
Planning Optimal Paths for Multiple Robots on Graphs

Jingjin Yu Steven M. LaValle

Abstract— In this paper, we study the problem of optimal
multi-robot path planning (MPP) on graphs. We propose two
multiflow based integer linear programming (ILP) models
that computes minimum last arrival time and minimum total
distance solutions for our MPP formulation, respectively. The
resulting algorithms from these ILP models are complete and
guaranteed to yield true optimal solutions. In addition, our
flexible framework can easily accommodate other variants of
the MPP problem. Focusing on the time optimal algorithm,
we evaluate its performance, both as a stand alone algorithm
and as a generic heuristic for quickly solving large problem
instances. Computational results confirm the effectiveness of
our method.

I. INTRODUCTION

Planning collision-free paths for multiple robots, an easily
stated yet difficult problem, has been actively studied for
decades [4, 12, 13, 20, 22, 24, 25, 28, 29, 32]. The hardness
of the problem mainly resides with the coupling between the
robots’ paths which leads to an enormous state space and
branching factor. As such, algorithms that are both complete
and (distance) optimal, such as the A∗ [8] algorithm and its
variants, do not perform well on tightly coupled problems
beyond very small ones. On the other hand, faster algorithms
for finding the paths generally do not provide optimality
guarantees: Sifting through all feasible path sets for optimal
ones greatly increases the search space, which often makes
these problems intractable.

In this paper, we investigate the problem of planning
optimal paths for multiple robots with individual goals. The
robots have identical but non-negligible sizes, are confined to
some arbitrary connected graph, and are capable of moving
from one vertex to an adjacent vertex in one time step.
Collision between robots is not allowed, which may occur
when two robots attempt to move to the same vertex or
move along the same edge in different directions. For this
general setting, we propose a network flow based integer
linear programming (ILP) model for finding robot paths that
are time optimal or distance optimal. Our time optimality
criterion seeks to minimize the number of time steps until
the last robot reaches its goal; distance optimality seeks to
minimize the total distance (each edge has unit distance)
traveled by the robots. Taking advantage of the state of the
art ILP solvers (Gurobi is used in this paper), our method can

Jingjin Yu is with the Department of Electrical and Computer Engineer-
ing, University of Illinois at Urbana-Champaign, Urbana, IL 61801 USA.
E-mail: jyu18@uiuc.edu. Steven M. LaValle is with the Department of
Computer Science, University of Illinois at Urbana-Champaign, Urbana, IL
61801 USA. E-mail: lavalle@uiuc.edu. This work was supported in part by
NSF grants 0904501 (IIS Robotics) and 1035345 (Cyberphysical Systems),
DARPA SToMP grant HR0011-05-1-0008, and MURI/ONR grant N00014-
09-1-1052.

plan time optimal, collision-free paths for several dozens of
robots on graphs with hundreds of vertices within minutes.

As a universal subroutine, collision-free path planning for
multiple robots finds applications in tasks spanning assembly
[7, 15], evacuation [18], formation control [2, 16, 21, 23, 27],
localization [6], object transportation [14, 19], search and
rescue [9], and so on. Given its importance, path planning
for multi-robot systems has remained as a subject of intense
study for many decades. Given the vast size of the available
literature, we will only mention related research on discrete
MPP and refer the readers to [3, 10, 11] and the references
therein for a more comprehensive review of the subject.

From an algorithmic perspective, discrete MPP is a natural
extension of the single robot path planning problem: One
may combine the state spaces of all robots and treat the prob-
lem as a planning problem for a single robot. A∗ algorithm
can then be used to compute distance optimal solutions to
these problems. However, since naive A∗ scales poorly due
to the curse of dimensionality, additional heuristic methods
were proposed to improve the computational performance.
One of the first such heuristics, Local Repair A∗ (LRA∗)
[32], plans robot paths simultaneously and performs local
repairs when conflicts arise. Focusing on fixing the (locality)
shortcomings of LRA∗, Windowed Hierarchical Cooperative
A∗ (WHCA∗) [22] proposed to use a space-time window
to allow more choices for resolving local conflicts while
limiting the search space size at the same time. For additional
heuristics exploring various specific local and global features,
see [13, 20, 25].

Formulations of MPP problems with optimality guarantee
have also been studied. The most general optimality crite-
rion is the total path length traveled by all robots, which
is consistent with the distance heuristic used by the A∗
algorithm. Since A∗ is the best possible among all such
algorithms for finding distance optimal solutions, one should
not expect complete and true optimal algorithms to exist that
perform much better than the basic A∗ algorithm in all cases.
Nevertheless, this does not prevent algorithms from quickly
solving certain instances optimally. One such algorithm that
is also complete, MGSx, is presented in [24] (note that the
grid world formulation in [24], which allows diagonal moves
in general, even in the presence of diagonal obstacles, does
not carry over to general graphs or geometric models in
robotics). For time optimality, for a version of the MPP
problem that resembles our formulation more closely, it was
shown that finding a time optimal solution is NP-hard [26],
implying that our formulation is also intractable [30]. Finally,
it was shown that finding the least number of moves for the
N×N-generalization of the 15-puzzle is NP-hard [17]. Here,

time optimality equals distance optimality, which is not the
case in general.

