it
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is therefore important to make the bounding volumes as close as possible to the
derived I-states.

This trade-off between the simplicity of bounding volumes and the compu-
tational expense of working with them was also observed in Section 5.3.2 for
collision detection. Dramatic improvement in performance can be obtained by
working with simpler shapes; however, in the present context this could come
at the expense of failing to solve the problem. Using balls as described so far
might not seem to provide very tight bounds. Imagine instead using solid ellip-
soids. This would provide tighter approximations, but the dimension of Iapp grows
quadratically with the dimension of X. A sphere equation generally requires n+1
parameters, whereas the ellipsoid equation requires (n2 ) + 2n parameters. Thus,
if the dimension of X is high, it may be difficult or even impossible to use el-
lipsoid approximations. Nonconvex bounding shapes could provide even better
approximations, but the required number of parameters could easily become un-
manageable, even if X = R

2. For very particular problems, however, it may be
possible to design a family of shapes that is both manageable and tightly ap-
proximates the nondeterministic I-states. This leads to many interesting research
issues.

Moment-based approximations Since the probabilistic I-states are functions,
it seems natural to use function approximation methods to approximate Iprob. One
possibility might be to use the first m coefficients of a Taylor series expansion.
The derived I-space then becomes the space of possible Taylor coefficients. The
quality of the approximation is improved as m is increased, but also the dimension
of the derived I-space rises.

Since we are working with probability density functions, it is generally prefer-
able to use moments as approximations instead of Taylor series coefficients or
other generic function approximation methods. The first and second moments are
the familiar mean and covariance, respectively. These are preferable over other
approximations because the mean and covariance exactly represent the Gaussian
density, which is the most basic and fundamental density in probability theory.
Thus, approximating the probabilistic I-space with first and second moments is
equivalent to assuming that the resulting probability densities are always Gaus-
sian. Such approximations are frequently made in practice because of the conve-
nience of working with Gaussians. In general, higher order moments can be used
to obtain higher quality approximations at the expense of more coefficients. Let
κmom : Iprob → Imom denote a moment-based I-map.

The same issues arise for κmom as for κapp. In most cases, κmom is not a
sufficient I-map. The moments are computed in the same way as the conserva-
tive approximations. The update equations (11.57) and (11.58) are applied for
probabilistic I-states; however, after each step, κmom is applied to the resulting
probability density function. This traps the derived I-states in Imom. The mo-
ments could be computed after each of (11.57) and (11.58) or after both of them
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have been applied (different results may be obtained). The later case may be more
difficult to compute, depending on the application.

First consider using the mean (first moment) to represent some probabilistic
I-state, p(x|η). Let xi denote the ith coordinate of x. The mean, x̄i, with respect
to xi is generally defined as

x̄i =

∫

X

xi p(x|η)dx. (11.62)

This leads to the vector mean x̄ = (x̄1, . . . , x̄n). Suppose that we would like to
construct Imom using only the mean. Since there is no information about the
covariance of the density, working with x̄ is very similar to estimating the state.
The mean value serves as the estimate, and Imom = X. This certainly helps
to simplify the I-space, but there is no way to infer the amount of uncertainty
associated with the I-state. Was the probability mass concentrated greatly around
x̄, or was the density function very diffuse over X?

Using second moments helps to alleviate this problem. The covariance with
respect to two variables, xi and xi, is

σi,j =

∫

X

xixj p(x|η)dx. (11.63)

Since σij = σji, the second moments can be organized into a symmetric covariance
matrix,

Σ =








σ1,1 σ1,2 · · · σ1,n
σ2,1 σ2,2 · · · σ2,n
...

...
...

σn,1 σn,2 · · · σn,n








(11.64)

for which there are (n2 )+n unique elements, corresponding to every xi,i and every
way to pair xi with xj for each distinct i and j such that 1 ≤ i, j ≤ n. This
implies that if first and second moments are used, then the dimension of Imom
is (n2 ) + 2n. For some problems, it may turn out that all probabilistic I-states
are indeed Gaussians. In this case, the mean and covariance exactly capture the
probabilistic I-space. The I-map in this case is sufficient. This leads to a powerful
tool called the Kalman filter, which is the subject of Section 11.6.1.

Higher quality approximations can be made by taking higher order moments.
The rth moment is defined as

∫

X

xi1xi2 · · · xir p(x|η)dx, (11.65)

in which i1, i2, . . ., ir are r integers chosen with replacement from {1, . . . , n}.
The moment-based approximation is very similar to the conservative approxi-

mations for nondeterministic uncertainty. The use of mean and covariance appears
very similar to using ellipsoids for the nondeterministic case. The level sets of a
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Gaussian density are ellipsoids. These level sets generalize the notion of confidence
intervals to confidence ellipsoids, which provides a close connection between the
nondeterministic and probabilistic cases. The domain of a Gaussian density is
R
n, which is not bounded, contrary to the nondeterministic case. However, for

a given confidence level, it can be approximated as a bounded set. For example,
an elliptical region can be computed in which 99.9% of the probability mass falls.
In general, it may be possible to combine the idea of moments and bounding vol-
umes to construct a derived I-space for the probabilistic case. This could yield
the guaranteed correctness of plans while also taking probabilities into account.
Unfortunately, this would once again increase the dimension of the derived I-space.

Derived I-spaces for continuous time

The continuous-time case is substantially more difficult, both to express and to
compute in general forms. In many special cases, however, there are elegant ways
to compute it. Some of these will be covered in Section 11.5 and Chapter 12.
To help complete the I-space framework, some general expressions are given here.
In general, I-maps and derived I-spaces can be constructed following the ideas of
Section 11.2.1.

Since there are no discrete transition rules, the derived I-states cannot be
expressed in terms of simple update rules. However, they can at least be expressed
as a function that indicates the state x(t) that will be obtained after ũt and θ̃t
are applied from an initial state x(0). Often, this is obtained via some form
of integration (see Section 14.1), although this may not be explicitly given. In
general, let Xt(ηt) ⊂ X denote a nondeterministic I-state at time t; this is the
replacement for Xk from the discrete-stage case. The initial condition is denoted
as X0, as opposed to X1, which was used in the discrete-stage case.

More definitions are needed to precisely characterize Xt(ηt). Let θ̃t : [0, t) → Θ
denote the history of nature actions up to time t. Similarly, let ψ̃t : [0, t] → Ψ
denote the history of nature sensing actions. Suppose that the initial condition is
X0 ⊂ X. The nondeterministic I-state is defined as

Xt(ηt) = {x ∈ X | ∃x′ ∈ X0, ∃θ̃t, and ∃ψ̃t such that

x = Φ(x′, ũt, θ̃t) and ∀t′ ∈ [0, t], y(t′) = h(x(t′), ψ(t′))}.
(11.66)

In words, this means that a state x(t) lies in Xt(ηt) if and only if there exists an
initial state x′ ∈ X0, a nature history θ̃t, and a nature sensing action history, ψ̃t
such that the transition equation causes arrival at x(t) and the observation history
ỹt agrees with the sensor mapping over all time from 0 to t.

It is also possible to derive a probabilistic I-state, but this requires technical
details from continuous-time stochastic processes and stochastic differential equa-
tions. In some cases, the resulting expressions work out very nicely; however,
it is difficult to formulate a general expression for the derived I-state because it
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r

Ψ

H(y)

y

X
(a) (b)

Figure 11.11: A simple sensing model in which the observation error is no more
than r: (a) the nature sensing action space; (b) the preimage in X based on
observation y.

depends on many technical assumptions regarding the behavior of the stochastic
processes. For details on such systems, see [28].

11.5 Examples for Continuous State Spaces

11.5.1 Sensor Models

A remarkable variety of sensing models arises in applications that involve con-
tinuous state spaces. This section presents a catalog of different kinds of sensor
models that is inspired mainly by robotics problems. The models are gathered
together in one place to provide convenient reference. Some of them will be used
in upcoming sections, and others are included to help in the understanding of I-
spaces. For each sensor, there are usually two different versions, based on whether
nature sensing actions are included.

Linear sensing models Developed mainly in control theory literature, linear
sensing models are some of the most common and important. For all of the sensors
in this family, assume that X = Y = R

n (nonsingular linear transformations allow
the sensor space to effectively have lower dimension, if desired). The simplest
case in this family is the identity sensor, in which y = x. In this case, the state
is immediately known. If this sensor is available at every stage, then the I-space
collapses to X by the I-map κsf : Ihist → X.

Now nature sensing actions can be used to corrupt this perfect state obser-
vation to obtain y = h(x, ψ) = x + ψ. Suppose that y is an estimate of x, the
current state, with error bounded by a constant r ∈ (0,∞). This can be modeled
by assigning for every x ∈ X, Ψ(x) as a closed ball of radius r, centered at the
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origin:
Ψ = {ψ ∈ R

n | ‖ψ‖ ≤ r}. (11.67)

Figure 11.11 illustrates the resulting nondeterministic sensing model. If the obser-
vation y is received, then it is known that the true state lies within a ball in X of
radius r, centered at y. This ball is the preimage, H(y), as defined in (11.11). To
make the model probabilistic, a probability density function can be defined over
Ψ. For example, it could be assumed that p(ψ) is a uniform density (although
this model is not very realistic in many applications because there is a boundary
at which the probability mass discontinuously jumps to zero).

