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Abstract—This paper introduces and solves a problem of
maintaining the distribution of hidden targets that move outside
the field of view while a sensor sweep is being performed, result-
ing in a generalization of the sensing aspect of visibility-based
pursuit-evasion games. Our solution first applies information
space concepts to significantly reduce the general complexity so
that information is processed only when the shadow region (all
points invisible to the sensors) changes combinatorially or targets
pass in and out of the field of view. The cases of distinguishable,
partially distinguishable, and completely indistinguishable targets
are handled. Depending on whether the targets move nondeter-
ministically or probabilistically, more specific classes of problems
are formulated. For each case, efficient filtering algorithms are
introduced, implemented, and demonstrated that provide critical
information for tasks such as counting, herding, pursuit-evasion,
and situational awareness.

I. INTRODUCTION

Imagine a game of hide-and-seek is being played. After
the hiders conceal themselves (subsequent relocations are
allowed), the seekers, familiar with the environment, start to
search for the hiders. Most people who played the game as
schoolchildren know that an effective search begins with the
seekers checking places having high probabilities of containing
a hider, from previous experience: A closet, an attic, a thick
bush, and so on. After the most likely locations are exhausted,
the next step is to carry out a systematic search of the
environment, possibly with some seekers guarding certain
escape routes. Occasionally, during the game, hiders may
attempt to relocate themselves to avoid being found. While
the hiders succeed sometimes, they may end up being spotted
by the seekers and are instead getting found earlier.

Although a child’s play, this game captures the two key
interacting ingredients of pursuit evasion (PE) games: Pas-
sively estimating the distribution of hidden targets and actively
planing to reduce the uncertainty of this distribution. The
general goal in PE research is to algorithmically clear evading
targets from a workspace. As pursuers try to ensure that the
workspace is evader-free, they always need to maintain the
pursuit status, remembering whether a region outside of the
pursuers’ field-of-view (FOV) is contaminated or cleared (one
bit of information per region).

This paper, expanding upon [51], [52], studies exactly this
passive ingredient of PE games, reasoning about the informa-
tion residing in unobservable regions of the environment. In

particular, we introduce the notion of filters over shadow in-
formation spaces for tracking moving targets in unobservable
regions, as a generalization of this aspect of PE. To achieve
this, we first process sensor observation history and compress
it in a lossless fashion for our task classes, for storage and
effective computation. Next, depending on whether the targets
of interest are moving nondeterministically or probabilistically,
concrete problems are formulated and solved by carefully
manipulating and fusing observation and data. At a higher
level, at any time, our algorithm can estimate the number
of targets hidden in regions not directly observable. We note
that, although the active problem of planning a pursuit path is
not addressed in this work, heuristic search strategies can be
readily implemented on the space of filter outputs.

The mathematical study of PE games dates back to at least
four decades ago, with its roots in differential games [15]–[17].
Although optimal strategies for differential PE games are still
actively pursued [2], [25], [29], [46], a variant of differential
PE games, visibility based PE, has received much attention
recently. Development of visibility based PE games can be
traced back to [32], in which a PE game on discrete graph
is introduced with the goal of sweeping evaders residing on
continuous edges of a graph. The evaders can move arbitrarily
fast, but must move continuously. The Watchman Route prob-
lem [8], [9], formulated twelve years later as a variant of the
Art Gallery problems [27], [38], involves finding shortest route
to clear static intruders. An intruder is considered cleared if
a line of sight exists between the intruder and a point of the
watchman route.

Influenced by these two threads of research, [42] defined
what we know today as visibility based PE games in which
the discrete graph domain is replaced by a path connected
interior of a 2D polygon and a continuously moving evader
is considered to be cleared if it falls into the visible region
of a pursuer (in this case the pursuer is equipped with two
flashlights and is called a 2-searcher). Thinking along the same
lines as the Art Gallery problems, it was soon established that
for a pursuer with an omnidirectional infinite range sensor (an
∞-searcher), it is NP-hard to decide the minimum number of
pursuers needed for the class of simply connected polygons
[14], [24]. The insight that bitangents and inflections fully
capture the critical changes leads to a generalization from
polygons to curved environments [23] and form the basis of
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some critical events used in our work.
Various sensing and motion capabilities are explored in vis-

ibility based PE. Interestingly, it turns out that a 2-searcher is
as capable as an ∞-searcher in simple polygons [31]. Pursuers
with a single flashlight/beam (a 1-searcher) are investigated in
detail in [39] and [20], with the latter limiting the pursuer’s
motion to the boundary of the environment. Variations along
this line include limited FOV [11], unknown environments
[35], and bounded speed [44]. Another theme in PE games
is to discretize time and put speed bounds on both pursuers
and evaders. In this setting, sufficient conditions and strategies
for a single pursuer to capture an evader are given to the
classical lion-and-man problem in the first quadrant of the
open plane [37]. This problem is then extended to R

n and
multiple pursuers in [21], and multiple pursuers with limited
range in [5]. Finally, PE is also studied in the probabilistic
context [18], [47] and abstract metric spaces [1].

Since we provide algorithms for tracking moving targets,
our work is also closely related to target tracking and enu-
meration. The problem of accurately counting the number
of targets with overlapping footprints is solved with a novel
approach of integrating over Euler characteristics in [3]. With
a virtual sensor that reports visible features of polygonal
environment as well as indistinguishable targets, static targets
are counted under various setups in [12]. A filtering algorithm
is provided in [40] to count moving targets with a network of
binary proximity sensors. In [48], Simultaneous Localization
and Mapping (SLAM) and Detection and Tracking of Moving
Objects (DTMO) are combined to attack both problems at the
same time. A specialization of our problem is investigated
in [43] in which the sensor FOV becomes one dimensional
beams. Real-time people counting with a network of image
sensors is studied in [50].

Another research area of relevance to this paper, especially
the probabilistic formulations we give in Section VI, is the
study of optimal search [41], which proposes a Bayesian
approach for maintaining a target distribution and use that
information for guiding the planning of optimal search paths.
The essential idea from optimal search is to plan a path
to eliminate regions with highest probability of containing
the targets. In doing so, optimal search algorithms allow the
prediction of the no-detection likelihood [4], [7], [26], [49],
which is the probability that the targets remain undiscovered at
given stages of a search effort, even before the actual search is
carried out. Although our work also seeks to maintain a target
distribution along a given path, we focus on the computational
problem of how topological changes of non observable compo-
nents, which are combinatorial in nature, can be correctly and
efficiently processed as the target distribution evolves. This
topological/combinatorial element of target tracking exists
whether the problem formulation is probabilistic or not. In this
aspect, the problems we address here are mostly orthogonal to
classical optimal search problems, which cover environments
(support surfaces of the distribution) that are mainly two
dimensional, obstacle-less planes such as these appearing in
typical maritime applications. As such, the results presented
in this paper should benefit the extension of optimal search
results to covering more diverse workspaces such as urban

areas and hilly terrains, where topological changes of non
observable components are frequent.

The main contributions of this work are twofold. First, as
explained above, we generalize visibility based PE by intro-
ducing a richer class of problems and providing a framework
as a submodule for systematically attacking these problems.
Second, the capability of effectively tracking hidden, moving
targets, a general type of situation awareness, applies to a large
class of time critical tasks in both civilian and national secu-
rity applications. For example, in a fire evacuation scenario,
knowing the the possible/expected number of people trapped
in various parts of a building, firefighters can better decide
which part of the building should be given priority when they
coordinate the search and rescue effort.

The rest of the paper is organized as follows. Section
II provides a mathematical definition of what we mean by
“shadows” and “component events”, which can be best cap-
tured using a chronological sequence. Section III suggests the
general problem of tracking hidden targets after bringing in
moving targets and FOV events, . Section IV formulates the
problem of estimating the number of targets hidden in shadows
for nondeterministically moving targets and establishes its
polynomial time solvability using results from integer linear
programming theory. Section V shows how information spaces
[22] can guide the design of efficient algorithms for solving
the nondeterministic formulation in a more intuitive fashion.
Section VI extends the problem formulation and solutions to
probabilistically moving targets and imperfect sensors. We
provide implementation, simulation results, and algorithmic
analysis in Section VII, and conclude with Section VIII.

II. COMPONENT EVENTS, SHADOWS, AND SHADOW

SEQUENCES

Intuitively, in the hide-and-seek game, the part of the world
that is not observable is comprised of many components, each
of which has a life span. To study the information flow in
them, a formal definition of components is first in order; the
temporal relationship among them then naturally comes up.

A. Component events and shadows

Let a nonempty set of robots move along continuous tra-
jectories in a workspace, W = R

2 or W = R
3. Let the

configuration space of the robots be C. At some time t, there
may be configuration space obstacles Cobs which may vary
over time, leaving Cfree := C\Cobs as the free configuration
space. Let q ∈ Cfree be the configuration of the robots at
time t. Returning to the workspace, there is a closed obstacle
region O(t) ⊂ W , leaving F (t) := W\O(t) as the free
space. The robots are equipped with sensors that allow them
to make shared observations in a joint FOV or visible region
V (q, t) ⊂ F (t). For convenience, we take the closure of
V (q, t) and assume that the visible region is always closed.
Let S(q, t) := F (t)\V (q, t) be the shadow region, which may
contain zero or more nonempty path connected components
(path components for short). A path component is assumed
to be nonempty unless otherwise specified. At any instant,
O(t), V (q, t), and S(q, t) have disjoint interiors by definition
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and W = O(t) ∪ V (q, t) ∪ S(q, t). Fig. 1 shows V (q), S(q)
for a point robot holding a flashlight with F ⊂ W = R

2,
Cfree ⊂ SE(2), which is the set of two dimensional transla-
tions and rotations (here we omit the parameter t from F, V ,
and S since the obstacle region does not vary over time).

F q

V(q)

s1

s2

S(q)

(a) (b) (c)

Fig. 1. (a) The environment and the free space, F . Note that in this example,
the obstacle region is fixed; therefore, F is constant. (b) The visible region,
V (q). (c) The shadow region, S(q), with two path components s1, s2.

To observe how path components of the shadow region
evolve over time, let the robots follow some path τ : [t0, tf ] →
C in which [t0, tf ] ⊂ T ⊂ R is a time interval. Let Z = W×T .
We may let O : T → Pow(Z) be the map that yields the
obstacle region and define V, S as:

V, S : C × T → Pow(Z).

Since a path τ , parameterized over t ∈ T , is always as-
sumed in the paper, we abusively write V (t), S(t) in place
of V (τ(t), t), S(τ(t), t), respectively. In particular, we are
interested in S(t) and call it a slice. For any (ta, tb) ⊂ [t0, tf ],
let the union of all slices over the interval,

S(ta, tb) :=
⋃

t∈(ta,tb)

S(t),

be called a slab, which is an open subset of Z . For any subset
z of Z , define its projection onto the time axis as

πt : Pow(Z) → Pow(T ),
z �→ {t | (p, t) ∈ z for some p ∈ W}.

