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Abstract This paper connects multi-agent path planning on graphs (roadmaps) to
network flow problems, showing that the former can be reduced to the later, there-
fore enabling the application of combinatorial network flow algorithms, as well as
general linear program techniques, to multi-agent path planning problems on graphs.
Exploiting this connection, we show that when the goals are permutation invariant,
the problem always has a feasible solution path set with a longest finish time of no
more than n+V −1 steps, in which n is the number of agents and V is the number of
vertices of the underlying graph. We then give a complete algorithm that finds such
a solution in O(nVE) time, with E being the number of edges of the graph. Tak-
ing a further step, we study time and distance optimality of the feasible solutions,
show that they have a pairwise Pareto optimal structure, and again provide efficient
algorithms for optimizing each of these practical objectives.

1 Introduction
Consider the problem illustrated in Fig. 1, which inspired the authors to pursue this
research. As an exercise (26-1 in [8]), the escape problem is to determine, given m≤
n2 evaders placed on m different points of an n× n grid, whether there are m vertex
disjoint paths from these m locations to m different points on the boundary of the
grid. Intended as a demonstration of applications of maximum flow algorithms (Ch.
26 of [8]), it undoubtedly mimics multi-agent 1 path planning problems on graphs.
Intrigued by the elegant network flow based solution to the escape problem, we
wonder: How tightly are these two classes of problems intertwined and how we
may take advantage of the relationship?
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(a) (b)

Fig. 1 Examples of the escape problem on a 6×6 grid. The black discs are the initial evader loca-
tions. The goal is to plan disjoint paths for the evaders to reach different vertices on the boundary
of the grid. a) An instance with solution given as the bold edges. b) An instance without a solution.

In this paper, we explore and exploit the connection between multi-agent path
planning on collision-free unit-distance graphs (or CUGs, see Section 2 for the def-
inition) and network flow. We begin by showing that multi-agent path planning on
CUGs is closely related to a class of problems called dynamic network flow or net-
work flow over time. We then focus on the permutation invariant multi-agent path
planning problem on CUGs (by permutation invariant, we mean that goals are not
pre-assigned to agents. Instead, we only require that each goal is reached by a unique
agent), establishing that such problems always have solutions. To solve the problem
algorithmically, an adapted maximum flow algorithm is provided which plans col-
lision free paths for all agents with worst time complexity O(nVE), in which n is
the number of agents, V is the number of vertices of the CUG and E is the num-
ber of edges of the CUG. Moreover, we guarantee that the last agent takes time no
more than n+V − 1 to reach its goal, assuming that agents travel at unit speed.
Next, we construct efficient algorithms for obtaining temporally and spatially opti-
mal solutions. For example, our algorithm for shortest overall time has running time
O(nVE logV ). We also show that these temporal and spatial objectives cannot be
optimized simultaneously (i.e., they have a Pareto optimal structure).

As a universal subroutine in multi-agent systems, collision-free path planning for
multiple agents finds applications in tasks spanning assembly [19, 33], evacuation
[5, 40], formation control [3, 38, 42, 44, 45], localization [15], object transportation
[31, 41], search and rescue [21], and so on. Given its importance, path planning for
multi-agent systems has remained as a subject of intense study for many decades.
Due to the vast size of the available literature, we only mention a most related subset
of the research in this field and refer the readers to [6, 26, 28] and the references
therein for a more comprehensive review of the subject.

When all agents are treated as a single agent with a high dimensional configura-
tion space, the problem can be solved using cylindrical algebraic decomposition [7]
or Canny’s roadmap algorithm [4], in theory. Such coupled approaches suffer from
the curse of dimensionality; even when sampling based methods [23, 27] are used,
instances involving only a small number of agents can be computationally challeng-
ing. This difficulty prompts the study of methods that seek to explore local features
whenever possible to avoid working with too many agents at a time. Among these,
decoupled planning is the most popular, which generally performs coordination of
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robot motion after deciding a path for each robot [18, 22, 34, 37, 43, 49]. In contrast,
priority based methods force an order on agents to significantly reduce the search
space [11, 47]. Some more recent works using decoupling heuristics include apply-
ing optimal decoupling techniques to exploit problem instances with low degrees of
coupling [48], using push-and-swap primitives to avoid unnecessary exploration of
search space [30], and heuristics aimed at performance guarantees (completeness is
lost) [50].

