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Abstract— This paper introduces a Bayesian filter that is
specifically designed for counting targets that move outside of
the field of view while performing a sensor sweep. Information
space concepts are used to dramatically reduce the filter
complexity so that information is processed only when the
shadow region (all points invisible to the sensors) changes
combinatorially or targets pass in and out of view. Previous
work assumed perfect observations; however, this paper extends
the approach to enable probabilistic disturbances. Practical
algorithms are introduced, implemented, and demonstrated for
computing the filter outputs based on realistic data.

I. INTRODUCTION

Imagine a game of hide-and-seek (variations include tag,
tick, Cops and Robbers) is being played. After the hiders
conceal themselves (subsequent relocations are allowed), the
seekers, usually having a map of the environment, start to
search for the hiders. Most people who played the game as
schoolchildren know that an effective search usually begins
with the seekers checking places having high probabilities
of containing a hider, from previous experience: a closet,
an attic, a tall bush, and so on. After the most likely
areas are exhausted, the next strategy is then to carry out
a systematic search of the environment, possibly with some
seekers guarding certain escape routes. Occasionally, during
game play, some hiders may attempt to relocate themselves
to avoid being found. While they succeed sometimes, they
may end up being spotted by the seekers and instead getting
found earlier.

Although a child’s play, the hide-and-seek game requires
fusion of previous experience and current observations to
obtain estimation of the unobservable part of the world, upon
which decisions can be made. The key ingredients of the
game are common to a large, important class of problems
in robotics including: 1) counting unpredictable people or
robots that move in a complicated environment [1], [5], [14],
2) pursuing an elusive moving target by sweeping through
a complicated environment to guarantee detection or capture
[3], [6], [8], [11], 3) tracking movements of agents/targets to
determine their possible locations [10], [12], [13], [16]. Some
typical settings and tasks are illustrated in Fig. 1. For each
of these and other tasks, numerous scenarios are possibly
depending on the types of robots, moving bodies, sensors,
and environments that are given. However, all these problems
involve reasoning about observations made while detectable
bodies pass in and out of the field-of-view of moving sensors,
with the help of cumulated statistical data (possibly gathered
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Fig. 1. a) Two robots (white discs) carry visibility sensors to detect
and track the movements of agents in an indoor (complicated corridors)
or outdoor (a campus of buildings) environment. There are seven connected
white regions in which agents are out of view of sensors. b) Streets in
Chicago. Tracking/pursuing moving cars with helicopters is no simple task
here: trees, buildings, bridges, and other shadows may frequently block a
helicopter’s view. c) An indoor environment guarded by fixed beam sensors
(red line segments) and cameras (yellow cones). There are three connected
white regions. Keeping counts of moving people in such environment can
be useful for normal operations as well as emergency situations. d) A
mobile sensor network in which the white discs are mobile sensing nodes,
with shaded regions being their sensing range at the moment. Although
they arrange themselves to assume a relatively regular formation, there
are coverage holes in the network, possible due to the irregularities in the
environment. Accounting for moving targets in this sensor network can be
very tricky.

in the environment over a long period of time, similar to the
cumulative experience in the hide-and-seek game). Just like
estimating where the hiders are in the hide-and-seek game,
we want an algorithm that maintains the distribution of the
unobservable moving bodies in the environment.

In earlier work [15], we studied the nondeterministic
version of the problem of tracking unpredictable agents
moving in and out of view of moving sensors, presenting an
efficient combinatorial filter solution to the passive problem
of inferring the whereabouts of the agents based on the
movements of the sensors. If desirable, one can easily turn
the solution to the passive problem into a solution to an
active problem of planning, such as sketching a strategy in
hide-and-seek. This paper builds upon [15] to cover a more
interesting and practical version of the problem, in which



both agent distribution and field-of-view observations are
assumed to be probabilistic. Inheriting the notion of com-
ponent events and field-of-view events, which are critical to
the analysis of the nondeterministic problem, we demonstrate
how the agent distribution can be algorithmically and exactly
propagated through the seven component and field-of-view
event observations, given statistical data in the form of a
split rule and sensor statistics. The Bayesian update based
algorithm can be applied to cases with a manageable number
of agents and events. When there are many agents and events
such that the computation is overwhelmed, we approximate
the exact algorithm with two heuristics, both Monte Carlo
[9] in nature with the second also similar to particle filtering
[2], to efficiently obtain the final agent distribution.

