
Chapter 10

Sequential Decision Theory

Steven M. LaValle

University of Illinois

Copyright Steven M. LaValle 2006

Available for downloading at http://planning.cs.uiuc.edu/

Published by Cambridge University Press

Chapter 10

Sequential Decision Theory

Chapter 9 essentially took a break from planning by indicating how to make a sin-
gle decision in the presence of uncertainty. In this chapter, we return to planning
by formulating a sequence of decision problems. This is achieved by extending
the discrete planning concepts from Chapter 2 to incorporate the effects of mul-
tiple decision makers. The most important new decision maker is nature, which
causes unpredictable outcomes when actions are applied during the execution of
a plan. State spaces and state transition equations reappear in this chapter; how-
ever, in contrast to Chapter 2, additional decision makers interfere with the state
transitions. As a result of this effect, a plan needs to incorporate state feedback,
which enables it to choose an action based on the current state. When the plan is
determined, it is not known what future states will arise. Therefore, feedback is
required, as opposed to specifying a plan as a sequence of actions, which sufficed
in Chapter 2. This was only possible because actions were predictable.

Keep in mind throughout this chapter that the current state is always known.
The only uncertainty that exists is with respect to predicting future states. Chap-
ters 11 and 12 will address the important and challenging case in which the current
state is not known. This requires defining sensing models that attempt to measure
the state. The main result is that planning occurs in an information space, as op-
posed to the state space. Most of the ideas of this chapter extend into information
spaces when uncertainties in prediction and in the current state exist together.

The problems considered in this chapter have a wide range of applicability.
Most of the ideas were developed in the context of stochastic control theory
[10, 27, 29]. The concepts can be useful for modeling problems in mobile robotics
because future states are usually unpredictable and can sometimes be modeled
probabilistically [50] or using worst-case analysis [30]. Many other applications
exist throughout engineering, operations research, and economics. Examples in-
clude process scheduling, gambling strategies, and investment planning.

As usual, the focus here is mainly on arriving in a goal state. Both non-
deterministic and probabilistic forms of uncertainty will be considered. In the
nondeterministic case, the task is to find plans that are guaranteed to work in
spite of nature. In some cases, a plan can be computed that has optimal worst-

495

496 S. M. LaValle: Planning Algorithms

case performance while achieving the goal. In the probabilistic case, the task is
to find a plan that yields optimal expected-case performance. Even though the
outcome is not predictable in a single-plan execution, the idea is to reduce the
average cost, if the plan is executed numerous times on the same problem.

10.1 Introducing Sequential Games Against Na-

ture

This section extends many ideas from Chapter 2 to the case in which nature in-
terferes with the outcome of actions. Section 10.1.1 defines the planning problem
in this context, which is a direct extension of Section 2.1. Due to unpredictabil-
ity, forward projections and backprojections are introduced in Section 10.1.2 to
characterize possible future and past states, respectively. Forward projections
characterize the future states that will be obtained under the application of a
plan or a sequence of actions. In Chapter 2 this concept was not needed because
the sequence of future states could always be derived from a plan and initial state.
Section 10.1.3 defines the notion of a plan and uses forward projections to indicate
how its execution may differ every time the plan is applied.

10.1.1 Model Definition

The formulation presented in this section is an extension of Formulation 2.3 that
incorporates the effects of nature at every stage. Let X denote a discrete state
space, and let U(x) denote the set of actions available to the decision maker (or
robot) from state x ∈ X. At each stage k it is assumed that a nature action θk is
chosen from a set Θ(xk, uk). This can be considered as a multi-stage generalization
of Formulation 9.4, which introduced Θ(u). Now Θ may depend on the state in
addition to the action because both xk and uk are available in the current setting.
This implies that nature acts with the knowledge of the action selected by the
decision maker. It is always assumed that during stage k, the decision maker does
not know the particular nature action that will be chosen. It does, however, know
the set Θ(xk, uk) for all xk ∈ X and uk ∈ U(xk).

As in Section 9.2, there are two alternative nature models: nondeterministic
or probabilistic. If the nondeterministic model is used, then it is only known that
nature will make a choice from Θ(xk, uk). In this case, making decisions using
worst-case analysis is appropriate.

If the probabilistic model is used, then a probability distribution over Θ(xk, uk)
is specified as part of the model. The most important assumption to keep in
mind for this case is that nature is Markovian. In general, this means that the
probability depends only on local information. In most applications, this locality
is with respect to time. In our formulation, it means that the distribution over
Θ(xk, uk) depends only on information obtained at the current stage. In other

10.1. INTRODUCING SEQUENTIAL GAMES AGAINST NATURE 497

settings, Markovian could mean a dependency on a small number of stages, or
even a local dependency in terms of spatial relationships, as in a Markov random
field [15, 23].

To make the Markov assumption more precise, the state and action histories
as defined in Section 8.2.1 will be used again here. Let

x̃k = (x1, x2, . . . , xk) (10.1)

and
ũk = (u1, u2, . . . , uk). (10.2)

These represent all information that is available up to stage k. Without the
Markov assumption, it could be possible that the probability distribution for na-
ture is conditioned on all of x̃k and ũk, to obtain P (θk|x̃k, ũk). The Markov
assumption declares that for all θk ∈ Θ(xk, uk),

P (θk|x̃k, ũk) = P (θk|xk, uk), (10.3)

which drops all history except the current state and action. Once these two are
known, there is no extra information regarding the nature action that could be
gained from any portion of the histories.

The effect of nature is defined in the state transition equation, which produces
a new state, xk+1, once xk, uk, and θk are given:

xk+1 = f(xk, uk, θk). (10.4)

From the perspective of the decision maker, θk is not given. Therefore, it can only
infer that a particular set of states will result from applying uk and xk:

Xk+1(xk, uk) = {xk+1 ∈ X | ∃θk ∈ Θ(xk, uk) such that xk+1 = f(xk, uk, θk)}.
(10.5)

In (10.5), the notationXk+1(xk, uk) indicates a set of possible values for xk+1, given
xk and uk. The notationXk(·) will generally be used to indicate the possible values
for xk that can be derived using the information that appears in the argument.

In the probabilistic case, a probability distribution over X can be derived
for stage k + 1, under the application of uk from xk. As part of the problem,
P (θk|xk, uk) is given. Using the state transition equation, xk+1 = f(xk, uk, θk),

P (xk+1|xk, uk) =
∑

θk∈Θ′

P (θk|xk, uk) (10.6)

can be derived, in which

Θ′ = {θk ∈ Θ(xk, uk) | xk+1 = f(xk, uk, θk)}. (10.7)

The calculation of P (xk+1|xk, uk) simply involves accumulating all of the proba-
bility mass that could lead to xk+1 from the application of various nature actions.

Putting these parts of the model together and adding some of the components
from Formulation 2.3, leads to the following formulation:

498 S. M. LaValle: Planning Algorithms

Formulation 10.1 (Discrete Planning with Nature)

1. A nonempty state space X which is a finite or countably infinite set of states.

2. For each state, x ∈ X, a finite, nonempty action space U(x). It is assumed
that U contains a special termination action, which has the same effect as
the one defined in Formulation 2.3.

3. A finite, nonempty nature action space Θ(x, u) for each x ∈ X and u ∈ U(x).

4. A state transition function f that produces a state, f(x, u, θ), for every
x ∈ X, u ∈ U , and θ ∈ Θ(x, u).

5. A set of stages, each denoted by k, that begins at k = 1 and continues
indefinitely. Alternatively, there may be a fixed, maximum stage k = K +
1 = F .

6. An initial state xI ∈ X. For some problems, this may not be specified, in
which case a solution plan must be found from all initial states.

7. A goal set XG ⊂ X.

8. A stage-additive cost functional L. Let θ̃K denote the history of nature ac-
tions up to stage K. The cost functional may be applied to any combination
of state, action, and nature histories to yield

L(x̃F , ũK , θ̃K) =
K
∑

k=1

l(xk, uk, θk) + lF (xF), (10.8)

in which F = K + 1. If the termination action uT is applied at some stage
k, then for all i ≥ k, ui = uT , xi = xk, and l(xi, uT , θi) = 0.

Using Formulation 10.1, either a feasible or optimal planning problem can be
defined. To obtain a feasible planning problem, let l(xk, uk, θk) = 0 for all xk ∈ X,
uk ∈ U , and θk ∈ Θk(uk). Furthermore, let

lF (xF) =

{

0 if xF ∈ XG

∞ otherwise.
(10.9)

To obtain an optimal planning problem, in general l(xk, uk, θk) may assume any
nonnegative, finite value if xk 6∈ XG. For problems that involve probabilistic
uncertainty, it is sometimes appropriate to assign a high, finite value for lF (xF) if
xF 6∈ XG, as opposed to assigning an infinite cost for failing to achieve the goal.

Note that in each stage, the cost term is generally allowed to depend on the
nature action θk. If probabilistic uncertainty is used, then Formulation 10.1 is
often referred to as a controlled Markov process orMarkov decision process (MDP).
If the actions are removed from the formulation, then it is simply referred to

10.1. INTRODUCING SEQUENTIAL GAMES AGAINST NATURE 499

as a Markov process. In most statistical literature, the name Markov chain is
used instead of Markov process when there are discrete stages (as opposed to
continuous-time Markov processes). Thus, the terms controlled Markov chain and
Markov decision chain may be preferable.

In some applications, it may be convenient to avoid the explicit characteriza-
tion of nature. Suppose that l(xk, uk, θk) = l(xk, uk). If nondeterministic uncer-
tainty is used, then Xk+1(xk, uk) can be specified for all xk ∈ X and uk ∈ U(xk) as
a substitute for the state transition equation; this avoids having to refer to nature.
The application of an action uk from a state xk directly leads to a specified subset
of X. If probabilistic uncertainty is used, then P (xk+1|xk, uk) can be directly de-
fined as the alternative to the state transition equation. This yields a probability
distribution over X, if uk is applied from some xk, once again avoiding explicit
reference to nature. Most of the time we will use a state transition equation that
refers to nature; however, it is important to keep these alternatives in mind. They
arise in many related books and research articles.

As used throughout Chapter 2, a directed state transition graph is sometimes
convenient for expressing the planning problem. The same idea can be applied
in the current setting. As in Section 2.1, X is the vertex set; however, the edge
definition must change to reflect nature. A directed edge exists from state x to x′ if
there exists some u ∈ U(x) and θ ∈ Θ(x, u) such that x′ = f(x, u, θ). A weighted
graph can be made by associating the cost term l(xk, uk, θk) with each edge. In
the case of a probabilistic model, the probability of the transition occurring may
also be associated with each edge.

Note that both the decision maker and nature are needed to determine which
vertex will be reached. As the decision maker contemplates applying an action u
from the state x, it sees that there may be several outgoing edges due to nature. If
a different action is contemplated, then this set of possible outgoing edges changes.
Once nature applies its action, then the particular edge is traversed to arrive at
the new state; however, this is not completely controlled by the decision maker.

Example 10.1 (Traversing the Number Line) Let X = Z, U = {−2, 2, uT},
and Θ = {−1, 0, 1}. The action sets of the decision maker and nature are the same
for all states. For the state transition equation, xk+1 = f(xk, uk, θk) = xk+uk+θk.
For each stage, unit cost is received. Hence l(x, u, θ) = 1 for all x, θ, and u 6= uT .
The initial state is xI = 100, and the goal set is XG = {−1, 0, 1}.

Consider executing a sequence of actions, (−2,−2, . . . ,−2), under the non-
deterministic uncertainty model. This means that we attempt to move left two
units in each stage. After the first −2 is applied, the set of possible next states is
{97, 98, 99}. Nature may slow down the progress to be only one unit per stage, or
it may speed up the progress so that XG is three units closer per stage. Note that
after 100 stages, the goal is guaranteed to be achieved, in spite of any possible
actions of nature. Once XG is reached, uT should be applied. If the problem is
changed so that XG = {0}, it becomes impossible to guarantee that the goal will
be reached because nature may cause the goal to be overshot.

500 S. M. LaValle: Planning Algorithms

XG

xI

Figure 10.1: A grid-based shortest path problem with interference from nature.

Now let U = {−1, 1, uT} and Θ = {−2,−1, 0, 1, 2}. Under nondeterministic
uncertainty, the problem can no longer be solved because nature is now pow-
erful enough to move the state completely in the wrong direction in the worst
case. A reasonable probabilistic version of the problem can, however, be defined
and solved. Suppose that P (θ) = 1/5 for each θ ∈ Θ. The transition prob-
abilities can be defined from P (θ). For example, if xk = 100 and uk = −1,
then P (xk+1|xk, uk) = 1/5 if 97 ≤ xk ≤ 101, and P (xk+1|xk, uk) = 0 otherwise.
With the probabilistic formulation, there is a nonzero probability that the goal,
XG = {−1, 0, 1}, will be reached, even though in the worst-case reaching the goal
is not guaranteed. �

Example 10.2 (Moving on a Grid) A grid-based robot planning model can
be made. A simple example is shown in Figure 10.1. The state space is a subset
of a 15 × 15 integer grid in the plane. A state is represented as (i, j), in which
1 ≤ i, j ≤ 15; however, the points in the center region (shown in Figure 10.1) are
not included in X.

Let A = {0, 1, 2, 3, 4} be a set of actions, which denote “stay,” “right,” “up,”
“left,” and “down,” respectively. Let U = A ∪ uT . For each x ∈ X, let U(x)
contain uT and whichever actions are applicable from x (some are not applicable
along the boundaries).

Let Θ(x, u) represent the set of all actions in A that are applicable after per-
forming the move implied by u. For example, if x = (2, 2) and u = 3, then the
robot is attempting to move to (1, 2). From this state, there are three neighboring
states, each of which corresponds to an action of nature. Thus, Θ(x, u) in this
case is {0, 1, 2, 4}. The action θ = 3 does not appear because there is no state
to the left of (1, 2). Suppose that the probabilistic model is used, and that every
nature action is equally likely.

The state transition function f is formed by adding the effect of both uk and
θk. For example, if xk = (i, j), uk = 1, and θk = 2, then xk+1 = (i+1, j+1). If θk

10.1. INTRODUCING SEQUENTIAL GAMES AGAINST NATURE 501

had been 3, then the two actions would cancel and xk+1 = (i, j). Without nature,
it would have been assumed that θk = 0. As always, the state never changes once
uT is applied, regardless of nature’s actions.

For the cost functional, let l(xk, uk) = 1 (unless uk = uT ; in this case,
l(xk, uT) = 0). For the final stage, let lF (xF) = 0 if xF ∈ XG; otherwise, let
lF (xF) = ∞. A reasonable task is to get the robot to terminate in XG in the
minimum expected number of stages. A feedback plan is needed, which will be
introduced in Section 10.1.3, and the optimal plan for this problem can be effi-
ciently computed using the methods of Section 10.2.1.

This example can be easily generalized to moving through a complicated
labyrinth in two or more dimensions. If the grid resolution is high, then an ap-
proximation to motion planning is obtained. Rather than forcing motions in only
four directions, it may be preferable to allow any direction. This case is covered
in Section 10.6, which addresses planning in continuous state spaces. �

10.1.2 Forward Projections and Backprojections

A forward projection is a useful concept for characterizing the behavior of plans
during execution. Before uncertainties were considered, a plan was executed ex-
actly as expected. When a sequence of actions was applied to an initial state, the
resulting sequence of states could be computed using the state transition equation.
Now that the state transitions are unpredictable, we would like to imagine what
states are possible several stages into the future. In the case of nondeterministic
uncertainty, this involves computing a set of possible future states, given a current
state and plan. In the probabilistic case, a probability distribution over states is
computed instead.

Nondeterministic forward projections To facilitate the notation, suppose
in this section that U(x) = U for all x ∈ X. In Section 10.1.3 this will be lifted.

Suppose that the initial state, x1 = xI , is known. If the action u1 ∈ U is
applied, then the set of possible next states is

X2(x1, u1) = {x2 ∈ X | ∃θ1 ∈ Θ(x1, u1) such that x2 = f(x1, u1, θ1)}, (10.10)

which is just a special version of (10.5). Now suppose that an action u2 ∈ U will
be applied. The forward projection must determine which states could be reached
from x1 by applying u1 followed by u2. This can be expressed as

X3(x1, u1, u2) = {x3 ∈ X | ∃θ1 ∈ Θ(x1, u1) and ∃θ2 ∈ Θ(x2, u2)

such that x2 = f(x1, u1, θ1) and x3 = f(x2, u2, θ2)}.

(10.11)

This idea can be repeated for any number of iterations but becomes quite cum-
bersome in the current notation. It is helpful to formulate the forward projection

502 S. M. LaValle: Planning Algorithms

recursively. Suppose that an action history ũk is fixed. Let Xk+1(Xk, uk) denote
the forward projection at stage k + 1, given that Xk is the forward projection at
stage k. This can be computed as

Xk+1(Xk, uk) = {xk+1 ∈ X | ∃xk ∈ Xk and ∃θk ∈ Θ(xk, uk)

such that xk+1 = f(xk, uk, θk)}.
(10.12)

This may be applied any number of times to compute Xk+1 from an initial con-
dition X1 = {x1}.

Example 10.3 (Nondeterministic Forward Projections) Recall the first model
given in Example 10.1, in which U = {−2, 2, uT} and Θ = {−1, 0, 1}. Sup-
pose that x1 = 0, and u = 2 is applied. The one-stage forward projection is
X2(0, 2) = {1, 2, 3}. If u = 2 is applied again, the two-stage forward projection is
X3(0, 2, 2) = {2, 3, 4, 5, 6}. Repeating this process, the k-stage forward projection
is {k, . . . , 3k}. �

Probabilistic forward projections The probabilistic forward projection can
be considered as a Markov process because the “decision” part is removed once
the actions are given. Suppose that xk is given and uk is applied. What is the
probability distribution over xk+1? This was already specified in (10.6) and is the
one-stage forward projection. Now consider the two-stage probabilistic forward
projection, P (xk+2|xk, uk, uk+1). This can be computed by marginalization as

P (xk+2|xk, uk, uk+1) =
∑

xk+1∈X

P (xk+2|xk+1, uk+1)P (xk+1|xk, uk). (10.13)

Computing further forward projections requires nested summations, which marginal-
ize all of the intermediate states. For example, the three-stage forward projection
is

P (xk+3|xk, uk,uk+1, uk+2) =
∑

xk+1∈X

∑

xk+2∈X

P (xk+3|xk+2, uk+2)P (xk+2|xk+1, uk+1)P (xk+1|xk, uk).

(10.14)

A convenient expression of the probabilistic forward projections can be obtained
by borrowing nice algebraic properties from linear algebra. For each action u ∈ U ,
let its state transition matrix Mu be an n×n matrix, for n = |X|, of probabilities.
The matrix is defined as

Mu =

m1,1 m1,2 · · · m1,n

m2,1 m2,2 · · · m2,n
...