A more typical probabilistic sensing model can be made by letting Ψ(x) =
R
n and defining a probability density function over all of Rn. (Note that the

nondeterministic version of this sensor is completely useless.) One of the easiest
choices to work with is the multivariate Gaussian probability density function,

p(ψ) =
1

√

(2π)n|Σ|
e−

1

2
ψTΣψ, (11.68)

in which Σ is the covariance matrix (11.64), |Σ| is its determinant, and ψTΣψ is
a quadratic form, which multiplies out to yield

ψTΣψ =
n∑

i=1

n∑

j=1

σi,jψiψj. (11.69)

If p(x) is a Gaussian and y is received, then p(y|x) must also be Gaussian under
this model. This will become very important in Section 11.6.1.

The sensing models presented so far can be generalized by applying linear
transformations. For example, let C denote a nonsingular n×n matrix with real-
valued entries. If the sensor mapping is y = h(x) = Cx, then the state can still
be determined immediately because the mapping y = Cx is bijective; each H(y)
contains a unique point of X. A linear transformation can also be formed on the
nature sensing action. Let W denote an n× n matrix. The sensor mapping is

y = h(x) = Cx+Wψ. (11.70)

In general, C and W may even be singular, and a linear sensing model is still
obtained. Suppose that W = 0. If C is singular, however, it is impossible to infer
the state directly from a single sensor observation. This generally corresponds to
a projection from an n-dimensional state space to a subset of Y whose dimension
is the rank of C. For example, if

C =

(
0 1
0 0

)

, (11.71)

then y = Cx yields y1 = x2 and y2 = 0. Only x2 of each (x1, x2) ∈ X can be
observed because C has rank 1. Thus, for some special cases, singular matrices
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can measure some state variables while leaving others invisible. For a general sin-
gular matrix C, the interpretation is that X is projected into some k-dimensional
subspace by the sensor, in which k is the rank of C. If W is singular, this means
that the effect of nature is limited. The degrees of freedom with which nature can
distort the sensor observations is the rank of W . These concepts motivate the
next set of sensor models.

Simple projection sensors Several common sensor models can be defined by
observing particular coordinates of X while leaving others invisible. This is the
continuous version of the selective sensor from Example 11.4. Imagine, for exam-
ple, a mobile robot that rolls in a 2D world, W = R

2, and is capable of rotation.
The state space (or configuration space) is X = R

2 × S
1. For visualization pur-

poses, it may be helpful to imagine that the robot is very tiny, so that it can be
interpreted as a point, to avoid the complicated configuration space constructions
of Section 4.3.7 Let p = (p1, p2) denote the coordinates of the point, and let s ∈ S

1

denote its orientation. Thus, a state in R
2 × S

1 is specified as (p1, p2, s) (rather
than (x, y, θ), which may cause confusion with important spaces such as X, Y ,
and Θ).

Suppose that the robot can estimate its position but does not know its orienta-
tion. This leads to a position sensor defined as Y = R

2, with y1 = p1 and y2 = p2
(also denoted as y = h(x) = p). The third state variable, s, of the state remains
unknown. Of course, any of the previously considered nature sensing action mod-
els can be added. For example, nature might cause errors that are modeled with
Gaussian probability densities.

A compass or orientation sensor can likewise be made by observing only the
final state variable, s. In this case, Y = S

1 and y = s. Nature sensing actions
can be included. For example, the sensed orientation may be y, but it is only
known that |s−y| ≤ ǫ for some constant ǫ, which is the maximum sensor error. A
Gaussian model cannot exactly be applied because its domain is unbounded and
S
1 is bounded. This can be fixed by truncating the Gaussian or by using a more

appropriate distribution.

The position and orientation sensors generalize nicely to a 3D world, W = R
3.

Recall from Section 4.2 that in this case the state space is X = SE(3), which can
be represented as R3×RP

3. A position sensor measures the first three coordinates,
whereas an orientation sensor measures the last three coordinates. A physical
sensor that measures orientation in R

3 is often called a gyroscope. These are
usually based on the principle of precession, which means that they contain a
spinning disc that is reluctant to change its orientation due to angular momentum.
For the case of a linkage of bodies that are connected by revolute joints, a point
in the state space gives the angles between each pair of attached links. A joint
encoder is a sensor that yields one of these angles.

7This can also be handled, but it just adds unnecessary complication to the current discussion.
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Dynamics of mechanical systems will not be considered until Part IV; how-
ever, it is worth pointing out several sensors. In these problems, the state space
will be expanded to include velocity parameters and possibly even acceleration
parameters. In this case, a speedometer can sense a velocity vector or a scalar
speed. Sensors even exist to measure angular velocity, which indicates the speed
with which rotation occurs. Finally, an accelerometer can be used to sense accel-
eration parameters. With any of these models, nature sensing actions can be used
to account for measurement errors.

(a) (b) (c)

Figure 11.12: Boundary sensors indicate whether contact with the boundary has
occurred. In the latter case, a proximity sensor may indicate whether the bound-
ary is within a specified distance.

Boundary sensors If the state space has an interesting boundary, as in the case
of Cfree for motion planning problems, then many important boundary sensors can
be formulated based on the detection of the boundary. Figure 11.12 shows several
interesting cases on which sensors are based.

Suppose that the state space is a closed set with some well-defined boundary.
To provide a connection to motion planning, assume that X = cl(Cfree), the
closure of Cfree. A contact sensor determines whether the boundary is being
contacted. In this case, Y = {0, 1} and h is defined as h(x) = 1 if x ∈ ∂X, and
h(x) = 0 otherwise. These two cases are shown in Figures 11.12a and 11.12b,
respectively. Using this sensor, there is no information regarding where along the
boundary the contact may be occurring. In mobile robotics, it may be disastrous
if the robot is in contact with obstacles. Instead, a proximity sensor is often used,
which yields h(x) = 1 if the state or position is within some specified constant, r,
of ∂X, and h(x) = 0 otherwise. This is shown in Figure 11.12.

In robot manipulation, haptic interfaces, and other applications in which phys-
ical interaction occurs between machines and the environment, a force sensor may
be used. In addition to simply indicating contact, a force sensor can indicate the
magnitude and direction of the force. The robot model must be formulated so
that it is possible to derive the anticipated force value from a given state.

Landmark sensors Many important sensing models can be defined in terms
of landmarks. A landmark is a special point or region in the state space that
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can be detected in some way by the sensor. The measurements of the landmark
can be used to make inferences about the current state. An ancient example is
using stars to navigate on the ocean. Based on the location of the stars relative
to a ship, its orientation can be inferred. You may have found landmarks useful
for trying to find your way through an unfamiliar city. For example, mountains
around the perimeter of Mexico City or the Eiffel Tower in Paris might be used
to infer your heading. Even though the streets of Paris are very complicated, it
might be possible to walk to the Eiffel Tower by walking toward it whenever it is
visible. Such models are common in the competitive ratio framework for analyzing
on-line algorithms [32].

Landmark

x

Figure 11.13: The most basic landmark sensor indicates only its direction.

In general, a set of states may serve as landmarks. A common model is to
make xG a single landmark. In robotics applications, these landmarks may be
instead considered as points in the world, W . Generalizations from points to
landmark regions are also possible. The ideas, here, however, will be kept simple
to illustrate the concept. Following this presentation, you can imagine a wide
variety of generalizations. Assume for all examples of landmarks that X = R

2,
and let a state be denoted by x = (x1, x2).

For the first examples, suppose there is only one landmark, l ∈ X, with co-
ordinates (l1, l2). A homing sensor is depicted in Figure 11.13 and yields values
in Y = S

1. The sensor mapping is h(x) = atan2(l1 − x1, l2 − x2), in which atan2
gives the angle in the proper quadrant.

Another possibility is a Geiger counter sensor (radiation level), in which Y =
[0,∞) and h(x) = ‖x − l‖. In this case, only the distance to the landmark is
reported, but there is no directional information.

A contact sensor could also be combined with the landmark idea to yield a
sensor called a pebble. This sensor reports 1 if the pebble is “touched”; otherwise,
it reports 0. This idea can be generalized nicely to regions. Imagine that there is
a landmark region, Xl ⊂ X. If x ∈ Xl, then the landmark region detector reports
1; otherwise, it reports 0.

Many useful and interesting sensing models can be formulated by using the
ideas explained so far with multiple landmarks. For example, using three homing
sensors that are not collinear, it is possible to reconstruct the exact state. Many
interesting problems can be made by populating the state space with landmark
regions and their associated detectors. In mobile robotics applications, this can be
implemented by placing stationary cameras or other sensors in an environment.
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The sensors can indicate which cameras can currently view the robot. They might
also provide the distance from each camera.

(a) (b)

Figure 11.14: (a) A mobile robot is dropped into an unknown environment. (b)
Four sonars are used to measure distances to the walls.