The contribution of the paper is twofold. Firstly, with the
probabilistic extension, we offer a complete solution to the
problem of reasoning about moving agents to the level of
generality that, to the best of our knowledge, has not been
attempted. With the assumption that connected components
are available, we allow the environment to be two or three
dimensional, known or unknown, simply or multiply con-
nected. We also allow the setting to be nondeterministic or
probabilistic (for probabilistic version, we further assume
that a couple of key statistics are available). Secondly,
the probabilistic solution provides a general framework for
treating a wide class of problems without tightly basing the
solution on any specific distribution or statistical model, thus
allowing great flexibility in adapting the framework to the
specifics of individual cases.

II. PROBLEM FORMULATION

A. Free space, visible region and shadow region

Let k point robots move in a world, W = �2 or W = �3.
There may be obstacles in W , which may move and/or
change shape continuously, leaving Ft ⊂ W as the free
space, which is an open set of possible robot positions that
may evolve over time. The configuration for k robots is then
qt ∈ F k

t at time t.
The robots carry sensors that enable them to make obser-

vations in a subset of Ft. The sensors may assume various
forms: They can be omni-directional infinite range sensors
for robots carrying pan cameras, sensors with limited range
for nodes in a sensor network, or fixed infrared beam sensors
placed at passages in museums. Let V (qt) denote the closed
joint visible region or field-of-view when the robots are
in configuration qt. Let S(qt) = Ft \ V (qt) denote the
shadow region. If the robots and obstacles move along a
time-parameterized path over [0, tf ], then the shadow region
itself can be time-parameterized as well: S(qt) is obtained
for every t ∈ [0, tf ].

B. Shadow components and component events

It is assumed that V (qt) and S(qt) behave nicely as qt

varies continuously; more precisely, arbitrarily small changes
in qt incur small changes to V (qt) and S(qt), which can
be formalized using the Hausdorff metric. This enables the
shadow components to be consistently labeled as qt evolves

over time. With the assumption, at any given t ∈ [0, tf ], the
shadow region S(qt) is composed of n (a finite number)
shadow components, s1, . . . , sn. As the system evolves,
these disjoint, path-connected components will also evolve
through one of four types of component events: 1) Two
components merge, 2) One component splits into two, 3) A
new component appears, and 4) A component disappears.
For an appear event, we assume that some agents (possibly
zero) may move into the newly appeared component at the
same time when the event happens, which is more general
than the alternative assumption that a component appear
event happens with zero agents in it. The same applies to
the disappear event. The assumption is justified in practice:
For example, a disappear event can be caused by a subset
of the robots sweeping a shadow component to find out
what is going on in the component; the sweep may report
the exact number of agents or an agent distribution in that
component. A general position assumption is assumed to
avoid two tedious cases: 1) Four or more components are
involved in a split or a merge, and 2) Two or more events
happen at the same moment. A component retains its label
unless it splits, merges, or disappears.
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Fig. 2. Illustration of components and component events in an environment
secured with watch lights (which also mimics an ideal mobile sensor
network). The light cones’ projections on the ground are approximated as
yellow round discs. The arrow in the a disc indicate that light cone’s moving
direction: a) A component appears (left to right) and disappears (right to
left). b) Components merge (left to right) and a component splits (right to
left). Note that there is actually an unbounded component outside all the
watch lights.

Components and component events are ubiquitous in
robotics problems. One such scenario is that robots
equipped with limited viewing angle, infinite range sen-
sors move around in a known, simply connected polygonal
environment[4]. Here, the component events are based on
inflection and bitangent crossings. When the sensing range
is limited, the system behaves more like a mobile sensor
network. The components and component events for an ideal
sensor network are illustrated in Figure 2. In reality, reliably
detecting component events in wireless sensor networks is
inherently hard due to unpredictable changes of the sensing
nodes’ sensing range. For example, cell phone signal strength
at a fixed location can change due to weather and other
environmental factors. Some systems of interest do not have
component events at all, as when fixed beam sensors or
security cameras are used. The shadow components remain



fixed in these cases.
In this paper, it is assumed that the components and

component events are either provided or can be efficiently
obtained, with 100% accuracy. The assumption is made since
the focus of the paper is to set up a common framework
for a class of problems instead of covering every possible
probabilistic variation. Modeling of imprecise component
and component event observations will be addressed in future
research.