...
...

mn,1 mn,2 · · · mn,n

, (10.15)

10.1. INTRODUCING SEQUENTIAL GAMES AGAINST NATURE 503

in which
mi,j = P (xk+1 = i | xk = j, u). (10.16)

For each j, the jth column of Mu must sum to one and can be interpreted as the
probability distribution over X that is obtained if uk is applied from state xk = j.

Let v denote an n-dimensional column vector that represents any probability
distribution over X. The product Muv yields a column vector that represents
the probability distribution over X that is obtained after starting with v and
applying u. The matrix multiplication performs n inner products, each of which
is a marginalization as shown in (10.13). The forward projection at any stage, k,
can now be expressed using a product of k− 1 state transition matrices. Suppose
that ũk−1 is fixed. Let v = [0 0 · · · 0 1 0 · · · 0], which indicates that x1 is known
(with probability one). The forward projection can be computed as

v′ = Muk−1
Muk−2

· · ·Mu2
Mu1

v. (10.17)

The ith element of v′ is P (xk = i | x1, ũk−1).

Example 10.4 (Probabilistic Forward Projections) Once again, use the first
model from Example 10.1; however, now assign probability 1/3 to each nature ac-
tion. Assume that, initially, x1 = 0, and u = 2 is applied in every stage. The
one-stage forward projection yields probabilities

[1/3 1/3 1/3] (10.18)

over the sequence of states (1, 2, 3). The two-stage forward projection yields

[1/9 2/9 3/9 2/9 1/9] (10.19)

over (2, 3, 4, 5, 6). �

Backprojections Sometimes it is helpful to define the set of possible previous
states from which one or more current states could be obtained. For example, they
will become useful in defining graph-based planning algorithms in Section 10.2.3.
This involves maintaining a backprojection, which is a counterpart to the forward
projection that runs in the opposite direction. Backprojections were considered
in Section 8.5.2 to keep track of the active states in a Dijkstra-like algorithm over
continuous state spaces. In the current setting, backprojections need to address
uncertainty.

Consider the case of nondeterministic uncertainty. Let a state x ∈ X be given.
Under a fixed action u, what previous states, x′ ∈ X, could possibly lead to x?
This depends only on the possible choices of nature and is expressed as

WB(x, u) = {x′ ∈ X | ∃θ ∈ Θ(x′, u) such that x = f(x′, u, θ)}. (10.20)

504 S. M. LaValle: Planning Algorithms

The notation WB(x, u) refers to the weak backprojection of x under u, and gives
the set of all states from which x may possibly be reached in one stage.

The backprojection is called “weak” because it does not guarantee that x is
reached, which is a stronger condition. By guaranteeing that x is reached, a strong
backprojection of x under u is defined as

SB(x, u) = {x′ ∈ X | ∀θ ∈ Θ(x′, u), x = f(x′, u, θ)}. (10.21)

The difference between (10.20) and (10.21) is either there exists an action of nature
that enables x to be reached, or x is reached for all actions of nature. Note that
SB(x, u) ⊆ WB(x, u). In many cases, SB(x, u) = ∅, and WB(x, u) is rarely empty.
The backprojection that was introduced in (8.66) of Section 8.5.2 did not involve
uncertainty; hence, the distinction between weak and strong backprojections did
not arise.

Two useful generalizations will now be made: 1) A backprojection can be
defined from a set of states; 2) the action does not need to be fixed. Instead of a
fixed state, x, consider a set S ⊆ X of states. What are the states from which an
element of S could possibly be reached in one stage under the application of u?
This is the weak backprojection of S under u:

WB(S, u) = {x′ ∈ X | ∃θ ∈ Θ(x′, u) such that f(x′, u, θ) ∈ S}, (10.22)

which can also be expressed as

WB(S, u) =
⋃

x∈S

WB(x, u). (10.23)

Similarly, the strong backprojection of S under u is defined as

SB(S, u) = {x′ ∈ X | ∀θ ∈ Θ(x′, u), f(x′, u, θ) ∈ S}. (10.24)

Note that SB(S, u) cannot be formed by the union of SB(x, u) over all x ∈ S.
Another observation is that for each xk ∈ SB(S, uk), we have Xk+1(xk, uk) ⊆ S.

Now the dependency on u will be removed. This yields a backprojection of a
set S. These are states from which there exists an action that possibly reaches S.
The weak backprojection of S is

WB(S) = {x′ ∈ X | ∃u ∈ U(x) such that x ∈ WB(S, u)}, (10.25)

and the strong backprojection of S is

SB(S) = {x′ ∈ X | ∃u ∈ U(x) such that x ∈ SB(S, u)}. (10.26)

Note that SB(S) ⊆ WB(S).

10.1. INTRODUCING SEQUENTIAL GAMES AGAINST NATURE 505

Example 10.5 (Backprojections) Once again, consider the model from the
first part of Example 10.1. The backprojection WB(0, 2) represents the set of all
states from which u = 2 can be applied and x = 0 is possibly reached; the result
is WB(0, 2) = {−3,−2,−1}. The state 0 cannot be reached with certainty from
any state in WB(0, 2). Therefore, SB(0, 2) = ∅.

Now consider backprojections from the goal, XG = {−1, 0, 1}, under the action
u = 2. The weak backprojection is

WB(XG, 2) = WB(−1, 2) ∪WB(0, 2) ∪WB(1, 2) = {−4,−3,−2,−1, 0}. (10.27)

The strong backprojection is SB(XG, 2) = {−2}. From any of the other states
in WB(XG, 2), nature could cause the goal to be missed. Note that SB(XG, 2)
cannot be constructed by taking the union of SB(x, 2) over every x ∈ XG.

Finally, consider backprojections that do not depend on an action. These are
WB(XG) = {−4,−3, . . . , 4} and SB(XG) = XG. In the latter case, all states in
XG lie in SB(XG) because uT can be applied. Without allowing uT , we would
obtain SB(XG) = {−2, 2}. �

Other kinds of backprojections are possible, but we will not define them. One
possibility is to make backprojections over multiple stages, as was done for forward
projections. Another possibility is to define them for the probabilistic case. This
is considerably more complicated. An example of a probabilistic backprojection
is to find the set of all states from which a state in S will be reached with at least
probability p.

10.1.3 A Plan and Its Execution

In Chapter 2, a plan was specified by a sequence of actions. This was possible
because the effect of actions was completely predictable. Throughout most of Part
II, a plan was specified as a path, which is a continuous-stage version of the action
sequence. Section 8.2.1 introduced plans that are expressed as a function on the
state space. This was optional because uncertainty was not explicitly modeled
(except perhaps in the initial state).

As a result of unpredictability caused by nature, it is now important to separate
the definition of a plan from its execution. The same plan may be executed many
times from the same initial state; however, because of nature, different future
states will be obtained. This requires the use of feedback in the form of a plan
that maps states to actions.

Defining a plan Let a (feedback) plan for Formulation 10.1 be defined as a
function π : X → U that produces an action π(x) ∈ U(x), for each x ∈ X.
Although the future state may not be known due to nature, if π is given, then it
will at least be known what action will be taken from any future state. In other

506 S. M. LaValle: Planning Algorithms

works, π has been called a feedback policy, feedback control law, reactive plan [22],
and conditional plan.

For some problems, particularly when K is fixed at some finite value, a stage-
dependent plan may be necessary. This enables a different action to be chosen for
every stage, even from the same state. Let K denote the set {1, . . . , K} of stages.
A stage-dependent plan is defined as π : X ×K → U . Thus, an action is given by
u = π(x, k). Note that the definition of a K-step plan, which was given Section
2.3, is a special case of the current definition. In that setting, the action depended
only on the stage because future states were always predictable. Here they are
no longer predictable and must be included in the domain of π. Unless otherwise
mentioned, it will be assumed by default that π is not stage-dependent.

Note that once π is formulated, the state transitions appear to be a function
of only the current state and nature. The next state is given by f(x, π(x), θ). The
same is true for the cost term, l(x, π(x), θ).

Forward projections under a fixed plan Forward projections can now be
defined under the constraint that a particular plan is executed. The specific
expression of actions is replaced by π. Each time an action is needed from a state
x ∈ X, it is obtained as π(x). In this formulation, a different U(x) may be used
for each x ∈ X, assuming that π is correctly defined to use whatever actions are
actually available in U(x) for each x ∈ X.

First we will consider the nondeterministic case. Suppose that the initial
state x1 and a plan π are known. This means that u1 = π(x1), which can be
substituted into (10.10) to compute the one-stage forward projection. To compute
the two-stage forward projection, u2 is determined from π(x2) for use in (10.11).
A recursive formulation of the nondeterministic forward projection under a fixed
plan is

Xk+1(x1, π) = {xk+1 ∈ X | ∃θk ∈ Θ(xk, π(xk)) such that

xk ∈ Xk(x1, π) and xk+1 = f(xk, π(xk), θk)}.
(10.28)

The probabilistic forward projection in (10.10) can be adapted to use π, which
results in

P (xk+2|xk, π) =
∑

xk+1∈X

P (xk+2|xk+1, π(xk+1))P (xk+1|xk, π(xk)). (10.29)

The basic idea can be applied k − 1 times to compute P (xk|x1, π).
A state transition matrix can be used once again to express the probabilistic

forward projection. In (10.15), all columns correspond to the application of the
action u. Let Mπ, be the forward projection due to a fixed plan π. Each column
of Mπ may represent a different action because each column represents a different
state xk. Each entry of Mπ is

mi,j = P (xk+1 = i | xk = j, π(xk)). (10.30)

10.1. INTRODUCING SEQUENTIAL GAMES AGAINST NATURE 507

The resulting Mπ defines a Markov process that is induced under the application
of the plan π.

Graph representations of a plan The game against nature involves two de-
cision makers: nature and the robot. Once the plan is formulated, the decisions of
the robot become fixed, which leaves nature as the only remaining decision maker.
Using this interpretation, a directed graph can be defined in the same way as in
Section 2.1, except nature actions are used instead of the robot’s actions. It can
even be imagined that nature itself faces a discrete feasible planning problem as in
Formulation 2.1, in which Θ(x, π(x)) replaces U(x), and there is no goal set. Let
Gπ denote a plan-based state transition graph, which arises under the constraint
that π is executed. The vertex set of Gπ is X. A directed edge in Gπ exists from x
to x′ if there exists some θ ∈ Θ(x, π(x)) such that x′ = f(x, π(x), θ). Thus, from
each vertex in Gπ, the set of outgoing edges represents all possible transitions to
next states that are possible, given that the action is applied according to π. In
the case of probabilistic uncertainty, Gπ becomes a weighted graph in which each
edge is assigned the probability P (x′|x, π(x), θ). In this case, Gπ corresponds to
the graph representation commonly used to depict a Markov chain.

A nondeterministic forward projection can easily be derived from Gπ by fol-
lowing the edges outward from the current state. The outward edges lead to the
states of the one-stage forward projection. The outward edges of these states
lead to the two-stage forward projection, and so on. The probabilistic forward
projection can also be derived from Gπ.

The cost of a feedback plan Consider the cost-to-go of executing a plan π
from a state x1 ∈ X. The resulting cost depends on the sequences of states that
are visited, actions that are applied by the plan, and the applied nature actions.
In Chapter 2 this was obtained by adding the cost terms, but now there is a
dependency on nature. Both worst-case and expected-case analyses are possible,
which generalize the treatment of Section 9.2 to state spaces and multiple stages.

Let H(π, x1) denote the set of state-action-nature histories that could arise
from π when applied using x1 as the initial state. The cost-to-go, Gπ(x1), under
a given plan π from x1 can be measured using worst-case analysis as

Gπ(x1) = max
(x̃,ũ,θ̃)∈H(π,x1)

{

L(x̃, ũ, θ̃)
}

, (10.31)

which is the maximum cost over all possible trajectories from x1 under the plan
π. If any of these fail to terminate in the goal, then the cost becomes infinity. In
(10.31), x̃, ũ, and θ̃ are infinite histories, although their influence on the cost is
expected to terminate early due to the application of uT .

An optimal plan using worst-case analysis is any plan for which Gπ(x1) is
minimized over all possible plans (all ways to assign actions to the states). In
the case of feasible planning, there are usually numerous equivalent alternatives.

508 S. M. LaValle: Planning Algorithms

Sometimes the task may be only to find a feasible plan, which means that all
trajectories must reach the goal, but the cost does not need to be optimized.

Using probabilistic uncertainty, the cost of a plan can be measured using
expected-case analysis as

Gπ(x1) = EH(π,x1)

[

L(x̃, ũ, θ̃)
]

, (10.32)

in which E denotes the mathematical expectation taken over H(π, x1) (i.e., the
plan is evaluated in terms of a weighted sum, in which each term has a weight for
the probability of a state-action-nature history and its associated cost, L(x̃, ũ, θ̃)).
This can also be interpreted as the expected cost over trajectories from x1. If
any of these have nonzero probability and fail to terminate in the goal, then
Gπ(x1) = ∞. In the probabilistic setting, the task is usually to find a plan that
minimizes Gπ(x1).

An interesting question now emerges: Can the same plan, π, be optimal from
every initial state x1 ∈ X, or do we need to potentially find a different optimal
plan for each initial state? Fortunately, a single plan will suffice to be optimal
over all initial states. Why? This behavior was also observed in Section 8.2.1. If
π is optimal from some x1, then it must also be optimal from every other state
that is potentially visited by executing π from x1. Let x denote some visited state.
If π was not optimal from x, then a better plan would exist, and the goal could
be reached from x with lower cost. This contradicts the optimality of π because
solutions must travel through x. Let π∗ denote a plan that is optimal from every
initial state.

10.2 Algorithms for Computing Feedback Plans

10.2.1 Value Iteration

Fortunately, the value iteration method of Section 2.3.1.1 extends nicely to handle
uncertainty in prediction. This was the main reason why value iteration was
introduced in Chapter 2. Value iteration was easier to describe in Section 2.3.1.1
because the complications of nature were avoided. In the current setting, value
iteration retains most of its efficiency and can easily solve problems that involve
thousands or even millions of states.

The state space, X, is assumed to be finite throughout Section 10.2.1. An
extension to the case of a countably infinite state space can be developed if cost-
to-go values over the entire space do not need to be computed incrementally.

Only backward value iteration is considered here. Forward versions can be
defined alternatively.

Nondeterministic case Suppose that the nondeterministic model of nature is
used. A dynamic programming recurrence, (10.39), will be derived. This directly

10.2. ALGORITHMS FOR COMPUTING FEEDBACK PLANS 509

yields an iterative approach that computes a plan that minimizes the worst-case
cost. The following presentation shadows that of Section 2.3.1.1; therefore, it may
be helpful to refer back to this periodically.

An optimal plan π∗ will be found by computing optimal cost-to-go functions.
For 1 ≤ k ≤ F , let G∗

k denote the worst-case cost that could accumulate from
stage k to F under the execution of the optimal plan (compare to (2.5))

G∗

k(xk) = min
uk

max
θk

min
uk+1

max
θk+1

· · ·min
uK

max
θK

{

K
∑

i=k

l(xi, ui, θi) + lF (xF)

}

. (10.33)

Inside of the min’s and max’s of (10.33) are the last F − k terms of the cost
functional, (10.8). For simplicity, the ranges of each ui and θi in the min’s and
max’s of (10.33) have not been indicated. The optimal cost-to-go for k = F is

G∗

F (xF) = lF (xF), (10.34)

which is the same as (2.6) for the predictable case.

Now consider making K passes over X, each time computing G∗

k from G∗

k+1,
as k ranges from F down to 1. In the first iteration, G∗

F is copied from lF . In the
second iteration, G∗

K is computed for each xK ∈ X as (compare to (2.7))

G∗

K(xK) = min
uK

max
θK

{

l(xK , uK , θK) + lF (xF)
}

, (10.35)

in which uK ∈ U(xK) and θK ∈ Θ(xK , uK). Since lF = G∗
F and xF = f(xK , uK , θK),

substitutions are made into (10.35) to obtain (compare to (2.8))

G∗

K(xK) = min
uK

max
θK

{

l(xK , uK , θK) +G∗

F (f(xK , uK , θK))
}

, (10.36)

which computes the costs of all optimal one-step plans from stage K to stage
F = K + 1.

More generally, G∗

k can be computed once G∗

k+1 is given. Carefully study
(10.33), and note that it can be written as (compare to (2.9))

G∗

k(xk) = min
uk

max
θk

{

min
uk+1

max
θk+1

· · ·min
uK

max
θK

{

l(xk, uk, θk)+

K
∑

i=k+1

l(xi, ui, θi) + lF (xF)

}}

(10.37)

by pulling the first cost term out of the sum and by separating the minimization
over uk from the rest, which range from uk+1 to uK . The second min and max do

510 S. M. LaValle: Planning Algorithms

not affect the l(xk, uk, θk) term; thus, l(xk, uk, θk) can be pulled outside to obtain
(compare to (2.10))

G∗

k(xk) = min
uk

max
θk

{

l(xk, uk, θk)+

min
uk+1

max
θk+1

· · ·min
uK

max
θK

{

K
∑

i=k+1

l(xi, ui, θi) + l(xF)

}}

.

(10.38)

The inner min’s and max’s represent G∗

k+1, which yields the recurrence (compare
to (2.11))

G∗

k(xk) = min
uk∈U(xk)

{

max
θk

{

l(xk, uk, θk) +G∗

k+1(xk+1)
}}

. (10.39)

Probabilistic case Now consider the probabilistic case. A value iteration
method can be obtained by once again shadowing the presentation in Section
2.3.1.1. For k from 1 to F , let G∗

k denote the expected cost from stage k to F
under the execution of the optimal plan (compare to (2.5)):

G∗

k(xk) = min
uk,...,uK

{

Eθk,...,θK

[

K
∑

i=k

l(xi, ui, θi) + lF (xF)

]}

. (10.40)

The optimal cost-to-go for the boundary condition of k = F again reduces to
(10.34).

Once again, the algorithm makes K passes over X, each time computing G∗

k

from G∗

k+1, as k ranges from F down to 1. As before, G∗
F is copied from lF . In

the second iteration, G∗
K is computed for each xK ∈ X as (compare to (2.7))

G∗

K(xK) = min
uK

{

EθK

[

l(xK , uK , θK) + lF (xF)
]}

, (10.41)

in which uK ∈ U(xK) and the expectation occurs over θK . Substitutions are made
into (10.41) to obtain (compare to (2.8))

G∗

K(xK) = min
uK

{

EθK

[

l(xK , uK , θK) +G∗

F (f(xK , uK , θK))
]}

. (10.42)

The general iteration is

G∗

k(xk) =min
uk

{

Eθk

[

min
uk+1,...,uK

{

Eθk+1,...,θK

[

l(xk, uk, θk)+

K
∑

i=k+1

l(xi, ui, θi) + lF (xF)

]}]}

,

(10.43)

10.2. ALGORITHMS FOR COMPUTING FEEDBACK PLANS 511

which is obtained once again by pulling the first cost term out of the sum and
by separating the minimization over uk from the rest. The second min and ex-
pectation do not affect the l(xk, uk, θk) term, which is pulled outside to obtain
(compare to (2.10))

G∗

k(xk) =min
uk

{

Eθk

[

l(xk, uk, θk)+

min
uk+1,...,uK

{

Eθk+1,...,θK

[

K
∑

i=k+1

l(xi, ui, θi) + l(xF)

]}]}

.