The main contributions of this paper are twofold. First,
adapting the constructions from [31], we develop ILP models
for solving time optimal and distance optimal MPP problems.
The resulting algorithms are shown to be complete. Our
approach is quite general and easily accommodates other
formulations of the MPP problems, including that of [24].
Second, we provide thorough computational evaluations of
our models’ performance: With a state-of-the-art ILP solver,
our models are capable of solving large problem instances
with few dozens of robots fairly fast. Such a result is in some
sense the best we can hope for because the best possible
algorithm for such problems cannot run in polynomial time
unless P = NP. As an added bonus, we also show that the
(time optimal) algorithm works well as a subroutine for
quickly solving MPP problems (non-optimally) 1.

The rest of the paper is organized as follows. We provide
problem definitions in Section II, along with a motivating
example. Section III relates MPP to multiflow, establishing
the equivalence between the two problems. In Section IV,
ILP models are provided for obtaining time optimal and
distance optimal solutions, respectively. Section V is devoted
to briefly discussing basic properties of the n2-puzzle, which
is an interesting benchmark problem on its own. We evaluate
the computational performance of our algorithm in Section
VI and conclude in Section VII.

II. MULTI-ROBOT PATH PLANNING ON GRAPHS

A. Problem Formulation

Let G = (V,E) be a connected, undirected, simple graph
(i.e., no multi-edges), in which V = {vi} is its vertex set and
E = {(vi,v j)} is its edge set. Let R = {r1, . . . ,rn} be a set
of robots that move with unit speeds along the edges of G,
with initial and goal locations on G given by the injective
maps xI,xG : R →V , respectively. The set R is effectively an
index set. A path or scheduled path is a map pi :Z+ →V , in
which Z

+ := N∪{0}. Intuitively, the domains of the paths
are discrete time steps. A path pi is feasible for a single robot
ri if it satisfies the following properties: 1. pi(0) = xI(ri);
2. For each i, there exists a smallest kmin

i ∈ Z
+ such that

for all k ≥ kmin
i , pi(k) ≡ xG(ri); 3. For any 0 ≤ k < kmin

i ,
(pi(k), pi(k+ 1)) ∈ E or pi(k) = pi(k+ 1). We say that two
paths pi, p j are in collision if there exists k ∈ Z

+ such that
pi(k) = p j(k) (collision on a vertex, or meet) or (pi(k), pi(k+
1)) = (p j(k+1), p j(k)) (collision on an edge, or head-on). If
p(k) = p(k+1), then the robot stays at vertex p(k) between
the time steps k and k+ 1.

Problem 1 (MPP on Graphs) Given (G,R,xI ,xG), find a
set of paths P = {p1, . . . , pn} such that pi’s are feasible
paths for respective robots ri’s and no two paths pi, p j are
in collision.

1The software (written in Java, including a programming interface),
as well as all examples used in our evaluation, are available at
http://msl.cs.uiuc.edu/~jyu18/pe/mapp.html.

A natural criterion for measuring path set optimality is the
number of time steps until the last robot reaches its goal. This
is sometimes called the makespan, which can be computed
from {kmin

i } for a feasible path set P as

TP = max
1≤i≤n

kmin
i .

Another frequently used objective is distance optimality,
which counts the total number of edges traveled by the
robots. We point out that distance optimality and time
optimality cannot be satisfied at the same time in general: In
Fig. 1, let the dotted straight line have length t and the dotted
arc has length 1.5t from some large even number t. The four
solid line segments are edges with unit length. Assuming that
robot 1, 2 are to move from the locations marked with solid
circles to the locations marked with gray dotted circles. Time
optimal paths take 1.5t+2 time steps with a total distance of
2.5t + 4; distance optimal paths take 2t + 3 time steps with
a total distance of 2t + 4.

2 1

21

Fig. 1. Time optimality and distance optimality cannot be satisfied
simultaneously for this setup.

In this paper, we work with graphs on which the only
possible collisions are meet or head-on collisions. This
assumption is a mild one: For example, a 2D grid with
unit edge lengths is such a graph for robots with radii of
no more than

√
2/4. As a last note, our formulation allows

multiple robots to move at the same time step as long as no
collision occurs. On a graph, this allows robots on any cycle
to “rotate”.

B. A Motivating Example

9 14

8 32

6 57

1 32

4 65

7 98

(a) (b)

Fig. 2. a) A 9-puzzle problem. b) The desired goal state.

To better characterize what we solve in this paper, look
at the example in Fig. 2. We call this problem a 9-puzzle,
which is a variant of the 15-puzzle [17]; it is also related to
the “H” example in [12]. Given the robots as numbered in
Fig. 2(a), we want to get them into the state (configuration
is also used in this paper to refer to the same, depending
on the context) given in Fig. 2(b) (such a configuration is
often referred to as row major ordering). Coming up with
a feasible solution for such a highly constrained problem is
non-trivial, let alone solving it with an optimality guarantee.
The time optimal algorithm we present in this paper solves
this problem instance under 0.1 second. The solution is given
in Fig. 3. The time optimality of the solution is evident: It
takes at least four steps for robot 9 to reach its goal.

Fig. 3. A 4-step solution from our algorithm. The directed edges show the
moving direction of the robots at the tail of the edges.