Our algorithmic efforts in this paper focus on the permutation invariant multi-
agent path planning problem on CUGs. Such formulations, in both discrete and
continuous forms, are extensively studied as formation control problems [3, 38, 42,
44, 45], among others. On research that appears mostly related to this aspect of our
paper, a discrete grid abstraction model for formation control was studied in [32].
To plan the paths, a three-step process was used in [32]: 1) Target assignment, 2)
Path allocation, 3) Trajectory scheduling. Although it was shown that the process
always terminates, no characterization of solution complexity was offered. In con-
trast, we provide very efficient algorithms that solve a strictly more general class
of problems with optimality assurance. On the continuous side, a novel formation
space approach was employed to represent the entire formation of robot teams with
a single polynomial of which the roots correspond to the unassigned configurations
for the robots in the formation [24].

We delay the literature review on network flow, from which we devise our time
expansion construction for multi-agent path planning, to Section 3. The basic idea
of applying time expansion to robotics problem is far from new [11, 36]. To the
best of our knowledge, however, the research presented here is an original attempt
at proposing a general time expansion technique, connecting it to network flow, and
making full use of the benefits that come with this approach. We also note that our
exact and complete algorithms all come with low constants in their respective worst
case time complexity because they are derived from well studied combinatorial al-
gorithms2. Our simulation result, which we omit due to the length limit, confirms
this assertion.

There are three main contributions. First, we formally establish the link between
multi-agent path planning on graphs and network flow, showing how multi-agent
path planning can be reduced to network flow problems, thereby enabling the poten-
tial application of powerful tools from combinatorial optimization to path planning
for multiple agents in a principled way. Second, for the planning problem in which
agents do not have pre-specified goals, we give fast and complete algorithms for
finding collision free path sets that deliver every agent to a different goal. Third, we
study time and distance optimality of the feasible solutions to the aforementioned
problem, show that they have a pairwise Pareto optimal structure, and again provide
efficient algorithms for optimizing each of these practical objectives.

The rest of the paper is organized as follows. In Section 2, we define two multi-
agent path planning problems on CUGs. Section 3 starts with a quick review of

2 A combinatorial algorithm is an algorithm that only adds, subtracts, and compares values; no
multiplication and division operations are allowed (i.e., ordered group operations versus ordered
field operations) [17].
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network flow problems and then proceeds to show the reduction from multi-agent
path planning on CUGs to network flow. Concentrating our efforts on the permuta-
tion invariant multi-agent path planning problem, Section 4 begins with a key con-
struction that allows us to tightly bound the time steps required for a time-expanded
network to have a feasible solution, which in turn enables efficient algorithms. Sec-
tion 5 takes a further step and studies solution optimality on three natural objectives,
showing the objectives have a Pareto optimal structure. We conclude in Section 6.
We omit all proofs due to their length, which will be included in an extended version
of this paper.3

2 Multi-agent Path Planning Problems on Collision-free
Unit-distance Graphs

Let G = (V,E) be a connected, undirected, simple graph (i.e., no multi-edges), in
whichV = {vi} is its vertex set and E = {(vi,v j)} is its edge set. Let A= {a1, . . . ,an}
be a set of agents with initial and goal locations on G given by the injective maps
xI : A → V and xG : A → V , respectively. Note that A is essentially an index set;
xI(A) and xG(A) are the set of initial and goal locations, respectively. We require
that xI(A) and xG(A) be disjoint. For convenience, we let n = |A| and use V,E to
denote the cardinality of the sets V,E, respectively, since the meaning is usually
clear from the context. Let σ be a bijection that acts on the elements of x G, a feasible
path for a single agent ai is a map pi : Z+ → V with the following properties4: 1.
pi(0) = xI(ai). 2. There exists a smallest kmin ∈Z

+ such that pi(kmin) = (σ ◦xG)(ai)
for some fixed σ . That is, the end point of the path p i is some goal vertex. 3. For
any k ≥ kmin, pi(k) ≡ (σ ◦ xG)(ai). 4. For any 0 ≤ k < kmin, (pi(k), pi(k+ 1)) ∈ E
or pi(k) = pi(k+ 1). Intuitively, think of the domain of the paths as discrete time
steps. We say that two paths pi, p j are in collision if there exists k ∈ Z

+ such that
pi(k) = p j(k) (meet) or (pi(k), pi(k+ 1)) = (p j(k+ 1), p j(k)) (head-on). Given a
path p, let Ep denote the set of edges of the form (p(k), p(k+ 1)) for all applicable
k ∈ Z

+ when p(k) �= p(k+ 1). If p(k) = p(k+ 1), the agent stays at vertex p(k)
during the time interval [k,k+ 1] .