Depth-mapping sensors In many robotics applications, the robot may not
have a map of the obstacles in the world. In this case, sensing is used to both
learn the environment and to determine its position and orientation within the
environment. Suppose that a robot is dropped into an environment as shown in
Figure 11.14a. For problems such as this, the state represents both the position
of the robot and the obstacles themselves. This situation is explained in further
detail in Section 12.3. Here, some sensor models for problems of this type are
given. These are related to the boundary and proximity sensors of Figure 11.12,
but they yield more information when the robot is not at the boundary.

One of the oldest sensors used in mobile robotics is an acoustic sonar, which
emits a high-frequency sound wave in a specific direction and measures the time
that it takes for the wave to reflect off a wall and return to the sonar (often the
sonar serves as both a speaker and a microphone). Based on the speed of sound
and the time of flight, the distance to the wall can be estimated. Sometimes, the
wave never returns; this can be modeled with nature. Also, errors in the distance
estimate can be modeled with nature. In general, the observation space Y for a
single sonar is [0,∞], in which ∞ indicates that the wave did not return. The
interpretation of Y could be the time of flight, or it could already be transformed
into estimated distance. If there are k sonars, each pointing in a different direction,
then Y = [0,∞]k, which indicates that one reading can be obtained for each sonar.
For example, Figure 11.14b shows four sonars and the distances that they can
measure. Each observation therefore yields a point in R

4.
Modern laser scanning technology enables very accurate distance measure-

ments with very high angular density. For example, the SICK LMS-200 can
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(a) (b)

Figure 11.15: A range scanner or visibility sensor is like having a continuum of
sonars, even with much higher accuracy. A distance value is provided for each
s ∈ S

1.

Figure 11.16: A gap sensor indicates only the directions at which discontinuities
in depth occur, instead of providing distance information.

obtain a distance measurement for at least every 1/2 degree and sweep the full
360 degrees at least 30 times a second. The measurement accuracy in an indoor
environment is often on the order of a few millimeters. Imagine the limiting case,
which is like having a continuum of sonars, one for every angle in S

1. This results
in a sensor called a range scanner or visibility sensor, which provides a distance
measurement for each s ∈ S

1, as shown in Figure 11.15.

A weaker sensor can be made by only indicating points in S
1 at which dis-

continuities (or gaps) occur in the depth scan. Refer to this as a gap sensor; an
example is shown in Figure 11.16. It might even be the case that only the circular
ordering of these gaps is given around S

1, without knowing the relative angles be-
tween them, or the distance to each gap. A planner based on this sensing model
is presented in Section 12.3.4.
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Odometry sensors A final category will be given, which provides interesting
examples of history-based sensor mappings, as defined for discrete state spaces in
Section 11.1.1. Mobile robots often have odometry sensors, which indicate how
far the robot has traveled, based on the amount that the wheels have turned.
Such measurements are often inaccurate because of wheel slippage, surface im-
perfections, and small modeling errors. For a given state history, x̃t, a sensor can
estimate the total distance traveled. For this model, Y = [0,∞) and y = h(x̃t), in
which the argument, x̃t, to h is the entire state history up to time t. Another way
to model odometry is to have a sensor indicate the estimated distance traveled
since the last stage. This avoids the dependency on the entire history, but it may
be harder to model the resulting errors in distance estimation.

In some literature (e.g., [16]) the action history, ũk, is referred to as odometry.
This interpretation is appropriate in some applications. For example, each action
might correspond to turning the pedals one full revolution on a bicycle. The
number of times the pedals have been turned could serve as an odometry reading.
Since this information already appears in ηk, it is not modeled in this book as
part of the sensing process. For the bicycle example, there might be an odometry
sensor that bases its measurements on factors other than the pedal motions. It
would be appropriate to model this as a history-based sensor.

Another kind of history-based sensor is to observe a wall clock that indicates
how much time has passed since the initial stage. This, in combination with other
information, such as the speed of the robot, could enable strong inferences to be
made about the state.

11.5.2 Simple Projection Examples

This section gives examples of I-spaces for which the sensor mapping is y = h(x)
and h is a projection that reveals some of the state variables, while concealing
others. The examples all involve continuous time, and the focus is mainly on
the nondeterministic I-space Indet. It is assumed that there are no actions, which
means that U = ∅. Nature actions, Θ(x), however, will be allowed. Since there
are no robot actions and no nature sensing actions, all of the uncertainty arises
from the fact that h is a projection and the nature actions that affect the state
transition equation are not known. This is a very important and interesting class
of problems in itself. The examples can be further complicated by allowing some
control from the action set, U ; however, the purpose here is to illustrate I-space
concepts. Therefore, it will not be necessary.

Example 11.20 (Moving on a Sine Curve) Suppose that the state space is
the set of points that lie on the sine curve in the plane:

X = {(x1, x2) ∈ R
2 | x2 = sin x1}. (11.72)

Let U = ∅, which results in no action history. The observation space is Y = [−1, 1]
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Y X

Figure 11.17: The state space is the set of points traced out by a sine curve in R
2.

Y X

Figure 11.18: The preimage, H(y), of an observation y is a countably infinite set
of points along X.

and the sensor mapping yields y = h(x) = x2, the height of the point on the sine
curve, as shown in Figure 11.17.

The nature action space is Θ = {−1, 1}, in which −1 means to move at unit
speed in the −x1 direction along the sine curve, and 1 means to move at unit
speed in the x1 direction along the curve. Thus, for some nature action history
θ̃t, a state trajectory x̃t that moves the point along the curve can be determined
by integration.

A history I-state takes the form ηt = (X0, ỹt), which includes the initial con-
dition X0 ⊆ X and the observation history ỹt up to time t. The nondeterministic
I-states are very interesting for this problem. For each observation y, the preimage
H(y) is a countably infinite set of points that corresponds to the intersection of
X with a horizontal line at height y, as shown in Figure 11.18.

The uncertainty for this problem is always characterized by the number of
intersection points that might contain the true state. Suppose that X0 = X. In
this case, there is no state trajectory that can reduce the amount of uncertainty.
As the point moves along X, the height is always known because of the sensor,
but the x1 coordinate can only be narrowed down to being any of the intersection
points.

XY

Figure 11.19: A bifurcation occurs when y = 1 or y = −1 is received. This
irreversibly increases the amount of uncertainty in the state.
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h(x)

X

Y

x

h(y)

(a) (b)

Figure 11.20: (a) Imagine trying to infer the location of a point on a planar graph
while observing only a single coordinate. (b) This simple example involves a point
moving along a graph that has four edges. When the point is on the rightmost
edge, there is no uncertainty; however, uncertainty exists when the point travels
along the other edges.

Suppose instead that X0 = {x0}, in which x0 is some particular point along
X. If y remains within (0, 1) over some any period of time starting at t = 0, then
x(t) is known because the exact segment of the sine curve that contains the state
is known. However, if the point reaches an extremum, which results in y = 0 or
y = 1, then it is not known which way the point will travel. From this point, the
sensor cannot disambiguate moving in the −x1 direction from the x1 direction.
Therefore, the uncertainty grows, as shown in Figure 11.19. After the observation
y = 1 is obtained, there are two possibilities for the current state, depending on
which action was taken by nature when y = 1; hence, the nondeterministic I-state
contains two states. If the motion continues until y = −1, then there will be four
states in the nondeterministic I-state. Unfortunately, the uncertainty can only
grow in this example. There is no way to use the sensor to reduce the size of the
nondeterministic I-states. �

The previous example can be generalized to observing a single coordinate of a
point that moves around in a planar topological graph, as shown in Figure 11.20a.
Most of the model remains the same as for Example 11.20, except that the state
space is now a graph. The set of nature actions, Θ(x), needs to be extended so
that if x is a vertex of the graph, then there is one input for each incident edge.
These are the possible directions along which the point could move.

Example 11.21 (Observing a Point on a Graph) Consider the graph shown
in Figure 11.20b, in which there are four edges.8 When the point moves on the
interior of the rightmost edge of the graph, then the state can be inferred from

8This example was significantly refined after a helpful discussion with Rob Ghrist.
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Figure 11.21: Pieces of the nondeterministic I-space Indet are obtained by the
different possible sets of edges on which the point may lie.

the sensor. The set H(y) contains a single point on the rightmost edge. If the
point moves in the interior of one of the other edges, then H(y) contains three
points, one for each edge above y. This leads to seven possible cases for the non-
deterministic I-state, as shown in Figure 11.21. Any subset of these edges may be
possible for the nondeterministic I-state, except for the empty set.

The eight pieces of Indet depicted in Figure 11.21 are connected together in an
interesting way. Suppose that the point is on the rightmost edge and moves left.
After crossing the vertex, the I-state must be the case shown in the upper right
of Figure 11.21, which indicates that the point could be on one of two edges. If
the point travels right from one of the I-states of the left edges, then the I-state
shown in the bottom right of Figure 11.20 is always reached; however, it is not
necessarily possible to return to the same I-state on the left. Thus, in general,
there are directional constraints on Indet. Also, note that from the I-state on the
lower left of Figure 11.20, it is impossible to reach the I-state on the lower right
by moving straight right. This is because it is known from the structure of the
graph that this is impossible. �

The graph example can be generalized substantially to reflect a wide variety
of problems that occur in robotics and other areas. For example, Figure 11.22
shows a polygon in which a point can move. Only one coordinate is observed,
and the resulting nondeterministic I-space has layers similar to those obtained
for Example 11.21. These ideas can be generalized to any dimension. Interesting
models can be constructed using the simple projection sensors, such as a position
sensor or compass, from Section 11.5.1. In Section 12.4, such layers will appear
in a pursuit-evasion game that uses visibility sensors to find moving targets.