(10.44)

The inner min and expectation define G∗

k+1, yielding the recurrence (compare to
(2.11) and (10.39))

G∗

k(xk) = min
uk∈U(xk)

{

Eθk

[

l(xk, uk, θk) +G∗

k+1(xk+1)
]}

= min
uk∈U(xk)

{

∑

θk∈Θ(xk,uk)

(

l(xk, uk, θk) +G∗

k+1(f(xk, uk, θk))
)

P (θk|xk, uk)
}

.

(10.45)

If the cost term does not depend on θk, it can be written as l(xk, uk), and
(10.45) simplifies to

G∗

k(xk) = min
uk∈U(xk)

{

l(xk, uk) +
∑

xk+1∈X

G∗

k+1(xk+1)P (xk+1|xk, uk)

}

. (10.46)

The dependency of state transitions on θk is implicit through the expression of
P (xk+1|xk, uk), for which the definition uses P (θk|xk, uk) and the state transition
equation f . The form given in (10.46) may be more convenient than (10.45) in
implementations.

Convergence issues If the maximum number of stages is fixed in the problem
definition, then convergence is assured. Suppose, however, that there is no limit on
the number of stages. Recall from Section 2.3.2 that each value iteration increases
the total path length by one. The actual stage indices were not important in
backward dynamic programming because arbitrary shifting of indices does not
affect the values. Eventually, the algorithm terminated because optimal cost-to-
go values had been computed for all reachable states from the goal. This resulted
in a stationary cost-to-go function because the values no longer changed. States
that are reachable from the goal converged to finite values, and the rest remained
at infinity. The only problem that prevents the existence of a stationary cost-to-go
function, as mentioned in Section 2.3.2, is negative cycles in the graph. In this
case, the best plan would be to loop around the cycle forever, which would reduce
the cost to −∞.

512 S. M. LaValle: Planning Algorithms

xI xG xI xG

(a) (b)

Figure 10.2: Plan-based state transition graphs. (a) The goal is possibly reachable,
but not guaranteed reachable because an infinite cycle could occur. (b) The goal
is guaranteed reachable because all flows lead to the goal.

In the current setting, a stationary cost-to-go function once again arises, but
cycles once again cause difficulty in convergence. The situation is, however, more
complicated due to the influence of nature. It is helpful to consider a plan-based
state transition graph, Gπ. First consider the nondeterministic case. If there
exists a plan π from some state x1 for which all possible actions of nature cause
the traversal of cycles that accumulate negative cost, then the optimal cost-to-
go at x1 converges to −∞, which prevents the value iterations from terminating.
These cases can be detected in advance, and each such initial state can be avoided
(some may even be in a different connected component of the state space).

It is also possible that there are unavoidable positive cycles. In Section 2.3.2,
the cost-to-go function behaved differently depending on whether the goal set was
reachable. Due to nature, the goal set may be possibly reachable or guaranteed
reachable, as illustrated in Figure 10.2. To be possibly reachable from some initial
state, there must exist a plan, π, for which there exists a sequence of nature
actions that will lead the state into the goal set. To be guaranteed reachable, the
goal must be reached in spite of all possible sequences of nature actions. If the
goal is possibly reachable, but not guaranteed reachable, from some state x1 and
all edges have positive cost, then the cost-to-go value of x1 tends to infinity as
the value iterations are repeated. For example, every plan-based state transition
graph may contain a cycle of positive cost, and in the worst case, nature may
cause the state to cycle indefinitely. If convergence of the value iterations is only
evaluated at states from which the goal set is guaranteed to be reachable, and
if there are no negative cycles, then the algorithm should terminate when all
cost-to-go values remain unchanged.

For the probabilistic case, there are three situations:

1. The value iterations arrive at a stationary cost-to-go function after a finite
number of iterations.

2. The value iterations do not converge in any sense.

3. The value iterations converge only asymptotically to a stationary cost-to-go

10.2. ALGORITHMS FOR COMPUTING FEEDBACK PLANS 513

xI xG

1 1/2

1/211

1

Figure 10.3: A plan-based state transition graph that causes asymptotic conver-
gence. The probabilities of the transitions are shown on the edges. Longer and
longer paths exist by traversing the cycle, but the probabilities become smaller.

function. The number of iterations tends to infinity as the values converge.

The first two situations have already occurred. The first one occurs if there exists
a plan, π, for which Gπ has no cycles. The second situation occurs if there are neg-
ative or positive cycles for which all edges in the cycle have probability one. This
situation is essentially equivalent to that for the nondeterministic case. Worst-
case analysis assumes that the worst possible nature actions will be applied. For
the probabilistic case, the nature actions are forced by setting their probabilities
to one.

The third situation is unique to the probabilistic setting. This is caused by
positive or negative cycles in Gπ for which the edges have probabilities in (0, 1).
The optimal plan may even have such cycles. As the value iterations consider
longer and longer paths, a cycle may be traversed more times. However, each
time the cycle is traversed, the probability diminishes. The probabilities diminish
exponentially in terms of the number of stages, whereas the costs only accumulate
linearly. The changes in the cost-to-go function gradually decrease and converge
only to stationary values as the number of iterations tends to infinity. If some
approximation error is acceptable, then the iterations can be terminated once
the maximum change over all of X is within some ǫ threshold. The required
number of value iterations to obtain a solution of the desired quality depends on
the probabilities of following the cycles and on their costs. If the probabilities are
lower, then the algorithm converges sooner.

Example 10.6 (A Cycle in the Transition Graph) Suppose that a plan, π,
is chosen that yields the plan-based state transition graph shown in Figure 10.3.
A probabilistic model is used, and the probabilities are shown on each edge. For
simplicity, assume that each transition results in unit cost, l(x, u, θ) = 1, over all
x, u, and θ.

The expected cost from xI is straightforward to compute. With probability
1/2, the cost to reach xG is 3. With probability 1/4, the cost is 7. With probability
1/8, the cost is 11. Each time another cycle is taken, the cost increases by 4, but

514 S. M. LaValle: Planning Algorithms

the probability is cut in half. This leads to the infinite series

Gπ(xI) = 3 + 4
∞
∑

i=1

1

2i
= 7. (10.47)

The infinite sum is the standard geometric series and converges to 1; hence (10.47)
converges to 7.

Even though the cost converges to a finite value, this only occurs in the limit.
An infinite number of value iterations would theoretically be required to obtain
this result. For most applications, an approximate solution suffices, and very
high precision can be obtained with a small number of iterations (e.g., after 20
iterations, the change is on the order of one-billionth). Thus, in general, it is
sensible to terminate the value iterations after the maximum cost-to-go change is
less than a threshold based directly on precision.

Note that if nondeterministic uncertainty is used, then the value iterations
do not converge because, in the worst case, nature will cause the state to cycle
forever. Even though the goal is not guaranteed reachable, the probabilistic un-
certainty model allows reasonable solutions. �

Using the plan Assume that there is no limit on the number of stages. After
the value iterations terminate, cost-to-go functions are determined over X. This
is not exactly a plan, because an action is required for each x ∈ X. The actions
can be obtained by recording the u ∈ U(x) that produced the minimum cost value
in (10.45) or (10.39).

Assume that the value iterations have converged to a stationary cost-to-go
function. Before uncertainty was introduced, the optimal actions were determined
by (2.19). The nondeterministic and probabilistic versions of (2.19) are

π∗(x) = argmin
u∈U(x)

{

max
θ∈Θ(x,u)

{

l(x, u, θ) +G∗(f(x, u, θ))
}}

(10.48)

and
π∗(x) = argmin

u∈U(x)

{

Eθ

[

l(x, u, θ) +G∗(f(x, u, θ))
]}

, (10.49)

respectively. For each x ∈ X at which the optimal cost-to-go value is known, one
evaluation of (10.45) yields the best action.

Conveniently, the optimal action can be recovered directly during execution
of the plan, rather than storing actions. Each time a state xk is obtained during
execution, the appropriate action uk = π∗(xk) is selected by evaluating (10.48) or
(10.49) at xk. This means that the cost-to-go function itself can be interpreted as
a representation of the optimal plan, once it is understood that a local operator is
required to recover the action. It may seem strange that such a local computation
yields the global optimum; however, this works because the cost-to-go function

10.2. ALGORITHMS FOR COMPUTING FEEDBACK PLANS 515

already encodes the global costs. This behavior was also observed for continuous
state spaces in Section 8.4.1, in which a navigation function served to define a
feedback motion plan. In that context, a gradient operator was needed to recover
the direction of motion. In the current setting, (10.48) and (10.49) serve the same
purpose.

10.2.2 Policy Iteration

The value iterations of Section 10.2.1 work by iteratively updating cost-to-go
values on the state space. The optimal plan can alternatively be obtained by
iteratively searching in the space of plans. This leads to a method called policy
iteration [7]; the term policy is synonymous with plan. The method will be ex-
plained for the case of probabilistic uncertainty, and it is assumed that X is finite.
With minor adaptations, a version for nondeterministic uncertainty can also be
developed.

Policy iteration repeatedly requires computing the cost-to-go for a given plan,
π. Recall the definition of Gπ from (10.32). First suppose that there are no
uncertainties, and that the state transition equation is x′ = f(x, u). The dynamic
programming equation (2.18) from Section 2.3.2 can be used to derive the cost-
to-go for each state x ∈ X under the application of π. Make a copy of (2.18) for
each x ∈ X, and instead of the min, use the given action u = π(x), to yield

Gπ(x) = l(x, π(x)) +Gπ(f(x, π(x))). (10.50)

In (10.50), the G∗ has been replaced by Gπ because there are no variables to
optimize (it is simply the cost of applying π). Equation (10.50) can be thought
of as a trivial form of dynamic programming in which the choice of possible plans
has been restricted to a single plan, π. If the dynamic programming recurrence
(2.18) holds over the space of all plans, it must certainly hold over a space that
consists of a single plan; this is reflected in (10.50).

If there are n states, (10.50) yields n equations, each of which gives an ex-
pression of Gπ(x) for a different state. For the states in which x ∈ XG, it is
known that Gπ(x) = 0. Now that this is known, the cost-to-go for all states
from which XG can be reached in one stage can be computed using (10.50) with
Gπ(f(x, π(x))) = 0. Once these cost-to-go values are computed, another wave
of values can be computed from states that can reach these in one stage. This
process continues until the cost-to-go values are computed for all states. This is
similar to the behavior of Dijkstra’s algorithm.

This process of determining the cost-to-go should not seem too mysterious.
Equation (10.50) indicates how the costs differ between neighboring states in the
state transition graph. Since all of the differences are specified and an initial
condition is given for XG, all others can be derived by adding up the differences
expressed in (10.50). Similar ideas appear in the Hamilton-Jacobi-Bellman equa-
tion and Pontryagin’s minimum principle, which are covered in Section 15.2.

516 S. M. LaValle: Planning Algorithms

Now we turn to the case in which there are probabilistic uncertainties. The
probabilistic analog of (2.18) is (10.49). For simplicity, consider the special case
in which l(x, u, θ) does not depend on θ, which results in

π∗(x) = argmin
u∈U(x)

{

l(x, u) +
∑

x′∈X

G∗(x′)P (x′|x, u)

}

, (10.51)

in which x′ = f(x, u). The cost-to-go function, G∗, satisfies the dynamic program-
ming recurrence

G∗(x) = min
u∈U(x)

{

l(x, u) +
∑

x′∈X

G∗(x′)P (x′|x, u)

}

. (10.52)

The probabilistic analog to (10.50) can be made from (10.52) by restricting the
set of actions to a single plan, π, to obtain

Gπ(x) = l(x, π(x)) +
∑

x′∈X

Gπ(x
′)P (x′|x, π(x)), (10.53)

in which x′ is the next state.
The cost-to-go for each x ∈ X under the application of π can be determined

by writing (10.53) for each state. Note that all quantities except Gπ are known.
This means that if there are n states, then there are n linear equations and n
unknowns (Gπ(x) for each x ∈ X). The same was true when (10.50) was used,
except the equations were much simpler. In the probabilistic setting, a system of
n linear equations must be solved to determine Gπ. This may be performed using
classical linear algebra techniques, such as singular value decomposition (SVD)
[24, 48].

Now that we have a method for evaluating the cost of a plan, the policy
iteration method is straightforward, as specified in Figure 10.4. Note that in Step
3, the cost-to-go Gπ, which was developed for one plan, π, is used to evaluate
other plans. The result is the cost that will be obtained if a new action is tried in
the first stage and then π is used for all remaining stages. If a new action cannot
reduce the cost, then π must have already been optimal because it means that
(10.54) has become equivalent to the stationary dynamic programming equation,
(10.49). If it is possible to improve π, then a new plan is obtained. The new plan
must be strictly better than the previous plan, and there is only a finite number
of possible plans in total. Therefore, the policy iteration method converges after
a finite number of iterations.

Example 10.7 (An Illustration of Policy Iteration) A simple example will
now be used to illustrate policy iteration. Let X = {a, b, c} and U = {1, 2, uT}.
Let XG = {c}. Let l(x, u) = 1 for all x ∈ X and u ∈ U \ {uT} (if uT is applied,
there is no cost). The probabilistic state transition graphs for each action are

10.2. ALGORITHMS FOR COMPUTING FEEDBACK PLANS 517

POLICY ITERATION ALGORITHM

1. Pick an initial plan π, in which uT is applied at each x ∈ XG and all other
actions are chosen arbitrarily.

2. Use (10.53) to compute Gπ for each x ∈ X under the plan π.

3. Substituting the computed Gπ values for G∗, use (10.51) to compute a better
plan, π′:

π′(x) = argmin
u∈U(x)

{

l(x, u) +
∑

x′∈X

Gπ(x
′)P (x′|x, u)

}

. (10.54)

4. If π′ produces at least one lower cost-to-go value than π, then let π = π′

and repeat Steps 2 and 3. Otherwise, declare π to be the optimal plan, π∗.

Figure 10.4: The policy iteration algorithm iteratively searches the space of plans
by evaluating and improving plans.

ba c

1/3

1/3

1/3

1/3

1/3
1/3

xG
ba c

3/4

1/2

1/4

1/2

xG

u=1 u=2

Figure 10.5: The probabilistic state transition graphs for u = 1 and u = 2.
Transitions out of c are not shown because it is assumed that a termination action
is always applied from xg.

518 S. M. LaValle: Planning Algorithms

shown in Figure 10.5. The first step is to pick an initial plan. Let π(a) = 1 and
π(b) = 1; let π(c) = uT because c ∈ XG.

Now use (10.53) to compute Gπ. This yields three equations:

Gπ(a) = 1 +Gπ(a)P (a | a, 1) +Gπ(b)P (b | a, 1) +Gπ(c)P (c | a, 1) (10.55)

Gπ(b) = 1 +Gπ(a)P (a | b, 1) +Gπ(b)P (b | b, 1) +Gπ(c)P (c | b, 1) (10.56)

Gπ(c) = 0 +Gπ(a)P (a | c, uT) +Gπ(b)P (b | c, uT) +Gπ(c)P (c | c, uT). (10.57)

Each equation represents a different state and uses the appropriate action from π.
The final equation reduces to Gπ(c) = 0 because of the basic rules of applying a
termination condition. After substituting values for P (x′|x, u) and using Gπ(c) =
0, the other two equations become

Gπ(a) = 1 + 1
3
Gπ(a) +

1
3
Gπ(b) (10.58)

and

Gπ(b) = 1 + 1
3
Gπ(a) +

1
3
Gπ(b). (10.59)

The solutions are Gπ(a) = Gπ(b) = 3.
Now use (10.54) for each state with Gπ(a) = Gπ(b) = 3 and Gπ(c) = 0 to find

a better plan, π′. At state a, it is found by solving

π′(a) = argmin
u∈U

{

l(x, a) +
∑

x′∈X

Gπ(x
′)P (x′|x, a)

}

. (10.60)

The best action is u = 2, which produces cost 5/2 and is computed as

l(x, 2) +
∑

x′∈X

Gπ(x
′)P (x′|x, 2) = 1 + 0 + (3)1

2
+ (0)1

4
= 5

2
. (10.61)

Thus, π′(a) = 2. Similarly, π′(b) = 2 can be computed, which produces cost 7/4.
Once again, π′(c) = uT , which completes the determination of an improved plan.

Since an improved plan has been found, replace π with π′ and return to Step
2. The new plan yields the equations

Gπ(a) = 1 + 1
2
Gπ(b) (10.62)

and

Gπ(b) = 1 + 1
4
Gπ(a). (10.63)

Solving these yields Gπ(a) = 12/7 and Gπ(b) = 10/7. The next step attempts to
find a better plan using (10.54), but it is determined that the current plan cannot
be improved. The policy iteration method terminates by correctly reporting that
π∗ = π. �

10.2. ALGORITHMS FOR COMPUTING FEEDBACK PLANS 519

BACKPROJECTION ALGORITHM

1. Initialize S = XG, and let π(x) = uT for each x ∈ XG.

2. For each x ∈ X \ S, if there exists some u ∈ U(x) such that x ∈ SB(S, u)
then: 1) let π(x) = u, and 2) insert x into S.

3. If Step 2 failed to extend S, then exit. This implies that SB(S) = S, which
means no more progress can be made. Otherwise, go to Step 2.

Figure 10.6: A general algorithm for computing a feasible plan under nondeter-
ministic uncertainty.

Policy iteration may appear preferable to value iteration, especially because it
usually converges in fewer iterations than value iteration. The equation solving
that determines the cost of a plan effectively considers multiple stages at once.
However, for most planning problems, X is large and the large linear system
of equations that must be solved at every iteration can become unwieldy. In
some applications, either the state space may be small enough or sparse matrix
techniques may allow efficient solutions over larger state spaces. In general, value-
based methods seem preferable for most planning problems.

10.2.3 Graph Search Methods

Value iteration is quite general; however, in many instances, most of the time is
wasted on states that do not update their values because either the optimal cost-
to-go is already known or the goal is not yet reached. Policy iteration seems to
alleviate this problem, but it is limited to small state spaces. These shortcomings
motivate the consideration of alternatives, such as extending the graph search
methods of Section 2.2. In some cases, Dijkstra’s algorithm can even be extended
to quickly obtain optimal solutions, but a strong assumption is required on the
structure of solutions. In the nondeterministic setting, search methods can be
developed that produce only feasible solutions, without regard for optimality. For
the methods in this section, X need not be finite, as long as the search method is
systematic, in the sense defined in Section 2.2.