C. Moving agents and field-of-view events

Let A denote a set of � point agents. The speeds of the
agents are irrelevant, provided that each agent moves along a
not-necessarily known but continuous path in F t. Let rt ∈ F �

t

be the vector that specifies the agent positions, the vector
(qt, rt), their state, describes the positions of all robots and
agents. As the agents move in and out of the sensors’ field-of-
view, they create the field-of-view events. Component events
and field-of-view events all together are called critical events.
For a given shadow component si, three field-of-view events
are possible: 1) An agent enters si from the field-of-view,
2) An agent exits si into the field-of-view, and 3) Nothing
happens at the boundaries between si and the field-of-view
(for a period of time), or null event. Denoting these events
ee, ex, en, respectively, the collection of possible field-of-
view events for a component si is the set

E = {ee, ex, en}.
For each of these events, we assume that the sensors on the
robots may correctly observe it or mistaken it for the other
two events. For example, an enter event for a component
may be reported by the sensor as enter, exit, or null event.
That is, the sensor mapping is given by h : E → Y , with Y
being the set of field-of-view observations

Y = {ye, yx, yn},
in which ye, yx, and yn are enter, exit, and null observations.
Intuitively, the conditional probability of an observation
given an event, P (e = e | y = y), e ∈ E, y ∈ Y , is affected
by the sensor characteristics as well as the environment in
which the observations are made. We assume that for a
specific sensor and environment combination, the conditional
probability distribution P (e | y) is known, possibly through
data collection over a long period of time. As the field-
of-view observation is concerned, some sensors may only
generate the enter and exit observations explicitly, such as a
sensing node in a sensor network that only senses agents
passing through its sensing disc boundary. For detection
beams, the field-of-view is a line segment, which causes two
field-of-view events to happen consecutively (see Figure 3).
Certain systems may not have field-of-view events at all;
an instance is a pursuit evasion game in which the evader
always avoids appearing in the pursuer’s field-of-view. The
game ends when an evader is found or when it is confirmed
that no evader is in the environment.

So far we have left undiscussed the agents in the sensors’
field-of-view, as the sensors may or may not have an accurate
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Fig. 3. Illustration of field-of-view events for an environment with
obstructed visibility (left) and for an environment with detection beams
(right). 1) An agent is about to exit a shadow into the field-of-view of the
sensor (yellow dot). 2) An agent is about to enter a shadow from the sensor’s
field-of-view. 3) An agent is about to enter and exit the field-of-view of a
beam sensor.

count of these. We may view this information as a factor that
affects P (e | y): A precise agent count in the field-of-view
should improve the accuracy of field-of-view observations.
We assume that agents are indistinguishable.

D. Tasks

Notation. We use si to denote the shadow component with
label i, as well as the random variable for that compo-
nent in the joint/multivariate distribution. For components
s1, . . . , sn, the joint distribution is then P (s1, . . . , sn), in
which a specific entry is P (s1 = x1, . . . , sn = xn) ∈ [0, 1].

Given the initial joint probability distribution
P (s1, . . . , sn) of agents in the n initial components
plus the sequence of event observations that happen along
the way, the main task of interest is to obtain the agent
distribution in the m components existing at time t = tf ,
P (s′1, . . . , s

′
m). The resulting joint probability distribution

can then be used in solving a variety of decision making
problems; for example, in a fire evacuation scenario,
knowing the the expected number of people trapped in
various parts of a building (possibly estimated through
observations from infrared beam sensors or security
cameras), firefighters can better decide which region of the
building should be given priority when they look around.
The expected number of people in each component can be
easily obtained from the joint probability distribution.