As mentioned, in this paper, we work with a specific type of graph called the
collision-free unit-distance graph (CUG): A CUG is a connected, undirected graph
G satisfying the following: 1. Every edge is of unit length; 2. Given any two distinct
edges (u1,v1) and (u2,v2) of G with u1 �= u2,v1 �= v2, two disc shapes (or spheri-
cal for 3D or more) agents of radius less than 1/2 traveling at unit speed through
these edges (starting simultaneously at u1,u2, respectively) will never collide. For
example, a connected 2D grid with holes is a CUG. Since subgraphs of 2D grids
are easy to draw and visualize, we generally use subgraphs of 2D grids when we
create examples in this paper. With the above setup, the multi-agent path planning
on CUGs problem is defined as follows.

3 For proofs, see http://msl.cs.uiuc.edu/~jyu18/subm/proofs.pdf.
4 In this paper, we let Z+ :=N∪{0}.
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Problem 1. [Multi-agent Path Planning on CUGs] Given a 4-tuple (G,A,x I,xG) in
which G is a CUG, find a set of paths P = {p1, . . . , pn} such that pi’s are feasible
paths for respective agents ai’s with σ being the identity map and no two paths pi, p j

are in collision.

We require the graph to be a CUG so that it is suitable for multi-agent path
planning. We formalize the rationale in the following lemma.

Lemma 1. Let pi, p j be two paths that are not in collision (as a partial solution
to Problem 1). Then two disc shaped agents5 of radius less than 1/2, starting at
the same time and moving along these respective paths with unit speed, will never
collide.

Lemma 1 shows that a solution to Problem 1 provides a path set for disc agents
with unit diameter in A to reach their respective goals without a collision. It is easy
to see that not all instances of this problem are solvable. Furthermore, since Problem
1 is a generalization of multi-agent path planning on 2D grids and it is NP-hard to
optimally (i.e., using least number of moves) solve the N ×N extension of the 15-
puzzle [39], it is NP-hard to find the shortest total path length for Problem 1. If we
remove the assumption that all agents must reach their respective goals and allow
permutation invariant paths (i.e., as long as each goal gets occupied by a unique
agent in the end), Problem 1 becomes the permutation invariant multi-agent path
planning on CUGs problem.

Problem 2. [Permutation Invariant Multi-agent Path Planning on CUGs] Given a
4-tuple (G,A,xI ,xG) in which G is a CUG, find a set of paths P = {p1, . . . , pn}
such that pi’s are feasible paths for respective agents ai’s for an arbitrary (but fixed)
permutation σ and no two paths pi, p j are in collision.

Problem 2 models the problem in which multiple identical or indistinguishable
agents need to be deployed for serving requests at different locations (for example,
formation control). This problem always has a solution: We simply plan and execute
one path at a time and use more “remote” goal vertices earlier to avoid possible
blocking of later paths; a formal result on the existence of such a choice of paths is
given in Section 4.

3 Multi-agent Path Planning on CUGs and Network Flow

3.1 Network Flow
In this subsection we give a brief review of network flow problems and algorithms
pertinent to our problems. For surveys on network flow, see [2, 14]. We start with
the classic static network flow problems.

Static Network Flow. A network N = (G,u,c,S) consists of a directed graph G =
(V,E) with u,c : E → Z

+ as the maps defining the capacities and costs on edges,

5 Or spherical agents with radius less than 1/2, for dimensions higher than 2.
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respectively, and S ⊂ V as the set of sources and sinks. We let S = S+∪ S−, with
S+ denoting the set of sources and S− denoting the set of sink vertices. For a vertex
v∈V , let δ+(v) (resp. δ−(v)) denote the set of edges of G going to (resp. leaving) v.
A feasible (static) S+,S−-flow on this network N is a map f : E →Z

+ that satisfies
edge capacity constraints,

∀e ∈ E, f (e) ≤ u(e), (1)

the flow conservation constraints at non terminal vertices,

∀v ∈V\S,
�

e∈δ+(v)

f (e) −
�

e∈δ−(v)
f (e) = 0, (2)

and the flow conservation constraints at terminal vertices,
�

v∈S+

(
�

e∈δ−(v)
f (e) −

�

e∈δ+(v)

f (e)) =
�

v∈S−
(
�

e∈δ+(v)

f (e) −
�

e∈δ−(v)
f (e)). (3)