11.5.3 Examples with Nature Sensing Actions

This section illustrates the effect of nature sensing actions, but only for the nonde-
terministic case. General methods for computing probabilistic I-states are covered
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Y
h(x)

x
X

Figure 11.22: The graph can be generalized to a planar region, and layers in the
nondeterministic I-space will once again be obtained.

(a) (b)

Figure 11.23: (a) It is always possible to determine whether the state trajectory
went above or below the designated region. (b) Now the ability to determine
whether the trajectory went above or below the hole depends on the particular
observations. In some cases, it may not be possible.

in Section 11.6.

Example 11.22 (Above or Below Disc?) This example involves continuous
time. Suppose that the task is to gather information and determine whether the
state trajectory travels above or below some designated region of the state space,
as shown in Figure 11.23.

Let X = R
2. Motions are generated by integrating the velocity (ẋ, ẏ), which is

expressed as ẋ = cos(u(t) + θ(t)) and ẏ = sin(u(t) + θ(t)). For simplicity, assume
u(t) = 0 is applied for all time, which is a command to move right. The nature
action θ(t) ∈ Θ = [−π/4, π/4] interferes with the outcome. The robot tries to
make progress by moving in the positive x1 direction; however, the interference
of nature makes it difficult to predict the x2 direction. Without nature, there
should be no change in the x2 coordinate; however, with nature, the error in the
x2 direction could be as much as t, after t seconds have passed. Figure 11.24
illustrates the possible resulting motions.
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x
u

Figure 11.24: Nature interferes with the commanded direction, so that the true
state could be anywhere within a circular section.

F (x, u)

u
x

H(y)

Figure 11.25: A simple mobile robot motion model in which the sensing model is
as given in Figure 11.11 and then nature interferes with commanded motions to
yield an uncertainty region that is a circular ring.

Sensor observations will be made that alleviate the growing cone of uncertainty;
use the sensing model from Figure 11.11, and suppose that the measurement error
r is 1. Suppose there is a disc in R

2 of radius larger than 1, as shown in Figure
11.23a. Since the true state is never further than 1 from the measured state, it
is always possible to determine whether the state passed above or below the disc.
Multiple possible observation histories are shown in Figure 11.23a. The observa-
tion history need not even be continuous, but it is drawn that way for convenience.
For a disc with radius less than 1, there may exist some observation histories for
which it is impossible to determine whether the true state traveled above or below
the disc; see Figure 11.23b. For other observation histories, it may still be possible
to make the determination; for example, from the uppermost trajectory shown in
Figure 11.23b it is known for certain that the true state traveled above the disc. �

Example 11.23 (A Simple Mobile Robot Model) In this example, suppose
that a robot is modeled as a point that moves in X = R

2. The sensing model
is the same as in Example 11.22, except that discrete stages are used instead of
continuous time. It can be imagined that each stage represents a constant interval
of time (e.g., 1 second).

To control the robot, a motion command is given in the form of an action
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H(y2)

y2

X2(η1, u1)

X2(η2)

X2(η2) X2(η2, u2)

x2

u2

(a) (b) (c)

Figure 11.26: (a) Combining information from X2(η1, u1) and the observation y2;
(b) the intersection must be taken between X2(η1, u1) and H(y2). (c) The action
u2 leads to a complicated nondeterministic I-state that is the union of F (x2, u2)
over all x2 ∈ X2(η2).

uk ∈ U = S
1. Nature interferes with the motions in two ways: 1) The robot

tries to travel some distance d, but there is some error ǫd > 0, for which the true
distance traveled, d′, is known satisfy |d′ − d| < ǫd; and 2) the robot tries to move
in a direction u, but there is some error, ǫu > 0, for which the true direction u′ is
known to satisfy |u− u′| < ǫu. These two independent errors can be modeled by
defining a 2D nature action set, Θ(x). The transition equation is then defined so
that the forward projection F (x, u) is as shown in Figure 11.25.

Some nondeterministic I-states will now be constructed. Suppose that the
initial state x1 is known, and history I-states take the form

ηk = (x1, u1, . . . , uk−1, y1, . . . , yk). (11.73)

The first sensor observation, y1, is useless because the initial state is known.
Equation (11.29) is applied to yield H(y1)∩{x1} = {x1}. Suppose that the action
u1 = 0 is applied, indicating that the robot should move horizontally to the right.
Equation (11.30) is applied to yield X2(η1, u1), which looks identical to the F (x, u)
shown in Figure 11.25. Suppose that an observation y2 is received as shown in
Figure 11.26a. Using this, X2(η2) is computed by taking the intersection of H(y2)
and X2(η1, u1), as shown in Figure 11.26b.

The next step is considerably more complicated. Suppose that u2 = 0 and that
(11.30) is applied to compute X3(η2, u2) from X2(η2). The shape shown in Figure
11.26c is obtained by taking the union of F (x2, u2) for all possible x2 ∈ X2(η2).
The resulting shape is composed of circular arcs and straight line segments (see
Exercise 13). Once y3 is obtained, an intersection is taken once again to yield
X3(η3) = X3(η2, u2) ∩ H(y3), as shown in Figure 11.27. The process repeats in
the same way for the desired number of stages. The complexity of the region
in Figure 11.26c provides motivation for the approximation methods of Section
11.4.3. For example, the nondeterministic I-states could be nicely approximated
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H(y3)

X3(η2, u3)

X3(η3)

(a) (b)

Figure 11.27: After the sensor observation, y3, the intersection must be taken
between X3(η2, u2) and H(y3).

by ellipsoidal regions. �

11.5.4 Gaining Information Without Sensors

For some problems, it is remarkable that uncertainty may be reduced without even
using sensors. Recall Example 11.17. This is counterintuitive because it seems
that information regarding the state can only be gained from sensing. It is possi-
ble, however, to also gain information from the knowledge that some actions have
been executed and the effect that should have in terms of the state transitions.
The example presented in this section is inspired by work on sensorless manipu-
lation planning [14, 19], which is covered in more detail in Section 12.5.2. This
topic underscores the advantages of reasoning in terms of an I-space, as opposed
to requiring that accurate state estimates can be made.

Figure 11.28: A top view of a tray that must be tilted to roll the ball into the
desired corner.
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1: down 2: down-left 3: down-right

4: up 5: up-left 6: down-left

Figure 11.29: A plan is shown that places the ball in the desired location using
a sequence of six tilts, regardless of its initial position and in spite of the fact
that there are no sensors. The thickened black lines and black dots indicate the
possible locations for the ball: the nondeterministic I-states. Under each picture,
the direction that the ball rolls due to the action is written.

Example 11.24 (Tray Tilting) The state space, X ⊂ R
2, indicates the posi-

tion of a ball that rolls on a flat surface, as shown Figure 11.28. The ball is confined
to roll within the polygonal region shown in the figure. It can be imagined that
the ball rolls in a tray on which several barriers have been glued to confine its
motion (try this experiment at home!). If the tray is tilted, it is assumed that the
ball rolls in a direction induced by gravity (in the same way that a ball rolls to
the bottom of a pinball machine).

The tilt of the tray is considered as an action that can be chosen by the robot.
It is assumed that the initial position of the ball (initial state) is unknown and
there are no sensors that can be used to estimate the state. The task is to find
some tilting motions that are guaranteed to place the ball in the position shown
in Figure 11.28, regardless of its initial position.

The problem could be modeled with continuous time, but this complicates the
design. If the tray is tilted in a particular orientation, it is assumed that the ball
rolls in a direction, possibly following the boundary, until it comes to rest. This
can be considered as a discrete-stage transition: The ball is in some rest state, a
tilt action is applied, and a then it enters another rest state. Thus, a discrete-stage
state transition equation, xk+1 = f(xk, uk), is used.

To describe the tilting actions, we can formally pick directions for the upward
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normal vector to the tray from the upper half of S2; however, this can be reduced
to a one-dimensional set because the steepness of the tilt is not important, as long
as the ball rolls to its new equilibrium state. Therefore, the set of actions can be
considered as U = S

1, in which a direction u ∈ S
1 indicates the direction that the

ball rolls due to gravity. Before any action is applied, it is assumed that the tray
is initially level (its normal is parallel to the direction of gravity). In practice, one
should be more careful and model the motion of the tray between a pair of actions;
this is neglected here because the example is only for illustrative purposes. This
extra level of detail could be achieved by introducing new state variables that
indicate the orientation of the tray or by using continuous-time actions. In the
latter case, the action is essentially providing the needed state information, which
means that the action function would have to be continuous. Here it is simply
assumed that a sequence of actions from S

1 is applied.

The initial condition is X1 = X and the history I-state is

ηk = (X1, u1, u2, . . . , uk−1). (11.74)

Since there are no observations, the path through the I-space is predictable. There-
fore, a plan, π, is simply an action sequence, π = (u1, u2, . . . , uK), for any desired
K.