III. ANALYSIS OF THE PROBLEM

A. Preliminary treatments of observation history

The distribution of agents in the shadow components does
not change unless some critical event occurs. Therefore,
we may safely ignore the period of time during which no
critical events happen. As a first step in the analysis, we
distill the critical event observations from the observation
history. For some sensors, such as fixed beams, observations
of the critical events are naturally stored in a sequential
form, ready to be used. For others, additional computation
may be required, as is the case with sensor networks: V (qt)
and S(qt) must be continuously updated, from which the
shadow components can be extracted and labeled, and the
field-of-view observations can be associated with the labeled
components thereafter. Thus, it is desirable to bring the
observation data to a form that is succinct yet captures all the
necessary information about critical events, regardless of the



problem settings. To achieve this, we follow the information
space formulation (see [7] for a general introduction) from
the nondeterministic version of the problem [15], in which a
time evolution of shadow components is captured. To account
for field-of-view observations, we attach them to the compo-
nents as they evolve. This preliminary treatment offers two
advantages: 1) We obtain an abstract representation common
to all problems involving component events and field-of-
view events, and 2) It effectively compresses the history
information space into a much more compact observation
sequence information space that is combinatorial in nature,
without loss of critical information. It may appear that time
information associated with null observations is lost; this can
be fixed by recording the time duration of a null event and
introducing time parameter in the sensors’ statistical model.
Figure 4 gives a graphical illustration of a typical event
observation sequence.
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Fig. 4. A typical event observation sequence. The circles with numbers
represent the shadow components; the labeled arrows represent the field-of-
view observations of affect components. The square (with a10 in it) denotes
that component s10 disappears to reveal a10 agents in it.

B. Effects of component events over agent distribution

Notation. When writing formulas and outlining algorithms,
we sometimes shorten some of the random variable assign-
ments to “. . .” on both the left hand side (LHS) and the
right hand side (RHS). In such cases, the combined “. . .”
on LHS and RHS denote the same terms. For example, in
P (. . .) = P (. . . , sk, . . .), the first “. . .” is equivalent to the
next two “. . .” combined.

With observations of the critical events arranged in a
sequential form, the next question is: How do these obser-
vations affect the probability distribution? Let us look at
the component events first. Since they are observed with
100% confidence, there is no need to distinguish between
events and observations for these. Among the four types
of component events, the split and disappear event are the
important ones and therefore are discussed before the others.
1) Split. When a component splits into two disjoint compo-
nents, since the sensors can only observe the split event but
not what happens within the components during the split, the
probability masses in the newly spawned components cannot
be predicted without further assumptions. In other words, the
split event introduces more uncertainty. Solving this demands
a split rule, either from supporting data or an oracle, that
dictates how the originating component’s probability mass
should be redistributed. For example, statistical data may

indicates that the number of agents in the child components
are proportional to their respective volumes.
2) Disappear. When a shadow disappears, it will reveal
how many agents are hiding behind it. This information can
be used to update our belief about the agent distribution
by eliminating some improbable distribution of agents. In
particular, it can reduce the uncertainty created by split
events. For example, say that a component s i, having ai

agents in it (with 100% probability), splits into components
sj and sk. The split rule may say that it is possible for
sj to have 0 to ai agents and so does sk. However, if sk

later disappears to reveal ak agents in it and no other events
happen to sj and sk, then sj must have exactly ai−ak agents
in it. In general, assuming that component sk disappears with
an agent distriubtion P (sk), the update rule is given by

P ′(s1 = x1, . . . , sk−1 = xk−1, sk+1 = xk+1, . . . , ) ∝�
P (s1 = x1, . . . , sk = xk, . . . , sn = xn)P (sk = xk),

in which the summation is over all joint probability entries
of P (s1, . . . , sn) such that sk = xk . Normalization may be
necessary.
3) Appear. An appearing component sk, with distribution
P (sk), can be joined with the rest via combining the inde-
pendent distributions P (sk) and P (s1, . . . , sn):

P ′(s1 = x1, . . . , sn = xn, sk = xk)
= P (s1 = x1, . . . , sn = xn)P (sk = xk).