Let st,i ⊂ S(t) denote the i-th path component of S(t) (as-
suming some arbitrary ordering). Let s i′ denote the i′-th path
component of a slab S(ta, tb) (again, assuming some arbitrary
ordering). S(ta, tb) is homogeneous if for all t ∈ (ta, tb) and
all i, there exists i′ such that

st,i = S(t) ∩ si′ ,

and separately,

πt(si′) = (ta, tb) for all i′.

A homogeneous slab is called maximal if it is not a proper
subset of another homogeneous slab. The definition then parti-
tions S(t0, tf ) into some m disjoint maximally homogeneous
slabs plus some slices

S(t0, tf ) = S(t0, t1) ∪ S(t1) ∪ . . . ∪ S(tm−1) ∪ S(tm−1, tf ).

That is, homogeneity of S(t0, tf ) is broken at t1, . . . , tm−1.
What exactly happens at t1, . . . , tm−1? Let there be two
homogeneous slabs S(ta, tb) and S(tb, tc) such that for some
k ∈ {1, . . . ,m − 1}, tk−1 ≤ ta < tb = tk < tc ≤ tk+1. Let
si be an arbitrary path component of S(ta, tb), at t = tb, si
may (s denotes the closure of s)

1) live on, if there exists a path component sj ⊂ S(tb, tc)
such that si ∩ S(tb) = sj ∩ S(tb) 
= ∅.

2) disappear, if si ∩ S(tb) = ∅.

Similarly, a path component sj ⊂ S(tb, tc) may

3) appear, if sj ∩ S(tb) = ∅.

Finally, a nonempty set of path components {s i} of S(ta, tb)
may

4) evolve, if there is a nonempty set of path components
{sj} of S(tb, tc) such that |{si}|+|{sj}| ≥ 3 and

⋃
i si∩

S(tb) =
⋃

j sj ∩ S(tb) 
= ∅ is a single path component
of S(tb).

By definition, appear, disappear, and evolve are critical
changes that only (and at least one of which must) happen
between two adjacent maximally homogeneous slabs. We call
these changes component events. With component events,
homogeneity and maximality readily extend to path compo-
nents of slabs. A path component si ⊂ S(ta, tb) is called
homogeneous if no component events happen to a subset of
si in (ta, tb); si is called maximal if it is not a proper subset
of another homogeneous path component.

W

t1 t4t3t2t0 tf

s6

s5
s4

s3

s2

s1

T

Fig. 2. Evolution of shadows: t1: s3 appears, t2: s2, s3 merge into s4, t3:
s4 splits into s5, s6, t4: s6 disappears. The “sizes” of the shadows have no
effect on the critical events.

At this point, a type of general position is assumed to avoid
two tedious cases: 1) Four or more path components cannot be
involved in an evolve event, and 2) Two or more component
events cannot occur at the same time. In practice, non general
position scenarios form a measure zero set and can be dealt
with via small perturbations to the input if required. With
such an assumption, exactly one component event happens
between two maximally homogeneous slabs. Moreover, the
evolve event can be divided into two sub events: split if
|{si}| = 1, |{sj}| = 2 and merge if |{si}| = 2, |{sj}| = 1.

We now piece together the above definitions using an
example illustrated in Fig. 2. Restricting to the time inter-
val (t0, tf ), there are five maximally homogeneous slabs,
S(t0, t1), . . . , S(t4, tf ). Certain proper subsets of one of these,
such as S(t+2 , t

−
3 ) with t2 < t+2 < t−3 < t3, are again

homogeneous but no longer maximal; on the other hand,
supersets such as S(t−2 , t

+
3 ) with t−2 < t2 < t3 < t+3 , are

no longer homogeneous. The slab S(t0, tf) ⊂ Z has two path
components (s1 and Int(s2 ∪ s3 ∪ s4 ∪ s5 ∪ s6), in which Int
denotes the interior of a set) and six maximally homogeneous
path components s1, . . . , s6. The intersection of a vertical line
at t ∈ (t0, tf ) with S(t0, tf ) corresponds to the slice S(t).
For convenience, it is assumed that t = t0 is not a critical
time in the sense that for each path component s t0,i ⊂ S(t0),
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st0,i = si′ ∩ S(t0) for some path component si′ ⊂ S(t0, t1).
A similar assumption is made for t = tf . Under this setup,
there are four component events: 1. s3 appears at t = t1; 2.
s2 and s3 merge to form s4 at t = t2; 3. s4 splits into s5, s6
at t = t3; and 4. s6 disappears at t = t4. In contrast, the path
component s1 ∩ S(t0, t1) lives on through t1, . . . , t4.

Finally in this subsection, we define the main concept of
the paper: shadow. It is easy to see that maximally homo-
geneous path components are pairwise disjoint. Let such a
path component be called a shadow and let {s i} be the set of
shadows of S(t0, tf ); note that S(t0, tf ) is contained in the
closure of ∪isi. In the above example, {si} = {s1, . . . , s6}.
For some t ∈ (t0, tf ), let a path component of S(t) be
labeled as st,i if it is a slice of a shadow si. More precisely,
st,i = si ∩ {(p, t) | p ∈ W}. For t = t0, st0,i is labeled such
that st0,i = si∩S(t0) for some path component si ⊂ S(t0, t1).
The same applies to the labeling of stf ,i. A path component of
S(t) has no label exactly when it is the border of two or more
shadows of a slab. Since such labeling is unique, we drop time
subscript of st,i if t is fixed. In the rest of the paper, we use
the set {si} to denote both shadows and slices of shadows;
we simply call both types of path components shadows when
no confusion arises from the context. When we do need to
distinguish, the former will be called workspace-time shadows
and the later workspace shadows.

B. Shadows are everywhere

s2

s1

s3 s2

s1

(a) (b) (c)
s1

s4

s1

s6
s5 s5

s1

(d) (e) (f)

Fig. 3. An example of shadows and their indexing/labeling. (a) The set
of spotlights and the path to be followed by the darker (orange) colored
spotlight. (b) Initially, only shadow s2 and unbounded shadow s1 exist. (c)
A new shadow s3 appears. (d) s2, s3 merge into a single shadow s4. (e) s4
splits into new shadows s5, s6. (f) s6 disappears.

To promote the intuition behind the mathematical defini-
tions, let us look at a realistic example shown in Fig. 3(a).
With the intention of guarding a planar region, spotlights are
cast on the ground, creating a set of illuminated discs as
shown. Assume that only the darker (orange) colored disc of
light moves and follows the dashed line. For any position of
the moving spotlight, the combined, illuminated set can be
thought of as the FOV. Its complement in the plane is the
shadow region, in which targets cannot be directly observed.
Initially, there are two connected components, labeled s 1

(unbounded) and s2, in the shadow region. As the spotlight
moves along the dashed line, we observe that shadows may
appear, disappear, merge, and split, as illustrated in Fig. 3(b)
to (f). We constructed this example so that the events and

evolution of shadows match exactly these of the example from
Fig. 2.

The naive example suggests that shadows and component
events arise from very simple setups. Indeed, shadows and
component events are ubiquitous, showing up whenever mov-
ing sensors are placed inside environments. We provide three
additional examples to corroborate this point; many others
could be presented. In Fig. 4(a), omni-directional, infinite
range sensors partition the 2D environment into polygonal
shadows. The component events happen exactly when the
sensors make inflection and bitangent crossings (see aspect
graphs [33]), which gives rises to the concept of gaps and gap
navigation trees as discussed in [45]. If the sensors have lim-
ited viewing angle [11] or limited range (Fig. 4(b)), alternate
models governing visible and shadow regions are obtained. In
Fig. 4(c), fixed infrared beams and surveillance cameras are
placed inside a building, creating a set of three fixed shadows
s1, s2, s3. Such a setting is common in offices, museums, and
shopping malls. As a last example, Fig. 4(d) shows a simplified
mobile sensor network with coverage holes. In this case, the
joint sensing range of the sensor nodes is the FOV and the
coverage holes are the shadows, which fluctuate continuously
even if the sensor nodes remain stationary (consider cellphone
signals).

s4

s1

s5

s2 s3

s6 s7

s1

s2

(a) (b)

s1 s2 s3

s1 s2

(c) (d)

Fig. 4. a) Two robots (white discs) carrying omni-directional, infinite range
sensors. The free space is partitioned into seven shadows. b) When sensing
range is limited, the topology of shadows changes; only two shadows are left.
c) An indoor environment guarded by fixed beam sensors (red line segments)
and cameras (yellow cones). There are three connected shadows. d) A simple
mobile sensor network in which the white discs are mobile sensing nodes,
with shaded regions being their sensing range at the moment. There are two
shadows with s1 being unbounded.

For some environments, shadows are readily available or can
be effectively computed with high accuracy, such as visibility
sensors placed in 2D polygonal environments. In some other
cases, shadows are not always easy to extract. As one example,
estimating coverage holes in a wireless sensor network is
rather hard since it is virtually impossible to know whether
a point p is covered unless a probe is dispatched to p to
check. It is also well known that 3D visibility structure is
difficult to compute [28], [34]. Even though we do not claim
to overcome such inherent difficulties in acquiring visibility
region and/or shadows, the method presented here applies as
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long as a reasonably accurate characterization of the shadows
is available.

C. Shadow sequences

We conclude this section with the introduction of a shadow
sequence, of which the importance will become more apparent
in coming sections. When the shadows of S(t0, tf ) for a
fixed path τ are put together, a sequential structure comes up.
This structure, which we call a shadow sequence, captures
the combinatorial changes of the labeled shadows through
component events. A graphical illustration of the shadow
sequence for the example in Fig. 3 is given in Fig. 5.

2

t4

6

5

3

1

1

Fig. 5. A graphical illustration of the shadow sequence for the example from
Fig. 3. The numbers in the circles represent the labels of the shadows. The
four events marked on the time line, from top to bottom, are appear, merge,
split, and disappear. As one expects, this figure closely resembles Fig. 2.

III. TARGETS, FOV EVENTS, AND IMPERFECT SENSORS

A. Targets

Our interest in shadows lies with maintaining information
that is not directly observable by sensors. To effectively
investigate how to track such information, we briefly charac-
terize what we mean by information. We assume that there
is a non-negative integer number of targets in F , which
are point entities that move arbitrarily fast but follow some
continuous, unpredictable trajectories. The robots’ sensors can
detect certain attributes of these targets. We are interested in
two types of attributes: location and identity.

Location. When the targets move in/out the sensors’ FOV,
their appearance/disappearance may be detected. Depending
on the sensors’ capabilities, at least two levels of precision are
possible: 1. The sensors can tell whether the FOV contains no
target or at least one. In other words, each sensor’s output is
binary (motion detector is a sensor of this type). 2. Each target
inside the FOV can be precisely located and counted.