The quantity on either side of (3) is called the value of the flow.
The classic (single-commodity) maximum flow problem asks the question: Given

a network N , what is the maximum value of flow that can be pushed through the
network (i.e., seeking to maximize F)? The minimum cost maximum flow problem
further requires the flow to have minimum total cost among all maximum flows.
That is, we want to find the flow among all maximum flows such that the quantity

�

e∈E

c(e) · f (e) (4)

is minimized. Given integer inputs, integer maximum flow always exists, and many
polynomial time algorithms exist for finding such a solution [10, 16]. The minimum
cost maximum flow problem is equivalent to the minimum cost circulation problem,
which is also solvable in polynomial time [46].

When additional structure is put on S, additional questions arise. If we limit the
supply (resp. demand) of the source (resp. sink) vertices, we obtain a type of the
flow problem called the transshipment problem. To formalize this, let d : V → Z be
the supplies on the vertices of G. Given a vertex v ∈V , a positive d(v) suggests that
the vertex has positive supply (v ∈ S+) and a negative one suggests that the vertex
has positive demand (v ∈ S−). For all other vertices v, d(v) = 0. The basic version
of the transshipment problem asks for a feasible flow through the network that also
respects the supply/demand requirements

∀v ∈ S+,
�

e∈δ−(v)
f (e) −

�

e∈δ+(v)

f (e) = d(v),

∀v ∈ S−,
�

e∈δ+(v)

f (e) −
�

e∈δ−(v)
f (e) = d(v).

(5)
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The transshipment problem becomes the evacuation problem when |S −| = 1 and
the demand of the single sink vertex is equal to the total supply of the source
vertices. The transshipment problem and the evacuation problem, as special cases
of the maximum flow problem, can be solved with maximum flow algorithms
mentioned above. If we instead require that vertices of S+,S− are paired up as
(s1,s′1), . . . ,(sk,s′k) and that commodity of type i can be injected only into s i and
taken out at s′i, we get the multi-commodity flow problem. Optimality questions as
these from the single-commodity case can be asked here as well. Unlike in the sin-
gle commodity case, finding integer maximum flow for multi-commodity problems
is NP-hard in general and MAX SNP-hard (NP-hard to approximate below a certain
multiple of optimal flow value) even for some simple restrictions [9].

Dynamic Network Flow. If we consider that flowing commodities through edges
takes some time to complete, the problem becomes a dynamic network flow problem,
which sometimes is also called network flow over time. There are two common
variations of the dynamic network flow model: Discrete time and continuous time.
In a discrete time model, flows enter and exit from vertices at integer time steps
t = 0,1, . . . ,T . For a given edge e = (u,v) ∈ E, we may view the cost c(e) as the
time that is required to pass an amount of flow (not exceeding the capacity) from
the tail u to the head v of the edge e. Therefore, we may interpret a (static) flow

y
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0 1

2

1s 
+

s 
-

y

x

s 
+

s 
-

1 3 420

(a) (b)

Fig. 2 a) The (static) flow network with source s and sink t. The numbers on the edges are the
costs/time delay for passing through these edges. We may assume that the capacities are all unit
capacities. b) The time-expanded network with 5 copies of the original vertices (T = 4). All edges
have unit capacity. There is a forward edge between two vertices u and v at time steps t and t′,
respectively (e.g. x at t = 0 and y at t′ = 1), if one of the following is true: 1. e = (u,v) is an edge
of the static network with c(e) = t′ − t (the black edges, which retain the costs as c(e)’s); 2. u,v are
the same vertex of the static network and t′ − t = 1 (the green edges, which have unit costs). The
green edges are also called holdover edges since traveling through a green edge is the same as the
agent not actually moving.

network N as a dynamic one without any change of notations. In the closely related
continuous time model, which we do not use in this paper, a flow rate is assigned
to each edge, designating how fast a unit of flow can pass through the edge. The
constraints imposed in the static network flow model generally apply to dynamic
network flow models, except that dynamic network flow further requires that at any
time, the flow passing through any edge cannot exceed the edge capacity.
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Given a dynamic flow network, a question similar to the single-commodity max-
imum flow problem is the following: Starting at t = 0, what is the maximum units
of flow the can reach the sinks on or before time t = T? It turns out that this prob-
lem can be solved using static flow algorithms such as Edmonds-Karp [10] over a
time-expanded network. For example, given the dynamic flow network in Fig. 2(a),
its time-expanded network with T = 4 is given in Fig. 2(b). To compute a flow over
the time expanded network, we first add a super source and connect it using outgo-
ing edges to all copies of source vertices at t = 0, and add a super sink and connect
all copies of sink vertices for all t to it using outgoing edges (the super source, su-
per sink, and additional edges are not shown in Fig. 2(b)). With this construction,
a static flow on the time-expanded network corresponds to a dynamic flow on the
dynamic flow network. In particular, assuming a sufficiently large T , we can state
the following [13].