It is surprisingly simple to solve this task by reasoning in terms of nondeter-
ministic I-states, each of which corresponds to a set of possible locations for the
ball. A sequence of six actions, as shown in Figure 11.29, is sufficient to guarantee
that the ball will come to rest at the goal position, regardless of its initial position.
�

11.6 Computing Probabilistic Information States

The probabilistic I-states can be quite complicated in practice because each el-
ement of Iprob is a probability distribution or density function. Therefore, sub-
stantial effort has been invested in developing efficient techniques for computing
probabilistic I-states efficiently. This section can be considered as a continua-
tion of the presentations in Sections 11.2.3 (and part of Section 11.4, for the case
of continuous state spaces). Section 11.6.1 covers Kalman filtering, which pro-
vides elegant computations of probabilistic I-states. It is designed for problems in
which the state transitions and sensor mapping are linear, and all acts of nature
are modeled by multivariate Gaussian densities. Section 11.6.2 covers a general
sampling-based planning approach, which is approximate but applies to a broader
class of problems. One of these methods, called particle filtering, has become very
popular in recent years for mobile robot localization.
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11.6.1 Kalman Filtering

This section covers the most successful and widely used example of a derived
I-space that dramatically collapses the history I-space. In the special case in
which both f and h are linear functions, and p(θ), p(ψ), and p(x1) are Gaussian,
all probabilistic I-states become Gaussian. This means that the probabilistic
I-space, Iprob, does not need to represent every conceivable probability density
function. The probabilistic I-state is always trapped in the subspace of Iprob
that corresponds only to Gaussians. The subspace is denoted as Igauss. This
implies that an I-map, κmom : Iprob → Igauss, can be applied without any loss of
information.

The model is called linear-Gaussian (or LG). Each Gaussian density on R
n is

fully specified by its n-dimensional mean vector µ and an n×n symmetric covari-
ance matrix, Σ. Therefore, Igauss can be considered as a subset of Rm in which
m = 2n+ (n2 ). For example, if X = R

2, then Igauss ⊂ R
5, because two indepen-

dent parameters specify the mean and three independent parameters specify the
covariance matrix (not four, because of symmetry). It was mentioned in Section
11.4.3 that moment-based approximations can be used in general; however, for an
LG model it is important to remember that Igauss is an exact representation of
Iprob.

In addition to the fact that the Iprob collapses nicely, κmom is a sufficient I-map,
and convenient expressions exist for incrementally updating the derived I-states
entirely in terms of the computed means and covariance. This implies that we
can work directly with Igauss, without any regard for the original histories or even
the general formulas for the probabilistic I-states from Section 11.4.1. The update
expressions are given here without the full explanation, which is lengthy but not
difficult and can be found in virtually any textbook on stochastic control (e.g.,
[5, 27]).

For Kalman filtering, all of the required spaces are Euclidean, but they may
have different dimensions. Therefore, letX = R

n, U = Θ = R
m, and Y = Ψ = R

r.
Since Kalman filtering relies on linear models, everything can be expressed in
terms of matrix transformations. Let Ak, Bk, Ck, Gk, andHk each denote a matrix
with constant real-valued entries and which may or may not be singular. The
dimensions of the matrices will be inferred from the equations in which they will
appear (the dimensions have to be defined correctly to make the multiplications
work out right). The k subscript is used to indicate that a different matrix may
be used in each stage. In many applications, the matrices will be the same in
each stage, in which case they can be denoted by A, B, C, G, and H. Since
Kalman filtering can handle the more general case, the subscripts are included
(even though they slightly complicate the expressions).

In general, the state transition equation, xk+1 = fk(xk, uk, θk), is defined as

xk+1 = Akxk + Bkuk +Gkθk, (11.75)

in which the matrices Ak, Bk, and Gk are of appropriate dimensions. The notation
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fk is used instead of f , because the Kalman filter works even if f is different in
every stage.

Example 11.25 (Linear-Gaussian Example) For a simple example of (11.75),
suppose X = R

3 and U = Θ = R
2. A particular instance is

xk+1 =





0
√
2 1

1 −1 4
2 0 1



 xk +





1 0
0 1
1 1



uk +





1 1
0 −1
0 1



 θk. (11.76)

�

The general form of the sensor mapping yk = hk(xk, ψk) is

yk = Ckxk +Hkψk, (11.77)

in which the matrices Ck and Hk are of appropriate dimension. Once again, hk is
used instead of h because a different sensor mapping can be used in every stage.

So far the linear part of the model has been given. The next step is to specify
the Gaussian part. In each stage, both nature actions θk and ψk are modeled with
zero-mean Gaussians. Thus, each has an associated covariance matrix, denoted by
Σθ and Σψ, respectively. Using the model given so far and starting with an initial
Gaussian density over X, all resulting probabilistic I-states will be Gaussian [27].

Every derived I-state in Igauss can be represented by a mean and covariance.
Let µk and Σk denote the mean and covariance of P (xk|ηk). The expressions given
in the remainder of this section define a derived information transition equation
that computes µk+1 and Σk+1, given µk, Σk, uk, and yk+1. The process starts by
computing µ1 and Σ1 from the initial conditions.

Assume that an initial condition is given that represents a Gaussian density
over Rn. Let this be denoted by µ0, and Σ0. The first I-state, which incorporates
the first observation y1, is computed as µ1 = µ0 + L1(y1 − C1µ0) and

Σ1 = (I − L1C1)Σ0, (11.78)

in which I is the identity matrix and

L1 = Σ0C
T
1

(
C1Σ0C

T
1 +H1ΣψH1

)−1
. (11.79)

Although the expression for L1 is complicated, note that all matrices have been
specified as part of the model. The only unfortunate part is that a matrix inversion
is required, which sometimes leads to numerical instability in practice; see [27] or
other sources for an alternative formulation that alleviates this problem.

Now that µ1 and Σ1 have been expressed, the base case is completed. The
next part is to give the iterative updates from stage k to stage k + 1. Using µk,
the mean at the next stage is computed as

µk+1 = Akµk + Bkuk + Lk+1(yk+1 − Ck+1(Akµk +Bkuk)), (11.80)
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in which Lk+1 will be defined shortly. The covariance is computed in two steps;
one is based on applying uk, and the other arises from considering yk+1. Thus,
after uk is applied, the covariance becomes

Σ′

k+1 = AkΣkA
T
k +GkΣθG

T
k . (11.81)

After yk+1 is received, the covariance Σk+1 is computed from Σ′

k+1 as

Σk+1 = (I − Lk+1Ck+1)Σ
′

k+1. (11.82)

The expression for Lk is

Lk = Σ′

kC
T
k

(
CkΣ

′

kC
T
k +HkΣψHk

)−1
. (11.83)

To obtain Lk+1, substitute k+1 for k in (11.83). Note that to compute µk+1 using
(11.80), Σ′

k+1 must first be computed because (11.80) depends on Lk+1, which in
turn depends on Σ′

k+1.
The most common use of the Kalman filter is to provide reliable estimates of

the state xk by using µk. It turns out that the optimal expected-cost feedback
plan for a cost functional that is a quadratic form can be obtained for LG systems
in a closed-from expression; see Section 15.2.2. This model is often called LQG,
to reflect the fact that it is linear, quadratic-cost, and Gaussian. The optimal
feedback plan can even be expressed directly in terms of µk, without requiring
Σk. This indicates that the I-space may be collapsed down to X; however, the
corresponding I-map is not sufficient. The covariances are still needed to compute
the means, as is evident from (11.80) and (11.83). Thus, an optimal plan can be
specified as π : X → U , but the derived I-states in Igauss need to be represented
for the I-map to be sufficient.

The Kalman filter provides a beautiful solution to the class of linear Gaus-
sian models. It is even successfully applied quite often in practice for problems
that do not even satisfy these conditions. This is called the extended Kalman
filter. The success may be explained by recalling that the probabilistic I-space
may be approximated by mean and covariance in a second-order moment-based
approximation. In general, such an approximation may be inappropriate, but it
is nevertheless widely used in practice.

11.6.2 Sampling-Based Approaches

Since probabilistic I-space computations over continuous spaces involve the eval-
uation of complicated, possibly high-dimensional integrals, there is strong mo-
tivation for using sampling-based approaches. If a problem is nonlinear and/or
non-Gaussian, such approaches may provide the only practical way to compute
probabilistic I-states. Two approaches are considered here: grid-based sampling
and particle filtering. One of the most common applications of the techniques
described here is mobile robot localization, which is covered in Section 12.2.
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A grid-based approach Perhaps the most straightforward way to numeri-
cally compute probabilistic I-states is to approximate probability density func-
tions over a grid and use numerical integration to evaluate the integrals in (11.57)
and (11.58).

A grid can be used to compute a discrete probability distribution that approx-
imates the continuous probability density function. Consider, for example, using
the Sukharev grid shown in Figure 5.5a, or a similar grid adapted to the state
space. Consider approximating some probability density function p(x) using a
finite set, S ⊂ X. The Voronoi region surrounding each point can be considered
as a “bucket” that holds probability mass. A probability is associated with each
sample and is defined as the integral of p(x) over the Voronoi region associated
with the point. In this way, the samples S and their discrete probability distribu-
tion, P (s) for all s ∈ S approximate p(x) over X. Let P (sk) denote the probability
distribution over Sk, the set of grid samples at stage k.