4) Merge. In this case, two probability masses are collapsed.
We merely collect the joint distribution to form a single one,

P ′(. . . , sk = xk)
=
�

xi+xj=xk

P (. . . , si = xi, . . . , sj = xj , . . .),

in which sk is the merged component from si and sj . Table
I gives such an example in which the original components
are s1, s2, s3 and s2, s3 merge form component s4.

TABLE I

before merge

P (s1 = 1, s2 = 1, s3 = 4) = 0.2
P (s1 = 1, s2 = 2, s3 = 3) = 0.2
P (s1 = 1, s2 = 3, s3 = 2) = 0.2
P (s1 = 2, s2 = 1, s3 = 3) = 0.2
P (s1 = 2, s2 = 2, s3 = 2) = 0.2

after merge
P (s1 = 1, s4 = 5) = 0.2 + 0.2 + 0.2 = 0.6
P (s1 = 2, s4 = 4) = 0.2 + 0.2 = 0.4

C. Effects of field-of-view events and observations over agent
distribution

For field-of-view events, it is straightforward to see that
an enter event should only affect the component being
entered by increasing the expected number of agents in the
component. For example, if there is a single component s and
an enter event happens, we merely update P (s = a i) = pi

to P (s = ai + 1) = pi. On the other hand, an exit event
does just the opposite and we change P (s = ai) = pi to
P (s = ai − 1) = pi. A complication shows up here: If



component si splits into components sj , sk and an ex event
happens to component sj , it suggests that it is impossible
for sj to have 0 agent before the ex event. The affected
probability mass needs to be removed and the remaining
renormalized. The null event does not change the agent
distribution.

Now, to propagate a probability mass through a field-of-
view observation, y, we essentially update the entry into three
pieces according to above rules, multiplying each resulting
entries with the probability P (e = ee | y = y), P (e = ex |
y = y), and P (e = en | y = y), respectively. If an enter
event is not possible for the observation, the two entries left
need to be renormalized.

D. A few agents versus many agents

As we try to make a general method for handling critical
events without modeling under any particular distribution
or split rule, another issue arises: The number of agents is
discrete, but discrete joint probability distributions can use
a large amount of space and time to process when there
are a large number of agents, components, and events in the
system. On the other hand, if we attempt to use nice discrete
probability mass functions or continuous probability density
functions for approximation, it becomes problematic when
there are only a few agents and events. In such cases, the
loss of estimation accuracy may become unacceptably large
after only a short sequence of events.

From the discussion above, we see that, in estimating
the probability mass over the shadow components after a
sequence of observations of critical events, there exists an
intrinsic trade-off between accuracy and the amount of com-
putation. We believe that deciding which representation to
use should depend on the number of agents in the system and
the number of events that happen, which can be partitioned
into three categories:

1) There are a few agents and events, which requires high
accuracy as computation is carried out. On the other
hand, because the combinatorial choices are limited, this
case can be treated with high fidelity, with the only
assumption being good split rule and sensor statistics.

2) There are a few agents but a large number of events.
Propagating the probability mass through many events
will likely cumulate significant errors when there are
only a few agents, unless an extremely reliable split rule
and sensor statistics are available. If this is the case,
then the method for the first category will work fine.
Otherwise, a probabilistic approach may give results
that are far off the true distribution; the nondeterministic
approach [15] can be a better alternative here.

3) There are many agents in the system. If this is the
case, we have more freedom in making simplifications
without dramatically altering the outcome.

To offer an idea of what we mean by a few and many, our
non-optimized Java implementation for the first category can
handle tens of agents and events combined, beyond which
the JavaVM may run out of memory after a long period of
time (10+ minutes). The heuristics for the third category can

handle up to a thousand of agents and events. In the next
two sections, we give detailed analysis of the first and third
categories.

IV. ACCURATELY PROPAGATING PROBABILITY MASSES

When agents and events/observations are a few, to main-
tain an accurate agent distribution in the components as
critical events happen, we want to keep the number of as-
sumptions as few as possible. In this section, we only assume
the bare minimum: 1) An accurate split rule is provided that
governs how agents redistribute when a split event happens,
and 2) The sensor statistics are provided (P (e | y) is known).
It is hard to imagine any meaningful prediction can be made
without these inputs. As events happen, the probability mass
P (s1, . . . , sn), is updated according to a straightforward
algorithm (Table III and IV) based on the analysis in section
III, in which the observation data structure is defined in Table
II.