Backward search with backprojections A backward search can be con-
ducted by incrementally growing a plan outward from XG by using backprojec-
tions. A complete algorithm for computing feasible plans under nondeterministic
uncertainty is outlined in Figure 10.6. Let S denote the set of states for which
the plan has been computed. Initially, S = XG and, if possible, S may grow
until S = X. The plan definition starts with π(x) = uT for each x ∈ XG and is
incrementally extended to new states during execution.

Step 2 takes every state x that is not already in S and checks whether it should

520 S. M. LaValle: Planning Algorithms

S

x

Forward projection
under u

Figure 10.7: A state x can be added to S if there exists an action u ∈ U(x) such
that the one-stage forward projection is contained in S.

be added. This requires determining whether some action, u, can be applied from
x, with the next state guaranteed to lie in S, as shown in Figure 10.7. If so, then
π(x) = u is assigned and S is extended to include x. If no such progress can be
made, then the algorithm must terminate. Otherwise, every state is checked again
by returning to Step 2. This is necessary because S has grown, and in the next
iteration new states may lie in its strong backprojection.

For efficiency reasons, the X \ S set in Step 2 may be safely replaced with
the smaller set, WB(S) \ S, because it is impossible for other states in X to be
affected. Depending on the problem, this condition may provide a quick way to
prune many hopeless states from consideration. As an example, consider a grid-
like environment in which a maximum of two steps in any direction is possible at
a given time. A simple distance test can be implemented to eliminate many states
from possible inclusion into S in Step 2.

As long as the consideration of states to include in S is systematic, as con-
sidered in Section 2.2, numerous variations of the algorithm in Figure 10.6 are
possible. One possibility is to keep track of the cost-to-go and grow S based
on incrementally inserting minimal-cost states. This leads to a nondeterministic
version of Dijkstra’s algorithm, which is covered next.

Nondeterministic Dijkstra Figure 10.8 shows an extension of Dijkstra’s al-
gorithm for solving the problem of Formulation 10.1 under nondeterministic un-
certainty. It can also be considered as a variant of the algorithm in Figure 10.6
because it grows S by using backprojections. The algorithm in Figure 10.8 rep-
resents a backward-search version of Dijkstra’s algorithm; therefore, it maintains
the worst-case cost-to-go, G, which sometimes becomes the optimal, worst-case
cost-to-go, G∗. Initially, G = 0 for states in the goal, and G = ∞ for all others.

Step 1 performs the initialization. Step 2 selects the state in A that has the
smallest value. As in Dijkstra’s algorithm for deterministic problems, it is known
that the cost-to-go for this state is the smallest possible. It is therefore declared

10.2. ALGORITHMS FOR COMPUTING FEEDBACK PLANS 521

NONDETERMINISTIC DIJKSTRA

1. Initialize S = ∅ and A = XG. Associate uT with every x ∈ A. Assign
G(x) = 0 for all x ∈ A and G(x) = ∞ for all other states.

2. Unless A is empty, remove the xs ∈ A and its corresponding u, for which G
is smallest. If A was empty, then exit (no further progress is possible).

3. Designate π∗(xs) = u as part of the optimal plan and insert xs into S.
Declare G∗(xs) = G(xs).

4. Compute G(x) using (10.64) for any x in the frontier set, Front(xs, S), and
insert Front(xs, S) into A and with associated actions for each inserted state.
For states already in A, retain whichever G value is lower, either its original
value or the new computed value. Go to Step 2.

Figure 10.8: A Dijkstra-based algorithm for computing an optimal feasible plan
under nondeterministic uncertainty.

in Step 3 that G∗(xs) = G(xs), and π∗ is extended to include xs.
Step 4 updates the costs for some states and expands the active set, A. Which

costs could be immediately affected by the insertion of xs into S? These are
states xk ∈ X \ S for which there exists some uk ∈ U(xk) that produces a one-
stage forward projection, Xk+1(xk, uk), such that: 1) xs ∈ Xk+1(xk, uk) and 2)
Xk+1(xk, uk) ⊆ S. This is depicted in Figure 10.9. Let the set of states that
satisfy these constraints be called the frontier set, denoted by Front(xs, S). For
each x ∈ Front(xs, S), let Uf (x) ⊆ U(x) denote the set of all actions for which the
forward projection satisfies the two previous conditions.

The frontier set can be interpreted in terms of backprojections. The weak
backprojection WB(xs) yields all states that can possibly reach xs in one step.
However, the cost-to-go is only finite for states in SB(S) (here S already includes
xs). The states in S should certainly be excluded because their optimal costs are
already known. These considerations reduce the set of candidate frontier states
to (WB(xs) ∩ SB(S)) \ S. This set is still too large because the same action, u,
must produce a one-stage forward projection that includes xs and is a subset of
S.

The worst-case cost-to-go is computed for all x ∈ Front(xs, S) as

G(x) = min
u∈Uf (x)

{

max
θ∈Θ(x,u)

{

l(x, u, θ) +G(f(x, u, θ))
}}

, (10.64)

in which the restricted action set, Uf (x), is used. If x was already in A and a
previous G(x) was computed, then the minimum of its previous value and (10.64)
is kept.

522 S. M. LaValle: Planning Algorithms

x

Original S

xs

Forward projection
under u

Expanded S

Figure 10.9: The worst-case cost-to-go is computed for any state x such that there
exists a u ∈ U(x) for which the one-stage forward projection is contained in the
updated S and one state in the forward projection is xs.

Probabilistic Dijkstra A probabilistic version of Dijkstra’s algorithm does
not exist in general; however, for some problems, it can be made to work. The
algorithm in Figure 10.8 is adapted to the probabilistic case by using

G(x) = min
u∈Uf (x)

{

Eθ

[

l(x, u, θ) +G(f(x, u, θ))
]}

(10.65)

in the place of (10.64). The definition of Front remains the same, and the nonde-
terministic forward projections are still applied to the probabilistic problem. Only
edges in the transition graph that have nonzero probability are actually consid-
ered as possible future states. Edges with zero probability are precluded from the
forward projection because they cannot affect the computed cost values.

The probabilistic version of Dijkstra’s algorithm can be successfully applied
if there exists a plan, π, for which from any xk ∈ X there is probability one
that Gπ(xk+1) < Gπ(xk). What does this condition mean? From any xk, all
possible next states that have nonzero probability of occurring must have a lower
cost value. If all edge costs are positive, this means that all paths in the multi-
stage forward projection will make monotonic progress toward the goal. In the
deterministic case, this always occurs if l(x, u) is always positive. If nonmonotonic
paths are possible, then Dijkstra’s algorithm breaks down because the region in
which cost-to-go values change is no longer contained within a propagating band,
which arises in Dijkstra’s algorithm for deterministic problems.

10.3 Infinite-Horizon Problems

In stochastic control theory and artificial intelligence research, most problems
considered to date do not specify a goal set. Therefore, there are no associated

10.3. INFINITE-HORIZON PROBLEMS 523

termination actions. The task is to develop a plan that minimizes the expected
cost (or maximize expected reward) over some number of stages. If the number of
stages is finite, then it is straightforward to apply the value iteration method of
Section 10.2.1. The adapted version of backward value iteration simply terminates
when the first stage is reached. The problem becomes more challenging if the
number of stages is infinite. This is called an infinite-horizon problem.

The number of stages for the planning problems considered in Section 10.1 is
also infinite; however, it was expected that if the goal could be reached, termi-
nation would occur in a finite number of iterations. If there is no termination
condition, then the costs tend to infinity. There are two alternative cost models
that force the costs to become finite. The discounted cost model shrinks the per-
stage costs as the stages extend into the future; this yields a geometric series for
the total cost that converges to a finite value. The average cost-per-stage model
divides the total cost by the number of stages. This essentially normalizes the
accumulating cost, once again preventing its divergence to infinity. Some of the
computation methods of Section 10.2 can be adapted to these models. This sec-
tion formulates these two infinite-horizon cost models and presents computational
solutions.

10.3.1 Problem Formulation

Both of the cost models presented in this section were designed to force the cu-
mulative cost to become finite, even though there is an infinite number of stages.
Each can be considered as a minor adaptation of cost functional used in Formu-
lation 10.1.

The following formulation will be used throughout Section 10.3.

Formulation 10.2 (Infinite-Horizon Problems)

1. A nonempty, finite state space X.

2. For each state x ∈ X, a finite action space U(x) (there is no termination
action, contrary to Formulation 10.1).

3. A finite nature action space Θ(x, u) for each x ∈ X and u ∈ U(x).

4. A state transition function f that produces a state, f(x, u, θ), for every
x ∈ X, u ∈ U(x), and θ ∈ Θ(x, u).

5. A set of stages, each denoted by k, that begins at k = 1 and continues
indefinitely.

6. A stage-additive cost functional, L(x̃, ũ, θ̃), in which x̃, ũ, and θ̃ are infinite
state, action, and nature histories, respectively. Two alternative forms of L
will be given shortly.

524 S. M. LaValle: Planning Algorithms

In comparison to Formulation 10.1, note that here there is no initial or goal state.
Therefore, there are no termination actions. Without the specification of a goal
set, this may appear to be a strange form of planning. A feedback plan, π, still
takes the same form; π(x) produces an action u ∈ U(x) for each x ∈ X.

As a possible application, imagine a robot that delivers materials in a factory
from several possible source locations to several destinations. The robot operates
over a long work shift and has a probabilistic model of when requests to deliver
materials will arrive. Formulation 10.2 can be used to define a problem in which
the goal is to minimize the average amount of time that materials wait to be
delivered. This strategy should not depend on the length of the shift; therefore,
an infinite number of stages is reasonable. If the shift is too short, the robot may
focus only on one delivery, or it may not even have enough time to accomplish
that.

Discounted cost In Formulation 10.2, the cost functional in Item 6 must be
defined carefully to ensure that finite values are always obtained, even though the
number of stages tends to infinity. The discounted cost model provides one simple
way to achieve this by rapidly decreasing costs in future stages. Its definition is
based on the standard geometric series. For any real parameter α ∈ (0, 1),

lim
K→∞

(

K
∑

k=0

αk

)

=
1

1− α
. (10.66)

The simplest case, α = 1/2, yields 1+1/2+1/4+1/8+· · · , which clearly converges
to 2.

Now let α ∈ (0, 1) denote a discount factor, which is applied in the definition
of a cost functional:

L(x̃, ũ, θ̃) = lim
K→∞

(

K
∑

k=0

αkl(xk, uk, θk)

)

. (10.67)

Let lk denote the cost, l(xk, uk, θk), received at stage k. For convenience in this
setting, the first stage is k = 0, as opposed to k = 1, which has been used
previously. As the maximum stage, K, increases, the diminished importance of
costs far in the future can easily be observed, as indicated in Figure 10.10.

The rate of cost decrease depends strongly on α. For example, if α = 1/2,
the costs decrease very rapidly. If α = 0.999, the convergence to zero is much
slower. The trade-off is that with a large value of α, more stages are taken into
account, and the designed plan is usually of higher quality. If a small value of α is
used, methods such as value iteration converge much more quickly; however, the
solution quality may be poor because of “short sightedness.”

The term l(xk, uk, θk) in (10.67) assumes different values depending on xk, uk,
and θk. Since there are only a finite number of possibilities, they must be bounded

10.3. INFINITE-HORIZON PROBLEMS 525

Stage L∗
K

K = 0 l0
K = 1 l0 + αl1
K = 2 l0 + αl1 + α2l2
K = 3 l0 + αl1 + α2l2 + α3l3
K = 4 l0 + αl1 + α2l2 + α3l3 + α4l4

...

Figure 10.10: The cost magnitudes decease exponentially over the stages.

by some positive constant c.1 Hence,

lim
K→∞

(

K
∑

k=0

αkl(xk, uk, θk)

)

≤ lim
K→∞

(

K
∑

k=0

αkc

)

≤
c

1− α
, (10.68)

which means that L(x̃, ũ, θ̃) is bounded from above, as desired. A similar lower
bound can be constructed, which ensures that the resulting total cost is always
finite.

Average cost-per-stage An alternative to discounted cost is to use the average
cost-per-stage model, which keeps the cumulative cost finite by dividing out the
total number of stages:

L(x̃, ũ, θ̃) = lim
K→∞

(

1

K

K−1
∑

k=0

l(xk, uk, θk)

)

. (10.69)

Using the maximum per-stage cost bound c, it is clear that (10.69) grows no larger
than c, even as K → ∞. This model is sometimes preferable because the cost
does not depend on an arbitrary parameter, α.

10.3.2 Solution Techniques

Straightforward adaptations of the value and policy iteration methods of Section
10.2 exist for infinite-horizon problems. These will be presented here; however,
it is important to note that many other important issues exist regarding their
convergence and numerical stability [12]. There are several other variants of these
algorithms that are too involved to cover here but nevertheless are important
because they address many of these additional issues. The main point in this
section is to understand the simple relationship to the problems considered so far
in Sections 10.1 and 10.2.

1The state space X may even be infinite, but this requires that the set of possible costs is
bounded.

526 S. M. LaValle: Planning Algorithms

Value iteration for discounted cost A backward value iteration solution will
be presented that follows naturally from the method given in Section 10.2.1. For
notational convenience, let the first stage be designated as k = 0 so that αk−1 may
be replaced by αk. In the probabilistic case, the expected optimal cost-to-go is

G∗(x) = lim
K→∞

(

min
ũ

{

Eθ̃

[

K
∑

k=1

αkl(xk, uk, θk)

]})

. (10.70)

The expectation is taken over all nature histories, each of which is an infinite
sequence of nature actions. The corresponding expression for the nondeterministic
case is

G∗(x) = lim
K→∞

(

min
ũ

{

max
θ̃

{

K
∑

k=1

αkl(xk, uk, θk)

}})

. (10.71)

Since the probabilistic case is more common, it will be covered here. The
nondeterministic version is handled in a similar way (see Exercise 17). As before,
backward value iterations will be performed because they are simpler to express.
The discount factor causes a minor complication that must be fixed to make the
dynamic programming recurrence work properly.

One difficulty is that the stage index now appears in the cost function, in the
form of αk. This means that the shift-invariant property from Section 2.3.1.1 is
no longer preserved. We must therefore be careful about assigning stage indices.
This is a problem because for backward value iteration the final stage index has
been unknown and unimportant.

Consider a sequence of discounted decision-making problems, by increasing the
maximum stage index: K = 0, K = 1, K = 2, Look at the neighboring cost
expressions in Figure 10.10. What is the difference between finding the optimal
cost-to-go for the K+1-stage problem and the K-stage problem? In Figure 10.10
the last four terms of the cost for K = 4 can be obtained by multiplying all terms
for K = 3 by α and adding a new term, l0. The only difference is that the stage
indices need to be shifted by one on each li that was borrowed from the K = 3
case. In general, the optimal costs of a K-stage optimization problem can serve
as the optimal costs of the K + 1-stage problem if they are first multiplied by α.
The K + 1-stage optimization problem can be solved by optimizing over the sum
of the first-stage cost plus the optimal cost for the K-stage problem, discounted
by α.

This can be derived using straightforward dynamic programming arguments
as follows. Suppose that K is fixed. The cost-to-go can be expressed recursively
for k from 0 to K as

G∗

k(xk) = min
uk∈U(xk)

{

Eθk

[

αkl(xk, uk, θk) +G∗

k+1(xk+1)
]}

, (10.72)

in which xk+1 = f(xk, uk, θk). The problem, however, is that the recursion depends
on k through αk, which makes it appear nonstationary.

10.3. INFINITE-HORIZON PROBLEMS 527

The idea of using neighboring cost values as shown in Figure 10.10 can be
applied by making a notational change. Let J∗

K−k(xk) = α−kG∗

k(xk). This reverses
the direction of the stage indices to avoid specifying the final stage and also scales
by α−k to correctly compensate for the index change. Substitution into (10.72)
yields

αkJ∗

K−k(xk) = min
uk∈U(xk)

{

Eθk

[

αkl(xk, uk, θk) + αk+1J∗

K−k−1(xk+1)
]}

. (10.73)

Dividing by αk and then letting i = K − k yields

J∗

i (xk) = min
uk∈U(xk)

{

Eθk

[

l(xk, uk, θk) + αJ∗

i−1(xk+1)
]}

, (10.74)

in which J∗
i represents the expected cost for a finite-horizon discounted problem

in which K = i. Note that (10.74) expresses J∗
i in terms of J∗

i−1, but xk is
given, and the right-hand side uses xk+1. The indices appear to run in opposite
directions because this is simply backward value iteration with a notational change
that reverses some of the indices. The particular stage indices of xk and xk+1

are not important in (10.74), as long as xk+1 = f(xk, uk, θk) (for example, the
substitutions x = xk, x

′ = xk+1, u = uk, and θ = θk can be safely made).
Value iteration proceeds by first letting J∗

0 (x0) = 0 for all x ∈ X. Successive
cost-to-go functions are computed by iterating (10.74) over the state space. Un-
der the cycle-avoiding assumptions of Section 10.2.1, the convergence is usually
asymptotic due to the infinite horizon. The discounting gradually causes the cost
differences to diminish until they are within the desired tolerance. The stationary
form of the dynamic programming recurrence, which is obtained in the limit as i
tends to infinity, is

J∗(x) = min
u∈U(x)

{

Eθk

[

l(x, u, θ) + αJ∗(f(x, u, θ))
]}

. (10.75)

If the cost terms do not depend on nature, then the simplified form is

J∗(x) = min
u∈U(x)

{

l(x, u) + α
∑

x′∈X

J∗(x′)P (x′|x, u)
}

. (10.76)

As explained in Section 10.2.1, the optimal action, π∗(x), is assigned as the u ∈
U(x) that satisfies (10.75) or (10.76) at x.

Policy iteration for discounted cost The policy iteration method may al-
ternatively be applied to the probabilistic discounted-cost problem. Recall the
method given in Figure 10.4. The general approach remains the same: A search is
conducted over the space of plans by solving a linear system of equations in each
iteration. In Step 2, (10.53) is replaced by

Jπ(x) = l(x, u) + α
∑

x′∈X

Jπ(x
′)P (x′|x, u), (10.77)

528 S. M. LaValle: Planning Algorithms

which is a special form of (10.76) for evaluating a fixed plan. In Step 3, (10.54) is
replaced by

π′(x) = argmin
u∈U(x)

{

l(x, u) + α
∑

x′∈X

Jπ(x
′)P (x′|x, u)

}

. (10.78)

Using these alterations, the policy iteration algorithm proceeds in the same way
as in Section 10.2.2.

Solutions for the average cost-per-stage model A value iteration algorithm
for the average cost model can be obtained by simply neglecting to divide by K.
Selecting actions that optimize the total cost also optimizes the average cost as
the number of stages approaches infinity. This may cause costs to increase toward
±∞; however, only a finite number of iterations can be executed in practice.