In the initial step, P (s) is computed from p(x) by numerically evaluating the
integrals of p(x1) over the Voronoi region of each sample. This can alternatively be
estimated by drawing random samples from the density p(x1) and then recording
the number of samples that fall into each bucket (Voronoi region). Normalizing
the counts for the buckets yields a probability distribution, P (s1). Buckets that
have little or no points can be eliminated from future computations, depending on
the desired accuracy. Let S1 denote the samples for which nonzero probabilities
are associated.

Now suppose that P (sk|ηk) has been computed over Sk and the task is to com-
pute P (sk+1|ηk+1) given uk and yk+1. A discrete approximation, P (sk+1|sk, uk), to
p(xk+1|xk, uk) can be computed using a grid and buckets in the manner described
above. At this point the densities needed for (11.57) have been approximated by
discrete distributions. In this case, (11.38) can be applied over Sk to obtain a
grid-based distribution over Sk+1 (again, any buckets that do not contain enough
probability mass can be discarded). The resulting distribution is P (sk+1|ηk, uk),
and the next step is to consider yk+1. Once again, a discrete distribution can be
computed; in this case, p(xk+1|yk+1) is approximated by P (sk+1|yk+1) by using
the grid samples. This enables (11.58) to be replaced by the discrete counterpart
(11.39), which is applied to the samples. The resulting distribution, P (sk+1|ηk+1),
represents the approximate probabilistic I-state.

Particle filtering As mentioned so far, the discrete distributions can be esti-
mated by using samples. In fact, it turns out that the Voronoi regions over the
samples do not even need to be carefully considered. One can work directly with
a collection of samples drawn randomly from the initial probability density, p(x1).
The general method is referred to as particle filtering and has yielded good per-
formance in applications to experimental mobile robotics. Recall Figure 1.7 and
see Section 12.2.3.

Let S ⊂ X denote a finite collection of samples. A probability distribution is
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defined over S. The collection of samples, together with its probability distribu-
tion, is considered as an approximation of a probability density over X. Since S is
used to represent probabilistic I-states, let Pk denote the probability distribution
over Sk, which is computed at stage k using the history I-state ηk. Thus, at every
stage, there is a new sample set, Sk, and probability distribution, Pk.

The general method to compute the probabilistic I-state update proceeds as
follows. For some large number, m, of iterations, perform the following:

1. Select a state xk ∈ Sk according to the distribution Pk.

2. Generate a new sample, xk+1, for Sk+1 by generating a single sample accord-
ing to the density p(xk+1|xk, uk).

3. Assign the weight, w(xk+1) = p(yk+1|xk+1).

After the m iterations have completed, the weights over Sk+1 are normalized
to obtain a valid probability distribution, Pk+1. It turns out that this method
provides an approximation that converges to the true probabilistic I-states as m
tends to infinity. Other methods exist, which provide faster convergence [25].
One of the main difficulties with using particle filtering is that for some problems
it is difficult to ensure that a sufficient concentration of samples exists in the
places where they are needed the most. This is a general issue that plagues many
sampling-based algorithms, including the motion planning algorithms of Chapter
5.

11.7 Information Spaces in Game Theory

This section unifies the sequential game theory concepts from Section 10.5 with
the I-space concepts from this chapter. Considerable attention is devoted to the
modeling of information in game theory. The problem is complicated by the fact
that each player has its own frame of reference, and hence its own I-space. Game
solution concepts, such as saddle points or Nash equilibria, depend critically on the
information available to each player as it makes it decisions. Paralleling Section
10.5, the current section first covers I-states in game trees, followed by I-states
for games on state spaces. The presentation in this section will be confined to the
case in which the state space and stages are finite. The formulation of I-spaces
extends naturally to countably infinite or continuous state spaces, action spaces,
and stages [2].

11.7.1 Information States in Game Trees

Recall from Section 10.5.1 that an important part of formulating a sequential
game in a game tree is specifying the information model. This was described in
Step 4 of Formulation 10.3. Three information models were considered in Section
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10.5.1: alternating play, stage-by-stage, and open loop. These and many other
information models can be described using I-spaces.

From Section 11.1, it should be clear that an I-space is always defined with
respect to a state space. Even though Section 10.5.1 did not formally introduce a
state space, it is not difficult to define one. Let the state space X be N , the set of
all vertices in the game tree. Assume that two players are engaged in a sequential
zero-sum game. Using notation from Section 10.5.1, N1 and N2 are the decision
vertices of P1 and P2, respectively. Consider the nondeterministic I-space Indet
over N . Let η denote a nondeterministic I-state; thus, each η ∈ Indet is a subset
of N .

There are now many possible ways in which the players can be confused while
making their decisions. For example, if some η contains vertices from both N1

and N2, the player does not know whether it is even its turn to make a decision.
If η additionally contains some leaf vertices, the game may be finished without a
player even being aware of it. Most game tree formulations avoid these strange
situations. It is usually assumed that the players at least know when it is their
turn to make a decision. It is also usually assumed that they know the stage of
the game. This eliminates many sets from Indet.

While playing the game, each player has its own nondeterministic I-state be-
cause the players may hide their decisions from each other. Let η1 and η2 denote
the nondeterministic I-states for P1 and P2, respectively. For each player, many
sets in Indet are eliminated. Some are removed to avoid the confusions mentioned
above. We also impose the constraint that ηi ⊆ Ni for i = 1 and i = 2. We only
care about the I-state of a player when it is that player’s turn to make a decision.
Thus, the nondeterministic I-state should tell us which decision vertices in Ni

are possible as Pi faces a decision. Let I1 and I2 represent the nondeterministic
I-spaces for P1 and P2, respectively, with all impossible I-states eliminated.

The I-spaces I1 and I2 are usually defined directly on the game tree by circling
vertices that belong to the same I-state. They form a partition of the vertices in
each level of the tree (except the leaves). In fact, Ii even forms a partition of Ni

for each player. Figure 11.30 shows four information models specified in this way
for the example in Figure 10.13. The first three correspond directly to the models
allowed in Section 10.5.1. In the alternating-play model, each player always knows
the decision vertex. This corresponds to a case of perfect state information. In
the stage-by-stage model, P1 always knows the decision vertex; P2 knows the
decision vertex from which P1 made its last decision, but it does not know which
branch was chosen. The open-loop model represents the case that has the poorest
information. Only P1 knows its decision vertex at the beginning of the game. After
that, there is no information about the actions chosen. In fact, the players cannot
even remember their own previous actions. Figure 11.30d shows an information
model that does not fit into any of the three previous ones. In this model, very
strange behavior results. If P1 and P2 initially choose right branches, then the
resulting decision vertex is known; however, if P2 instead chooses the left branch,
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Figure 11.30: Several different information models are illustrated for the game in
Figure 10.13.

then P1 will forget which action it applied (as if the action of P2 caused P1 to
have amnesia!). Here is a single-stage example:

Example 11.26 (An Unusual Information Model) Figure 11.31 shows a game
that does not fit any of the information models in Section 10.5.1. It is actually
a variant of the game considered before in Figure 10.12. The game is a kind of
hybrid that partly looks like the alternating-play model and partly like the stage-
by-stage model. This particular problem can be solved in the usual way, from the
bottom up. A value is computed for each of the nondeterministic I-states, for the
level in which P2 makes a decision. The left I-state has value 5, which corresponds
to P1 choosing 1 and P2 responding with 3. The right I-state has value 4, which
results from the deterministic saddle point in a 2×3 matrix game played between
P1 and P2. The overall game has a deterministic saddle point in which P1 chooses
3 and P2 chooses 3. This results in a value of 4 for the game. �

Plans are now defined directly as functions on the I-spaces. A (deterministic)
plan for P1 is defined as a function π1 on I1 that yields an action u ∈ U(η1) for
each η1 ∈ I1, and U(η1) is the set of actions that can be inferred from the I-state
η1; assume that this set is the same for all decision vertices in η1. Similarly, a
(deterministic) plan for P2 is defined as a function π2 on I2 that yields an action
v ∈ V (η2) for each η2 ∈ I2.

There are generally two alternative ways to define a randomized plan in terms
of I-spaces. The first choice is to define a globally randomized plan, which is a
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Cost

P1 acts 21

1 2 3P2 acts 1 12 23 3

3

3 5 1 0 43 −1 7 −2

Figure 11.31: A single-stage game that has an information model unlike those in
Section 10.5.1.

probability distribution over the set of all deterministic plans. During execution,
this means that an entire deterministic plan will be sampled in advance according
to the probability distribution. An alternative is to sample actions as they are
needed at each I-state. This is defined as follows. For the randomized case, let
W (η1) and Z(η2) denote the sets of all probability distributions over U(η1) and
V (η2), respectively. A locally randomized plan for P1 is defined as a function that
yields some w ∈ W (η1) for each η1 ∈ I1. Likewise, a locally randomized plan
for P2 is a function that maps from I2 into Z(η2). Locally randomized plans
expressed as functions of I-states are often called behavioral strategies in game
theory literature.