Identity. When multiple targets are present, it may be
possible to tell them apart. That is, the sensors may be
able to distinguish the targets in the FOV. Roughly speaking,
the targets may be: 1. Fully distinguishable. When targets
possess unique IDs recognizable by the sensors, they are fully
distinguishable. 2. Indistinguishable. Although it appears that
full distinguishability is the most powerful, it is not always
available due to sensor cost constraint or even desirable due
to concerns such as privacy. It is not hard to make targets
indistinguishable: In the sensor output, erase any attributes
that can be used to distinguish among the targets. 3. Partially
distinguishable. Everything between the previous two notions

of distinguishability belongs to this class. For instance, targets
may form teams that are distinguishable by color.

Location and identity are related – full distinguishability
implies that the sensors should be able to locate targets in the
FOV. On the other hand, tracking locations over time can be
used to distinguish targets. However, these two attributes are
not identical and it benefits to treat them orthogonally. For
example, when colored teams of targets are present, a low
resolution overhead camera can easily tell whether a team is
present in the FOV via a color scan, acting as a combination
of binary location sensor and identity sensor. Given sensors
that can detect some subsets of the above mentioned attributes
of targets, each labeled shadow can be assigned one or more
variables that describe these attributes of the targets residing in
the shadow. Note that although we deal mostly with binary and
integer variables in this paper, variables of other forms, such
as real numbers, can also be incorporated over the structure
of shadows and component events introduced here. When we
consider targets in the shadows, a type of invariance arises:

Observation 1 In an environment with only component
events, the number of targets hidden in a workspace-time
shadow is invariant along its span over time; furthermore,
a workspace-time shadow is a maximal set in which such
invariance holds.

By the assumption that a hidden target moves continuously,
its trajectory is contained in the same workspace-time shadow
when no component events happen. Two workspace shadows,
as different time slices of the same workspace-time shadow,
must intersect the same number of such trajectories since no
target enters or exits the component in the time being. This
yields the invariance. The second claim follows the definition
of workspace-time shadow as a maximal union of all such
workspace shadows.

B. FOV events

If a location sensor also has memory, it will be able to detect
changes to the number of targets in the FOV during a short
time interval. We call such a change a field-of-view event (FOV
event for short), which is a second type of critical events of our
interest. Furthermore, if the sensors know where a FOV event
happens, these events can be associated with corresponding
shadows. For a shadow si, three FOV events are possible: 1)
A target enters si from the FOV, 2) A target exits si into the
FOV, and 3) Nothing happens at the boundaries between s i

and the FOV (for a period of time), or null event. Denoting
these events ee, ex, en, respectively, the collection of possible
FOV events for a shadow si is the set

EFOV = {ee, ex, en}.
Some sensors may only detect the enter and exit events
explicitly, such as a sensing node in a sensor network that
only senses targets passing through the boundary of its sensing
range. For detection beams, the FOV is a line segment, which
causes two FOV events to happen consecutively (see Figure 6).
Certain systems may not have FOV events at all; an instance
is a pursuit evasion game in which the evader always avoids
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3
21

Fig. 6. Illustration of FOV events for an environment with obstructed
visibility (left) and for an environment with detection beams (right). 1) A
target is about to exit a shadow into the FOV of the sensor (yellow disc). 2)
A target is about to enter a shadow from the sensor’s FOV. 3) A target is
about to enter and exit the FOV of a beam sensor.

appearing in the pursuer’s FOV. The game ends when an
evader is found or when it is confirmed that no evader is in
the environment.

1

7

tim
e

65

11

10

8

7

3

2

4

4

9

ex

ee

ee

ex

ex

Fig. 7. A typical sequence of critical events. The circles with numbers
represent the shadows; the labeled arrows associate FOV events to shadows.

Since component events and FOV events both happen as
robots move along some path τ in the free space F , it makes
sense to treat them as a whole. It does not take much to
represent them together: We can simply augment the shadow
sequence to include the FOV events. A typical combined
sequence of critical events is shown in Fig. 7. To incorporate
FOV events, the invariance from Observation 1 needs to be
updated.

Observation 2 In an environment with component and FOV
events, the number of targets hidden in a workspace-time
shadow is invariant between FOV events (excluding null
events) associated with the shadow; the time span of such
invariance is again maximal.

To see why the above statement is true, note that an enter
FOV event can be viewed as an appear component event
immediately followed by a merge component event. Same
breakdown holds for exit FOV events. The case is then reduced
to Observation 1. Observation 2 establishes that for the task
of tracking hidden targets that move continuously, any sensor
data unrelated to critical events can be safety discarded without
adverse effects.

C. The problem of tracking hidden targets

With the introduction of component and FOV events, we can
formally define the general problem of tracking hidden targets
that move continuously. The following inputs are assumed:

1) An initial distribution of targets (in shadows) whose total
number remains invariant,

2) An ordered sequence of component and FOV events for
the time interval [t0, tf ], and

3) Any target motion dynamics (for example, nondeter-
ministic) that may provide additional information about
critical events.

From these inputs, the task is to track the evolution of the
target distribution and in particular, to estimate at t = tf
the possible number of targets in a given set of shadows.
For the rest of this paper, we focus on two flavors of this
problem: 1) A nondeterministic setting in which targets move
nondeterministically but critical events are observed without
error, and 2) A probabilistic setting in which the targets’
movement has a probabilistic model and there are imperfect
sensors.

IV. TRACKING NONDETERMINISTICALLY MOVING

TARGETS: THE FORMULATION AND AN ILP PERSPECTIVE

A. Problem formulation

In the nondeterministic setting, we assume that the targets
move nondeterministically. In particular, when a shadow s i

splits into shadows sj , sk, the targets inside si can split
in any possible way as long as the numbers of targets in
sj , sk are both nonnegative. The component events and FOV
events are assumed to be observed without error. Given such
assumptions, the observation history can be partitioned into
two inputs to our filter algorithm:

1) A sequence of shadow and FOV events, and
2) The initial conditions of targets in the shadows at time

t = t0.

A typical initial condition for a shadow takes the form

{(a1, l1, u1), (a2, l2, u2), . . . , (ak, lk, uk)}, (1)

in which ai denotes a subset of target attributes (such as
having red color). We assume that elements of the set {a i}
for a shadow are pairwise disjoint: If ai has red color, then
no aj , j 
= i can include targets with the attribute of having
red color. The corresponding l i and ui denote the lower and
upper bounds on the number of targets in the shadow with
attribute ai. For example, we may know that at the beginning,
a shadow have 6 to 9 green targets and 5 targets that may be
blue or red. In this case, the initial condition can be written
as

{(c = green, 6, 9), (c = blue or red, 5, 5)}.
With these inputs, the main task is to determine the lower and
upper bounds on the number of targets in any given set of
shadows at t = tf for any combinations of attributes. These
obtained bounds are always tight in the sense that any target
distribution falling in these bounds is a possible outcome given
the initial condition and the observation history.

To make the explanation of the algorithm clear, we first
work with a single attribute and ignore FOV events. We also
assume for the moment that the initial conditions are tight in
the sense that all possible choices of values must be consistent
with the later observations (for example, we cannot have a
initial condition of 4 to 6 targets in a shadow and later find that
it is only possible to have 2 targets in it). We will then show
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how FOV events, multiple attributes, and other extensions can
be handled incrementally.

B. An integer linear programming (ILP) perspective

For the simplest case, since there is a single attribute and
the FOV events are ignored, we can represent the number of
targets in a shadow with a single unknown quantity. Let the
set of shadows be {si}; we denote the set of corresponding
unknowns as {xi}. We can write the initial condition for each
shadow at t = t0 as two constraints

li ≤ xi ≤ ui. (2)

For each event in the sequence of component events, we then
obtain one extra constraint of the following form:

Appear or disappear: xi = di
Split or merge: xi = xj + xk.

(3)

Here we allow that as an appear event happens, d i targets may
hide in si at the same time. This is more general than letting
di = 0. To unify notation, we write these in the same way as
the initial conditions by letting li = ui = di. The same applies
to the disappear events. Additionally, we have for each shadow
si, the constraint

xi ≥ 0. (4)

Finally, the task becomes finding the lower and upper bounds
of targets for a set of shadows at time t = tf indexed by I.
For the upper bound, we can write the problem as maximizing
the sum of the set of unknowns

maximize
∑
i∈I

xi. (5)

Finding the lower bound then becomes maximizing the set of
unknowns not indexed by I because the total number of targets
are preserved. We have obtained an integer linear program-
ming (ILP) problem: All critical events can be expressed using
constraints of forms from (2),(3) and (4), with the objective
function having the form from (5). For example, if we are to
express the ILP problem in the canonical form, all we need to
do is to split each equality constraint (given by (3)) into two
inequality constraints (for example, xi = di becomes xi ≤ di
and xi ≥ di) and multiply all inequality constraints with −1
where necessary (xi ≤ di ⇒ −xi ≥ −di). This gives us the
ILP problem in canonical form,

minimize
∑
i∈I

−xi, subject to Ax ≥ b, x ≥ 0, (6)

in which A is the constraint coefficient matrix accumulated
from initial condition and the critical events; x is the vector of
unknowns (one for each shadow). The size of A is determined
by the number of shadows and the number of critical events.
For additional discussion on ILP modeling, see [30].

C. Polynomial time solvability of the ILP problem

It is well known that the class of ILP problems is NP-
complete in general. It turns out, however, that our ILP
problem is not only feasible, but also efficiently solvable. We
point out that an actual target tracking problem may require

solving more than a pair (upper and lower bounds) of ILP
problems as formulated in 6. For example, in a fire rescue
scenario, it may be necessary to estimate upper and lower
bounds on all current shadows individually. Nevertheless, as
long as the number of ILP problems are manageable (say,
linear with respect to the size of the inputs), the overall
problem can also be efficiently solved.

Proposition 3 A polynomial time algorithm exists for the
system described by (6).

As a first step in proving the proposition, we establish the
following lemma:

Lemma 4 The constraint matrix A in (6) is totally unimodu-
lar1.