Lemma 2. A flow for a dynamic flow network N is feasible if and only if the cor-
responding static flow on the time-expanded network of N is feasible.

Using a time-expanded network comes with a caveat. The standard maximum
flow algorithms have time complexity depending polynomially on T and are there-
fore pseudopolynomial in general. For a special class of problems, the quickest
transshipment problem, of which the goal is finding the quickest feasible flow for
a transshipment problem over a dynamic network, strongly polynomial time algo-
rithm6 exists [20]. However, the algorithm requires calling subroutines (for example,
submodular function optimization routines) that are not combinatorial algorithms
and also has with large constant terms when it comes to asymptotic time complex-
ity.

3.2 Equivalence Between Multi-agent Path Planning on CUGs and
Maximum Network Flow

In this subsection, we establish a reduction from the problems of our interest to
multi-commodity network flow. For illustration purposes, we use the simple graph
G in Fig. 3(a), with initial locations {s+i }, i = 1,2 and goal locations {s−i }, i = 1,2.
An instance of Problem 1 is given by (G,{a1,a2},xI : ai → s+i ,xG : ai → s+i ). To
apply maximum flow algorithms, we construct from G a time-expanded directed
graph G′, part of which is shown in Fig. 3(c). We construct Fig. 3(c) as follows.

Since we cannot create an infinite time-expanded network, we need to specify the
required number of time steps. For now assume that this number is some sufficiently
large T (that is, if a flow with value F is achievable with an arbitrarily long time ex-
pansion, then F is also achievable with only T time steps). After fixing T , we create
2T +1 copies of vertices from G, with indices 0,1,1 ′, . . ., as shown in Fig. 3(c). For
each vertex v ∈ G, we denote these copies v(0) = v(0) ′,v(1),v(1)′,v(2), . . . ,v(T )′.
For each edge (u,v) ∈ G and time steps t, t + 1, 0 ≤ t < T , we then add the gadget

6 An algorithm is a strongly polynomial algorithm if: 1. The number of operations in the arithmetic
model of computation is bounded by a polynomial in the number of integers in the input instance,
and 2. The space used by the algorithm is bounded by a polynomial in the size of the input [17].
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shown in Fig. 3(b) between u(t) ′,v(t)′ and u(t+1),v(t+1) (arrows from the gadget
are omitted from Fig. 3(c) since they are too small to draw). This gadget ensures that
two agents cannot travel in opposite directions on an edge in the same time step. For
the gadget, we assign unit capacity to all edges, unit cost to the horizontal middle
edge, and zero cost to the other four edges. To finish the construction of Fig. 3(c), for
each vertex v ∈ G, we add one edge between every two successive copies (i.e., we
add the edges (v(0),v(1)),(v(1),v(1)′), . . . ,(v(T ),v(T )′)). These correspond to the
green and blue edges in Fig. 3(c). For all green edges, we assign them unit capacity
and cost; for all blue edges, we assign them unit capacity and zero cost.

s 1
+

s 2
+

s 1
-

s 2
- u(t+1)u(t ) 0

v(t+1)v(t ) 0

s 1
+

s 2
+

s 1
-

s 2
-

20 1
0

2
0

1

(a) (b) (c)

Fig. 3 a) A simple CUG G. b) A gadget for splitting an undirected edge through time steps. c)
Part of the time-expanded network (T = 2).

The graph Fig. 3(c) is the main piece of G ′, which is mostly done with the ex-
ception of the set S. To create S+, for each source vertex u ∈ {s+i }, we create a new
vertex u′ and add that to S+. We then add the edge (u′,u(0)) to G′. The edge has
unit capacity and zero cost. To create S−, for each v ∈ {s−i }, we add two vertices
v′,v′′ and the edge (v′,v′′) to G′ with unit capacity and zero cost. We then con-
nect all copies of v ∈ G′ to v′ (e.g. add edges (v(0),v′), . . . ,(v(T )′,v′)) and let these
edges have unit capacity and zero cost. The set of all v ′′’s is the set S−. The network
N ′ = (G′,u,c,S+ ∪ S−) is now complete; we have now reduced Problem 1 to an
integer maximum multi-commodity flow problem on N ′ with each agent from A as
a single type of commodity.