The backward value iterations of Section 10.2.1 can be followed with very little
modification. Initially, let G∗(xF) = 0 for all xF ∈ X. The value iterations are
computed using the standard form

G∗

k(xk) = min
uk∈U(xk)

{

∑

θ∈Θ(xk,uk)

(

l(xk, uk, θk) +G∗

k+1(f(xk, uk, θk))
)

P (θk|xk, uk)

}

.

(10.79)
The iterations continue until convergence occurs. To determine whether a solution
of sufficient quality has been obtained, a reasonable criterion for is

max
x∈X

{

∣

∣G∗

k(x)/N −G∗

k+1(x)/(N − 1)
∣

∣

}

< ǫ, (10.80)

in which ǫ is the error tolerance and N is the number of value iterations that have
been completed (it is required in (10.80) that N > 1). Once (10.80) has been
satisfied, the iterations can be terminated.

A numerical problem may exist with the growing values obtained for G∗(x).
This can be alleviated by periodically reducing all values by some constant factor
to ensure that the numbers fit within the allowable floating point range. In [12], a
method called relative value iteration is presented, which selects one state, s ∈ X,
arbitrarily and expresses the cost-to-go values by subtracting off the cost at s. This
trims down all values simultaneously to keep them bounded while still maintaining
the convergence properties of the algorithm.

Policy iteration can alternatively be performed by using the method given in
Figure 10.4 with only minor modification.

10.4 Reinforcement Learning

10.4.1 The General Philosophy

This section briefly introduces the basic ideas of a framework that has been highly
popular in the artificial intelligence community in recent years. It was developed

10.4. REINFORCEMENT LEARNING 529

and used primarily by machine learning researchers [1, 47], and therefore this
section is called reinforcement learning. The problem generally involves comput-
ing optimal plans for probabilistic infinite-horizon problems. The basic idea is
to combine the problems of learning the probability distribution, P (θ|x, u), and
computing the optimal plan into the same algorithm.

Terminology Before detailing the method further, some explanation of existing
names seems required. Consider the term reinforcement learning. In machine
learning, most decision-theoretic models are expressed in terms of reward instead
of cost. Thus, the task is to make decisions or find plans that maximize a reward
functional. Choosing good actions under this model appears to provide positive
reinforcement in the form of a reward. Therefore, the term reinforcement is used.
Using cost and minimization instead, some alternative names may be decision-
theoretic learning or cost-based learning.

The term learning is associated with the problem because estimating the prob-
ability distribution P (θ|x, u) or P (x′|x, u) is clearly a learning problem. However,
it is important to remember that there is also the planning problem of computing
cost-to-go functions (or reward-to-go functions) and determining a plan that op-
timizes the costs (or rewards). Therefore, the term reinforcement planning may
be just as reasonable.

The general framework is referred to as neuro-dynamic programming in [13]
because the formulation and resulting algorithms are based on dynamic program-
ming. Most often, a variant of value iteration is obtained. The neuro part refers
to a family of functions that can be used to approximate plans and cost-to-go
values. This term is fairly specific, however, because other function families may
be used. Furthermore, for some problems (e.g., over small, finite state spaces),
the cost values and plans are represented without approximation.

The name simulation-based methods is used in [11], which is perhaps one of
the most accurate names (when used in the context of dynamic programming).
Thus, simulation-based dynamic programming or simulation-based planning nicely
reflects the framework explained here. The term simulation comes from the fact
that a Monte Carlo simulator is used to generate samples for which the required
distributions are learned during planning. You are, of course, welcome to use your
favorite name, but keep in mind that under all of the names, the idea remains the
same. This will be helpful to remember if you intend to study related literature.

The general framework The framework is usually applied to infinite-horizon
problems under probabilistic uncertainty. The discounted-cost model is most pop-
ular; however, we will mostly work with Formulation 10.1 because it is closer to
the main theme of this book. It has been assumed so far that when planning un-
der Formulation 10.1, all model components are known, including P (xk+1|xk, uk).
This can be considered as a traditional framework, in which there are three general
phases:

530 S. M. LaValle: Planning Algorithms

Apply action uk from xk

Next state, xk+1

Learning/Planning/Execution

Simulator

Monte Carlo

Algorithm

Cost value, l(xk, uk)

Figure 10.11: The general framework for reinforcement learning (or simulation-
based dynamic programming).

Learning phase: The transition probabilities are estimated by visiting
states in X, trying actions, and gathering statistics. When this phase con-
cludes, the model of the environment is completely known.

Planning phase: An algorithm computes a feedback plan using a method
such as value iteration or policy iteration.

Execution phase: The plan is executed on a machine that is connected to
the same environment on which the learning phase was applied.

The simulation-based framework combines all three of these phases into one.
Learning, planning, and execution are all conducted by a machine that initially
knows nothing about the state transitions or even the cost terms. Ideally, the ma-
chine should be connected to a physical environment for which the Markov model
holds. However, in nearly all implementations, the machine is instead connected
to a Monte Carlo simulator as shown in Figure 10.11. Based on the current state,
the algorithm sends an action, uk, to the simulator, and the simulator computes
its effect by sampling according to its internal probability distributions. Obvi-
ously, the designer of the simulator knows the transition probabilities, but these
are not given directly to the planning algorithm. The simulator then sends the
next state, xk+1, and cost, l(xk, uk), back to the algorithm.

For simplicity, l(xk, uk) is used instead of allowing the cost to depend on the
particular nature action, which would yield l(xk, uk, θk). The explicit charac-
terization of nature is usually not needed in this framework. The probabilities
P (xk+1|xk, uk) are directly learned without specifying nature actions. It is com-
mon to generalize the cost term from l(xk, uk) to l(xk, uk, xk+1), but this is avoided
here for notational convenience. The basic ideas remain the same, and only slight
variations of the coming equations are needed to handle this generalization.

The simulator is intended to simulate “reality,” in which the machine interacts
with the physical world. It replaces the environment in Figure 1.16b from Sec-
tion 1.4. Using the interpretation of that section, the algorithms presented in this

10.4. REINFORCEMENT LEARNING 531

context can be considered as a plan as shown in Figure 1.18b. If the learning com-
ponent is terminated, then the resulting feedback plan can be programmed into
another machine, as shown in Figure 1.18a. This step is usually not performed,
however, because often it is assumed that the machine continues to learn over its
lifetime.

One of the main issues is exploration vs. exploitation [47]. Some repetitive
exploration of the state space is needed to gather enough data that reliably esti-
mate the model. For true theoretical convergence, each state-action pair must be
tried infinitely often. On the other hand, information regarding the model should
be exploited to efficiently accomplish tasks. These two goals are often in conflict.
Focusing too much on exploration will not optimize costs. Focusing too much
on exploitation may prevent useful solutions from being developed because better
alternatives have not yet been discovered.

10.4.2 Evaluating a Plan via Simulation

The simulation method is based on averaging the information gained incrementally
from samples. Suppose that you receive a sequence of costs, c1, c2, . . ., and would
like to incrementally compute their average. You are not told the total number
of samples in advance, and at any point you are required to report the current
average. Let mi denote the average of the first i samples,

mi =
1

i

i
∑

j=1

cj. (10.81)

To efficiently compute mi from mi−1, multiply mi−1 by i− 1 to recover the total,
add ci, and then divide by i:

mi =
(i− 1)mi−1 + ci

i
. (10.82)

This can be manipulated into

mi = mi−1 +
1

i
(ci −mi−1). (10.83)

Now consider the problem of estimating the expected cost-to-go, Gπ(x), at
every x ∈ X for some fixed plan, π. If P (x′|x, u) and the costs l(x, u) were
known, then it could be computed by solving

Gπ(x) = l(x, u) +
∑

x′

P (x′|x, u)Gπ(x
′). (10.84)

However, without this information, we must rely on the simulator.
From each x ∈ X, suppose that 1000 trials are conducted, and the resulting

costs to get to the goal are recorded and averaged. Each trial is an iterative process

532 S. M. LaValle: Planning Algorithms

in which π selects the action, and the simulator indicates the next state and its
incremental cost. Once the goal state is reached, the costs are totaled to yield the
measured cost-to-go for that trial (this assumes that π(x) = uT for all x ∈ XG).
If ci denotes this total cost at trial i, then the average, mi, over i trials provides
an estimate of Gπ(x). As i tends to infinity, we expect mi to converge to Gπ(x).
The update formula (10.83) can be conveniently used to maintain the improving
sequence of cost-to-go estimates. Let Ĝπ(x) denote the current estimate of Gπ(x).
The update formula based on (10.83) can be expressed as

Ĝπ(x) := Ĝπ(x) +
1

i
(l(x1, u1) + l(x2, u2) + · · ·+ l(xK , uK)− Ĝπ(x)), (10.85)

in which := means assignment, in the sense used in some programming languages.
It turns out that a single trial can actually yield update values for multiple

states [47, 12]. Suppose that a trial is performed from x that results in the
sequence x1 = x, x2, . . ., xk, . . ., xK , xF of visited states. For every state, xk, in
the sequence, a cost-to-go value can be measured by recording the cost that was
accumulated from xk to xK :

ck(xk) =
K
∑

j=k

l(xj , uj). (10.86)

It is much more efficient to make use of (10.85) on every state that is visited along
the path.

Temporal differences Rather than waiting until the end of each trial to com-
pute ci(xi), it is possible to update each state, xi, immediately after it is visited
and l(xi, ui) is received from the simulator. This leads to a well-known method
of estimating the cost-to-go called temporal differences [46]. It is very similar to
the method already given but somewhat more complicated. It will be introduced
here because the method frequently appears in reinforcement learning literature,
and an extension of it leads to a nice simulation-based method for updating the
estimated cost-to-go.

Once again, consider the sequence x1, . . ., xK , xF generated by a trial. Let dk
denote a temporal difference, which is defined as

dk = l(xk, uk) + Ĝπ(xk+1)− Ĝπ(xk). (10.87)

Note that both l(xk, uk) + Ĝπ(xk+1) and Ĝπ(xk) could each serve as an estimate
of Gπ(xk). The difference is that the right part of (10.87) utilizes the latest
cost obtained from the simulator for the first step and then uses Ĝπ(xk+1) for an
estimate of the remaining cost. In this and subsequent expressions, every action,
uk, is chosen using the plan: uk = π(xk).

Let vk denote the number of times that xk has been visited so far, for each
1 ≤ k ≤ K, including previous trials and the current visit. The following update

10.4. REINFORCEMENT LEARNING 533

algorithm can be used during the trial. When x2 is reached, the value at x1 is
updated as

Ĝπ(x1) := Ĝπ(x1) +
1

v1
d1. (10.88)

When x3 is reached, the values at x1 and x2 are updated as

Ĝπ(x1) := Ĝπ(x1) +
1

v1
d2,

Ĝπ(x2) := Ĝπ(x2) +
1

v2
d2.

(10.89)

Now consider what has been done so far at x1. The temporal differences partly
collapse:

Ĝπ(x1) :=Ĝπ(x1) +
1

v1
d1 +

1

v1
d2

=Ĝπ(x1) +
1

v1
(l(x1, u1) + Ĝπ(x2)− Ĝπ(x1) + l(x2, u2) + Ĝπ(x3)− Ĝπ(x2))

=Ĝπ(x1) +
1

v1
(l(x1, u1) + l(x2, u2)− Ĝπ(x1) + Ĝπ(x3)).

(10.90)

When x4 is reached, similar updates are performed. At xk, the updates are

Ĝπ(x1) :=Ĝπ(x1) +
1

v1
dk,

Ĝπ(x2) :=Ĝπ(x2) +
1

v2
dk,

...

Ĝπ(xk) :=Ĝπ(xk) +
1

vk
dk.

(10.91)

The updates are performed in this way until xF ∈ XG is reached. Now consider
what was actually computed for each xk. The temporal differences form a tele-
scoping sum that collapses, as shown in (10.90) after two iterations. After all
iterations have been completed, the value at xk has been updated as

Ĝπ(xk) :=Ĝπ(xk) +
1

vk
dk +

1

vk+1

dk+1 + · · ·+
1

vK
dK +

1

vF
dF

=Ĝπ(xk) +
1

vk
(l(x1, u1) + l(x2, u2) + · · ·+ l(xK , uK)− Ĝπ(xk) + Ĝπ(xF))

=Ĝπ(xk) +
1

vk
(l(x1, u1) + l(x2, u2) + · · ·+ l(xK , uK)− Ĝπ(xk)).

(10.92)

The final Ĝπ(xF) was deleted because its value is zero, assuming that the termina-
tion action is applied by π. The resulting final expression is equivalent to (10.85) if

534 S. M. LaValle: Planning Algorithms

each visited state in the sequence was distinct. This is often not true, which makes
the method discussed above differ slightly from the method of (10.85) because the
count, vk, may change during the trial in the temporal difference scheme. This
difference, however, is negligible, and the temporal difference method computes
estimates that converge to Ĝπ [12, 13].

The temporal difference method presented so far can be generalized in a way
that often leads to faster convergence in practice. Let λ ∈ [0, 1] be a specified
parameter. The TD(λ) temporal difference method replaces the equations in
(10.91) with

Ĝπ(x1) :=Ĝπ(x1) + λk−1

(

1

v1
dk

)

,

Ĝπ(x2) :=Ĝπ(x2) + λk−2

(

1

v2
dk

)

,

...

Ĝπ(xk−1) :=Ĝπ(xk−1) + λ

(

1

vk−1

dk

)

,

Ĝπ(xk) :=Ĝπ(xk) +
1

vk
dk.

(10.93)

This has the effect of discounting costs that are received far away from xk. The
method in (10.91) was the special case of λ = 1, yielding TD(1).

Another interesting special case is TD(0), which becomes

Ĝπ(xk) = Ĝπ(xk) +
1

vk

(

l(xk, uk) + Ĝπ(xk+1)− Ĝπ(xk)
)

. (10.94)

This form appears most often in reinforcement learning literature (although it is
applied to the discounted-cost model instead). Experimental evidence indicates
that lower values of λ help to improve the convergence rate. Convergence for all
values of λ is proved in [13].

One source of intuition about why (10.94) works is that it is a special case of a
stochastic iterative algorithm or the Robbins-Monro algorithm [8, 13, 28]. This is a
general statistical estimation technique that is used for solving systems of the form
h(y) = y by using a sequence of samples. Each sample represents a measurement
of h(y) using Monte Carlo simulation. The general form of this iterative approach
is to update y as

y := (1− ρ)y + ρh(y), (10.95)

in which ρ ∈ [0, 1] is a parameter whose choice affects the convergence rate.
Intuitively, (10.95) updates y by interpolating between its original value and the
most recent sample of h(y). Convergence proofs for this algorithm are not given
here; see [13] for details. The typical behavior is that a smaller value of ρ leads to
more reliable estimates when there is substantial noise in the simulation process,

10.4. REINFORCEMENT LEARNING 535

but this comes at the cost of slowing the convergence rate. The convergence is
asymptotic, which requires that all edges (that have nonzero probability) in the
plan-based state transition graph should be visited infinitely often.

A general approach to obtaining Ĝπ can be derived within the stochastic iter-
ative framework by generalizing TD(0):

Ĝπ(x) := (1− ρ)Ĝπ(x) + ρ
(

l(x, u) + Ĝπ(x
′)
)

. (10.96)

The formulation of TD(0) in (10.94) essentially selects the ρ parameter by the
way it was derived, but in (10.96) any ρ ∈ (0, 1) may be used.

It may appear incorrect that the update equation does not take into account
the transition probabilities. It turns out that they are taken into account in
the simulation process because transitions that are more likely to occur have a
stronger effect on (10.96). The same thing occurs when the mean of a nonuniform
probability density function is estimated by using samples from the distribution.
The values that occur with higher frequency make stronger contributions to the
average, which automatically gives them the appropriate weight.

10.4.3 Q-Learning: Computing an Optimal Plan

This section moves from evaluating a plan to computing an optimal plan in the
simulation-based framework. The most important idea is the computation of Q-
factors, Q∗(x, u). This is an extension of the optimal cost-to-go, G∗, that records
optimal costs for each possible combination of a state, x ∈ X, and action u ∈ U(x).
The interpretation of Q∗(x, u) is the expected cost received by starting from state
x, applying u, and then following the optimal plan from the resulting next state,
x′ = f(x, u, θ). If u happens to be the same action as would be selected by the
optimal plan, π∗(x), then Q∗(x, u) = G∗(x). Thus, the Q-value can be thought
of as the cost of making an arbitrary choice in the first stage and then exhibiting
optimal decision making afterward.

Value iteration A simulation-based version of value iteration can be constructed
from Q-factors. The reason for their use instead of G∗ is that a minimization over
U(x) will be avoided in the dynamic programming. Avoiding this minimization
enables a sample-by-sample approach to estimating the optimal values and ulti-
mately obtaining the optimal plan. The optimal cost-to-go can be obtained from
the Q-factors as

G∗(x) = min
u∈U(x)

{

Q∗(x, u)
}

. (10.97)

This enables the dynamic programming recurrence in (10.46) to be expressed as

Q∗(x, u) = l(x, u) +
∑

x′∈X

P (x′|x, u) min
u′∈U(x′)

{

Q∗(x′, u′)
}

. (10.98)

536 S. M. LaValle: Planning Algorithms

By applying (10.97) to the right side of (10.98), it can also be expressed using G∗

as
Q∗(x, u) = l(x, u) +

∑

x′∈X

P (x′|x, u)G∗(x′). (10.99)

If P (x′|x, u) and l(x, u) were known, then (10.98) would lead to an alternative,
storage-intensive way to perform value iteration. After convergence occurs, (10.97)
can be used to obtain the G∗ values. The optimal plan is constructed as

π∗(x) = argmin
u∈U(x)

{

Q∗(x, u)
}

. (10.100)

Since the costs and transition probabilities are unknown, a simulation-based
approach is needed. The stochastic iterative algorithm idea can be applied once
again. Recall that (10.96) estimated the cost of a plan by using individual sam-
ples and required a convergence-rate parameter, ρ. Using the same idea here, a
simulation-based version of value iteration can be derived as

Q̂∗(x, u) := (1− ρ)Q̂∗(x, u) + ρ

(

l(x, u) + min
u′∈U(x′)

{

Q̂∗(x′, u′)
}

)

, (10.101)

in which x′ is the next state and l(x, u) is the cost obtained from the simulator
when u is applied at x. Initially, all Q-factors are set to zero. Sample trajectories
that arrive at the goal can be generated using simulation, and (10.101) is applied
to the resulting states and costs in each stage. Once again, the update equation
may appear to be incorrect because the transition probabilities are not explicitly
mentioned, but this is taken into account automatically through the simulation.

In most literature, Q-learning is applied to the discounted cost model. This
yields a minor variant of (10.101):

Q̂∗(x, u) := (1− ρ)Q̂∗(x, u) + ρ

(

l(x, u) + α min
u′∈U(x′)

{

Q̂∗(x′, u′)
}

)

, (10.102)

in which the discount factor α appears because the update equation is derived
from (10.76).