PROOF. We use induction over the size of square submatrices
of A to prove that all such submatrices must have determinant
0 or ±1. As the base case, every element of A is 0 or
±1. Suppose that all square submatrices of order n have
determinant 0,±1. Denote these matrices Mn. Suppose
there is a square submatrix M of A of order (n + 1) with
determinant not in {0,±1}. Every constraint arising from (2),
(3), and (4) except xi = xj + xk introduces rows in A with
a single ±1 in them; the rest of the row contains only 0s. If
M contains a row arising from these types of constraint then
M must have determinant 0,±1 by induction. Suppose not.
In this case, all rows of M are introduced by constraint of
type xi = xj + xk. Each such constraint brings in two rows
of A with opposite signs and therefore cannot both appear
in M . We can assume that M ’s first row have coefficients
coming from one of the rows introduced by a split event,
xi = xj + xk. As a first case, let the i, j, kth columns of A
correspond to i′, j′, k′th columns of M , respectively. To make
M ’s determinant not in {0,±1}, there needs to be another
row in M that contains exactly two non zero elements among
i′, j′, k′th columns. This is only possible if sj and sk merge
again, giving a constraint of the form xj + xk = xl. We
may let this row be the second row in M . This suggests that
j′, k′th column of M are all zeros after the second row; but
this gives us that M has determinant 0. The second case is
that M includes only two columns of A’s i, j, kth columns. It
can be checked similarly that M must have determinant 0. �

PROOF OF PROPSITION 3. When the constraint matrix A
is totally unimodular and b is a vector of integers, then
the minimal faces of the constraint polytope must assume
integer coordinates, making the solution of the relaxed linear
programming (LP) problem also the solution to the original
ILP problem [36]. It is clear that b in (6) is integer. Lemma 4
gives us that A is totally unimodular. Therefore, a polynomial
time algorithm such as interior point method can be applied
to solve (6). �

1An integer square matrix A is unimodular if detA = ±1. A matrix B is
totally unimodular if every non-singular square submatrix of B is unimodular.
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V. TRACKING NONDETERMINISTICALLY MOVING

TARGETS: AN INFORMATION SPACE PERSPECTIVE AND

EFFICIENT ALGORITHMS VIA COMBINATORIAL FILTERS

Although Proposition 3 tells us that the nondeterministic
formulation can be solved in polynomial time using generic
LP algorithms, it is not clear that these algorithms fully explore
the intrinsic structure of the problem at hand. In this section,
we briefly review the information space (I-space for short, see
Chapter 11 of [22] for an introduction) and show how the I-
space framework can help with the systematic exploration of
the structure of filtering problems that are combinatorial in
nature. For our particular problem, we show that additional
information can be discarded from the shadow sequence to
yield a further condensed information state (I-state). Algorith-
mic solutions based on max-flow are then introduced, followed
by various extensions.

A. Information space as a guiding principle for task based
data filtering

As a shadow sequence is extracted from an observation
history, a much condensed combinatorial structure is left.
This choice is not arbitrary: The general task of tracking
unpredictable targets outside the sensor range induces an
equivalence relation over the workspace-time space that yields
the space of shadows; the evolution of these shadows then
gives rise to a space of shadow sequences. In this subsection,
we review I-space/I-state concepts and explain how shadow
sequences can be viewed as derived I-states and the space
formed by them a derived I-space. We also characterize how
I-spaces/I-states, tasks, and filters are closely related.

For any problem, I-space analysis begins with the history I-
space, Ihist, which is essentially the set of all data that robots
may ever obtain. Formally, for a time period [t0, tf ] ⊂ T ,
a perfect description of everything that occurred would be a
state trajectory x̃t : [t0, tf ] → X , in which X is the combined
state space of robots and targets. It is impossible to obtain this
because not all target positions are known. What is available is
the robots’ trajectory q̃t = τ and the sensor observation history
ỹt : [t0, tf ] → Y , produced by a sensor mapping h : X → Y ,
in which Y is the observation space of the sensors. Let the
robots also have access to some initial information η0 at t = t0.
The history I-state at time t, ηt = (η0, q̃t, ỹt), represents
all information available to the robots. The history I-space
Ihist is the set of all possible history I-states. Ihist is an
unwieldy space; it must be greatly reduced if we expect to
solve interesting problems. Imagine a robot equipped with a
GPS and a video camera moves along some path τ . Without
a specific task, the robot will not be able to decide what
information it gathers is useful; therefore, it has to store all
of q̃t, ỹt. Even at a relatively low spatial resolution and a
frequency of 30 Hz, just keeping the robot’s locations and the
camera’s images in compressed form requires a large amount
of storage space, which presently is not generally possible over
a long time period.

Once a task is fixed, however, it may become possible to
reduce Ihist dramatically. For our specific task of tracking

hidden targets in shadows, as we have established in Ob-
servation 2, all we need to know is the initial distribution
of targets, the component events, and the FOV events. Since
targets move unpredictably, other information contained in η t

does not help: the robots’ exact location, the shape of the
workspace shadows, and what the targets in the FOV are doing
are not relevant. Thus, Observation 2 allows us to construct a
derived I-space Iss, called the shadow sequence I-space that
discards the irrelevant information. Consider the information
contained in ηt = (η0, q̃t, ỹt). To derive Iss, the following
reductions are made over η0, q̃t, ỹt:

1) The initial distribution of targets is extracted from η0.
2) The shadow sequence is extracted via processing q̃ t and

ỹt.
3) The observation history ỹt is compressed so that only

critical events and temporal order between these events
need to be recorded.

The result from this reduction is the shadow sequence I-
state η′t (Fig. 7 gives an example) that lives in Iss. Iss,
as a complete yet more compact representation, immediately
reveals much more structure that is intrinsic to our task than
Ihist does. From this we observe a general pattern that we
exploit: Given Ihist and a task, we try to find one or more
sufficient derived I-spaces, and work exclusively in these
derived I-spaces. In signal processing, a filter is defined as
a device or process that removes from a signal unwanted
features [19]. In this sense, the process of extracting shadows
from q̃t and ỹt is exactly a filter. Moreover, Ihist and Iss are
connected through this filter. From this perspective, solving
a task becomes finding the correct I-space, applying the
associated filter, and performing additional computation as
events happen. For the nondeterministic formulation, we call
such filters combinatorial filters.

B. The bipartite I-space

As mentioned earlier, generic LP algorithms may not
explore the full structure of our problem. One interesting
property of our problem is that the distribution of targets
in the shadows mimics network commodity flow. Another
intrinsic and key property of our problem is that, in many
cases, the relative order of component events does not affect
the possible target distribution in the shadows. For example,
the two shadow sequences in Fig. 8 are equivalent: the set
of shadows at t = tf are basically the same. This allows us

1

32

4 5 6 7

1

2

4 6 7

5

3

Fig. 8. Two shadow sequences that are equivalent for task of estimating
lower and upper bounds on the number of targets in the shadows at time
t = tf .

to safely discard the intermediate shadows to obtain a more
compact I-space Ibip, the bipartite I-space. The basic idea
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(a) (b)

si
sj

si sj

sk
sk

si si a a

(c) (d)

Fig. 9. Incrementally computing I-states in Ibip: a) An appear component
event in which a targets goes into shadow si adds two vertices and an edge,
with a associated with the left vertex. b) A split event splits a vertex and all
edges pointing to that vertex. c) A merge event collapses two vertices into
one and collapses their ingoing edges. d) A disappear event in which si is
revealed to have a targets in it only associates a with the vertex on the right
side.

behind compressing Iss into Ibip is that, since the robots’
sensors cannot obtain information from the shadows as the
robots move around, the information that really matters is
how shadows from the beginning and the current time are
related, while discarding the shadows from intermediate times.
By conservation of targets in the environment, the number
of targets in the shadows at t = t0 and appeared shadows
must be equal that in the shadows at t = tf and disappeared
shadows. This hints towards a bipartite graph structure, which
is why we denote the space of such I-states the bipartite I-
space. To do the filtering, the component events are processed
individually according to the procedure shown in Fig. 9. By
the construction of Iss and Ibip, we have shown that Ihist,
Iss, and Ibip describe the same ILP problem:

Proposition 5 Given that targets move nondeterministically,
information from Ihist and the corresponding Iss, Ibip de-
scribe the same ILP problem of the form (6).

PROOF. The invariance from Observation 2 gives us that Ihist

and Iss are equivalent in capturing the distribution of hidden
targets. To see that Iss and Ibip are equivalent, we may
consider each hidden target individually: Any flow of a target
along a shadow sequence is possible in the corresponding
bipartite structure, by construction. �

A graphical illustration of relationship between I-spaces and
I-states, which summarizes the I-space discussion, is given in
Fig. 10. We point out that such hierarchical structures exist
regardless of whether the formulation is nondeterministic or
probabilistic; it so happens that for our filtering problem, the
nondeterministic formulation leads to one more level of natural
structure than the probabilistic formulation (see Section VI).

C. Tracking targets as a max-flow problem

With the bipartite I-state structure, we are ready to illustrate
the complete combinatorial filtering process with a concrete

Ihist · · · → ηt
qt,t+1,yt,t+1−→ ηt+1 → · · ·

↓ ↓ ↓
Iss · · · → η′t

qt,t+1,yt,t+1−→ η′t+1 → · · ·
↓ ↓ ↓
Ibip · · · → η′′t

qt,t+1,yt,t+1−→ η′′t+1 → · · ·
↓ ↓ ↓
· · · · · · → · · · −→ · · · → · · ·

Fig. 10. Although it is possible to obtain η′t+1 ∈ Iss from ηt+1 ∈ Ihist,
it is also possible to derive it from η′t and qt,t+1, yt,t+1. Same holds for
η′′t+1 ∈ Ibip .

2
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Fig. 11. a) A 2D office like environment. A single robot follows the green
path. Red dots are illustrations of possible targets in the environment. b) The
shadow sequence I-state for the environment and path. The orange indexed
shadows are these at t = t0 or appearing; the green ones are these at t = tf
or disappearing. Shadow s18 are both appearing and existing at t = tf . c)
The bipartite I-state. d) Augmented graph for running max-flow algorithm.

example (the procedure was first introduced in [51]). After
obtaining the bipartite structure, the rest of the algorithm is
nothing more than applying a maximum flow subroutine (such
as Edmonds-Karp) [10]. For the environment given in Fig.
11(a), a visibility cell decomposition procedure [6] will give
us the shadow sequence I-state in Fig. 11(b). Applying the
Ibip filter then gives us the bipartite graph in Fig. 11(c). Note
that each shadow becomes a vertex (sometimes two vertices)
of the bipartite graph. Once the bipartite graph is constructed,
the task of determining lower and upper bounds on shadows
at t = tf can be transformed into a max-flow problem. To
achieve this, we first augment the graph by adding a source
vertex S and sink vertex T . An edge is added between S and
each shadow at t = t0 as well as each appeared shadow, and
an edge is added between T and each shadow at t = tf as
well as each disappeared shadow. The end result of doing this
to the graph in Fig. 11(c) is Fig. 11(d).