Theorem 3. Given an instance of Problem 1 with input parameters (G,A,xI ,xG),
there is a bijection between its solutions (with maximum number of time steps up to
T ) and the integer maximum multi-commodity flow solutions of flow value n on the
time-expanded network N ′ constructed from (G,A,xI ,xG) with T time steps.

Since integer maximum multi-commodity flow is NP-hard, the above construc-
tion does not directly offer an efficient solution to Problem 1. Nevertheless, with
backtracking, it is not hard to design complete algorithms that search the time-
expanded network N ′ for a feasible solution. Our preliminary analysis shows that
when the problem instance is not particularly hard (i.e., when there are not many
narrow passages in the combined configuration space), a solution can be found rela-
tively quickly. We plan to study this problem in more detail in future work. Alterna-
tively, we may readily obtain an integer linear programming problem from N ′ and
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apply heuristics such as branch and bound method [25], for which many heavily
optimized numerical packages are readily available.

Moving to Problem 2, allowing an arbitrary permutation σ to act on x G means
that we may treat all agents as a single type of commodity. Theorem 3 then implies
that Problem 2 is equivalent to the quickest transshipment problem, which is solv-
able in polynomial time using subroutines for optimizing submodular functions. In
the next section, we show that we can do better by bounding the required time steps
for finding a feasible solution to Problem 2 and then apply more standard combina-
torial algorithms for network flow to solve it.

4 Efficient Combinatorial Algorithms for Permutation Invariant
Multi-agent Path Planning on CUGs

If we choose to apply combinatorial network flow algorithms over the time-expanded
network to find solutions to Problem 2, the first priority is to determine the required
number of time steps necessary to find a solution; otherwise we cannot declare that
the algorithm is complete. We now provide a tight bound on T . Let (G,A,x I ,xG)
be an instance of Problem 2. We first prove some intermediate results on path
sets over G. To distinguish these paths from the solution path set, denote them as
Q = {q1, . . . ,qn}. For convenience, head(qi), tail(qi), and len(qi) denote the start
vertex, end vertex, and length of qi, respectively. With a slight abuse of notation,
V (·), E(·) denote the vertex set and edge set of the input parameter, which can be
either a path, qi, or a set of paths, such as Q. An intersection between two paths is
a maximal consecutive sequence of vertices and edges common to the two paths. A
standalone goal vertex is a vertex v ∈ xG(A) such that there is a single path q ∈ Q
containing v. To start off, we want a path set Q with the following properties:

Property 1. For all 1 ≤ i ≤ n, head(qi) ∈ xI(A) and tail(qi) ∈ xG(A). For any two
paths qi,q j, head(qi) �= head(q j) and tail(qi) �= tail(q j).

Property 2. Each path qi is a shortest path between head(qi) and tail(qi) on G.

Property 3. The total length of the path set Q is minimal.

Property 4. If we orient the edges of every path q i ∈ Q from head(qi) to tail(qi),
no two paths share a common edge oriented in different directions.

Properties 1 and 2 are merely restrictions to have the initial and goal vertices
paired up using shortest paths. Property 3 requires the total length of these paths to
be minimal. Property 4, which is implied by Property 3, lends to show that the paths
can be oriented to form a directed acyclic graph.

Lemma 4. There exists a set of paths Q = {q1, . . . ,qn} that satisfies Properties 1-4.

The technique from the proof of Lemma 4 can be generalized to show that ori-
ented paths cannot form any directed cycles, which in turn implies the existence of
a standalone goal vertex.

Proposition 5. A path set Q that satisfies Properties 1-3 induces a directed acyclic
graph (DAG) structure on E(Q).
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Corollary 6. A path set Q that satisfies Properties 1-3 has a standalone goal vertex.

The existence of a standalone goal vertex allows the construction of a path set
which decomposes into paths that can be sequentially scheduled without colliding
into each other. We characterize such a path set as one with an additional property.

Lemma 7. There exists a path set Q satisfying Properties 1-4 and the following
additional property:

Property 5. Let Qi := {qi, . . . ,qn}. For any 1 ≤ i ≤ n, restricting to Qi, among all
possible paths connecting an initial location (of Qi) to a standalone goal location (of
Qi) using oriented edges from E(Qi), qi is one shortest such.