III. MULTI-ROBOT PATH PLANNING AND MULTIFLOW

A. Network Flow

In this subsection we provide a summary of the network
flow problem formulation pertinent to the introduction of our
algorithm. For surveys on network flow, see [1, 5]. A network
N = (G,c1,c2,S) consists of a directed graph G = (V,E)
with c1,c2 : E → Z

+ as the maps defining the capacities and
costs on edges, respectively, and S ⊂V as the set of sources
and sinks. We let S = S+∪S−, with S+ denoting the set of
sources and S− denoting the set of sink vertices. For a vertex
v ∈V , let δ+(v) (resp. δ−(v)) denote the set of edges of G
going to (resp. leaving) v. A feasible (static) S+,S−-flow on
this network N is a map f : E → Z

+ that satisfies edge
capacity constraints,

∀e ∈ E, f (e) ≤ c1(e), (1)

the flow conservation constraints at non terminal vertices,

∀v ∈V\S,
�

e∈δ+(v)

f (e) −
�

e∈δ−(v)
f (e) = 0, (2)

and the flow conservation constraints at terminal vertices,

F(f) =
�

v∈S+

(
�

e∈δ−(v)
f (e) −

�

e∈δ+(v)

f (e))

=
�

v∈S−
(
�

e∈δ+(v)

f (e) −
�

e∈δ−(v)
f (e)).

(3)

The quantity F(f) is called the value of the flow f . The
classic (single-commodity) maximum flow problem asks the
question: Given a network N , what is the maximum F(f)
that can be pushed through the network? The minimum cost
maximum flow problem further requires the flow to have
minimum total cost among all maximum flows. That is, we
want to find a flow among all maximum flows that also
minimizes the quantity

�

e∈E

c2(e) · f (e). (4)

The above formulation concerns a single commodity,
which corresponds to all robots being inter exchangeable.
For MPP, the robots are not inter exchangeable and must
be treated as different commodities. Multi-commodity flow
or multiflow captures the problem of flowing different types
of commodities through a network. Instead of having a
single flow function f , we have a flow function f i for each
commodity i. The constraints (1), (2), and (3) become

∀i,∀e ∈ E,
�

i

fi(e)≤ c1(e), (5)

∀ i,∀v ∈V\S,
�

e∈δ+(v)

fi(e) −
�

e∈δ−(v)
fi(e) = 0, (6)

∀i,
�

v∈S+

(
�

e∈δ−(v)
fi(e) −

�

e∈δ+(v)

fi(e))

=
�

v∈S−
(
�

e∈δ+(v)

fi(e) −
�

e∈δ−(v)
fi(e)).

(7)

Again, maximum flow and minimum cost flow problems can
be posed for a multiflow setup.

B. Equivalence between MPP and multiflow

Viewing robots as commodities, we may connect MPP
and multiflow. This relationship (Theorem 2) was stated
in [31] without full proof, which is provided here for
completeness. To make the presentation clear, we use as an
example the simple graph G in Fig. 4(a), with initial locations
{s+i }, i= 1,2 and goal locations {s−i }, i= 1,2. An instance of
Problem 1 is given by (G,{r1,r2},xI : ri �→ s+i ,xG : ri �→ s−i).
We now convert this problem to a network flow problem,
N ′ = (G′,c1,c2,S+∪S−). Given the graph G and a natural
number T , we create 2T +1 copies of vertices from G, with

s 1
+

s 2
+

s 1
-

s 2
- u(t+1)u(t) 0

v(t+1)v(t) 0

(a) (b)

Fig. 4. a) A simple G. b) A gadget for splitting an undirected edge through
time steps.

indices 0,1,1′, . . ., as shown in Fig. 5. For each vertex v∈G,
denote these copies v(0) = v(0)′,v(1),v(1)′,v(2), . . . ,v(T)′.
For each edge (u,v) ∈ G and time steps t, t + 1, 0 ≤ t <
T , add the gadget shown in Fig. 4(b) between u(t)′,v(t)′
and u(t + 1),v(t + 1) (arrows from the gadget are omitted
from Fig. 5 since they are small). For the gadget, we
assign unit capacity to all edges, unit cost to the horizontal
middle edge, and zero cost to the other four edges. This
gadget ensures that two robots cannot travel in opposite
directions on an edge in the same time step. To finish the
construction of Fig. 5, for each vertex v ∈ G, we add one
edge between every two successive copies (i.e., we add
the edges (v(0),v(1)),(v(1),v(1)′), . . . ,(v(T),v(T)′)). These
correspond to the green and blue edges in Fig. 5. For all
green edges, we assign them unit capacity and cost; for all
blue edges, we assign them unit capacity and zero cost.

s 1
+

s 2
+

s 1
-

s 2
-

20 1
0

2
0

1

e 1

e 2

Fig. 5. The time-expanded network (T = 2).

Fig. 5 (with the exception of edges e1 and e2, which are not
relevant until Section IV), called a time-expanded network

[1], is the desired G′. For the set S, we may simply let S+ =
{v(0) : v ∈ {s+i }} and S− = {v(T)′ : v ∈ {s−i }}. The network
N ′ = (G′,c1,c2,S+∪S−) is now complete; we have reduced
Problem 1 to an integer maximum multiflow problem on N ′
with each robot from R as a single type of commodity.

Theorem 2 Given an instance of Problem 1 with input
parameters (G,R,xI ,xG), there is a bijection between its so-
lutions (with maximum number of time steps up to T) and the
integer maximum multiflow solutions of flow value n on the
time-expanded network N ′ constructed from (G,R,xI ,xG)
with T time steps.

PROOF. (Injectivity) Assume that P = {p1, . . . , pn} is a
solution to an instance of Problem 1. For each pi and every
time step t = 0, . . . ,T , we mark the copy of pi(t) and pi(t)′
(recall that pi(t) corresponds to a vertex of G) at time step
t in the time-expanded graph G ′. Connecting these vertices
of G′ sequentially (there is only one way to do this) yields
one unit of flow fi on N ′ (after connecting to appropriate
source and sink vertices in S+,S−, which is trivial). It is
straightforward to see that if two paths pi, p j are not in
collision, then the corresponding flows f i, f j on N ′ are
vertex disjoint paths and therefore do not violate any flow
constraint. Since any two paths in P are not in collision,
the corresponding set of flows { f1, . . . , fn} is feasible and
maximal on N ′.