TABLE II

observation data structure used in Table III

t event type, can be one of appear, disappear, split, merge
component events and enter, exit, null field-of-view events

ss the originating component in a split event
ss1 the first new component after a split event
ss2 the second new component in a split event
sm1 the first component in a merge event
sm2 the second component in a merge event
sm the newly merged component
se the newly appeared component from an appear event
ne the number of agents in an appear event
sv the disappearing component in a disappear event
nv the number of agents revealed in a disappear event

TABLE III

PROCESS PROBABILITY MASS
Input

initial agent distribution P (s1, . . . , sn)
queue Q of observation sequence
split rule
sensor statistics P (e | y)

Output
the agent distribution after all observations

foreach event observation o in Q
switch(o.t)
case appear:

update all P (s1 = x1, . . . , sn = xn) = pj entries to
P (s1 = x1, . . . , sn = xn, o.se = ne) = pj

case disappear:
remove all joint distribution entries with o.sv �= o.nv

renormalize the probability masses
case split:

add two new components o.ss1, o.ss2

split prob. mass in o.ss into o.ss1, o.ss2 by split rule
case merge:

add a new component o.sm

collapse probability mass from o.sm1, o.sm2 into o.sm

case enter, exit, null:
call PROCESS FOV EVENT

return the updated agent distribution



TABLE IV

PROCESS FOV EVENT
Input

agent distribution P (s1, . . . , sn)
sensor statistics P (e | y)
field-of-view observation y ∈ {ye, yx, yn}
the affected component si

Output
the agent distribution after the observation

foreach P (. . . , si = xi, . . .) = pj entry in the distribution
let P ′(. . . , si = xi + 1, . . .) = pj ∗ P (e = ee | y = y)
let P ′′(. . . , si = xi, . . .) = pj ∗ P (e = en | y = y)
if xi > 0

let P ′′′(. . . , si = xi − 1, . . .) = pj ∗ P (e = ee | y = y)
else

normalize P ′, P ′′ such that P ′ + P ′′ = pj

remove P (. . . , si = j, . . .) = pj entry
store entries P ′, P ′′ and P ′′′ if applicable

return the updated agent distribution
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Fig. 5. A simple event observation sequence is generated (on the left, with
only two field-of-view observations marked with bold faced font) when a
robot carrying omni-directional, infinite range sensor follows the dotted path
in a polygonal environment with a hole (the four figures on the right). The
last event, disappearing of component s5, is not shown on the right; we
note that additional resource is needed to make s5 disappear (say, a sub
search team). A slightly more complicated sequence is also possible with
six additional field-of-view observations (on the left, marked with lightened
font).

As a demonstration, we work through an observation
sequence simplified from Fig. 4, shown in Fig. 5, with the
following assumptions: 1) Initially there are 2 agents each
in component s1, s2, 2) The split rule is that each agent has
0.5 probability of going into each of the two split shadow
components, 3) There is no null event or observation, with
the true positive rate for any observation being p = 0.9,
and 4) a5 = 1 with probability 0.5 and a5 = 2 with
probability 0.5. The extra assumptions are made so that
the calculation of the probability mass entries are limited
(so that they can be listed in a table). The observation by
observation processing is shown in Table V. The distribution
is represented using a table of joint probabilities, which
is always doable when agents and events are not many.
Renormalization is performed in the third step for the first
and sixth entries, as well as in the last step. In the merge
step, the third and seventh entries from previous step are
combined, so are the fifth and ninth entries. A graphical