Policy iteration A simulation-based policy iteration algorithm can be derived
using Q-factors. Recall from Section 10.2.2 that methods are needed to: 1) eval-
uate a given plan, π, and 2) improve the plan by selecting better actions. The
plan evaluation previously involved linear equation solving. Now any plan, π, can
be evaluated without even knowing P (x′|x, u) by using the methods of Section
10.4.2. Once Ĝπ is computed reliably from every x ∈ X, further simulation can
be used to compute Qπ(x, u) for each x ∈ X and u ∈ U . This can be achieved by
defining a version of (10.99) that is constrained to π:

Qπ(x, u) = l(x, u) +
∑

x′∈X

P (x′|x, u)Gπ(x
′). (10.103)

10.5. SEQUENTIAL GAME THEORY 537

Cost

P1 acts 21

1 2 3P2 acts 1 12 23 3

3

3 5 1 0 43 −1 7 −2

Figure 10.12: A 3× 3 matrix game expressed using a game tree.

The transition probabilities do not need to be known. The Q-factors are computed
by simulation and averaging. The plan can be improved by setting

π′(x) = argmin
u∈U(x)

{

Q∗(x, u)
}

, (10.104)

which is based on (10.97).

10.5 Sequential Game Theory

So far in the chapter, the sequential decision-making process has only involved
a game against nature. In this section, other decision makers are introduced to
the game. The single-stage games and their equilibrium concepts from Sections
9.3 and 9.4 will be extended into a sequence of games. Section 10.5.1 introduces
sequential zero-sum games that are represented using game trees, which help vi-
sualize the concepts. Section 10.5.2 covers sequential zero-sum games using the
state-space representation. Section 10.5.3 briefly covers extensions to other games,
including nonzero-sum games and games that involve nature. The formulations
in this section will be called sequential game theory. Another common name for
them is dynamic game theory [4]. If there is a continuum of stages, which is briefly
considered in Section 13.5, then differential game theory is obtained [4, 26, 39, 49].

10.5.1 Game Trees

In most literature, sequential games are formulated in terms of game trees. A
state-space representation, which is more in alignment with the representations
used in this chapter, will be presented in Section 10.5.2. The tree representation is
commonly referred to as the extensive form of a game (as opposed to the normal
form, which is the cost matrix representation used in Chapter 9). The represen-
tation is helpful for visualizing many issues in game theory. It is perhaps most
helpful for visualizing information states; this aspect of game trees will be de-
ferred until Section 11.7, after information spaces have been formally introduced.
Here, game trees are presented for cases that are simple to describe without going
deeply into information spaces.

538 S. M. LaValle: Planning Algorithms

Before a sequential game is introduced, consider representing a single-stage
game in a tree form. Recall Example 9.14, which is a zero-sum, 3 × 3 matrix
game. It can be represented as a game tree as shown in Figure 10.12. At the
root, P1 has three choices. At the next level, P2 has three choices. Based on the
choices by both, one of nine possible leaves will be reached. At this point, a cost is
obtained, which is written under the leaf. The entries of the cost matrix, (9.53),
appear across the leaves of the tree. Every nonleaf vertex is called a decision
vertex: One player must select an action.

There are two possible interpretations of the game depicted in Figure 10.12:

1. Before it makes its decision, P2 knows which action was applied by P1. This
does not correspond to the zero-sum game formulation introduced in Section
9.3 because P2 seems as powerful as nature. In this case, it is not equivalent
to the game in Example 9.14.

2. P2 does not know the action applied by P1. This is equivalent to assum-
ing that both P1 and P2 make their decisions at the same time, which is
consistent with Formulation 9.7. The tree could have alternatively been
represented with P2 acting first.

Now imagine that P1 and P2 play a sequence of games. A sequential version
of the zero-sum game from Section 9.3 will be defined by extending the game tree
idea given so far to more levels. This will model the following sequential game:

Formulation 10.3 (Zero-Sum Sequential Game in Tree Form)

1. Two players, P1 and P2, take turns playing a game. A stage as considered
previously is now stretched into two substages, in which each player acts
individually. It is usually assumed that P1 always starts, followed by P2,
then P1 again, and so on. Player alternations continue until the game ends.
The model reflects the rules of many popular games such as chess or poker.
Let K = {1, . . . , K} denote the set of stages at which P1 and P2 both take
a turn.

2. As each player takes a turn, it chooses from a nonempty, finite set of actions.
The available set could depend on the decision vertex.

3. At the end of the game, a cost for P1 is incurred based on the sequence of
actions chosen by each player. The cost is interpreted as a reward for P2.

4. The amount of information that each player has when making its decision
must be specified. This is usually expressed by indicating what portions of
the action histories are known. For example, if P1 just acted, does P2 know
its choice? Does it know what action P1 chose in some previous stage?

10.5. SEQUENTIAL GAME THEORY 539

2 0

P1 acts

P2 acts

L R

RRL L

LLL L RRRRP1 acts

P2 acts

Cost

RL L L L L L L LR R R R R R R

4 0 1 0 3 2 2 3 1 2 4 1 3 2

Figure 10.13: A two-player, two-stage game expressed using a game tree.

The game tree can now be described in detail. Figure 10.13 shows a particular
example for two stages (hence, K = 2 and K = {1, 2}). Every vertex corre-
sponds to a point at which a decision needs to be made by one player. Each edge
emanating from a vertex represents an action. The root of the tree indicates the
beginning of the game, which usually means that P1 chooses an action. The leaves
of the tree represent the end of the game, which are the points at which a cost
is received. The cost is usually shown below each leaf. One final concern is to
specify the information available to each player, just prior to its decision. Which
actions among those previously applied by itself or other players are known?

For the game tree in Figure 10.13, there are two players and two stages. There-
fore, there are four levels of decision vertices. The action sets for the players are
U = V = {L,R}, for “left” and “right.” Since there are always two actions, a
binary tree is obtained. There are 16 possible outcomes, which correspond to all
pairwise combinations of four possible two-stage plans for each player.

For a single-stage game, both deterministic and randomized strategies were
defined to obtain saddle points. Recall from Section 9.3.3 that randomized strate-
gies were needed to guarantee the existence of a saddle point. For a sequential
game, these are extended to deterministic and randomized plans, respectively. In
Section 10.1.3, a (deterministic) plan was defined as a mapping from the state
space to an action space. This definition can be applied here for each player;
however, we must determine what is a “state” for the game tree. This depends
on the information that each player has available when it plays.

A general framework for representing information in game trees is covered in
Section 11.7. Three simple kinds of information will be discussed here. In every
case, each player knows its own actions that were applied in previous stages. The
differences correspond to knowledge of actions applied by the other player. These
define the “state” that is used to make the decisions in a plan.

The three information models considered here are as follows.

Alternating play: The players take turns playing, and all players know all
actions that have been previously applied. This is the situation obtained, for
example, in a game of chess. To define a plan, let N1 and N2 denote the set

540 S. M. LaValle: Planning Algorithms

of all vertices from which P1 and P2 must make a decision, respectively. In
Figure 10.13, N1 is the set of dark vertices and N2 is the set of white vertices.
Let U(n1) and V (n2) be the action spaces for P1 and P2, respectively, which
depend on the vertex. A (deterministic) plan for P1 is defined as a function,
π1, on N1 that yields an action u ∈ U(n1) for each n1 ∈ N1. Similarly, a
(deterministic) plan for P2 is defined as a function, π2, on N2 that yields an
action v ∈ V (n2) for each n2 ∈ N2. For the randomized case, let W (n1) and
Z(n2) denote the sets of all probability distributions over U(n1) and V (n2),
respectively. A randomized plan for P1 is defined as a function that yields
some w ∈ W (n1) for each n1 ∈ N1. Likewise, a randomized plan for P2 is
defined as a function that maps from N2 into Z(n2).

Stage-by-stage: Each player knows the actions applied by the other in all
previous stages; however, there is no information about actions chosen by
others in the current stage. This effectively means that both players act
simultaneously in each stage. In this case, a deterministic or randomized
plan for P1 is defined as in the alternating play case; however, plans for P2

are defined as functions on N1, instead of N2. This is because at the time
it makes its decision, P2 has available precisely the same information as P1.
The action spaces for P2 must conform to be dependent on elements of N1,
instead of N2; otherwise, P2 would not know what actions are available.
Therefore, they are defined as V (n1) for each n1 ∈ N1.

Open loop: Each player has no knowledge of the previous actions of the
other. They only know how many actions have been applied so far, which
indicates the stage of the game. Plans are defined as functions on K, the
set of stages, because the particular vertex is not known. Note that an
open-loop plan is just a sequence of actions in the deterministic case (as in
Section 2.3) and a sequence of probability distributions in the randomized
case. Again, the action spaces must conform to the information. Thus, they
are U(k) and V (k) for each k ∈ K.

For a single-stage game, as in Figure 10.12, the stage-by-stage and open-loop
models are equivalent.

Determining a security plan

The notion of a security strategy from Section 9.3.2 extends in a natural way
to sequential games. This yields a security plan in which each player performs
worst-case analysis by treating the other player as nature under nondeterministic
uncertainty. A security plan and its resulting cost can be computed by propagating
costs from the leaves up to the root. The computation of the security plan for P1

for the game in Figure 10.13 is shown in Figure 10.14. The actions that would be
chosen by P2 are determined at all vertices in the second-to-last level of the tree.
Since P2 tries to maximize costs, the recorded costs at each of these vertices is the

10.5. SEQUENTIAL GAME THEORY 541

2 04 0 1 0 3 2 2 3 1 2 4 1 3 2

4 0 1 3 3 2 4 3

P2

P1

P2

P1

2 04 0 1 0 3 2 2 3 1 2 4 1 3 2

4 0 1 3 3 2 4 3

P2

P1

P2

P1

0 1 2 3

(a) P2 chooses (b) P1 chooses

2 04 0 1 0 3 2 2 3 1 2 4 1 3 2

4 0 1 3 3 2 4 3

1 2 3

P2

P1

P2

P1

0

31

2 04 0 1 0 3 2 2 3 1 2 4 1 3 2

4 0 1 3 3 2 4 3

0 1 2 3

1

P2

P1

P2

P1

31

(c) P2 chooses (d) P1 chooses

Figure 10.14: The security plan for P1 is determined by propagating costs upward
from the leaves. The choices involved in the security plan are shown in the last
picture. An upper value of 1 is obtained for the game.

maximum over the costs of its children. At the next higher level, the actions that
would be chosen by P1 are determined. At each vertex, the minimum cost among
its children is recorded. In the next level, P2 is considered, and so on, until the
root is reached. At this point, the lowest cost that P1 could secure is known. This
yields the upper value, L

∗
, for the sequential game. The security plan is defined

by providing the action that selects the lowest cost child vertex, for each n1 ∈ N1.
If P2 responds rationally to the security plan of P1, then the path shown in bold
in Figure 10.14d will be followed. The execution of P1’s security plan yields the
action sequence (L,L) for P1 and (R,L) for P2. The upper value is L

∗
= 1.

A security plan for P2 can be computed similarly; however, the order of the
decisions must be swapped. This is not easy to visualize, unless the order of the
players is swapped in the tree. If P2 acts first, then the resulting tree is as shown
in Figure 10.15. The costs on the leaves appear in different order; however, for
the same action sequences chosen by P1 and P2, the costs obtained at the end of
the game are the same as those in Figure 10.14. The resulting lower value for the
game is found to be L∗ = 1. The resulting security plan is defined by assigning
the action to each n2 ∈ N2 that maximizes the cost value of its children. If P1

responds rationally to the security plan of P2, then the actions executed will be
(L,L) for P1 and (R,L) for P2. Note that these are the same as those obtained
from executing the security plan of P1, even though they appear different in the
trees because the player order was swapped. In many cases, however, different

542 S. M. LaValle: Planning Algorithms

P2 acts

Cost 4 0 4 2

P2 acts

P1 acts

P1 acts

2 3 112 3 2 1 3 0 20

0 0 1 2 1 0 3 1

0 2 1 3

1

1

0

Figure 10.15: The security plan can be found for P2 by swapping the order of P1

and P2 (the order of the costs on the leaves also become reshuffled).

action sequences will be obtained.
As in the case of a single-stage game, L∗ = L

∗
implies that the game has a

deterministic saddle point and the value of the sequential game is L∗ = L∗ =
L
∗
. This particular game has a unique, deterministic saddle point. This yields

predictable, identical choices for the players, even though they perform separate,
worst-case analyses.

A substantial reduction in the cost of computing the security strategies can be
obtained by recognizing when certain parts of the tree do not need to be explored
because they cannot yield improved costs. This idea is referred to as alpha-beta
pruning in AI literature (see [40], pp. 186-187 for references and a brief history).
Suppose that the tree is searched in depth-first order to determine the security
strategy for P1. At some decision vertex for P1, suppose it has been determined
that a cost c would be secured if a particular action, u, is applied; however, there
are still other actions for which it is not known what costs could be secured.
Consider determining the cost that could be secured for one of these remaining
actions, denoted by u′. This requires computing how P2 will maximize cost to
respond to u′. As soon as P2 has at least one option for which the cost, c′, is
greater than c, the other children of P2 do not need to be explored. Why? This
is because P1 would never choose u′ if P2 could respond in a way that leads to a
higher cost than what P1 can already secure by choosing u. Figure 10.16 shows
a simple example. This situation can occur at any level in the tree, and when an
action does not need to be considered, an entire subtree is eliminated. In other
situations, children of P1 can be eliminated because P2 would not make a choice
that allows P1 to improve the cost below a value that P2 can already secure for
itself.

Computing a saddle point

The security plan for P1 constitutes a valid solution to the game under the alter-
nating play model. P2 has only to choose an optimal response to the plan of P1

10.5. SEQUENTIAL GAME THEORY 543

Cost

P1 acts

P2 acts

1

u u′

0 −1 2

c′ ≥ 2

c = 1

No need to explore

Figure 10.16: If the tree is explored in depth-first order, there are situations in
which some children (and hence whole subtrees) do not need to be explored. This
is an example that eliminates children of P2. Another case exists, which eliminates
children of P1.

at each stage. Under the stage-by-stage model, the “solution” concept is a saddle
point, which occurs when the upper and lower values coincide. The procedure just
described could be used to determine the value and corresponding plans; however,
what happens when the values do not coincide? In this case, randomized security
plans should be developed for the players. As in the case of a single-stage game, a
randomized upper value L

∗
and a randomized lower value L∗ are obtained. In the

space of randomized plans, it turns out that a saddle point always exists. This
implies that the game always has a randomized value, L∗ = L∗ = L

∗
. This saddle

point can be computed from the bottom up, in a manner similar to the method
just used to compute security plans.

Return to the example in Figure 10.13. This game actually has a deterministic
saddle point, as indicated previously. It still, however, serves as a useful illustra-
tion of the method because any deterministic plan can once again be interpreted
as a special case of a randomized plan (all of the probability mass is placed on
a single action). Consider the bottom four subtrees of Figure 10.13, which are
obtained by using only the last two levels of decision vertices. In each case, P1

and P2 must act in parallel to end the sequential game. Each subtree can be
considered as a matrix game because the costs are immediately obtained after the
two players act.

This leads to an alternative way to depict the game in Figure 10.13, which is
shown in Figure 10.17. The bottom two layers of decision vertices are replaced
by matrix games. Now compute the randomized value for each game and place it
at the corresponding leaf vertex, as shown in Figure 10.18. In the example, there
are only two layers of decision vertices remaining. This can be represented as the
game

V

U
0 1
2 3

, (10.105)

which has a value of 1 and occurs if P1 applies L and P2 applies R. Thus, the

544 S. M. LaValle: Planning Algorithms

P1 acts

P2 acts

L R

RRL L

2

0

4 1 0

3 2

2 3

1 2

4 1

3 20

Figure 10.17: Under the stage-by-stage model, the game in Figure 10.13 can
instead be represented as a tree in which each player acts once, and then they
play a matrix game to determine the cost.

P1 acts

P2 acts

L R

RRL L

0 1 2 3

Figure 10.18: Each matrix in Figure 10.17 can be replaced by its randomized
value. This clips one level from the original tree. For this particular example, the
randomized value is also a deterministic value. Note that these are exactly the
costs that appeared in Figure 10.14c. This occurred because each of the matrix
games has a deterministic value; if they do not, then the costs will not coincide.

solution to the original sequential game has been determined by solving matrix
games as an alternative to the method applied to obtain the security plans. The
benefit of the new method is that if any matrix does not have a deterministic saddle
point, its randomized value can instead be computed. A randomized strategy must
be played by the players if the corresponding decision vertex is reached during
execution.

Converting the tree to a single-stage game

Up to this point, solutions have been determined for the alternating-play and the
stage-by-stage models. The open-loop model remains. In this case, there is no
exchange of information between the players until the game is finished and they
receive their costs. Therefore, imagine that players engaged in such a sequential
game are equivalently engaged in a large, single-stage game. Recall that a plan
under the open-loop model is a function over K. Let Π1 and Π2 represent the
sets of possible plans for P1 and P2, respectively. For the game in Figure 10.13,
Πi is a set of four possible plans for each player, which will be specified in the
following order: (L,L), (L,R), (R,L), and (R,R). These can be arranged into a

10.5. SEQUENTIAL GAME THEORY 545

4× 4 matrix game:
Π2

Π1

4 2 1 0
0 0 3 2
2 3 4 1
1 2 3 2

. (10.106)

This matrix game does not have a deterministic saddle point. Unfortunately,
a four-dimensional linear programming problem must be solved to find the ran-
domized value and equilibrium. This is substantially different than the solution
obtained for the other two information models.

The matrix-game form can also be derived for sequential games defined un-
der the stage-by-stage model. In this case, however, the space of plans is even
larger. For the example in Figure 10.13, there are 32 possible plans for each player
(there are 5 decision vertices for each player, at which two different actions can
be applied; hence, |Πi| = 25 for i = 1 and i = 2). This results in a 32 × 32
matrix game! This game should admit the same saddle point solution that we
already determined. The advantage of using the tree representation is that this
enormous game was decomposed into many tiny matrix games. By treating the
problem stage-by-stage, substantial savings in computation results. This power
arises because the dynamic programming principle was implicitly used in the tree-
based computation method of decomposing the sequential game into small matrix
games. The connection to previous dynamic programming methods will be made
clearer in the next section, which considers sequential games that are defined over
a state space.

10.5.2 Sequential Games on State Spaces

An apparent problem in the previous section is that the number of vertices grows
exponentially in the number of stages. In some games, however, there may be
multiple action sequences that lead to the same state. This is true of many popular
games, such as chess, checkers, and tic-tac-toe. In this case, it is convenient to
define a state space that captures the complete set of unique game configurations.
The player actions then transform the state. If there are different action sequences
that lead to the same state, then separate vertices are not needed. This converts
the game tree into a game graph by declaring vertices that represent the same
state to be equivalent. The game graph is similar in many ways to the transition
graphs discussed in Section 10.1, in the sequential game against nature. The same
idea can be applied when there are opposing players.