(Surjectivity) Assume that { f1, . . . , fn} is a integer
maximum multiflow on the network N ′ with | fi| = 1.
First we establish that any pair of flows fi, f j are vertex
disjoint. To see this, we note that fi, f j (both are unit flows)
cannot share the same source or sink vertices due to the
unit capacity structure of N ′ enforced by the blue edges.
If fi, f j share some non-sink vertex v at time step t > 0,
both flows then must pass through the same blue edge (see
Fig. 4(b)) with v being either the head or tail vertex, which
is not possible. Thus, fi, f j are vertex disjoint on N ′. We
can readily convert each flow f i to a corresponding path pi

(after deleting extra source vertex, sink vertices, vertices in
the middle of the gadgets, and tail vertices of blue edges)
with the guarantee that no pi, p j will collide due to a
meet collision. By construction of N ′, the gadget we used
ensures that a head-on collision is also impossible. The set
{p1, . . . , pn} is then a solution to Problem 1. �

C. Accommodating other formulations

Our network flow based approach for encoding the MPP
problem is fairly general; we illustrate this using two ex-
amples. The first is the grid world formulation from [24],
which allows (single) diagonal crossings. That is, for vertices
v1, . . . ,v4 on the four corners of a square cell with v1,v3 and
v2,v4 diagonal to each other, respectively, it is possible for a
robot to move from v1 to v3 provided that v3 is unoccupied
and the v2-v4 diagonal is not used in the same time step. To
include this constraint in the ILP model, we may simply add
the gadget structure in Fig. 6 to the time-expanded network

construction. The inclusion of the gadget will allow a single
diagonal crossing; the extra paths do not create an issue since
no two robots can go through a single vertex at the same time
step (enforced by the blue dotted edges in Fig. 5).

v (t)
1

v (t)
3

v (t)
4

v (t)
2

v (t +1)
1

v (t+1)
3

v (t +1)
4

v (t +1)
2

0

0

0

0

Fig. 6. A gadget for allowing diagonal crossings.

For a second example, in some MPP formulations, head-on
collisions may be allowed. For instance, two adjacent CPUs
may exchange two units of data in parallel but no single CPU
may hold multiple units of data. To allow this, we simply do
not use the gadget from Fig. 4(b) when the time-expanded
network is constructed.

IV. ALGORITHMIC SOLUTIONS FOR OPTIMAL

MULTI-ROBOT PATH PLANNING

Given the time-expanded network N ′ = (G′,c1,c2,S+ ∪
S−), it is straightforward to create an integer linear program-
ming (ILP) model with different optimality objectives. We
investigate two objectives in this section: Time optimality or
makespan (the time when the last robot reaches its goal) and
distance optimality (the total distance traveled by all robots).

A. Time optimality

Time optimal solutions to Problem 1 can be obtained
using a maximum multiflow formulation. As a first step, we
introduce a set of n loopback edges to G ′ by connecting each
pair of corresponding goal and start vertices in S, from the
goal to the start. For convenience, denote these loopback
edges as {e1, . . . ,en} (e.g., edges e1,e2 in Fig. 5). These
edges have unit capacity and zero cost. Next. for each edge
e j ∈ G′, create n binary variables x1, j, . . . ,xn, j corresponding
to the flow through that edge, one for each robot. x i, j = 1 if
and only if robot ri passes through e j in G′. The variables
xi, j’s must satisfy two edge capacity constraints and one flow
conservation constraint,

∀e j ∈ G′,
n�

i=1

xi, j ≤ 1

∀1 ≤ i, j ≤ n, i �= j, xi, j = 0,

(8)

∀v ∈ G′ and 1 ≤ i ≤ n,
�

e j∈δ+(v)

xi, j =
�

e j∈δ−(v)
xi, j. (9)

The objective function is

max
�

1≤i≤n

xi,i. (10)

For each fixed T , the solution to the above ILP problem
equaling n means that a feasible solution to Problem 1 is
found. We are to find the minimal T that yields such a
feasible solution. To do this, we start with T being the

maximum over all robots the shortest possible path length for
each robot, ignoring all other robots. We then build the ILP
model for this T and test for a feasible solution. If the model
is not feasible, we increase T and try again. The first feasible
T is the optimal T . The robots’ paths can be extracted based
on the proof of Theorem 2. The algorithm is complete: Since
the problem is discrete, there is only a finite number of
possible states. Therefore, for some sufficiently large T , there
must either be a feasible solution or we can pronounce that
none can exist. Calling this algorithm MINMAKESPAN (time
optimal MPP), we have shown the following.

Proposition 3 Algorithm MINMAKESPAN is complete and
returns a solution with minimum makespan to Problem 1 if
one exists.

B. Distance optimality

Distance optimality objective can be encoded using min-
imum cost maximum multiflow. Constraints (8) and (9)
remain; to force a maximum flow, let xi,i = 1 for 1 ≤ i ≤ n.
The objective is given by

min
�

e j∈G′, j>n,1≤i≤n

c2(e j) · xi, j. (11)

The value given by (11), when feasible, is the total distance
of all robots’ paths. Let Tt denote the optimal T produced
by MINMAKESPAN (if one exists), then a distance optimal
solution exists in a time-expanded network with T = nTt

steps. Calling this algorithm MINTOTALDIST (distance op-
timal MPP), we have

Proposition 4 Algorithm MINTOTALDIST is complete and
returns a solution with minimum total path length to Problem
1 if one exists.