After obtaining the extended graph, capacities need to be
assigned to edges of the graph before running max-flow.
Let e(v1, v2) be an edge in the graph from vertex v1 to
vertex v2, and denote the capacity and flow on the edge
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as c(v1, v2), f(v1, v2), respectively. Suppose that we want to
obtain the upper bound on the number of targets in shadow
s19. The edges of the original bipartite graph will always have
infinite capacities, which we do not mention again. For each
edge between S and a shadow indexed i, let c(S, i) = u i. In
our example these indices are 1-5, 10, 12, and 18. For each
edge between a disappearing shadow indexed i, and T , let
c(i, T ) = li. These are 9 and 14 in our example. Since we want
as many targets to go to s19 as possible, we let c(i, T ) = 0 for
i = 13, 15, 18 and c(19, T ) = +∞. After running the max-
flow algorithm, the maximum possible number of targets that
can end up in s19 is given by

f(19, T ) +
∑
i

f(i, T )−
∑
i

c(i, T ), (7)

in which the summations are over indices of disappearing
shadows. We need to consider disappearing shadows since
these shadows should have flow equal to their capacity, which
is not guaranteed by a max-flow algorithm. Filling in numbers
into this example, assuming that the input lower/upper bound
pairs for shadows 1-5, 9, 10, 12, 14, 18 are (2, 4), (0, 3),
(5, 5), (2, 6), (4, 5), (2, 3),(1, 3), (3, 8), (2, 4), (5, 7), respec-
tively, then (7) gives us that shadow 19 can have at most 24
targets. If we instead want the lower bound on the number
of targets in s19, we should let c(S, i) = li, c(i, T ) = li for
i = 9, 14, c(i, T ) = +∞ for i = 13, 15, 18 and c(19, T ) = 0.
After running the max-flow algorithm, s19’s lower bound is
given by ∑

i

c(S, i)−
∑
j

f(j, T ), (8)

in which the first summation is over all shadows connected to
S and the second summation is over all shadows connected to
T . Using the earlier numbers, this minimum is 10 for shadow
19. The same procedure applies to an arbitrary set of shadows.

D. Incorporating FOV events

In the nondeterministic setting, there is no null FOV event.
As mentioned in Observation 2, exit and enter FOV events
can be handled by converting them into component events.
To convert an enter FOV event of shadow s i into component
events, we simply create an appear component event of a single
target and and then merge the newly created shadow into s i.
Similarly, an exit FOV event can be converted into a split
component event followed by a disappear component event.
The rest of the algorithm stays the same. The problem is,
however, if there is a large number of FOV events compared
to the number of component events, this approach will slow
down later steps of the algorithm since it will create two
component events per FOV event. Fortunately, there is no
reason to handle each FOV event individually; since each FOV
event is associated with some shadow, we can group them
based on this association. The only caveat is that we cannot
just group all FOV events for one shadow into a single batch
FOV event as this can introduce information loss. For example,
if ex, ex, ee, ee happens to shadow si, this is not equivalent to
nothing has happened: we know that s i must have at least two
targets in it originally (a “surplus”). On the other hand, the just

mentioned surplus and net target flow are the only two pieces
of information that FOV events of a shadow give us; hence
up to two batch FOV events can summarize all information
contained in all FOV events for a given shadow. Let 〈e j〉 be
the sequence of FOV events for a shadow si in which ej is
either ee or ex, we build a counter to track the surplus of s i

as dmin = min{dj}, with dj defined as

dj =

⎧⎨
⎩

dj−1 + 1 if ej = ee
dj−1 − 1 if ej = ex
0 if j = 0.

Let dtot be dj for the last j, the net target flow from FOV
events. We have four cases. If dmin = dtot = 0, we do nothing.
If dmin ≥ 0 and dtot > 0, we only need to create one batch
enter FOV event for si with dtot number of targets. If dmin < 0
and dtot = dmin, we only need to create one batch exit FOV
event with |dmin| number of targets. In the last case, we need
to create one batch exit FOV event with |dmin| number of
targets and then an enter FOV event with d tot − dmin number
of targets. We can then apply the naive approach from the
beginning of this subsection to convert these batch FOV events
into component events. With this construction, we never need
to handle more than 5n events in which n is the maximum
number of shadows.

E. Solving a variety of other tasks

The ability to obtain lower and upper bounds of the number
of targets hiding inside a shadow easily extends to other useful
tasks. We briefly cover a few of these variations.

Refining initial bounds: Max-flow computations can also
be used to refine the lower and upper bounds from initial
conditions if they are not tight. To get a refined lower bound
for a shadow at t = t0, say s1 from Fig. 11(b), let c(S, 1) = l1,
c(S, i) = ui for i 
= 1, c(i, T ) = ui for disappearing shadows,
and c(i, T ) = 0 for the rest. After running max-flow on this
network, a tighter lower bound, if there is one, is given by

l′1 = l1 +
∑
i

c(i, T )−
∑
j

f(j, T ). (9)

The summations are done similar to that of (8). To refine u 1,
let c(S, 1) = u1, c(S, i) = li for i 
= 1, c(i, T ) = ui for
disappearing shadows and c(i, T ) = +∞. After running max-
flow,

u′
1 = f(S, 1) (10)

This procedure also applies to a set of shadows.
Counting: In this case, the total number of targets, n, is

unknown. For determining n, the lower and upper bounds on
each shadow at t = t0 are set as li = 0, ui = +∞. As
new component or FOV events are observed by the robots
moving in the environment, the previous procedure is run to
keep refining the initial bounds. Once we have l i = ui for
each initial condition, n has been determined. Note that if the
free space is not completely explored, then the upper bound
remains at infinity. Another instance of counting is knowing
n. For example, in a wild animal preserve, it may be required
that the total number of a species is verified periodically.
This reduces to the problem of being given n and wanting to
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account for all of them. To verify the count, we can keep track
of the lower bounds on the total number of targets, and if the
number agrees with n, then the task has been accomplished.

Pursuit-evasion: Suppose there is a single evader and
the task is to determine where it might be. In this case,
li = 0, ui = 1 for each shadow at t = t0. There are three
possibilities for each shadow at t = tf : 1) li = ui = 0 (the
evader is not in si), 2) li = ui = 1 (the evader is definitely in
si), and 3) li = 0, ui = 1 (the evader may or may not be in
si). Note that this is a passive version of the pursuit-evasion
problem. We do not determine a trajectory that is guaranteed
to detect the evader. In general, this problem is NP-hard [14].
Nevertheless, the calculation method proposed in this paper
can be used with heuristic search techniques (or even human
operators) to correctly maintain the status of the pursuit.

F. Incorporating distinguishability

So far we only considered the case of a single attribute,
which is the fully indistinguishable case. What about multiple
attributes? We consider two important cases of distinguisha-
bility based on whether attributes get mixed up or not. If
attributes are not intertwined, i.e., each ai in (1) is a single
attribute, it is straightforward to see that for m attributes, all
we need to do is to run the algorithm for a single attribute m
times, once for each attribute. Additional computation can then
be performed to calculate more complicated combinations.
For example, if we want the lower and upper bounds on the
number of all targets for a shadow, then we can simply add
up individual lower and upper bounds.

For the second case in which we may have multiple at-
tributes for some ai, above approach does not work. Using
the example from Fig. 11, suppose that there are two teams,
red and blue, and the initial conditions of shadows at t = t0
are of the form (red or blue, li, ui). Suppose that we want to
get the lower and upper bound of the number of targets in
s19 again. For lower bounds, four computations are needed:
first we set red capacities to 0 and blue capacities to li for
all edges starting from S. The capacities for each color for
edges ending in T are set as before. Running two max-flow
computations, one for red and one for blue, gives us one
possible lower bound lr1, lb1. Switching red and blue and
repeat above procedure gives us another lower bound l r2, lb2.
We should have lr1+ lb1 = lr2+ lb2. The lower bound on s19
is then lr1 + lb1 red or blue targets with between lr1 and lr2
red targets. The upper bound can be obtained similarly.

VI. IMPERFECT SENSORS, PROBABILISTIC EVENTS, AND

BAYESIAN FILTERS

Now consider the case of probabilistic uncertainty. So
far we have assumed that shadows and events are always
reported without any error, which is unrealistic in practice.
For detecting shadows, we already mentioned that true sensing
range may be unavailable for some sensors and sometimes
it is simply computationally impractical to obtain the exact
visible/shadow region. However, if we settle for partial correct-
ness, then probabilistic models can be applied. For example,

when we deal with sensor networks, conservative, probabilistic
estimates of sensing range may suffice.

The same principle applies to FOV events. For each of the
three FOV events, we assume that the sensors on the robots
may correctly observe it or mistake it for the other two events.
An enter event for a component may be reported by the sensor
as an enter, exit, or null event; the same applies to exit and null
events. That is, the sensor mapping is given by h : EFOV →
YFOV , with YFOV being the set of FOV observations

YFOV = {ye, yx, yn},
in which ye, yx, and yn are enter, exit, and null observations.
The map h can be deterministic, nondeterministic, or proba-
bilistic. In this section, the case of a probabilistic FOV event-
sensor mapping is investigated, together with the assumption
that the dynamics of a split event is provided.

Before moving on, we introduce some notations to facilitate
the discussion of the probabilistic formulation. We use s i to
denote the shadow with label i, as well as the random variable
for that shadow in the joint/multivariate distribution. For shad-
ows s1, . . . , sn, the joint distribution is then P (s1, . . . , sn), in
which a specific entry is P (s1 = x1, . . . , sn = xn) ∈ [0, 1].
In writing formulas and outlining algorithms, we shorten the
repeated variables to “. . .” on both the left hand side (LHS)
and the right hand side (RHS) of an expression. In such
cases, the combined “. . .” on the LHS and RHS denote the
same set of random variables. For example, P (s1, s2, s3, s4) =
P (s1, s2, sk, s3, s4) is shortened to P (. . .) = P (. . . , sk, . . .).

A. Problem formulation

In the basic setup, besides the availability of a sequence
of component and FOV event observations (e.g. Fig. 7), the
following assumptions are made:

1) Component events are observed without error.
2) Targets are indistinguishable. The initial condition is

given as a joint probability distribution P (s1, . . . , sn)
of targets in the n shadows at t = t0.

3) When a split component event happens, a probabilistic
split rule decides how the targets should redistribute.

4) Observations of FOV events follows distribution given
by P (e = e|y = y), e ∈ EFOV , y ∈ YFOV .

After general algorithms are presented, we discuss extensions
relaxing the first two assumptions. The last two assumptions
can be satisfied by collecting and analyzing sensor data from
the same environment; the necessity of these two assumptions
will become self-evident shortly. Given these assumptions,
we want to obtain the target distribution in the m shadows,
P (s′1, . . . , s

′
m), at time t = tf .