We will arrive at a sequential game that is played over a state space by collaps-
ing the game tree into a game graph. We will also allow the more general case of
costs occurring on any transition edges, as opposed to only the leaves of the orig-
inal game tree. Only the stage-by-stage model from the game tree is generalized
here. Generalizations that use other information models are considered in Section

546 S. M. LaValle: Planning Algorithms

11.7. In the formulation that follows, P2 can be can viewed as the replacement
for nature in Formulation 10.1. The new formulation is still a generalization of
Formulation 9.7, which was a single-stage, zero-sum game. To keep the concepts
simpler, all spaces are assumed to be finite. The formulation is as follows.

Formulation 10.4 (Sequential Zero-Sum Game on a State Space)

1. Two players, P1 and P2.

2. A finite, nonempty state space X.

3. For each state x ∈ X, a finite, nonempty action space U(x) for P1.

4. For each state x ∈ X, a finite, nonempty action space V (x) for P2. To allow
an extension of the alternating play model from Section 10.5.1, V (x, u) could
alternatively be defined, to enable the set of actions available to P2 to depend
on the action u ∈ U of P1.

5. A state transition function f that produces a state, f(x, u, v), for every
x ∈ X, u ∈ U(x), and v ∈ V (x).

6. A set K of K stages, each denoted by k, which begins at k = 1 and ends
at k = K. Let F = K + 1, which is the final stage, after the last action is
applied.

7. An initial state xI ∈ X. For some problems, this may not be specified, in
which case a solution must be found from all initial states.

8. A stage-additive cost functional L. Let ṽK denote the history of P2’s actions
up to stage K. The cost functional may be applied to any combination of
state and action histories to yield

L(x̃F , ũK , ṽK) =
K
∑

k=1

l(xk, uk, vk) + lF (xF). (10.107)

It will be assumed that both players always know the current state. Note that
there are no termination actions in the formulation. The game terminates after
each player has acted K times. There is also no direct formulation of a goal set.
Both termination actions and goal sets can be added to the formulation without
difficulty, but this is not considered here. The action sets can easily be extended
to allow a dependency on the stage, to yield U(x, k) and V (x, k). The methods
presented in this section can be adapted without trouble. This is avoided, however,
to make the notation simpler.

10.5. SEQUENTIAL GAME THEORY 547

Defining a plan for each player Each player must now have its own plan.
As in Section 10.1, it seems best to define a plan as a mapping from states to
actions, because it may not be clear what actions will be taken by the other
decision maker. In Section 10.1, the other decision maker was nature, and here
it is a rational opponent. Let π1 and π2 denote plans for P1 and P2, respectively.
Since the number of stages in Formulation 10.4 is fixed, stage-dependent plans
of the form π1 : X × K → U and π2 : X × K → V are appropriate (recall that
stage-dependent plans were defined in Section 10.1.3). Each produces an action
π1(x, k) ∈ U(x) and π2(x, k) ∈ V (x), respectively.

Now consider different solution concepts for Formulation 10.4. For P1, a
deterministic plan is a function π1 : X × K → U , that produces an action
u = π(x) ∈ U(x), for each state x ∈ X and stage k ∈ K. For P2 it is in-
stead π2 : X × K → V , which produces an action v = π(x) ∈ V (x), for each
x ∈ X and k ∈ K. Now consider defining a randomized plan. Let W (x) and Z(x)
denote the sets of all probability distributions over U(x) and V (x), respectively.
A randomized plan for P1 yields some w ∈ W (x) for each x ∈ X and k ∈ K.
Likewise, a randomized plan for P2 yields some z ∈ Z(x) for each x ∈ X and
k ∈ K.

Saddle points in a sequential game A saddle point will be obtained once
again by defining security strategies for each player. Each player treats the other
as nature, and if the same worst-case value is obtained, then the result is a saddle
point for the game. If the values are different, then a randomized plan is needed
to close the gap between the upper and lower values.

Upper and lower values now depend on the initial state, x1 ∈ X. There was
no equivalent for this in Section 10.5.1 because the root of the game tree is the
only possible starting point.

If sequences, ũK and ṽK , of actions are applied from x1, then the state history,
x̃F , can be derived by repeatedly using the state transition function, f . The upper
value from x1 is defined as

L
∗
(x1) = min

u1

max
v1

min
u2

max
v2

· · ·min
uK

max
vK

{

L(x̃F , ũK , ṽK)
}

, (10.108)

which is identical to (10.33) if P2 is replaced by nature. Also, (10.108) generalizes
(9.44) to multiple stages. The lower value from x1, which generalizes (9.46), is

L∗(x1) = max
v1

min
u1

max
v2

min
u2

· · ·max
vK

min
uK

{

L(x̃F , ũK , ṽK)
}

. (10.109)

If L
∗
(x1) = L∗(x2), then a deterministic saddle point exists from x1. This implies

that the order of max and min can be swapped inside of every stage.

Value iteration A value-iteration method can be derived by adapting the
derivation that was applied to (10.33) to instead apply to (10.108). This leads to

548 S. M. LaValle: Planning Algorithms

the dynamic programming recurrence

L
∗

k(xk) = min
uk∈U(xk)

{

max
vk∈V (xk)

{

l(xk, uk, vk) + L
∗

k+1(xk+1)
}}

, (10.110)

which is analogous to (10.39). This can be used to iteratively compute a security
plan for P1. The security plan for P2 can be computed using

L∗

k(xk) = max
vk∈V (xk)

{

min
uk∈U(xk)

{

l(xk, uk, vk) + L∗

k+1(xk+1)
}}

, (10.111)

which is the dynamic programming equation derived from (10.109).
Starting from the final stage, F , the upper and lower values are determined

directly from the cost function:

L
∗

F (xF) = L∗

F (xF) = lF (xF). (10.112)

Now compute L
∗

K and L∗

K . From every state, xK , (10.110) and (10.111) are
evaluated to determine whether L

∗

K(xK) = L∗

K(xK). If this occurs, then L∗
L(xK) =

L
∗

K(xK) = L∗

K(xK) is the value of the game from xK at stageK. If it is determined
that from any particular state, xK ∈ X, the upper and lower values are not
equal, then there is no deterministic saddle point from xK . Furthermore, this will
prevent the existence of deterministic saddle points from other states at earlier
stages; these are encountered in later value iterations. Such problems are avoided
by allowing randomized plans, but the optimization is more complicated because
linear programming is repeatedly involved.

Suppose for now that L
∗

K(xK) = L∗

K(xK) for all xK ∈ X. The value iterations
proceed in the usual way from k = K down to k = 1. Again, suppose that at
every stage, L

∗

k(xk) = L∗

k(xk) for all xk ∈ X. Note that L∗

k+1 can be written in the

place of L
∗

k+1 and L∗

k+1 in (10.110) and (10.111) because it is assumed that the
upper and lower values coincide. If they do not, then the method fails because
randomized plans are needed to obtain a randomized saddle point.

Once the resulting values are computed from each x1 ∈ X1, a security plan π∗
1

for P1 is defined for each k ∈ K and xk ∈ X as any action u that satisfies the min
in (10.110). A security plan π∗

2 is similarly defined for P2 by applying any action
v that satisfies the max in (10.111).

Now suppose that there exists no deterministic saddle point from one or more
initial states. To avoid regret, randomized security plans must be developed.
These follow by direct extension of the randomized security strategies from Section
9.3.3. The vectors w and z will be used here to denote probability distributions
over U(x) and V (x), respectively. The probability vectors are selected from W (x)
and Z(x), which correspond to the set of all probability distributions over U(x)
and V (x), respectively. For notational convenience, assume U(x) = {1, . . . ,m(x)}
and V (x) = {1, . . . , n(x)}, in which m(x) and n(x) are positive integers.

Recall (9.61) and (9.62), which defined the randomized upper and lower val-
ues of a single-stage game. This idea is generalized here to randomized upper

10.5. SEQUENTIAL GAME THEORY 549

and lower value of a sequential game. Their definitions are similar to (10.108)
and (10.109), except that: 1) the alternating min’s and max’s are taken over
probability distributions on the space of actions, and 2) the expected cost is used.

The dynamic programming principle can be applied to the randomized upper
value to derive

L
∗

k(xk) = min
w∈W (xk)

{

max
z∈Z(xk)

{

m(xk)
∑

i=1

n(xk)
∑

j=1

(

l(xk, i, j) + L
∗

k+1(xk+1)
)

wizj

}}

,

(10.113)
in which xk+1 = f(xk, i, j). The randomized lower value is similarly obtained as

L∗

k(xk) = max
z∈Z(xk)

{

min
w∈W (xk)

{

m(xk)
∑

i=1

n(xk)
∑

j=1

(

l(xk, i, j) + L∗

k+1(xk+1)
)

wizj

}}

.

(10.114)
In many games, the cost term may depend only on the state: l(x, u, v) = l(x)

for all x ∈ X, u ∈ U(x) and v ∈ V (x). In this case, (10.113) and (10.114) simplify
to

L
∗

k(xk) = min
w∈W (xk)

{

max
z∈Z(xk)

{

l(xk) +

m(xk)
∑

i=1

n(xk)
∑

j=1

L
∗

k+1(xk+1)wizj

}}

(10.115)

and

L∗

k(xk) = max
z∈Z(xk)

{

min
w∈W (xk)

{

l(xk) +

m(xk)
∑

i=1

n(xk)
∑

j=1

L∗

k+1(xk+1)wizj

}}

, (10.116)

which is similar to the simplification obtained in (10.46), in which θk was assumed
not to appear in the cost term. The summations are essentially generalizations of
(9.57) to the multiple-stage case. If desired, these could even be written as matrix
multiplications, as was done in Section 9.3.3.

Value iteration can be performed over the equations above to obtain the ran-
domized values of the sequential game. Since the upper and lower values are
always the same, there is no need to check for discrepancies between the two. In
practice, it is best in every evaluation of (10.113) and (10.114) (or their simpler
forms) to first check whether a deterministic saddle exists from xk. Whenever one
does not exist, the linear programming problem formulated in Section 9.3.3 must
be solved to determine the value and the best randomized plan for each player.
This can be avoided if a deterministic saddle exists from the current state and
stage.

10.5.3 Other Sequential Games

Most of the ideas presented so far in Section 10.5 extend naturally to other se-
quential game problems. This subsection briefly mentions some of these possible
extensions.

550 S. M. LaValle: Planning Algorithms

LL RRP1 acts

P2 acts

Cost

RL L L LR R R

1/3Nature acts 2/3

3 −2 −6 3 3 −1 6 0

Figure 10.19: This is a single-stage, zero-sum game that involves nature. It is
assumed that all players act at the same time.

Nash equilibria in sequential games Formulations 10.3 and 10.4 can be
extended to sequential nonzero-sum games. In the case of game trees, a cost
vector, with one element for each player, is written at each of the leaves. Under
the stage-by-stage model, deterministic and randomized Nash equilibria can be
computed using the bottom-up technique that was presented in Section 10.5.1.
This will result in the computation of a single Nash equilibrium. To represent
all Nash equilibria is considerably more challenging. As usual, the game tree is
decomposed into many matrix games; however, in each case, all Nash equilibria
must be found and recorded along with their corresponding costs. Instead of
propagating a single cost up the tree, a set of cost vectors, along with the actions
associated with each cost vector, must be propagated up the tree to the root. As in
the case of a single-stage game, nonadmissible Nash equilibria can be removed from
consideration. Thus, from every matrix game encountered in the computation,
only the admissible Nash equilibria and their costs should be propagated upward.

Formulation 10.4 can be extended by introducing the cost functions L1 and
L2 for P1 and P2, respectively. The value-iteration approach can be extended in
a way similar to the extension of the game tree method. Multiple value vectors
and their corresponding actions must be maintained for each combination of state
and stage. These correspond to the admissible Nash equilibria.

The nonuniqueness of Nash equilibria causes the greatest difficulty in the se-
quential game setting. There are typically many more equilibria in a sequential
game than in a single-stage game. Therefore, the concept is not very useful in the
design of a planning approach. It may be more useful, for example, in modeling
the possible outcomes of a complicated economic system. A thorough treatment
of the subject appears in [4].

Introducing nature A nature player can easily be introduced into a game.
Suppose, for example, that nature is introduced into a zero-sum game. In this
case, there are three players: P1, P2, and nature. Figure 10.19 shows a game tree

10.5. SEQUENTIAL GAME THEORY 551

for a single-stage, zero-sum game that involves nature. It is assumed that all three
players act at the same time, which fits the stage-by-stage model. Many other
information models are possible. Suppose that probabilistic uncertainty is used to
model nature, and it is known that nature chooses the left branch with probability
1/3 and the right branch with probability 2/3. Depending on the branch chosen
by nature, it appears that P1 and P2 will play a specific 2× 2 matrix game. With
probability 1/3, the cost matrix will be

V

U
3 -2
-6 3

, (10.117)

and with probability 2/3 it will be

V

U
3 -1
6 0

. (10.118)

Unfortunately, P1 and P2 do not know which matrix game they are actually play-
ing. The regret can be eliminated in the expected sense, if the game is played over
many independent trials. Let A1 and A2 denote (10.117) and (10.118), respec-
tively. Define a new cost matrix as A = (1/3)A1 + (2/3)A2 (a scalar multiplied
by a matrix scales every value of the matrix). The resulting matrix is

V

U
3 0
2 1

. (10.119)

This matrix game has a deterministic saddle point in which P1 chooses L (row
2) and P2 chooses R (column 1), which yields a cost of 2. This means that
they can play a deterministic strategy to obtain an expected cost of 2, if the
game play is averaged over many independent trials. If this matrix did not admit
a deterministic saddle point, then a randomized strategy would be needed. It is
interesting to note that randomization is not needed for this example, even though
P1 and P2 each play against both nature and an intelligent adversary.

Several other variations are possible. If nature is modeled nondeterministically,
then a matrix of worst-case regrets can be formed to determine whether it is
possible to eliminate regret. A sequential version of games such as the one in
Figure 10.19 can be considered. In each stage, there are three substages in which
nature, P1, and P2 all act. The bottom-up approach from Section 10.5.1 can be
applied to decompose the tree into many single-stage games. Their costs can be
propagated upward to the root in the same way to obtain an equilibrium solution.

Formulation 10.4 can be easily extended to include nature in games over state
spaces. For each x, a nature action set is defined as Θ(x). The state transition
equation is defined as

xk+1 = f(xk, uk, vk, θk), (10.120)

552 S. M. LaValle: Planning Algorithms

which means that the next state depends on all three player actions, in addition to
the current state. The value-iteration method can be extended to solve problems of
this type by properly considering the effect of nature in the dynamic programming
equations. In the probabilistic case, for example, an expectation over nature is
needed in every iteration. The resulting sequential game is often referred to as a
Markov game [38].

Introducing more players Involving more players poses no great difficulty,
other than complicating the notation. For example, suppose that a set of n
players, P1, P2, . . ., Pn, takes turns playing a game. Consider using a game
tree representation. A stage is now stretched into n substages, in which each
player acts individually. Suppose that P1 always starts, followed by P2, and so
on, until Pn. After Pn acts, then the next stage is started, and P1 acts. The
circular sequence of player alternations continues until the game ends. Again,
many different information models are possible. For example, in the stage-by-
stage model, each player does not know the action chosen by the other n − 1
players in the current stage. The bottom-up computation method can be used to
compute Nash equilibria; however, the problems with nonuniqueness must once
again be confronted.

A state-space formulation that generalizes Formulation 10.4 can be made by
introducing action sets U i(x) for each player Pi and state x ∈ X. Let ui

k denote
the action chosen by Pi at stage k. The state transition becomes

xk+1 = f(xk, u
1
k, u

2
k, . . . , u

n
k). (10.121)

There is also a cost function, Li, for each Pi. Value iteration, adapted to maintain
multiple equilibria and cost vectors can be used to compute Nash equilibria.

10.6 Continuous State Spaces

Virtually all of the concepts covered in this chapter extend to continuous state
spaces. This enables them to at least theoretically be applied to configuration
spaces. Thus, a motion planning problem that involves uncertainty or noncoop-
erating robots can be modeled using the concepts of this chapter. Such problems
also inherit the feedback concepts from Chapter 8. This section covers feedback
motion planning problems that incorporate uncertainty due to nature. In partic-
ular contexts, it may be possible to extend some of the methods of Sections 8.4
and 8.5. Solution feedback plans must ensure that the goal is reached in spite
of nature’s efforts. Among the methods in Chapter 8, the easiest to generalize is
value iteration with interpolation, which was covered in Section 8.5.2. Therefore,
it is the main focus of the current section. For games in continuous state spaces,
see Section 13.5.

10.6. CONTINUOUS STATE SPACES 553

10.6.1 Extending the value-iteration method

The presentation follows in the same way as in Section 8.5.2, by beginning with
the discrete problem and making various components continuous. Begin with
Formulation 10.1 and let X be a bounded, open subset of R

n. Assume that
U(x) and Θ(x, u) are finite. The value-iteration methods of Section 10.2.1 can be
directly applied by using the interpolation concepts from Section 8.5.2 to compute
the cost-to-go values over X. In the nondeterministic case, the recurrence is
(10.39), in which G∗

k+1 is represented on a finite sample set S ⊂ X and is evaluated
on all other points in R(S) by interpolation (recall from Section 8.5.2 that R(S)
is the interpolation region of S). In the probabilistic case, (10.45) or (10.46) may
once again be used, but G∗

k+1 is evaluated by interpolation.
If U(x) is continuous, then it can be sampled to evaluate the min in each

recurrence, as suggested in Section 8.5.2. Now suppose Θ(x, u) is continuous. In
the nondeterministic case, Θ(x, u) can be sampled to evaluate the max in (10.39)
or it may be possible to employ a general optimization technique directly over
Θ(x, u). In the probabilistic case, the expectation must be taken over a continuous
probability space. A probability density function, p(θ|x, u), characterizes nature’s
action. A probabilistic state transition density function can be derived from this
as p(xk+1|xk, uk). Using these densities, the continuous versions of (10.45) and
(10.46) become

G∗

k(xk) = min
uk∈U(xk)

{∫

Θ(xk,uk)

(

l(xk, uk, θk) +G∗

k+1(f(xk, uk, θk))
)

p(θk|xk, uk)dθk

}

(10.122)
and

G∗

k(xk) = min
uk∈U(xk)

{

l(xk, uk) +

∫

X

G∗

k+1(xk+1)p(xk+1|xk, uk)dxk+1

}

, (10.123)

respectively. Sampling can be used to evaluate the integrals. One straightforward
method is to approximate p(θ|x, u) by a discrete distribution. For example, in one
dimension, this can be achieved by partitioning Θ(x, u) into intervals, in which
each interval is declared to be a discrete nature action. The probability associated
with the discrete nature action is just the integral of p(θ|x, u) over the associated
interval.