A randomized saddle point on the space of locally randomized plans does not
exist for all sequential games [2]. This is unfortunate because this form of ran-
domization seems most natural for the way decisions are made during execution.
At least for the stage-by-stage model, a randomized saddle point always exists
on the space of locally randomized plans. For the open-loop model, randomized
saddle points are only guaranteed to exist using a globally randomized plan (this
was actually done in Section 10.5.1). To help understand the problem, suppose
that the game tree is a balanced, binary tree with k stages (hence, 2k levels). For
each player, there are 2k possible deterministic plans. This means that 2k − 1
probability values may be assigned independently (the last one is constrained to
force them to sum to 1) to define a globally randomized plan over the space of
deterministic plans. Defining a locally randomized plan, there are k I-states for
each player, one for each search stage. At each stage, a probability distribution is
defined over the action set, which contains only two elements. Thus, each of these
distributions has only one independent parameter. A randomized plan is specified
in this way using k − 1 independent parameters. Since k − 1 is much less than
2k − 1, there are many globally randomized plans that cannot be expressed as a
locally randomized plan. Unfortunately, in some games the locally randomized
representation removes the randomized saddle point.

This strange result arises mainly because players can forget information over
time. A player with perfect recall remembers its own actions and also never forgets
any information that it previously knew. It was shown by Kuhn that the space of
all globally randomized plans is equivalent to the space of all locally randomized
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plans if and only if the players have perfect memory [26]. Thus, by sticking to
games in which all players have perfect recall, a randomized saddle point always
exists in the space locally randomized plans. The result of Kuhn even holds for
the more general case of the existence of randomized Nash equilibria on the space
of locally randomized plans.

The nondeterministic I-states can be used in game trees that involve more
players. Accordingly, deterministic, globally randomized, and locally randomized
plans can be defined. The result of Kuhn applies to any number of players, which
ensures the existence of a randomized Nash equilibrium on the space of locally
randomized strategies if (and only if) the players have perfect recall. It is generally
preferable to exploit this fact and decompose the game tree into smaller matrix
games, as described in Section 10.5.1. It turns out that the precise condition that
allows this is that it must be ladder-nested [2]. This means that there are decision
vertices, other than the root, at which 1) the player that must make a decision
knows it is at that vertex (the nondeterministic I-state is a singleton set), and
2) the nondeterministic I-state will not leave the subtree rooted at that vertex
(vertices outside of the subtree cannot be circled when drawing the game tree).
In this case, the game tree can be decomposed at these special decision vertices
and replaced with the game value(s). Unfortunately, there is still the nuisance of
multiple Nash equilibria.

It may seem odd that nondeterministic I-states were defined without being
derived from a history I-space. Without much difficulty, it is possible to define
a sensing model that leads to the nondeterministic I-states used in this section.
In many cases, the I-state can be expressed using only a subset of the action
histories. Let ũk and ṽk denote the action histories of P1 and P2, respectively.
The history I-state for the alternating-play model at stage k is (ũk−1, ṽk−1) for
P1 and (ũk, ṽk−1) for P2. The history I-state for the stage-by-stage model is
(ũk−1, ṽk−1) for both players. The nondeterministic I-states used in this section
can be derived from these histories. For other models, such as the one in Figure
11.31, a sensing model is additionally needed because only partial information
regarding some actions appears. This leads into the formulation covered in the
next section, which involves both sensing models and a state space.

11.7.2 Information Spaces for Games on State Spaces

I-space concepts can also be incorporated into sequential games that are played
over state spaces. The resulting formulation naturally extends Formulation 11.1
of Section 11.1 to multiple players. Rather than starting with two players and
generalizing later, the full generality of having n players is assumed up front.
The focus in this section is primarily on characterizing I-spaces for such games,
rather than solving them. Solution approaches depend heavily on the particular
information models; therefore, they will not be covered here.

As in Section 11.7.1, each player has its own frame of reference and therefore
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its own I-space. The I-state for each player indicates its information regarding a
common game state. This is the same state as introduced in Section 10.5; however,
each player may have different observations and may not know the actions of
others. Therefore, the I-state is different for each decision maker. In the case of
perfect state sensing, these I-spaces all collapse to X.

Suppose that there are n players. As presented in Section 10.5, each player
has its own action space, U i; however, here it is not allowed to depend on x,
because the state may generally be unknown. It can depend, however, on the
I-state. If nature actions may interfere with the state transition equation, then
(10.120) is used (if there are two players); otherwise, (10.121) is used, which leads
to predictable future states if the actions of all of the players are given. A single
nature action, θ ∈ Θ(x, u1, u2, . . . , un), is used to model the effect of nature across
all players when uncertainty in prediction exists.

Any of the sensor models from Section 11.1.1 may be defined in the case of
multiple players. Each has its own observation space Y i and sensor mapping hi.
For each player, nature may interfere with observations through nature sensing
actions, Ψi(x). A state-action sensor mapping appears as yi = hi(x, ψi); state
sensor mappings and history-based sensor mappings may also be defined.

Consider how the game appears to a single player at stage k. What information
might be available for making a decision? Each player produces the following in
the most general case: 1) an initial condition, ηi0; 2) an action history, ũik−1; and
3) and an observation history, ỹik. It must be specified whether one player knows
the previous actions that have been applied by other players. It might even be
possible for one player to receive the observations of other players. If Pi receives
all of this information, its history I-state at stage k is

ηik = (ηi0, ũ
1
k−1, ũ

2
k−1, . . . , ũ

n
k−1, ỹ

1
k, ỹ

2
k, ..., ỹ

n
k ). (11.84)

In most situations, however, ηik only includes a subset of the histories from (11.84).
A typical situation is

ηik = (ηi0, ũ
i
k−1, ỹ

i
k), (11.85)

which means that Pi knows only its own actions and observations. Another possi-
bility is that all players know all actions that have been applied, but they do not
receive the observations of other players. This results in

ηik = (ηi0, ũ
1
k−1, ũ

2
k−1, . . . , ũ

n
k−1, ỹ

i
k). (11.86)

Of course, many special cases may be defined by generalizing many of the examples
in this chapter. For example, an intriguing sensorless game may be defined in
which the history I-state consists only of actions. This could yield

ηik = (ηi0, ũ
1
k−1, ũ

2
k−1, . . . , ũ

n
k−1), (11.87)

or even a more secretive game in which the actions of other players are not known:

ηik = (ηi0, ũ
i
k−1). (11.88)
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Once the I-state has been decided upon, a history I-space I ihist for each player is
defined as the set of all history I-states. In general, I-maps and derived I-spaces
can be defined to yield alternative simplifications of each history I-space.

Assuming all spaces are finite, the concepts given so far can be organized into
a sequential game formulation that is the imperfect state information counterpart
of Formulation 10.4:

Formulation 11.4 (Sequential Game with I-Spaces)

1. A set of n players, P1, P2, . . ., Pn.

2. A nonempty, finite state space X.

3. For each Pi, a finite action space U i. We also allow a more general definition,
in which the set of available choices depends on the history I-state; this can
be written as U i(ηi).

4. A finite nature action space Θ(x, u1, . . . , un) for each x ∈ X, and ui ∈ U i for
each i such that 1 ≤ i ≤ m.

5. A state transition function f that produces a state, f(x, u1, . . . , un, θ), for
every x ∈ X, θ ∈ Θ(x, u), and ui ∈ U i for each i such that 1 ≤ i ≤ n.

6. For each Pi, a finite observation space Y i.

7. For each Pi, a finite nature sensing action space Ψi(x) for each x ∈ X.

8. For each Pi, a sensor mapping hi which produces an observation, y =
hi(x, ψi), for each x ∈ X and ψi ∈ Ψi(x). This definition assumes a state-
nature sensor mapping. A state sensor mapping or history-based sensor
mapping, as defined in Section 11.1.1, may alternatively be used.

9. A set of K stages, each denoted by k, which begins at k = 1 and ends at
k = K. Let F = K + 1.

10. For each Pi, an initial condition ηi0, which is an element of an initial condition
space I i0.

11. For each Pi, a history I-space I ihist which is the set of all history I-states,
formed from action and observation histories, and may include the histories
of other players.

12. For each Pi, let L
i denote a stage-additive cost functional,

Li(x̃F , ũ
1
K , . . . , ũ

2
K) =

K∑

k=1

l(xk, u
1
k, . . . , u

n
k) + lF (xF ). (11.89)
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Figure 11.32: In the Battleship game, each player places several ships on a grid.
The other player must guess the locations of ships by asking whether a particular
tile is occupied.

Extensions exist for cases in which one or more of the spaces are continuous; see
[2]. It is also not difficult to add goal sets and termination conditions and allow
the stages to run indefinitely.

An interesting specialization of Formulation 11.4 is when all players have iden-
tical cost functions. This is not equivalent to having a single player because the
players have different I-states. For example, a task may be for several robots to
search for a treasure, but they have limited communication between them. This
results in different I-states. They would all like to cooperate, but they are unable
to do so without knowing the state. Such problems fall under the subject of team
theory [7, 20, 24].