The resulting joint probability distribution is useful in
solving many decision making problems; for example, in a fire
evacuation scenario, knowing the the expected number of peo-
ple trapped in various parts (shadows) of a building (possibly
estimated through observations from infrared beam sensors or
security cameras), firefighters can better decide which region
of the building should be given priority when they look around.
The expected number of people in each shadow is readily
available from the joint probability distribution.
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B. Processing component events

To understand how observations affect target distributions
in a probabilistic setting, let us first look at the component
events (we do not distinguish between events and observations
for these since they are the same by assumption). Among the
four types of component events, split and disappear events are
more important than appear and merge events.
1) Split. A split event introduces more uncertainty. As a
shadow splits into two disjoint shadows, the probability masses
in the newly spawned shadows cannot be predicted without
additional information because the sensors can not see what
happens within the shadow region during a split event. The
issue is resolved by the introduction of a split rule, obtained
from supporting data or an oracle, which dictates how the
originating shadow’s probability mass should be redistributed.
For example, statistical data may support that the number of
targets in the child shadows are proportional to their respective
areas.
2) Disappear. When a shadow disappears, the targets hiding
behind it are revealed. This information can be used to
update our belief about the target distribution by eliminating
some improbable distributions of targets. In particular, it can
reduce the uncertainty created by split events. For example,
suppose that a shadow si, having di targets in it (with 100%
probability), splits into shadows sj and sk. It is possible that
sj has 0 to di targets in it, as does sk. However, if sk later
disappears to reveal dk targets in it and no other events happen
to sj and sk, then sj must have exactly di − dk targets in it.
In general, assuming that shadow sk disappears with a target
distriubtion P (sk), the update rule is given by

P ′(s1 = x1, . . . , sn = xn) ∝∑
P (s1 = x1, . . . , sk = xk, . . . , sn = xn)P (sk = xk),

in which the summation is over all joint probability entries of
P (s1, . . . , sn) such that sk = xk. Normalization is required.
3) Appear. An appearing shadow sk, with distribution P (sk),
can be joined with the rest via combining the independent
distributions P (sk) with P (s1, . . . , sn):

P ′(s1 = x1, . . . , sn = xn, sk = xk)
= P (s1 = x1, . . . , sn = xn)P (sk = xk).

4) Merge. In this case, two probability masses are collapsed.
We simply collect the joint distribution to form a single one,

P ′(. . . , sk = xk)

=
∑

xi+xj=xk

P (. . . , si = xi, . . . , sj = xj , . . .),

in which sk is the merged shadow of shadows si and sj . A
detailed example is given in Table I in which the original
shadows are s1, s2, s3 and s2, s3 merge to form shadow s4.

C. Processing FOV events and observations

Shifting to FOV events, we observe that an enter event only
affects the shadow being entered by increasing the expected
number of targets in the shadow. If there is a single shadow s
and an enter event happens, we merely update P (s = d i) = pi
to P (s = di + 1) = pi. On the other hand, an exit event

TABLE I

before merge

P (s1 = 1, s2 = 1, s3 = 4) = 0.2
P (s1 = 1, s2 = 2, s3 = 3) = 0.2
P (s1 = 1, s2 = 3, s3 = 2) = 0.2
P (s1 = 2, s2 = 1, s3 = 3) = 0.2
P (s1 = 2, s2 = 2, s3 = 2) = 0.2

after merge
P (s1 = 1, s4 = 5) = 0.2 + 0.2 + 0.2 = 0.6
P (s1 = 2, s4 = 4) = 0.2 + 0.2 = 0.4

TABLE II

observation data structure used in Algorithm 1

event event type, can be one of appear, disappear, split, merge
component events and enter, exit, null FOV events

ss the originating shadow in a split event
ss1 the first new shadow after a split event
ss2 the second new shadow in a split event
sm1 the first shadow in a merge event
sm2 the second shadow in a merge event
sm the newly merged shadow
se the newly appeared shadow from an appear event
P (se = ne) probability that se contains ne targets
sv the disappearing shadow in a disappear event
P (sv = nv) probability that sv contains nv targets

does the opposite and we change P (s = di) = pi to P (s =
di − 1) = pi. A complication arises here: If shadow si splits
into shadows sj , sk and an ex event happens to shadow sj , it
suggests that it is impossible for sj to have 0 target before the
ex event. The affected probability mass needs to be removed
and the remaining values renormalized. The null event does
not change the target distribution.

Now, to propagate a probability mass through a FOV
observation, y, we essentially break the entry into three pieces
according to above rules, multiplying each resulting entries
with the probability P (e = ee | y = y), P (e = ex | y = y),
and P (e = en | y = y), respectively. If an enter event is
not possible for the observation, the two remaining entries are
renormalized.

D. Accurately propagating probability masses

The first algorithm we introduce in this section is one that
solves the probabilistic formulation from subsection VI-A ex-
actly. As events happen, the probability mass, P (s1, . . . , sn),
is updated according to Algorithms 1 and 2 based on earlier
analysis, in which the observation data structure is defined in
Table II.

As a demonstration, we work through the observation se-
quence given by Fig. 12, with the following assumptions: 1)
Initially there are 2 targets each in shadow s1, s2, 2) the split
rule is that each target has 0.5 probability of going into each of
the two split shadows, 3) there is no null event or observation,
with the true positive rate for any observation being p = 0.9,
and 4) a5 = 1 with probability 0.5 and a5 = 2 with probability
0.5. The extra assumptions are made so that the calculation
of the probability mass entries is limited and the entries can
be listed in a table. The iterative processing of observations
is shown in Table III. The distribution is represented using
a table of joint probabilities, which is always practical when
there are not too many targets and events. Renormalization is
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Algorithm 1 PROCESSPROBABILITYMASS

Input: P (s1, . . . , sn), the initial target distribution
Q, the queue of observation sequences
a split rule
P (e | y), the sensor statistics

Output: the target distribution after all observations

foreach event observation o in Q
switch(o.event)
case appear:

update all P (s1 = x1, . . . , sn = xn) = pj entires to
P (s1 = x1, . . . , sn = xn, o.se = ne) = pj ∗ P (o.se = ne)

case disappear:
set P (s1 = x1, . . . , sn = xn) to∑

P (s1 = x1, . . . , o.sv = nv, . . . , sn = xn) ∗ P (o.sv = nv)
remove stale entries and renormalize the probability masses

case split:
add two new shadows o.ss1, o.ss2
split prob. mass in o.ss into o.ss1, o.ss2 by split rule

case merge:
add a new shadow o.sm and set P (. . . , o.sm = n) to∑

n1+n2=n P (. . . , o.sm1 = n1, . . . , o.sm2 = n2, . . .)
case enter, exit, null:

call PROCESSFOVEVENT

return the updated target distribution

Algorithm 2 PROCESSFOVEVENT

Input: P (s1, . . . , sn), the target distribution
P (e | y), the sensor statistics
y ∈ {ye, yx, yn}, the FOV observation
si, the affected shadow

Output: the target distribution after the observation

foreach P (. . . , si = xi, . . .) = pj entry in the distribution
let P ′(. . . , si = xi + 1, . . .) = pj ∗ P (e = ee | y = y)
let P ′′(. . . , si = xi, . . .) = pj ∗ P (e = en | y = y)
if xi > 0

let P ′′′(. . . , si = xi − 1, . . .) = pj ∗ P (e = ee | y = y)
else

normalize P ′, P ′′ such that P ′ + P ′′ = pj
remove P (. . . , si = j, . . .) = pj entry
store entries P ′, P ′′ and P ′′′ if applicable

return the updated target distribution

performed in the third step for the first and sixth entries, as
well as in the last step. In the merge step, the third and seventh
entries from previous step are combined, as are the fifth and
ninth entries. A graphical illustration of the probability masses
during each step of the run is given in Fig. 13. Note that the
dimensions change as component events happen.

To verify the correctness of the outcome, Monte Carlo trials
are also run, in which individual targets are propagated through
the observation one by one. Since it is not an exact method,
we leave the details of it to the next subsection. After 1000
successful random trials (this is the number of trials used
for all Monte Carlo simulations in this paper), we obtained
P (s4 = 0) = 0.079, P (s4 = 1) = 0.154, P (s4 = 2) = 0.767,
which matches closely the results of the exact algorithm.

E. Efficiently propagating probability masses

Although the algorithm PROCESSPROBABILITYMASS is
exact, its performance directly depends on the number of
probability mass entries of a particular problem. When there
are few targets and events, this is not a problem; but what
if this is not the case? For a slightly more complicated
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Fig. 12. A simple event observation sequence is generated (on the left,
with only two FOV observations marked with bold faced font) when a robot
carrying omni-directional, infinite range sensor follows the dotted path in a
polygonal environment with a hole (the four figures on the right). The last
event, disappearing of shadow s5, is not shown on the right; we note that
additional resource is needed to make s5 disappear (say, a sub search team).
A slightly more complicated sequence is also possible with six additional
FOV observations (on the left, marked with lightened font).

TABLE III

observation probability masses
initial P (s1 = 2, s2 = 2) = 1

yx, s1
P (s1 = 1, s2 = 2) = 0.9
P (s1 = 3, s2 = 2) = 0.1

split,
s2 →
s3, s4

P (s1 = 1, s3 = 0, s4 = 2) = 0.9 ∗ 0.25 = 0.225
P (s1 = 1, s3 = 1, s4 = 1) = 0.9 ∗ 0.5 = 0.45
P (s1 = 1, s3 = 2, s4 = 0) = 0.9 ∗ 0.25 = 0.225
P (s1 = 3, s3 = 0, s4 = 2) = 0.1 ∗ 0.25 = 0.025
P (s1 = 3, s3 = 1, s4 = 1) = 0.1 ∗ 0.5 = 0.05
P (s1 = 3, s3 = 2, s4 = 0) = 0.1 ∗ 0.25 = 0.025

ye, s3

P (s1 = 1, s3 = 1, s4 = 2) = 0.225
P (s1 = 1, s3 = 0, s4 = 1) = 0.45 ∗ 0.1 = 0.045
P (s1 = 1, s3 = 2, s4 = 1) = 0.45 ∗ 0.9 = 0.405
P (s1 = 1, s3 = 1, s4 = 0) = 0.225 ∗ 0.1 = 0.0225
P (s1 = 1, s3 = 3, s4 = 0) = 0.225 ∗ 0.9 = 0.2025
P (s1 = 3, s3 = 1, s4 = 2) = 0.025
P (s1 = 3, s3 = 0, s4 = 1) = 0.05 ∗ 0.1 = 0.005
P (s1 = 3, s3 = 2, s4 = 1) = 0.05 ∗ 0.9 = 0.045
P (s1 = 3, s3 = 1, s4 = 0) = 0.025 ∗ 0.1 = 0.0025
P (s1 = 3, s3 = 3, s4 = 0) = 0.025 ∗ 0.9 = 0.0225

merge,
s1, s3
→ s5

P (s4 = 2, s5 = 2) = 0.225
P (s4 = 1, s5 = 1) = 0.045
P (s4 = 1, s5 = 3) = 0.405 + 0.005 = 0.41
P (s4 = 0, s5 = 2) = 0.0225
P (s4 = 0, s5 = 4) = 0.2025 + 0.0025 = 0.205
P (s4 = 2, s5 = 4) = 0.025
P (s4 = 1, s5 = 5) = 0.045
P (s4 = 0, s5 = 6) = 0.0225

disappear,
s5

P (s4 = 0) = 0.0769
(= 0.0225 ∗ 0.5/((0.0225 + 0.045 + 0.225) ∗ 0.5)
P (s4 = 1) = 0.1538
P (s4 = 2) = 0.7692

event observation sequence (Fig. 12), with 5 targets each
in shadow s1 and s2 to start, 135 joint probability table
entries are obtained before the merge step, as shown in Fig.
14. The probability mass entries increase rapidly because of
the split events and the FOV events. For a split event, if
the originating shadow contains up to n targets, then the
number of probability mass entries can multiply by up to
a factor of n + 1. For FOV observations, each has certain
probability to be enter, exit, and null events, which may
cause the number of probability mass entries to triple in the
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Fig. 13. Graphical display of the target probability mass as the algorithm
PROCESSPROBABILITYMASS is run over the simple event observation se-
quence in Fig. 12. Each figure corresponds to one step in Table III. Lighter
(if any) and darker balls represent probability masses before and after an event,
respectively. The volumes are proportional to the magnitude of the probability
mass entries.