If we schedule agents using a path set Q satisfying properties 1-5, there can never
be cases where two agents block each other, as a direct consequence of Lemma 4.
There is still the possibility that one agent blocks another. The following theorem
shows that such blocking can be minimized.

Theorem 8. Given an instance of Problem 2 with input parameters (G,A,xI ,xG)
and let � be the largest pairwise distance between a member of xI(A) and a member
of xG(A),

�= max
∀u∈xI(A),v∈xG(A)

dist(u,v). (6)

A time-expanded network N ′ with T = n+ �− 1 is necessary and sufficient for a
feasible solution to Problem 2 to exist.

Since � cannot be larger than V , the number of vertices of G, the following corol-
lary is immediate.

Corollary 9. For every instance of Problem 2, a feasible solution exists.

In particular, the construction in the proof of Lemma 4 yields a complete (may not
be efficient) algorithm for Problem 2. In addition to confirming that any maximum
flow algorithm over the time expanded network N ′ with T = n+ �− 1 is a also
complete algorithm, Theorem 8 enables us to show that such algorithms are efficient.

Theorem 10. Problem 2 is solvable usign a combinatorial algorithm in strongly
polynomial time.

Using the Ford-Fulkerson algorithm [12], the time complexity is O(nVE). In
practice, even better running times are possible. If G is a planar graph, we have

E ∼O(V ) and �∼O(V
1
2 ). The time complexity then becomes O(MF(n,V (n+V

1
2 −

2),V (n+V
1
2 − 2))) ∼ O(MF(n,V (n+V

1
2 ),V (n+V

1
2 ))). Since in our case n < V ,

Ford-Fulkerson gives us the running time O(nV (n+V
1
2 )) = O(n2V + nV

3
2 ).

5 Optimal Solutions
In this section, we present optimal solutions for the permutation invariant multi-
agent path planning problem. After introducing several temporal and spatial ob-
jectives of practical importance, we apply techniques from network flow to obtain
optimal solutions for these objectives. Since these objectives are different from the
basic version of Problem 2, we provide bounds on T again to obtain strongly poly-
nomial algorithm for them. Lastly, we show that these objectives possess a Pareto
optimal structure and they cannot be optimized simultaneously.
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5.1 Optimizing over the Feasible Solutions
Having found feasible solutions to Problem 2, we turn the focus to the optimality of
these solutions for practical purposes. As mentioned in Section 2, we intend to use
the formulation as a model for scenarios such as multi-robot servicing. For many
applications, time optimality is a top priority. Optimizing over the feasible solutions
to Problem 2 (that is, we require that all goals are reached), there are two natural
criteria for measuring time optimality:

Objective 1. Minimizing the average time it takes for all agents to reach their goals.

Objective 2. Minimizing the time it takes for the last agent to reach its goal.

In terms of agents (robots or people) serving requests, Objective 1 seeks to min-
imize the average time before a request gets served, which is arguably the most
efficient approach. By Theorem 3, optimizing over Objective 1 is equivalent to find-
ing a maximum flow on the time-expanded network N ′ such that the total cost of
the flow is at minimum. This is exactly the minimum cost maximum flow objec-
tive stated in (4), which is equivalent to finding the minimum cost circulation on an
slightly augmented network, for which polynomial time algorithms exist (polyno-
mial in T ). To show that Objective 1 can be optimized in polynomial time, we bound
T with respect to the problem input as follows.

Theorem 11. There exists an optimal solution for Objective 1 in a time-expanded
work with T = n(n− 1)/2+ �.

Theorem 11 implies that the number of edges of the time-expanded graph is
at most O(E(n2 +V )). The total complexity is at most O((n2 +V )VE logV ) [1].
The second objective, minimizing the time that its last goal is reached, provides a
lower bound on the time that is required to reach all goals. Solutions optimizing
this objective are useful in providing worst servicing time estimate or guarantee.
Solutions to the quickest transshipment problem [20] yield optimal solutions to this
objective. However, we can avoid using submodular function optimization routines
if we have a polynomial bound on T , which is provided in the following corollary
of Theorem 8.

Corollary 12. There exists an optimal solution for Objective 2 in a time-expanded
work with T = n+ �− 1.