Section 8.5.2 concluded by describing Dijkstra-like algorithms for continuous
spaces. These were derived mainly by using backprojections, (8.66), to conclude
that some samples cannot change their values because they are too far from the
active set. The same principle can be applied in the current setting; however, the
weak backprojection, (10.20), must be used instead. Using the weak backprojec-
tion, the usual value iterations can be applied while removing all samples that
are not in the active set. For many problems, however, the size of the active set
may quickly become unmanageable because the weak backprojection often causes
much faster propagation than the original backprojection. Continuous-state gen-
eralizations of the Dijkstra-like algorithms in Section 10.2.3 can be made; however,

554 S. M. LaValle: Planning Algorithms

this requires the additional condition that in every iteration, it must be possible
to extend D by forcing the next state to lie in R(D), in spite of nature.

10.6.2 Motion planning with nature

Recall from Section 8.5.2 that value iteration with interpolation can be applied
to motion planning problems that are approximated in discrete time. Nature can
even be introduced into the discrete-time approximation. For example, (8.62) can
be replaced by

x(t+∆t) = x(t) + ∆t (u+ θ), (10.124)

in which θ is chosen from a bounded set, Θ(x, u). Using (10.124), value iterations
can be performed as described so far. An example of a 2D motion planning prob-
lem under this model using probabilistic uncertainty is shown in Figure 10.20. It
is interesting that when the plan is executed from a fixed initial state, a differ-
ent trajectory is obtained each time. The average cost over multiple executions,
however, is close to the expected optimum.

Interesting hybrid system examples can be made in which nature is only al-
lowed to interfere with the mode. Recall Formulation 7.3 from Section 7.3. Nature
can be added to yield the following formulation.

Formulation 10.5 (Hybrid System Motion Planning with Nature)

1. Assume all of the definitions from Formulation 7.3, except for the transition
functions, fm and f . The state is represented as x = (q,m).

2. A finite nature action space Θ(x, u) for each x ∈ X and u ∈ U(x).

3. A mode transition function fm that produces a mode fm(x, u, θ) for every
x ∈ X, u ∈ U(x), and θ ∈ Θ(x, u).

4. A state transition function f that is derived from fm by changing the mode
and holding the configuration fixed. Thus, f((q,m), u, θ) = (q, fm(q,m, θ))
(the only difference with respect to Formulation 7.3 is that θ has been in-
cluded).

5. An unbounded time interval T = [0,∞).

6. A continuous-time cost-functional,

L(x̃tF , ũtF) =

∫ tF

0

l(x(t), u(t))dt+ lF (x(tF)). (10.125)

Value iteration proceeds in the same way for such hybrid problems. Interpolation
only needs to be performed over the configuration space. Along the mode “axis”
no interpolation is needed because the mode set is already finite. The resulting
computation time grows linearly in the number of modes. A 2D motion planning

10.6. CONTINUOUS STATE SPACES 555

XG

xI

0 20 40 60 80 100

XG

(a) Motion planning game against nature (a) Optimal navigation function

XG XG

(c) Vector field (d) Simulated executions

Figure 10.20: (a) A 2D planning problem is shown in which nature is probabilistic
(uniform density over an interval of angles) and can interfere with the direction
of motion. Contact with obstacles is actually allowed in this problem. (b) Level
sets of the computed, optimal cost-to-go (navigation) function. (c) The vector
field derived from the navigation function. (d) Several dozen execution trials are
superimposed [32].

556 S. M. LaValle: Planning Algorithms

0 20 40 60 80 100

XG

0 20 40 60 80 100

XG

Cost-to-go, open mode Cost-to-go, closed mode

XG XG

Vector field, open mode Vector field, closed mode

Figure 10.21: Level sets of the optimal navigation function and resulting vector
field are shown for a stochastic, hybrid motion planning problem. There are two
modes, which correspond to whether a door is closed. The goal is to reach the
rectangle at the bottom left [33]

10.6. CONTINUOUS STATE SPACES 557

XG

Figure 10.22: Several executions from the same initial state are shown. A different
trajectory results each time because of the different times when the door is open
or closed.

example for a point robot, taken from [33], is shown in Figures 10.21 and 10.22. In
this case, the environment contains a door that is modeled as a stationary Markov
process. The configuration space is sampled using a 40× 40 grid. There are two
modes: door open or door closed. Thus, the configuration space has two layers,
one for each mode. The robot wishes to minimize the expected time to reach the
goal. The navigation function for each layer cannot be computed independently
because each takes into account the transition probabilities for the mode. For
example, if the door is almost always open, then its plan would be different from
one in which the door is almost always closed. If the door is almost always open,
then the robot should go toward the door, even if it is currently closed, because it
is highly likely that it will open soon. Numerous variations can be made on this
example. More modes could be added, and other interpretations are possible, such
as hazardous regions and shelters (the mode might be imagined as rain occurring
and the robot must run for shelter) or requests to deliver objects [33, 43, 44].

Further Reading

Since this chapter considers sequential versions of single-stage decision problems, the
suggested reading at the end of Chapter 9 is also relevant here. The probabilistic for-
mulation in Section 10.1 is a basic problem of stochastic control theory [11, 27]. The
framework is also popular in artificial intelligence [6, 17, 25, 40]. For an early, influ-
ential work on stochastic control, see [14], in which the notion of sequential games
against nature is developed. The forward projection and backprojection topics are not
as common in control theory and are instead inspired from [18, 20, 34]. The nonde-
terministic formulation is obtained by eliminating probabilities from the formulation;
worst-case analysis also appears extensively in control theory [2, 3, 19]. A case for using
randomized strategies in robotics is made in [21].

558 S. M. LaValle: Planning Algorithms

Section 10.2 is based on classical dynamic programming work, but with emphasis
on the stochastic shortest-path problem. For more reading on value and policy iteration
in this context, see [11]. Section 10.2.3 is based on extending Dijkstra’s algorithm. For
convergence issues due to approximations of continuous problems, see [9, 29, 35]. For
complexity results for games against nature, see [36, 37].

Section 10.3 was inspired by coverage in [11]. For further reading on reinforcement
learning, the subject of Section 10.4, see [1, 5, 13, 45].

Section 10.5 was based on material in [4], but with an emphasis on unifying con-
cepts from previous sections. Also contained in [4] are sequential game formulations
on continuous spaces and even in continuous time. In continuous time, these are called
differential games, and they are introduced in Section 13.5. Dynamic programming prin-
ciples extend nicely into game theory. Furthermore, they extend to Pareto optimality
[16].

The main purpose of Section 10.6 is to return to motion planning by considering
continuous state spaces. Few works exist on combining stochastic optimal control with
motion planning. The presented material is based mainly on [31, 32, 33, 41, 42].

Exercises

1. Show that SB(S, u) cannot be expressed as the union of all SB(x, u) for x ∈ S.

2. Show that for any S ⊂ X and any state transition equation, x′ = f(x, u, θ), it
follows that SB(S) ⊆ WB(S).

3. Generalize the strong and weak backprojections of Section 10.1.2 to work for
multiple stages.

4. Assume that nondeterministic uncertainty is used, and there is no limit on the
number of stages. Determine an expression for the forward projection at any
stage k > 1, given that π is applied.

5. Give an algorithm for computing nondeterministic forward projections that uses
matrices with binary entries. What is the asymptotic running time and space for
your algorithm?

6. Develop a variant of the algorithm in Figure 10.6 that is based on possibly achiev-
ing the goal, as opposed to guaranteeing that it is achieved.

7. Develop a forward version of value iteration for nondeterministic uncertainty, by
paralleling the derivation in Section 10.2.1.

8. Do the same as in Exercise 7, but for probabilistic uncertainty.

9. Give an algorithm that computes probabilistic forward projections directly from
the plan-based state transition graph, Gπ.

10. Augment the nondeterministic value-iteration method of Section 10.2.1 to detect
and handle states from which the goal is possibly reachable but not guaranteed

reachable.

10.6. CONTINUOUS STATE SPACES 559

0

P1 acts

P2 acts

L R

RRL L

LLL L RRRRP1 acts

P2 acts

Cost

RL L L L L L L LR R R R R R R

5 7 1 3 12 1 2 4 1 0 2 4−1 −1

Figure 10.23: A two-player, two-stage game expressed using a game tree.

11. Derive a generalization of (10.39) for the case of stage-dependent state-transition
equations, xk+1 = f(xk, uk, θk, k), and cost terms, l(xk, uk, θk, k), under nonde-
terministic uncertainty.

12. Do the same as in Exercise 11, but for probabilistic uncertainty.

13. Extend the policy-iteration method of Figure 10.4 to work for the more general
case of nature-dependent cost terms, l(xk, uk, θk).

14. Derive a policy-iteration method that is the nondeterministic analog to the method
in Figure 10.4. Assume that the cost terms do not depend on nature.

15. Can policy iteration be applied to solve problems under Formulation 2.3, which
involve no uncertainties? Explain what happens in this case.

16. Show that the probabilistic infinite-horizon problem under the discounted-cost
model is equivalent in terms of cost-to-go to a particular stochastic shortest-path
problem (under Formulation 10.1). [Hint: See page 378 of [11].]

17. Derive a value-iteration method for the infinite-horizon problem with the discounted-
cost model and nondeterministic uncertainty. This method should compute the
cost-to-go given in (10.71).

18. Figure 10.23 shows a two-stage, zero-sum game expressed as a game tree. Com-
pute the randomized value of this sequential game and give the corresponding
randomized security plans for each player.

19. Generalize alpha-beta pruning beyond game trees so that it works for sequential
games defined on a state space, starting from a fixed initial state.

20. Derive (10.110) and (10.111).

21. Extend Formulation 2.4 to allow nondeterministic uncertainty. This can be ac-
complished by specifying sets of possible effects of operators.

22. Extend Formulation 2.4 to allow probabilistic uncertainty. For this case, assign
probabilities to the possible operator effects.

10.6. CONTINUOUS STATE SPACES i

Implementations

23. Implement probabilistic backward value iteration and study the convergence is-
sue depicted in Figure 10.3. How does this affect performance in problems for
which there are many cycles in the state transition graph? How does performance
depend on particular costs and transition probabilities?

24. Implement the nondeterministic version of Dijkstra’s algorithm and test it on a
few examples.

25. Implement and test the probabilistic version of Dijkstra’s algorithm. Make sure
that the condition Gπ(xk+1) < Gπ(xk) from 10.2.3 is satisfied. Study the perfor-
mance of the algorithm on problems for which the condition is almost violated.

26. Experiment with the simulation-based version of value iteration, which is given by
(10.101). For some simple examples, characterize how the performance depends
on the choice of ρ.

27. Implement a recursive algorithm that uses dynamic programming to determine
the upper and lower values for a sequential game expressed using a game tree
under the stage-by-stage model.

ii S. M. LaValle: Planning Algorithms

Bibliography

[1] E. Alpaydin. Machine Learning. MIT Press, Cambridge, MA, 2004.

[2] T. Başar. Game theory and H∞-optimal control: The continuous-time case.
In R. P. Hämäläinen and H. K. Ehtamo, editors, Differential Games – De-
velopments in Modelling and Computation, pages 171–186. Springer-Verlag,
Berlin, 1991.

[3] T. Başar and P. R. Kumar. On worst case design strategies. Computers and
Mathematics with Applications, 13(1-3):239–245, 1987.

[4] T. Başar and G. J. Olsder. Dynamic Noncooperative Game Theory, 2nd Ed.
Academic, London, 1995.

[5] A. G. Barto, R. S. Sutton, and C. J. C. H. Watkins. Learning and sequential
decision making. In M. Gabriel and J.W. Moore, editors, Learning and Com-
putational Neuroscience: Foundations of Adaptive Networks, pages 539–602.
MIT Press, Cambridge, MA, 1990.

[6] K. Basye, T. Dean, J. Kirman, and M. Lejter. A decision-theoretic approach
to planning, perception, and control. IEEE Expert, 7(4):58–65, August 1992.

[7] R. E. Bellman. Dynamic Programming. Princeton University Press, Prince-
ton, NJ, 1957.

[8] A. Benveniste, M. Metivier, and P. Prourier. Adaptive Algorithms and
Stochastic Approximations. Springer-Verlag, Berlin, 1990.

[9] D. P. Bertsekas. Convergence in discretization procedures in dynamic pro-
gramming. IEEE Transactions on Automatic Control, 20(3):415–419, June
1975.

[10] D. P. Bertsekas. Dynamic Programming: Deterministic and Stochastic Mod-
els. Prentice-Hall, Englewood Cliffs, NJ, 1987.

[11] D. P. Bertsekas. Dynamic Programming and Optimal Control, Vol. I, 2nd
Ed. Athena Scientific, Belmont, MA, 2001.

iii

iv BIBLIOGRAPHY

[12] D. P. Bertsekas. Dynamic Programming and Optimal Control, Vol. II, 2nd
Ed. Athena Scientific, Belmont, MA, 2001.

[13] D. P. Bertsekas and J. N. Tsitsiklis. Neuro-Dynamic Programming. Athena
Scientific, Belmont, MA, 1996.

[14] D. Blackwell and M. A. Girshik. Theory of Games and Statistical Decisions.
Dover, New York, 1979.

[15] F. S. Cohen and D. B. Cooper. Simple parallel hierarchical and relaxation
algorithms for segmenting noncausal Markovian random fields. IEEE Trans-
actions Pattern Analysis Machine Intelligence, 9(2):195–219, March 1987.

[16] H. W. Corley. Some multiple objective dynamic programs. IEEE Transac-
tions on Automatic Control, 30(12):1221–1222, December 1985.

[17] T. L. Dean and M. P. Wellman. Planning and Control. Morgan Kaufman,
San Francisco, CA, 1991.

[18] B. R. Donald. Error Detection and Recovery for Robot Motion Planning with
Uncertainty. PhD thesis, Massachusetts Institute of Technology, Cambridge,
MA, 1987.

[19] G. E. Dullerud and F. Paganini. A Course in Robust Control Theory.
Springer-Verlag, Berlin, 2000.

[20] M. A. Erdmann. On Probabilistic Strategies for Robot Tasks. PhD thesis,
Massachusetts Institute of Technology, Cambridge, MA, 1989.

[21] M. A. Erdmann. Randomization in robot tasks. International Journal of
Robotics Research, 11(5):399–436, October 1992.

[22] R. J. Firby. An investigation into reactive planning in complex domains. In
Proceedings AAAI National Conference on Artificial Intelligence, 1987.

[23] D. Geman and S. Geman. Stochastic relaxation, Gibbs distributions, and the
Bayesian restoration of images. IEEE Transactions Pattern Analysis Machine
Intelligence, 6(6):721–741, November 1984.

[24] G. H. Golub and C. F. Van Loan. Matrix Computations (3rd ed). Johns
Hopkins University Press, Baltimore, MD, 1996.

[25] M. Hutter. Universal Artificial Intelligence. Springer-Verlag, Berlin, 2005.

[26] R. Isaacs. Differential Games. Wiley, New York, 1965.

[27] P. R. Kumar and P. Varaiya. Stochastic Systems. Prentice-Hall, Englewood
Cliffs, NJ, 1986.

BIBLIOGRAPHY v

[28] H. J. Kushner and D. S. Clark. Stochastic Approximation Methods for Con-
strained and Unconstrained Systems. Springer-Verlag, Berlin, 1978.

[29] H. J. Kushner and P. G. Dupuis. Numerical Methods for Stochastic Control
Problems in Continuous Time. Springer-Verlag, Berlin, 1992.

[30] J.-C. Latombe, A. Lazanas, and S. Shekhar. Robot motion planning with
uncertainty in control and sensing. Artificial Intelligence Journal, 52:1–47,
1991.

[31] S. M. LaValle. Robot motion planning: A game-theoretic foundation. Algo-
rithmica, 26(3):430–465, 2000.

[32] S. M. LaValle and S. A. Hutchinson. An objective-based framework for mo-
tion planning under sensing and control uncertainties. International Journal
of Robotics Research, 17(1):19–42, January 1998.

[33] S. M. LaValle and R. Sharma. On motion planning in changing, partially-
predictable environments. International Journal of Robotics Research,
16(6):775–805, December 1997.

[34] T. Lozano-Pérez, M. T. Mason, and R. H. Taylor. Automatic synthesis of
fine-motion strategies for robots. International Journal of Robotics Research,
3(1):3–24, 1984.

[35] R. Munos. Error bounds for approximate value iteration. In Proceedings
AAAI National Conference on Artificial Intelligence, 2005.

[36] C. H. Papadimitriou. Games against nature. Journal of Computer and System
Sciences, 31:288–301, 1985.

[37] C. H. Papadimitriou and J. N. Tsitsiklis. The complexity of Markov decision
processes. Mathematics of Operations Research, 12(3):441–450, August 1987.

[38] T. Parthasarathy and M. Stern. Markov games: A survey. In Differential
Games and Control Theory II, pages 1–46. Marcel Dekker, New York, 1977.

[39] L. A. Petrosjan. Differential Games of Pursuit. World Scientific, Singapore,
1993.

[40] S. Russell and P. Norvig. Artificial Intelligence: A Modern Approach, 2nd
Edition. Prentice-Hall, Englewood Cliffs, NJ, 2003.

[41] R. Sharma. Locally efficient path planning in an uncertain, dynamic en-
vironment using a probabilistic model. IEEE Transactions on Robotics &
Automation, 8(1):105–110, February 1992.

vi BIBLIOGRAPHY

[42] R. Sharma. A probabilistic framework for dynamic motion planning in par-
tially known environments. In Proceedings IEEE International Conference
on Robotics & Automation, pages 2459–2464, Nice, France, May 1992.

[43] R. Sharma, S. M. LaValle, and S. A. Hutchinson. Optimizing robot motion
strategies for assembly with stochastic models of the assembly process. IEEE
Trans. on Robotics and Automation, 12(2):160–174, April 1996.

[44] R. Sharma, D. M. Mount, and Y. Aloimonos. Probabilistic analysis of some
navigation strategies in a dynamic environment. IEEE Transactions on Sys-
tems, Man, & Cybernetics, 23(5):1465–1474, September 1993.

[45] W. D. Smart and L. P. Kaelbling. Practical reinforcement learning in contin-
uous spaces. In Proceedings International Conference on Machine Learning,
2000.

[46] R. S. Sutton. Learning to predict by the methods of temporal differences.
Machine Learning, 3:9–44, 1988.

[47] R. S. Sutton and A. G. Barto. Reinforcement Learning: An Introduction.
MIT Press, Cambridge, MA, 1998.

[48] D. S. Watkins. Fundamentals of Matrix Computations, 2nd Ed. Wiley, New
York, 2002.

[49] Y. Yavin and M. Pachter. Pursuit-Evasion Differential Games. Pergamon,
Oxford, U.K., 1987.

[50] Y. Zhou and G. S. Chirikjian. Probabilistic models of dead-reckoning error in
nonholonomic mobile robots. In Proceedings IEEE International Conference
on Robotics & Automation, pages 1594–1599, 2003.