As for the games considered in Formulation 10.4, each player has its own plan.
Since the players do not necessarily know the state, the decisions are based on
the I-state. The definitions of a deterministic plan, a globally randomized plan,
and a locally randomized plan are essentially the same as in Section 11.7.1. The
only difference is that more general I-spaces are defined in the current setting.
Various kinds of solution concepts, such as saddle points and Nash equilibria,
can be defined for the general game in Formulation 11.4. The existence of locally
randomized saddle points and Nash equilibria depends on general on the particular
information model [2].

Example 11.27 (Battleship Game) Many interesting I-spaces arise from clas-
sical board games. A brief illustration is provided here from Battleship, which
is a sequential game under the alternating-turn model. Two players, P1 and P2,
each having a collection of battleships that it arranges secretly on a 10× 10 grid;
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see Figure 11.32.
A state is the specification of the exact location of all ships on each player’s

grid. The state space yields the set of all possible ship locations for both players.
Each player always knows the location of its own ships. Once they are placed on
the grid, they are never allowed to move.

The players take turns guessing a single grid tile, expressed as a row and
column, that it suspects contains a ship. The possible observations are “hit” and
“miss,” depending on whether a ship was at that location. In each turn, a single
guess is made, and the players continue taking turns until one player has observed
a hit for every tile that was occupied by a ship.

This is an interesting game because once a “hit” is discovered, it is clear that
a player should search for other hits in the vicinity because there are going to be
several contiguous tiles covered by the same ship. The only problem is that the
precise ship position and orientation are unknown. A good player essentially uses
the nondeterministic I-state to improve the chances that a hit will occur next. �

Example 11.28 (The Princess and the Monster) This is a classic example
from game theory that involves no sensing. A princess and a monster move about
in a 2D environment. A simple motion model is assumed; for example, they take
single steps on a grid. The princess is trying not to be discovered by the monster,
and the game is played in complete darkness. The game ends when the monster
and the princess are on the same grid point. There is no form of feedback that
can be used during the game; however, it is possible to construct nondeterministic
I-states for the players. For most environments, it is impossible for the monster
to be guaranteed to win; however, for some environments it is guaranteed to
succeed. This example can be considered as a special kind of pursuit-evasion
game. A continuous-time pursuit-evasion game that involves I-spaces is covered
in Section 12.4. �

Further Reading

The basic concept of an information space can be traced back to work of Kuhn [26]
in the context of game trees. There, the nondeterministic I-state is referred to as
an information set. After spreading throughout game theory, the concept was also
borrowed into stochastic control theory (see [5, 27]). The term information space is
used extensively in [2] in the context of sequential and differential game theory. For
further reading on I-spaces in game theory, see [2, 33]. In artificial intelligence literature,
I-states are referred to as belief states and are particularly important in the study of
POMDPs; see the literature suggested at the end of Chapter 12. The observability

problem in control theory also results in I-spaces [6, 12, 22, 37], in which observers are
used to reconstruct the current state from the history I-state. In robotics literature,
they have been called hyperstates [19] and knowledge states [13]. Concepts closely related
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to I-spaces also appear as perceptual equivalence classes in [10] and also appear in the
information invariants framework of Donald [9]. I-spaces were proposed as a general
way to represent planning under sensing uncertainty in [3, 29, 30]. For further reading
on sensors in general, see [17].

The Kalman filter is covered in great detail in numerous other texts; see for example,
[8, 27, 37]. The original reference is [23]. For more on particle filters, see [1, 11, 16, 25].

Exercises

1. Forward projections in Indet:

(a) Starting from a nondeterministic I-state, Xk(ηk), and applying an action uk,
derive an expression for the nondeterministic one-stage forward projection
by extending the presentation in Section 10.1.2.

(b) Determine an expression for the two-stage forward projection starting from
Xk(ηk) and applying uk and uk+1.

2. Forward projections in Iprob:

(a) Starting from a probabilistic I-state, P (xk|ηk), and applying an action uk,
derive an expression for the probabilistic one-stage forward projection.

(b) Determine an expression for the two-stage forward projection starting from
P (xk|ηk) and applying uk and uk+1.

3. Determine the strong and weak backprojections on Ihist for a given history I-state,
ηk. These should give sets of possible ηk−1 ∈ Ihist.

4. At the end of Section 11.3.2, it was mentioned that an equivalent DFA can be
constructed from an NFA.

(a) Give an explicit DFA that accepts the same set of strings as the NFA in
Figure 11.8b.

(b) Express the problem of determining whether the NFA in Figure 11.8b accepts
any strings as a planning problem using Formulation 2.1.

5. This problem involves computing probabilistic I-states for Example 11.14. Let
the initial I-state be

P (x1) = [1/3 1/3 1/3], (11.90)

in which the ith entry in the vector indicates P (x1 = i+ 1). Let U = {0, 1}. For
each action, a state transition matrix can be specified, which gives the probabili-
ties P (xk+1|xk, uk). For u = 0, let P (xk+1|xk, uk = 0) be





4/5 1/5 0
1/10 4/5 1/10
0 1/5 4/5



 . (11.91)
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Figure 11.33: (a) A topological graph in which a point moves (note that two
vertices are vertically aligned). (b) An exercise that is a variant of Example
11.17.

The jth entry of the ith row yields P (xk+1 = i | xk = j, uk = 0). For u = 1, let
P (xk+1 | xk, uk = 1) be





1/10 5/5 1/10
0 1/5 4/5
0 0 1



 . (11.92)

The sensing model is specified by three vectors:

P (yk|xk = 0) = [4/5 1/5], (11.93)

P (yk|xk = 1) = [1/2 1/2], (11.94)

and

P (yk|xk = 2) = [1/5 4/5], (11.95)

in which the ith component yields P (yk = i | xk). Suppose that k = 3 and the
history I-state obtained so far is

(η0, u1, u2, y1, y2, y3) = (η0, 1, 0, 1, 0, 0). (11.96)

The task is to compute the probabilistic I-state. Starting from P (x1), compute the
following distributions: P (x1|η1), P (x2|η1, u1), P (x2|η2), P (x3|η2, u2), P (x3|η3).

6. Explain why it is not possible to reach every nondeterministic I-state from every
other one for Example 11.7. Give an example of a nondeterministic I-state that
cannot be reached from the initial I-state. Completely characterize the reachabil-
ity of nondeterministic I-states from all possible initial conditions.

7. In the same spirit as Example 11.21, consider a point moving on the topological
graph shown in Figure 11.33. Fully characterize the connectivity of Indet (you
may exploit symmetries to simplify the answer).
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8. Design an I-map for Example 11.17 that is not necessarily sufficient but leads to
a solution plan defined over only three derived I-states.

9. Consider the discrete problem in Figure 11.33b, using the same sensing and motion
model as in Example 11.17.

(a) Develop a sufficient I-map and a solution plan that uses as few derived I-
states as possible.

(b) Develop an I-map that is not necessarily sufficient, and a solution plan that
uses as few derived I-states as possible.

10. Suppose that there are two I-maps, κ1 : I1 → I2 and κ2 : I2 → I3, and it is given
that κ1 is sufficient with respect to I1, and κ2 is sufficient with respect to I2.
Determine whether the I-map κ2 ◦ κ1 is sufficient with respect to I1, and prove
your claim.

11. Propose a solution to Example 11.16 that uses fewer nondeterministic I-states.

12. Suppose that a point robot moves in R
2 and receives observations from three hom-

ing beacons that are not collinear and originate from known locations. Assume
that the robot can calibrate the three observations on S

1.

(a) Prove that the robot can always recover its position in R
2.

(b) What can the robot infer if there are only two beacons?

13. Nondeterministic I-state problems:

(a) Prove that the nondeterministic I-states for Example 11.23 are always a
single connected region whose boundary is composed only of circular arcs
and line segments.

(b) Design an algorithm for efficiently computing the nondeterministic I-states
from stage to stage.

14. Design an algorithm that takes as input a simply connected rectilinear region (i.e.,
described by a polygon that has all right angles) and a goal state, and designs
a sequence of tray tilts that guarantees the ball will come to rest at the goal.
Example 11.24 provides an illustration.

15. Extend the game-theoretic formulation from Section 11.7.2 of history I-spaces to
continuous time.

16. Consider the “where did I come from?” problem.

(a) Derive an expression for X1(ηk).

(b) Derive an expression for P (x1|ηk).

17. In the game of Example 11.27, could there exist a point in the game at which
one player has not yet observed every possible “hit” yet it knows the state of the
game (i.e., the exact location of all ships)? Explain.
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18. When playing blackjack in casinos, many card-counting strategies involve remem-
bering simple statistics of the cards, rather than the entire history of cards seen
so far. Define a game of blackjack and card counting as an example of history
I-states and an I-map that dramatically reduces the size of the I-space, and an
information-feedback plan.

Implementations

19. Implement the Kalman filter for the case of a robot moving in the plane. Show
the confidence ellipsoids obtained during execution. Be careful of numerical issues
(see [27]).

20. Implement probabilistic I-state computations for a point robot moving in a 2D
polygonal environment. Compare the efficiency and accuracy of grid-based ap-
proximations to particle filtering.

21. Design and implement an algorithm that uses nondeterministic I-states to play a
good game of Battleship, as explained in Example 11.27.
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