To see that Corollary 12 is true, note that T = n+ �− 1 is sufficient for find-
ing a feasible solution, which must have completion time as large as that of a
solution to Objective 2. With the bound on T , running logT rounds (via binary
search) of maximum flow over time-expanded network with different time horizon
then gives us an optimal solution to Objective 2. The running time is then bounded
by O(MF(n,V 2,VE) logV ), which is strongly polynomial. In particular, with Ford-
Fulkerson, the running time becomes O(nVE logV ). After time optimality, another
very useful solution property to optimize is the total distance traveled by the agents,
i.e., spatial optimality:

Objective 3. Minimizing the total distance traveled by the agents on G.
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Because we work with a CUG, if an agent ai actually moves along path pi be-
tween time steps t and t+1, pi(t) must be different from pi(t+1). These correspond
to the black edges in the time-expanded network (see Fig. 3(b)). Thus, to optimize
this objective, we can find the shortest total distance traveled by all agents via setting
the cost of the holdover edge (green edges in Fig. 3(b)) to zero and then running min-
imum cost maximum flow algorithm over the time-expanded network. The method
is again strongly polynomial, with complexity O(V 2E logV ), due to the following
corollary.

Corollary 13. There exists an optimal solution for Objective 3 in a time-expanded
work with T = n+ �− 1.

5.2 Pareto Optimality Between the Objectives
From the discussion in the previous subsection, we observe that each of the three
objectives is of practical importance. At this point, one might be tempted to seek
solutions that optimize multiples of these objectives simultaneously. We show that
this is not possible for each pair of these objectives. In the following theorem, we
say that two objectives are compatible if and only if they can be optimized simulta-
neously. Otherwise, we say the objectives are incompatible.

Theorem 14. Over the feasible solutions to Problem 2, Objectives 1-3 are pairwise
incompatible.

6 Conclusion, Future Work, and Open Problems
In this paper, we established the close link between two classes of problems: Multi-
agent path planning on CUGs and network flow. Focusing on the permutation invari-
ant versions of the multi-agent path planning problem, we proved a tight bound on
the number of time steps necessary and sufficient for a feasible path set to exist in the
time-expanded network, enabling efficient algorithmic solutions to these problems.
We then explored optimality issues, demonstrating that the time-expansion bound
generally carry over to yield strongly polynomial algorithms for optimizing these
practical objective functions. Interestingly, each pair of these objectives cannot be
optimized simultaneously.

Given our study, an immediate question or criticism is the applicability of the re-
sults to problems beyond CUGs. After all, real agents, whether robots or people, do
not always live on a discrete graph. To answer this question, we have research under
way that explores the idea of overlaying the the CUGs on the actual workspace. That
is, we may first create a roadmap over the workspace that captures the connectivity
and then discretize the roadmap over which the statement of Lemma 1 continues to
hold (as long as the edges are close to unit length the angle between two edges is
obtuse, similar version of Lemma 1 can be stated) [35]. A basic solution (Fig. 4(a))
may be to put a grid on the roadmap and delete vertices inside or close to obstacles.
To overcome the issue of the inherited Manhattan metric of grids, we may adapt the
grid to align with the geodesics of the environment. For example, for a two dimen-
sional workspace with polygonal obstacles, we can arrange the grid edges to follow
edges of the visibility graph [29] of the environment when possible. When clearance
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is tight, we may start with a maximum clearance roadmap [35] and add the vertices
carefully (see Fig. 4(b)). Note that because the workspace is often two dimensional,
these preparations can be computed relatively efficiently.

(a) (b)

Fig. 4 a) Overlaying grid on a workspace with obstacles. b) Adapting a roadmap to obtain a graph
that can be used with our multi-agent path planning algorithms.

Many interesting open problems remain. Although finding a distance optimal so-
lution to Problem 1 using a time-expanded network is impractical due to its intrinsic
hardness, the network flow approach might still produce efficient methods that yield
basic feasible solutions since the time-expanded network has a forward only struc-
ture. In addition, approximation algorithms on integer multi-commodity flow could
lead to better heuristics for optimal solution search. Along this line, we only touched
the most essential results in the field of network flow, which are but the tip of the
iceberg. It would not be surprising that results from the vast amount of network flow
literature could be readily carried over to tackle path planning problems, either as
we proposed in this paper or in some other forms. As an example, for Problem 2,
since Objectives 1-3 are all of practical concerns but incompatible, it is desirable
to seek solutions that provide performance guarantees on each of these objectives.
Network flow methods, closely relate to linear programming, appear to be promis-
ing tools for such parametric optimization tasks.
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