Due to the large number of steps needed in the time-
expanded network, MINTOTALDIST, in its current form, is
not very fast in solving problems with many robots. There-
fore, our evaluation in this paper focuses on MINMAKESPAN

which, on the other hand, is fairly fast in solving some very
difficult problems. MINTOTALDIST, however, still proves
useful in providing time optimal and near distance optimal
solutions using the outputs of MINMAKESPAN, as shown in
Subsection VI-C.

V. PROPERTIES OF THE n2-PUZZLE

The example problem from Fig. 2 easily extends to an
n×n grid; we call this class of problems the n2-puzzle. Such
problems are highly coupled: No robot can move without at
least three other robots moving at the same time. At each
step, all robots that move must move synchronously in the
same direction (per cycle) on one or more disjoint cycles
(see e.g., Fig. 3). To put into perspective the computational
results on n2-puzzles that follow, we make a characterization
of the state structure of the n2-puzzle for n ≥ 3 (the case of
n = 2 is trivial).

4

7

65

89

4

7 6

5

8

9 47

6

5

8 9

Fig. 7. A 3-step procedure for exchanging robots 8 and 9.

Proposition 5 All states of the 9-puzzle are connected via
legal moves.

PROOF. We show that any state of a 9-puzzle can be moved
into the state shown in Fig. 2(b). From any state, robot 5
can be easily moved into the center of the grid. We are left
to show that we can exchange two robots on the border
without affecting other robots. This is possible due to the
procedure illustrated in Fig. 7. �

Larger puzzles can be solved recursively: We may first
solve the top and right side of the puzzle and then the left
over smaller square puzzle. For a 16-puzzle, Fig. 8 outlines
the procedure, consisting of six main steps:

1) Move robots 1 and 2 to their respective goal locations,
one robot at a time (first 1, then 2).

2) Move robots 3 and 4 (first 3, then 4) to the lower left
corner (top-middle figure in Fig. 8).

3) Move robots 3 and 4 to their goal location together via
counterclockwise rotation along the cycle indicated in
the top-middle figure in Fig. 8.

4) Move robot 8 to its goal location.
5) Move robots 12 and then 16 to the lower left corner.
6) Rotate robots 12 and 16 to their goal locations.

4

1

3

2 1 2 431 2

431 2

8

431 2

8

12

16

431 2

8

12

16

Fig. 8. A solution scheme for solving top/left sides of the 16-puzzle.

It is straightforward to see that larger puzzles can be
solved similarly. We have thus outlined the essential steps
for proving Proposition 6 below; a more generic proof can
be written using generators of permutation groups, which
we omit here due to its length. Proposition 6 implies that,
for n ≥ 3, all instances of n2-puzzles are solvable. The
constructive proofs of Proposition 5 and 6 lead to recursive
algorithms for solving any n2-puzzle (clearly, the solution is
not time/distance optimal in general).

Proposition 6 All states of an n2-puzzle, n ≥ 3 are con-
nected via legal moves.

Corollary 7 All instances of the n2-puzzle, n ≥ 3, are solv-
able.

By Proposition 6, since all states of a n2-puzzle for n ≥ 3
are connected via legal moves, the state space of searching an
n2-puzzle equals n2 factorial. For 16-puzzle and 25-puzzle,
16! > 1013,25! > 1025. Large state space is one of the three
reasons that make finding a time optimal solution to the
n2-puzzle a difficult problem. The second difficulty comes
from the large branching factor at each step. For a 9-puzzle,
there are 13 unique cycles, yielding a branching factor of
26 (clockwise and counterclockwise rotations). For the 16-
puzzle, the branching factor is around 500. This number
balloons to over 104 for the 25-puzzle. This suggests that on
typical commodity personal computer hardware (assuming
a 1GHz processor), a baisc breadth first search algorithm
will not be able to go beyond depth of 3 for the 16-puzzle
and depth 2 for the 25-puzzle in reasonable amount of time.
Moreover, enumerating these cycles is a non-trivial task. The
third difficulty is the lack of obvious heuristics: Manhattan
distances of robots to their respective goals prove to be a
bad one. For example, given the initial configuration as that
in Fig. 2(a), the first step in the optimal plan from Fig. 3
gets robots 1, 3, 4, 6, 8, 9 closer to their respective goals
while moving robots 2, 7 farther. On the other hand, rotating
counterclockwise along the outer cycle takes robots 1, 3, 4, 5,
6, 8, 9 closer and only moves robot 7 farther. However, if we
instead take this latter first step, the optimal plan afterwards
will take 5 more steps.

VI. SOLUTIONS AND EVALUATION

Our experimentation in this paper focuses on MIN-
MAKESPAN with the main goal being evaluating the compar-
ative efficiency of our approach rather than pushing for best
computational performance. As such, our implementation is
Java based and did not directly take advantage of multi-core
technology. We note that, Gurobi, the ILP solver used in our
implementation, can engage multiple cores automatically for
hard problems. We ran our code on an Intel Q6600 quad-core
machine with a 4GB JavaVM.