s 4

s 3

s 1

Fig. 14. Probability masses for the slightly more complicated observation
sequence in Fig. 12 before shadows s1, s3 merge to form s5. The axes
s1, s3, and s4, as shown in the figure, have ranges [1, 9], [0, 7], and [0, 5],
respectively, starting from the origin.

worst case. Therefore, as the number of targets and events
increase, the space required to store the probability masses
may grow exponentially. Since processing each observation
requires going through all the entries, computation time will
also explode, which means that the exact algorithm will not
work efficiently. On the bright side, when a large number of
probability mass entries are present, some of these entries must
have very low weights; making approximations by trimming
away these low probability entires is unlikely to greatly affect
the final target distribution.

Monte Carlo trials: Since our task is to probabilistically
track targets, sequential Monte Carlo methods are a natural
choice. As a first heuristic, we perform simple trials such
that each trial starts with the initial distribution of targets.
These targets are propagated through the event observations
by querying a Monte Carlo simulator. During each trial, the
outcome of simulation may contradict an observation, in which
case the trial is simply discarded. After a certain number of
successful trials are completed, the final target distribution is
obtained. For example, the mean of the number of targets in

a shadow at t = tf is simply the average of the number of
targets in that shadow over all successful runs. For simulations
in this paper, we require 1000 successful trials. Note that since
the particular Monte Carlo simulation we perform in this paper
does not depend on data, its result is probabilistically correct
and therefore can serve as baselines for verifying results from
other algorithms.

Improving the PROCESSPROBABILITYMASS algorithm:
Observing that the computation is burdened by storing the
sheer amount of probability mass entries when there are
many targets and observations, an obvious simplification is to
resample the entries and keep the important ones. For example,
we may choose to retain the first 1000 probability mass
entries of largest value. With each step of processing looking
at each entry once, the processing time per step becomes
a constant, albeit a large one. With this approximation, the
earlier algorithm then runs in time linear in the number of
observations. We call this heuristic basic truncation.

The problem with basic truncation, however, is that the
trimmed away entries may turn out to be important. Take the
processing in Table III for example, if the fourth entry after the
merge step, P (s4 = 0; s5 = 2) = 0.0225, is truncated, then
the second entry in the end, P (s4 = 0) = 0.0769, will be
lost, which is significant. The issue becomes problematic very
quickly as the number of coexisting shadows increases, since
each shadow creates one dimension in the joint distribution and
sampling a high dimensional space is inherently inefficient.
To alleviate this problem, in addition to the basic truncation
approach of keeping fixed amount of entries with highest
probability after each update, we also employ the following:

1) Randomly allow probability mass entries with low value
to survive truncation. In doing this, we hope to allow
enough low probability yet important entires to survive
truncation. We denote this heuristic as random truncation.

2) Retain more entries during update steps right before
merge and disappear events. Since disappear events usu-
ally cause the the number of probability mass entires to
decrease dramatically (concentrating the distribution, or
reducing the uncertainty), we can afford to keep more
entries right before these events, without incurring much
extra computational cost. Merge events also cause the
number to decrease as some entries can be combined
after merging. We combine this with random truncation
and denote the resulting heuristic random truncation with
event lookahead.

By construction, it is straightforward to see that the additional
heuristics do not need asymptotically more time. There is a
clear similarity between these heuristics and particle filtering:
They all begin with a discrete set of probability masses, push
the set through an update rule, and resample when necessary.
They also share the same weakness: If the key sample points
with low probabilities are truncated, the end result may be
severely skewed. Unlike in typical particle filter problems, the
number of random variables in our problem keeps changing
with split and merge events.
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F. Extensions

In subsection VI-A, assumptions 1) and 2) are made to
simplify the presentation of the probabilistic algorithms. The
first assumption is that component events are observed without
error. Although component events can be observed with high
accuracy in many environments, it is not always the case.
Sensor network is such an example: sensing range can be hard
to know precisely. The extension to handle such uncertainties
is relatively straightforward, at least in theory: all we need to
do is to maintain a probability distribution over all possible
sequence of shadows consistent with the robot’s observations.
Obtaining expectations of the number of targets in any shadow
can then be done by also calculating the expectation over all
possible sequences of shadows that contains the target shadow.
The computation effort will certainly increase; resampling can
alleviate the burden somewhat.

Various distinguishability assumptions can also be handled.
Recall that in the nondeterministic formulation, two distin-
guishability cases are investigated. When there are only teams
with single attributes, the approach from the nondeterministic
setting applies by simply carrying out one computation per
team. If the teams have multiple attributes (for example,
the initial condition may be given as a joint distribution of
red and blue teams), a direct extension is performing one
computation for each joint probability entries in the initial
condition. This is clearly more work and resampling may be
necessary depending on the granularity of the initial target
distribution. On the plus side, although we lose some accuracy
with resampling (to save computation time), a richer class of
problems can now be handled because any initial condition
can be described as a joint probability distribution.

VII. SIMULATION RESULTS AND COMPLEXITY ANALYSIS

The simulation programs were developed adhering to the
Java 1.6 language standard under the Eclipse environment. The
computations were performed on a workstation with an Intel
Core 2 Quad processor running at 3.0 GHz. The JavaVM has
a maximum memory of 1.5GB. Although many parts of our
algorithm can be easily parallelized, no multi-threading was
used in this implementation.

A. Nondeterministically moving targets

For the nondeterministic case, we implemented and tested
the algorithms for a single robot that moves in a simply
connected polygonal region in R

2 using an omnidirectional
visibility sensor. For such environment, the shadows are
completely characterized by bitangents and inflections. When
the environment is known and the robot can localize itself,
efficient 2D cell decomposition algorithms can be readily
applied to obtain the sequence of shadows for each location
of the robot, allowing the shadows to be continuously tracked.
This setup also enables us to construct an oracle (not available
to the algorithm) for distributing targets inside the free space
to simulate their nondeterministic behavior. For max-flow,
we implemented the O(V E2)-time Edmonds-Karp max-flow
algorithm [10], in which V and E are the numbers of vertices
and edges in the flow graph, respectively.

(a) (b)

Fig. 15. Complicated examples that were used to test our approach. The
given robot trajectories are shown as green lines in the direction of the arrow.

For the environment in Figure 15(a), the trajectory generates
85 component events. Our oracle randomly distributed 100
targets in the free space as the component events occur. This
setting yields a bipartite graph that has 41 vertices and 60
edges. Calculating the lower and upper bounds for the 18 final
shadows for a single team took 0.1 seconds. The second free
space, shown in Figure 15(b), has 385 component events, 491
total shadows, 124 vertices in the bipartite graph with 339
edges. The example involves a million targets with 5 teams that
intersperse. The bounds on the 12 final shadow components
for all 5 teams were computed under one second.

The inputs to the base algorithm (single attribute, no FOV
events) are: 1) A sequence of n shadows, and 2) The initial
condition which takes the form of a pair of lower and upper
bounds for each shadow at t = t0. In the worst case, there
are O(n) vertices and O(n2) edges in the bipartite graph.
Edmonds-Karp max-flow then gives us O(n5) running time
in the worst case. Applying a push-relabel algorithm with
FIFO vertex selection rule will cut the running time to O(n3)
[13]. Adding FOV events does not increase time complexity
asymptotically, as discussed in subsection V-D. Adding partial
distinguishability, on the other hand, will introduce another
input parameter m, the number of teams, that contributes
linearly to time complexity. The typical worst case running
time for the nondeterministic case is then O(n3m). The
number of targets in the system does not directly affect the
performance.

B. Probabilistic setup
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Fig. 16. An event observation sequence with a total 20 shadows in its life
cycle. The FOV observations are not marked.

For the probabilistic case, we ran a simulation with the
observation sequence in Fig. 16. The sequence contains 14
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component event observations. We also included 32 FOV
events scattered along the sequence, which are not marked
in the figure. Shadows 1, 2, 3, 11, 13, 16, 20 are associated
with 10, 7, 8, 9, 6, 9, 4 targets (with probability 1), respectively.
For performance measures, we look at the time for one run
of the algorithm to complete, as well as the expectation
(mean and standard deviation for randomized methods) of
targets in individual shadows at the end (s17, s18, and s19).
When we randomly pick entries to keep, the time result is
averaged over 10 runs and the accuracy is given in the form
of mean and standard deviation. In our implementation, we
also make the following choices: 1) for random truncation,
the entries are kept based on its probability multiplied with
a random number in (0, 1), 2) for event lookahead, we will
not truncate the entries if there is a disappear event within
the next four events or a merge event within the next two
events. The outcome is summarized in Table IV. The heuristics
basic truncation, random truncation, and random truncation
with event lookahead are shortened as TR, RT, and RT-LA,
respectively. The number following the method is the number
of entries kept. By frequent failure, we mean that more than
1/3 of the times the heuristic fails to give a valid result. These
are indicative of minimum number of entries needed for the
method to work.