TABLE V

observation probability masses
initial P (s1 = 2, s2 = 2) = 1

yx, s1
P (s1 = 1, s2 = 2) = 0.9,
P (s1 = 3, s2 = 2) = 0.1

split,
s2 →
s3, s4

P (s1 = 1, s3 = 0, s4 = 2) = 0.9 ∗ 0.25 = 0.225
P (s1 = 1, s3 = 1, s4 = 1) = 0.9 ∗ 0.5 = 0.45
P (s1 = 1, s3 = 2, s4 = 0) = 0.9 ∗ 0.25 = 0.225
P (s1 = 3, s3 = 0, s4 = 2) = 0.1 ∗ 0.25 = 0.025
P (s1 = 3, s3 = 1, s4 = 1) = 0.1 ∗ 0.5 = 0.05
P (s1 = 3, s3 = 2, s4 = 0) = 0.1 ∗ 0.25 = 0.025

ye, s3

P (s1 = 1, s3 = 1, s4 = 2) = 0.225
P (s1 = 1, s3 = 0, s4 = 1) = 0.45 ∗ 0.1 = 0.045
P (s1 = 1, s3 = 2, s4 = 1) = 0.45 ∗ 0.9 = 0.405
P (s1 = 1, s3 = 1, s4 = 0) = 0.225 ∗ 0.1 = 0.0225
P (s1 = 1, s3 = 3, s4 = 0) = 0.225 ∗ 0.9 = 0.2025
P (s1 = 3, s3 = 1, s4 = 2) = 0.025
P (s1 = 3, s3 = 0, s4 = 1) = 0.05 ∗ 0.1 = 0.005
P (s1 = 3, s3 = 2, s4 = 1) = 0.05 ∗ 0.9 = 0.045
P (s1 = 3, s3 = 1, s4 = 0) = 0.025 ∗ 0.1 = 0.0025
P (s1 = 3, s3 = 3, s4 = 0) = 0.025 ∗ 0.9 = 0.0225

merge,
s1, s3

→ s5

P (s4 = 2, s5 = 2) = 0.225
P (s4 = 1, s5 = 1) = 0.045
P (s4 = 1, s5 = 3) = 0.405 + 0.005 = 0.41
P (s4 = 0, s5 = 2) = 0.0225
P (s4 = 0, s5 = 4) = 0.2025 + 0.0025 = 0.205
P (s4 = 2, s5 = 4) = 0.025
P (s4 = 1, s5 = 5) = 0.045
P (s4 = 0, s5 = 6) = 0.0225

disappear,
s5

P (s4 = 0) = 0.0769
(= 0.0225 ∗ 0.5/((0.0225 + 0.045 + 0.225) ∗ 0.5)
P (s4 = 1) = 0.1538,
P (s4 = 2) = 0.7692,

s 1

s 2

s 1

s 2

(a) (b)

s 1

s 3

s 4

s 1

s 3

s 4

(c) (d)

s 5

s 4 s 4

(e) (f)

Fig. 6. Graphical display of the agent probability mass as the algorithm
PROP PROBABILITY MASS is run over the simple event observation
sequence in Fig. 5. Each figure corresponds to one step in Table V. Lighter
(if any) and darker balls represent probability masses before and after an
event, respectively. The volumes are proportional to the magnitude of the
probability mass entries.



s 4

s 3

s 1

Fig. 7. Probability masses for the slightly more complicated observation
sequence in Fig. 5 before components s1, s3 merge to form s5. Note: origin
is shifted for better display.

illustration of the probability masses during each step of the
run is given in Fig. 6. Note that the dimensions change as
component events happen.

To verify the correctness of the outcome, Monte Carlo
trials are also run, in which individual agents are propagated
through the observation one by one. Since it is not an exact
method, we leave the details of it to the next section. After
1000 successful random trials(this is the number of trials
used for all Monte Carlo simulations in the paper), we get
P (s4 = 0) = 0.079, P (s4 = 1) = 0.154, P (s4 = 2) =
0.767, which matches well with our exact algorithm.

V. EFFICIENTLY PROPAGATING PROBABILITY MASSES

What if there are many agents and events in the system?
For a slightly more complicated event observation sequence
(Fig. 5), with 5 agents each in component s1 and s2 to start,
135 joint probability table entries are obtained before the
merge step, as shown in Fig. 7. The probability mass entries
increase rapidly because of the split events and the field-
of-view events. For a split event, if the originating shadow
contains up to n agents, then the number of probability mass
entries can multiply by up to a factor of n + 1. For field-of-
view observations, each has certain probability to be enter,
exit, and null events, which may cause the number of prob-
ability mass entries to triple in the worst case. Therefore, as
the number of agents and events increase, the space required
to store the probability masses may grow exponentially.
Since processing each observation requires going through
all the entries, computation time will also explode, which
means that the algorithm PROCESS PROBABILITY MASS
will not work efficiently. On the bright side, as mentioned in
section III, with many agents in the system, exact algorithms
may not be necessary to guarantee accuracy.