A. Time optimal solution to n2-puzzles

The first experiment we performed was evaluating the
efficiency of the algorithm MINMAKESPAN for finding time
optimal solutions to the n2-puzzle for n = 3,4,5, and 6. We
ran Algorithm MINMAKESPAN on 100 randomly generated
n2-puzzle instances for n= 3,4,5. For the 9-puzzle, computa-
tion on all instances completed successfully with an average
computation time of 1.36 seconds per instance. To compare
the computational result, we implemented a (optimal) BFS
algorithm. The BFS algorithm is heavily optimized: For
example, cycles of the grid are precomputed and hard coded
to save computation time. Since the state space of the 9-
puzzle is small, the BFS algorithm is capable of optimally
solving the same set of 9-puzzle instances with an average
computation time of about 0.89 seconds per instance.

Once we move to the 16-puzzle, the power of general
ILP solvers becomes evident. MINMAKESPAN solved all
100 randomly generated 16-puzzle instances with an average
computation time of 18.9 seconds. On the other hand, the

BFS algorithm with a priority queue that worked for the
9-puzzle ran out of memory after a few minutes. As our
result shows that an optimal solution for the 16-puzzle
generally requires 6 time steps, it seems natural to also try
bidirectional search, which cuts down the total number states
stored in memory. To complete such a search, one side of the
bidirectional search generally must reach a depth of 3, which
requires storing about 3× 107 states, each taking 64 bits of
memory. This turns out to be too much for a 4GB JavaVM:
A bidirectional search ran out of memory after about 10
minutes in general. To be sure, we also coded part of the
same search algorithm in C++ with STL. Reaching a search
depth 3 on one side takes about a minute with a memory
footprint of 1.5GB, suggesting a minimum running time of
more than one minute.

13 417

1 922

11 1516

2314

712

218

25 624

10 53

2019

182

Fig. 9. An instance of a 25-puzzle problem solved by MINMAKESPAN.

For the 25-puzzle, without a good heuristic, bidirectional
search cannot explore a tiny fraction of the fully connected
state space with about 1025 states. On the other hand,
MINMAKESPAN again consistently solves the 25-puzzle,
with an average computational time under 2 hours over
100 randomly created problems. Fig. 9 shows one of the
solved instances with a 7-step solution given in Fig. 10. Note
that 7 steps is obviously the least possible since it takes at

Fig. 10. An optimal 7-step solution (from left to right, then top to bottom)
to the 25-puzzle problem from Fig. 9, by MINMAKESPAN in about 30
minutes.

least 7 steps to move robot 10 to its desired goal. We also
briefly tested MINMAKESPAN on the 36-puzzle. While we
had some success here, MINMAKESPAN generally does not
seem to solve a randomly generated instance of the 36-puzzle
within 24 hours, which has 3.7×1041 states and a branching
factor of well over 106.

B. Time optimal solutions for grid graphs

For problems in which not all graph vertices are occu-
pied by robots, MINMAKESPAN can handle much larger
instances. In a first set of tests on this subject, a grid size
of 20× 15 is used with varying percentage of obstacles
(simulated by removed vertices) and robots for evaluating

the effect of these factors. A typical set up is illustrated in
Fig. 11. The computation time (in seconds) and the average
number of optimal time steps (in parenthesis) are listed
in Table I. The numbers are averages over 10 randomly

Fig. 11. A 20× 15 grid with 20% verices removed (modeling obstacles)
and 30 start/goal pairs. The start locations are marked with strings beginning
with “S” and the goal locations are marked with strings beginning with “G”.

TABLE I

% obs Number of robots
10 20 30 40 50

5 2.5(22) 7.3(24) 16.7(27) 23.6(26) 70.7(27)
10 2.1(21) 7.8(24) 13.1(26) 20.4(26) 48.6(26)
15 3.9(25) 6.2(24) 13.8(26) 32.8(27) 126(28)
20 2.4(24) 7.7(27) 21.9(28) 39.3(26) 173(27)
25 2.7(27) 8.1(28) 24.8(30) 68.0(28) 253(30)4

30 3.0(31) 29.9(34)9 234(44)5 80.6(29)3 N/A

created instances. For each run, a maximum of 1000 seconds
is allowed (such limits, somewhat arbitrary, were chosen
to manage the expected running time of the entire set
of experiments; our complete algorithms should terminate
eventually). Entries with superscript numbers suggest the 10
runs did not all finish within the given time. The superscript
numbers represent the successful runs on which the statistics
were computed. “N/A” means no instance finished within
the allowed time. From the results, we observe that the
percentage of randomly placed obstacles does not affect the
problem difficulty, as measured by computational time, in a
monotonic way. On one hand, more obstacles remove more
vertices from the grid, making the problem size smaller,
reducing the computational difficulty. On the other hand,
as more obstacles are introduced, the reduced connectivity
of the graph makes the problem harder. In particular, the
20× 15 grid setting suddenly becomes a hard problem with
30% obstacles. The difficulty is also reflected by the average
number of steps in an optimal solution: Longer time means
reduced availability of alternative paths.

TABLE II

% obs Number of robots
10 20 30 40 50

20 14.4(41) 34.6(45) 43.7(44) 87.5(47) 402(49)9

In a second test on even larger problems, 32× 32 grids
with 20% obstacles were tried. For between 10 and 50 robots
with an increment of 10, 10 random instances each were
created; each instance is allowed to run a maximum of half
an hour. The statistics, similarly composed as that in Table I,
is listed in Table II. We observe that the problem is similar
in difficulty to the 20× 15 grid setting with 25% obstacles,
but much simpler than that with 30% obstacles.