TABLE IV

heuristic s17 s18 s19 t(s)
none, precise 11.12 5.84 5.60 329.5
TR-10000 failure
TR-20000 10.67 4.85 5.33 6.1
TR-50000 11.00 5.38 5.52 15.5
TR-100000 10.96 5.59 5.53 29.4
TR-200000 11.06 5.73 5.56 61.4
RT-10000 frequent failure
RT-20000 11.38(0.20) 5.31(0.23) 5.67(0.20) 6.1
RT-50000 11.16(0.02) 5.36(0.03) 5.64(0.02) 14.6
RT-100000 11.03(0.01) 5.62(0.01) 5.56(0.01) 28.3
RT-LA-2000 frequent failure
RT-LA-5000 11.32(1.30) 6.54(1.46) 5.28(1.28) 2.0
RT-LA-10000 11.17(0.56) 5.87(0.91) 5.02(0.48) 4.2
RT-LA-20000 11.62(0.26) 5.30(0.18) 5.57(0.16) 8.3
RT-LA-50000 11.32(0.01) 5.51(0.01) 5.60(0.01) 17.7
Monte Carlo 11.16 5.58 5.57 42.1

The result shows that when no heuristic is used, the algo-
rithm takes much more time to finish. This is not surprising
since the time complexity is induced by the space requirement
for storing the probability mass entries. On the other hand, all
of the truncation heuristics work reasonably well, with the ran-
domized truncation plus event lookahead greatly reduces the
number of entries to retain. The RT-LA-50000 run compares
well with the TR-100000 run on accuracy, but uses one third
less time. We expect the advantage to become more obvious
as more targets are present in the system.

For a second test, we change the number of targets in
shadows 1, 2, 3, 13, 16, 20 to 25, 22, 23, 8, 15, 9, while leaving
other observations unchanged. With the increased number of
targets, the basic algorithm runs out of memory after 10
minutes, before the third split is completed. At the peak
of its memory usage during the failed run, there are more
than 2 × 107 probability mass entries. On the other hand,

the randomized methods do not have this problem: Both RT-
100000 RT-LA-50000 yield good results compared to Monte
Carlo trials, with similar running time. The result is sum-
marized in Table V. Comprehensive performance analysis of

TABLE V

Heuristic s17 s18 s19 t(s)
none, exact out of memory after 10 mins
Monte Carlo 18.26 22.25 11.85 43.2
RT-100000 17.78(0.03) 21.83(0.03) 12.34(0.02) 66.3
RT-LA-50000 18.24(0.08) 21.99(0.07) 12.57(0.07) 40.6

probabilistic algorithm is hard since the performance depends
on external factors such as the implementation of the specific
split rule, random number generator, and so on. Nevertheless,
for completeness, we discuss the performance at a higher
level. To avoid the issue of external factors, we assume
that at each step, each probability mass takes constant time
to process. Unlike the nondeterministic case, running time
of the PROCESSPROBABILITYMASS algorithm may depend
heavily on the number of targets in the system via the split
rule. If there are n split events with an average number of
targets in the originating shadow being p and also nf FOV
events, with the reasonable additional assumption that merge,
appear, and disappear events are on the same order as split
events, the PROCESSPROBABILITYMASS algorithm can take
time O(pn3nf ). The running time of the resampling based
algorithms has a big constant depending on the number of
entries to keep, but otherwise depends only linearly on the
number of critical events.

VIII. CONCLUSION

In conclusion, we have formulated and solved, at a very
general level, the problem of tracking targets moving in and
out of the FOV of moving sensors. The resulting filters may
be applied in numerous settings, such as pursuit-evasion,
target enumeration, and situational awareness. When targets
move nondeterministically, a combinatorial filter is proposed
for the tracking task: We show that the naturally emerging
integer linear programming problem is in fact solvable in
polynomial time and provide an efficient max-flow based
solution for it. For the probabilistic filtering problem in which
targets move probabilistically and sensors are not reliable,
we give both exact and efficient algorithms that handle the
several possible scenarios depending on the number of targets
and observations in a system. In solving the more general,
probabilistic version of the tracking problem, a clear link is
also established between combinatorial filtering and Bayesian
filtering methods: The final target distribution is in essence
associating the combinatorial solution, a polytope structure,
with appropriate probabilities. Viewing it from another angle,
the probabilistic shadow I-space extends naturally from its
nondeterministic counterpart, by merely adding dimensions to
record probabilities.
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[15] O. Hájek. Pursuit Games. Academic, New York, 1975.
[16] Y. Ho, A. E. Bryson, and S. Baron. Differential games and optimal

pursuit-evasion strategies. IEEE Transactions on Automatic Control,
10(4):385–389, 1965.

[17] R. Isaacs. Differential Games. Wiley, New York, 1965.
[18] V. Isler, S. Kannan, , and S. Khanna. Randomized pursuit-evasion in a

polygonal environment. IEEE Transactions on Robotics, 5(21):864–875,
2005.

[19] R. E. Kalman. A new approach to linear filtering and prediction
problems. Transactions of the ASME, Journal of Basic Engineering,
82:35–45, 1960.

[20] T. Kameda, M. Yamashita, and I. Suzuki. On-line polygon search by
a seven-state boundary 1-searcher. IEEE Transactions on Robotics,
22:446–460, Jun 2006.

[21] S. Kopparty and C. V. Ravishankar. A framework for pursuit evasion
games in Rn. Information Processing Letters, 96(3):114–122, 2005.

[22] S. M. LaValle. Planning Algorithms. Cambridge University Press,
Cambridge, U.K., 2006. Also available at http://planning.cs.uiuc.edu/.

[23] S. M. LaValle and J. Hinrichsen. Visibility-based pursuit-evasion: The
case of curved environments. IEEE Transactions on Robotics and
Automation, 17(2):196–201, April 2001.

[24] S. M. LaValle, D. Lin, L. J. Guibas, J.-C. Latombe, and R. Motwani.
Finding an unpredictable target in a workspace with obstacles. In Pro-
ceedings IEEE International Conference on Robotics and Automation,
pages 737–742, 1997.

[25] S.-H. Lim, T. Furukawa, G. Dissanayake, and H. F. Durrant-Whyte. A
time-optimal control strategy for pursuit-evasion games problems. In
Proceedings IEEE International Conference on Robotics & Automation,
2004.

[26] R. Mahler. Objective functions for bayesian control-theoretic sensor
management, ıı: Mhc-like approximation. In S. Butenko, R. Murphey,
and P. Paralos, editors, New Developments in Cooperative Control and

Optimization, pages 273–316, Norwell, MA, 2003. Kluwer Academic
Publishers.

[27] J. O’Rourke. Art Gallery Theorems and Algorithms. Oxford University
Press, New York, 1987.

[28] J. O’Rourke. Visibility. In J. E. Goodman and J. O’Rourke, editors,
Handbook of Discrete and Computational Geometry, 2nd Ed., pages
643–663. Chapman and Hall/CRC Press, New York, 2004.

[29] M. Pachter. Simple motion pursuit-evasion differential games. In
Mediterranean Conference on Control and Automation, Lisbon, Por-
tugal, July 2002.

[30] C. H. Papadimitriou and K. J. Steiglitz. Combinatorial Optimization:
Algorithms and Complexity. Prentice Hall, Englewood Cliffs, NJ, 1982.

[31] S.-M. Park, J.-H. Lee, and K.-Y. Chwa. Visibility-based pursuit-evasion
in a polygonal region by a searcher. Technical Report CS/TR-2001-161,
Dept. of Computer Science, KAIST, Seoul, South Korea, January 2001.

[32] T. D. Parsons. Pursuit-evasion in a graph. In Y. Alavi and D. R. Lick,
editors, Theory and Application of Graphs, pages 426–441. Springer-
Verlag, Berlin, 1976.

[33] S. Petitjean, D. Kriegman, and J. Ponce. Computing exact aspect graphs
of curved objects: algebraic surfaces. International Journal of Computer
Vision, 9:231–255, Dec 1992.

[34] M. Pocchiola and G. Vegter. The visibility complex. International
Journal Computational Geometry & Applications, 6(3):279–308, 1996.

[35] S. Sachs, S. Rajko, and S. M. LaValle. Visibility-based pursuit-evasion
in an unknown planar environment. International Journal of Robotics
Research, 23(1):3–26, January 2004.

[36] A. Schrijver. Combinatorial Optimization. Springer-Verlag, 2003.
[37] J. Sgall. A solution of david gales lion and man problem. Theoretical

Computational Science, 259(1-2):663–670, 2001.
[38] T. Shermer. Recent results in art galleries. Proceedings of the IEEE,

80(9):1384–1399, September 1992.
[39] B. Simov, G. Slutzki, and S. M. LaValle. Pursuit-evasion using beam

detection. In Proceedings IEEE International Conference on Robotics
and Automation, 2000.

[40] J. Singh, R. Kumar, U. Madhow, S. Suri, and R. Cagley. Tracking
multiple targets using binary proximity sensors. In Proc. Information
Processing in Sensor Networks, 2007.

[41] L. D. Stone. Theory of Optimal Search. Academic Press, New York,
NY, 1975.

[42] I. Suzuki and M. Yamashita. Searching for a mobile intruder in a
polygonal region. SIAM Journal on Computing, 21(5):863–888, October
1992.

[43] B. Tovar, F. Cohen, and S. M. LaValle. Sensor beams, obstacles, and
possible paths. In Proceedings Workshop on Algorithmic Foundations
of Robotics, 2008.

[44] B. Tovar and S. M. LaValle. Visibility-based pursuit-evasion with
bounded speed. International Journal of Robotics Research, 2007. Under
review (invited submission from WAFR 2006).

[45] B. Tovar, R Murrieta, and S. M. LaValle. Distance-optimal navigation in
an unknown environment without sensing distances. IEEE Transactions
on Robotics, 23(3):506–518, June 2007.

[46] V. Turetsky. Upper bounds of the pursuer control based on a linear-
quadratic differential game. Journal of Optimization Theory and
Applications, 121(1):163–191, April 2004.

[47] R. Vidal, O. Shakernia, H. J. Kim, D. H. Shim, and S. Sastry. Prob-
abalistic pursuit-evasion games: Theory, implementation, and experi-
mental evaluation. IEEE Transactions on Robotics and Automation,
18(5):662669, 2002.

[48] C.-C. Wang, C. Thorpe, S. Thrun, M. Hebert, and H. Durrant-Whyte.
Simultaneous localization, mapping and moving object tracking. Inter-
national Journal of Robotics Research, 26(9):889–916, 2007.

[49] I. Yan and G. L. Blankenship. Numerical methods in search path
planning. In Proceedings of the 27th IEEE Conference on Decision
and Control, pages 1563 –1569 vol.2, 1988.

[50] D. B. Yang, H. H. Gonzalez-Banos, and L. J. Guibas. Counting people
in crowds with a real-time network of simple image sensors. In Proc.
IEEE International Conference on Computer Vision, volume 1, pages
122– 129, 2003.

[51] J. Yu and S. M. LaValle. Tracking hidden agents through shadow
information spaces. In Proceedings IEEE International Conference on
Robotics and Automation, 2008.

[52] J. Yu and S. M. LaValle. Probabilistic shadow information spaces. In
Proceedings IEEE International Conference on Robotics and Automa-
tion, 2010.