C. Distance optimality of time optimal solutions

Although MINTOTALDIST is not yet practical for comput-
ing distance optimal solutions alone, it can be used for com-
puting distance optimal solutions for a fixed time expansion
length T . That is, we first find a time optimal solution, which
gives us the smallest time-expanded network containing
feasible solutions. We then run MINTOTALDIST on this
network. For evaluation, we used the same 20×15 instances
with 5-25% obstacles and 10-30 robots (MINTOTALDIST

could not finish most instances with 30% obstacles or 40+
robots in 200 seconds, the cutoff time). We used the first 5
of every 10 instances for each obstacle/robot combination.
For each fixed number of obstacles, instances of different
numbers of robots are combined. The result is listed in
Table III. We allow MINTOTALDIST to run for at most 200
seconds per instance. Note that unlike MINMAKESPAN, even
when MINTOTALDIST does not find the optimal solution,
it generally produces feasible solution which sometimes
is a near optimal solution. These are included in the re-
sult. “Time” entires are average time, in seconds, used by
MINTOTALDIST. “Disjoint” entries are the average path
lengths for all robots if we were to plan each shortest path
ingoring other robots. The distance optimal solutions must
produce a length no less than this. The next two lines are
average path lengths from MINMAKESPAN and MINTO-
TALDIST algorithms. As we can see, MINMAKESPAN alone
yields path length 50% than optimal; MINTOTALDIST, on
the other hand, provided time optimal solutions that are near
distance optimal (< 1% difference). For more than half of the
instances, MINTOTALDIST produced true distance optimal
solutions. In fact, MINTOTALDIST produced true distance
optimal solutions for 42 out of the 45 instances with 5-15%
obstacles.

TABLE III

% obs
5 10 15 20 25

Time 26.3 23.3 42.7 57.2 81.6
Disjoint 12.20 11.75 12.03 12.80 12.84

MINTOTALDIST 12.20 11.75 12.05 12.85 12.92
MINMAKESPAN 16.47 16.60 17.59 18.83 19.33

D. Using TOMPP as a generic heuristic

In the last experiment, we exploit MINMAKESPAN as
a generic heuristic for locally resolving path conflicts for
large problem instances. By generic, we mean that the
heuristic is not coded to any specific robot/grid setting.
In our algorithm, paths are first planned for single robots
(ignoring other robots). Afterwards, the robots are moved

along these paths until no further progress can be made.
We then detect on the graph where progress are stalled and
resolve the conflict locally using MINMAKESPAN. For every
conflict, we apply MINMAKESPAN to its neighborhood of
distance 2. The above steps are repeated until a solution is
found. The process can be made into a complete algorithm
by allowing the local neighborhood to grow gradually. For
evaluation, we ran the above algorithm on a 32×32 grid with
20% obstacles. We allow each instance to run a maximum
of 30 seconds. The results, each as an average over 100
runs for a certain number of robots, are listed in Table IV
(keep in mind that our implementation is Java based, which

TABLE IV

Number of Robots
25 50 75 100 125 150

Running time (s) 0.04 0.15 0.32 1.37 3.85 10.3
Fully solved 100 100 100 100 98 95

% goals reached 100.0 100.0 100.0 100.0 99.4 98.6

should see a speedup if implemented in C++). While we did
not make side-by-side comparisons with the literature due
to (seemingly small but) important differences in problem
formulation, the computation time and completion rate of
our algorithm appear comparable with the state of the art
results from other authors.

VII. CONCLUSION AND OPEN PROBLEMS

In this paper, we introduced a multiflow based ILP algo-
rithm for planning optimal, collision-free paths for multiple
robots on graphs. We provided complete ILP algorithms for
solving time optimal and distance optimal MPP problems.
Our experiments confirmed that MINMAKESPAN is a fea-
sible method for planning time optimal paths for tightly
coupled problems as well as for larger problems with more
free space. Moreover, we showed that MINMAKESPAN can
serve as a good heuristic for solving large problem instances
efficiently. For distance optimality, MINTOTALDIST, when
combined with MINMAKESPAN, produces time optimal so-
lutions that are often near distance optimal.

Many interesting open problems on optimal MPP remain;
we mention two here. First, the ILP algorithms have ample
room for performance improvements. On one hand, the ILP
model can be make leaner. For example, it is clear that some
xi, j’s will never be set to 1; these should be removed from
the model. On the other hand, our application of the Gurobi
solver is fairly rudimentary - we simply feed the model to the
solver as a mixed integer program (MIP) without specifying
any other optimization options. Therefore, it would not be
surprising that tuning the parameters of the solver greatly
improves its performance on MPP problems. Secondly, while
MINMAKESPAN could solve hard MPP problems such as
the 25-puzzle, ILP solvers are nevertheless not tailored for
such problems. Thus, we expect that tailored methods, such
as heuristic based search, to solve problems like n2-puzzles
even faster. Looking closely at how ILP solvers work on
these problems should provide insights that help building
these heuristics.

REFERENCES

[1] J. E. Aronson. A survey on dynamic network flows. Annals of
Operations Research, 20(1):1–66, 1989.

[2] T. Balch and R. C. Arkin. Behavior-based formation control for
multirobot teams. IEEE Transaction on Robotics and Automation,
14(6):926–939, 1998.

[3] H. Choset, K. M. Lynch, S. Hutchinson, G. Kantor, W. Burgard,
L. E. Kavraki, and S. Thrun. Principles of Robot Motion: Theory,
Algorithms, and Implementations. MIT Press, Cambridge, MA, 2005.

[4] M. A. Erdmann and T. Lozano-Pérez. On multiple moving objects. In
Proceedings IEEE International Conference on Robotics & Automa-
tion, pages 1419–1424, 1986.

[5] L. R. Ford and D. R. Fulkerson. Flows in Networks. Princeton
University Press, New Jersey, 1962.

[6] D. Fox, W. Burgard, H. Kruppa, and S. Thrun. A probabilistic
approach to collaborative multi-robot localization. Autom. Robots,
8(3):325–344, June 2000.

[7] D. Halperin, J.-C. Latombe, and R. Wilson. A general framework
for assembly planning: The motion space approach. Algorithmica,
26(3-4):577–601, 2000.

[8] P. Hart, N. J. Nilsson, and B. Raphael. A formal basis for the heuristic
determination of minimum cost paths. IEEE Transactions on Systems
Science and Cybernetics, 4:100–107, 1968.

[9] J. S. Jennings, G. Whelan, and W. F. Evans. Cooperative search
and rescue with a team of mobile robots. In Proceedings IEEE
International Conference on Robotics & Automation, 1997.

[10] J.-C. Latombe. Robot Motion Planning. Kluwer, Boston, MA, 1991.
[11] S. M. LaValle. Planning Algorithms. Cambridge University Press,

Cambridge, U.K., 2006. Also available at http://planning.cs.uiuc.edu/.
[12] S. M. LaValle and S. A. Hutchinson. Optimal motion planning for

multiple robots having independent goals. IEEE Trans. on Robotics
and Automation, 14(6):912–925, December 1998.

[13] R. Luna and K. E. Bekris. Push and swap: Fast cooperative path-
finding with completeness guarantees. In Twenty-Second International
Joint Conference on Artificial Intelligence, pages 294–300, 2011.

[14] M. J. Matarić, M. Nilsson, and K. T. Simsarian. Cooperative multi-
robot box pushing. In Proceedings IEEE/RSJ International Conference
on Intelligent Robots and Systems, pages 556–561, 1995.

[15] B. Nnaji. Theory of Automatic Robot Assembly and Programming.
Chapman & Hall, 1992.

[16] S. Poduri and G. S. Sukhatme. Constrained coverage for mobile sensor
networks. In Proceedings IEEE International Conference on Robotics
& Automation, 2004.

[17] D. Ratner and M. Warmuth. The (n2−1)-puzzle and related relocation
problems. Journal of Symbolic Computation, 10:111–137, 1990.

[18] S. Rodriguez and N. M. Amato. Behavior-based evacuation planning.
In Proceedings IEEE International Conference on Robotics and Au-
tomation, pages 350–355, 2010.

[19] D. Rus, B. Donald, and J. Jennings. Moving furniture with teams of
autonomous robots. In Proceedings IEEE/RSJ International Confer-
ence on Intelligent Robots and Systems, pages 235–242, 1995.

[20] M. R. K. Ryan. Exploiting subgraph structure in multi-robot path
planning. Journal of Artificial Intelligence Research, 31:497–542,
2008.

[21] B. Shucker, T. Murphey, and J. K. Bennett. Switching rules for
decentralized control with simple control laws. In American Control
Conference, July 2007.

[22] D. Silver. Cooperative pathfinding. In The 1st Conference on Artificial
Intelligence and Interactive Digital Entertainment, pages 23–28, 2005.

[23] B. Smith, M. Egerstedt, and A. Howard. Automatic generation of
persistent formations for multi-agent networks under range constraints.
ACM/Springer Mobile Networks and Applications Journal, 14(3):322–
335, June 2009.

[24] T. Standley and R. Korf. Complete algorithms for cooperative pathfind-
ing problems. In Twenty-Second International Joint Conference on
Artificial Intelligence, pages 668–673, 2011.

[25] P. Surynek. A novel approach to path planning for multiple robots in
bi-connected graphs. In Proceedings IEEE International Conference
on Robotics and Automation, pages 3613–3619, 2009.

[26] P. Surynek. An optimization variant of multi-robot path planning
is intractable. In The Twenty-Fourth AAAI Conference on Artificial
Intelligence (AAAI-10), pages 1261–1263, 2010.

[27] H. Tanner, G. Pappas, and V. Kumar. Leader-to-formation stability.
IEEE Transactions on Robotics and Automation, 20(3):443–455, Jun
2004.

[28] J. van den Berg and M. Overmars. Prioritized motion planning for
multiple robots. In Proceedings IEEE/RSJ International Conference
on Intelligent Robots and Systems, 2005.

[29] J. van den Berg, J. Snoeyink, M. Lin, and D. Manocha. Centralized
path planning for multiple robots: Optimal decoupling into sequential
plans. In Proceedings Robotics: Science and Systems, 2009.

[30] J. Yu. Diameters of permutation groups on graphs and linear time
feasibility test of pebble motion problems. arXiv:1205.5263, 2012.

[31] J. Yu and S. M. LaValle. Multi-agent path planning and network flow.
In The Tenth International Workshop on Algorithmic Foundations of
Robotics, 2012.

[32] A. Zelinsky. A mobile robot exploration algorithm. IEEE Transactions
on Robotics and Automation, 8(6):707–717, 1992.

	Introduction
	Multi-robot Path Planning on Graphs
	Problem Formulation
	A Motivating Example

	Multi-robot Path Planning and Multiflow
	Network Flow
	Equivalence between MPP and multiflow
	Accommodating other formulations

	Algorithmic Solutions for Optimal Multi-robot Path Planning
	Time optimality
	Distance optimality

	Properties of the n2-puzzle
	Solutions and Evaluation
	Time optimal solution to n2-puzzles
	Time optimal solutions for grid graphs
	Distance optimality of time optimal solutions
	Using Tompp as a generic heuristic

	Conclusion and Open Problems