A. Monte Carlo trials

Since our task is to probabilistically track the whereabouts
of agents, sequential Monte Carlo methods appear to be
a natural choice. As a first heuristic, we perform simple
trials such that each trial starts with the initial distribution
of agents. These agents are propagated through the event
observations by querying a Monte Carlo simulator. During
each trial, the outcome of simulation may contradicts an
observation, in which case the trial is simply not successful
and discarded. After certain number of successful trials

are run, the final agent distribution can be obtained. For
example, the mean of the number of agents in a final shadow
component is simply the average of the number of agents in
that shadow over all successful runs. We denote this heuristic
simply as Monte Carlo. For simulations in this paper, we
require 1000 successful trials. We also note that since the
particular Monte Carlo simulation we perform in this paper
do not depend on data, its result is probabilistically correct
and therefore can serve as baselines for verifying results from
other algorithms.

B. Improving the PROCESS PROBABILITY MASS algo-
rithm

Observing that the computation is burdened by storing
the sheer amount of probability mass entries when there are
many agents and observations, an obvious simplification is to
resample the entries and keep the important ones. For exam-
ple, we may choose to retain the first 1000 probability mass
entries of largest value. With each step of processing looking
at each entry once, the processing time per step becomes a
constant, albeit a large one. With this approximation, the
earlier algorithm then runs in time linear in the number of
observations. We denote this heuristic RT-X , with X being
the number of entries to keep.

There is a clear similarity between this heuristic and
particle filtering: Both begin with a discrete set of probability
masses, push the set through an update rule, and resample
when necessary. They also share the same weakness: If
the key sample points with low probabilities are truncated,
the end result may be severely skewed. Unlike in typical
particle filter problems, the number of random variables in
our problem keeps changing with split and merge events.

C. Simulation results
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Fig. 8. An event observation sequence with a total 20 components in its
life cycle. The field-of-view observations are not marked.

To test out the above mentioned methods, we run sim-
ulation with the observation sequence in Fig. 8. The se-
quence contains 14 component event observations. We also
put in 32 field-of-view observations scattered along the
sequence, which are not marked in the figure. Components
1, 2, 3, 11, 13, 16, 20 are associated with 25, 22, 23, 9, 8, 15, 9



agents (with probability 1), respectively, be them initial,
appearing, or disappearing components. For performance
measure, we look at the time for one run of the algorithm
to complete, as well as the expected number of agents in
individual components at the end (s17, s18, and s19). The
simulation program was developed adhering to the Java
1.6 language standard under the Eclipse environment.The
computation is performed on a workstation with an Intel
Core 2 Quad processor running at 3.0 GHz. The JavaVM
has a maximum memory of 1.5GB. Although our algorithm
can be parallelized easily, no multi-threading is used in this
implementation. The outcome is summarized in Table VI.

TABLE VI

Heuristic s17 s18 s19 t(s)
none, exact out of memory after 10 mins
Monte Carlo 18.26 22.25 11.85 43.2
RT-100000 17.78 21.83 12.34 66.3

The simulation shows that when no heuristic is used, the
exact algorithm fails to run due to an out of memory error
after 10 minutes. At the peak of its memory usage during
the failed run, there are more than 2× 107 probability mass
entries. On the other hand, both heuristics take about a
minute to finish; the RT-100000 result matches that of the
Monte Carlo method. The final agent distribution from one
RT-100000 run is given in Fig. 9.

s 17

s 19

s 18

Fig. 9. Probability masses after a RT-100000 run. Note: origin is shifted
for better display.

VI. CONCLUSION AND FUTURE DIRECTIONS

We have generalized the formulation and solution to
the previously addressed combinatorial filtering problem of
tracking unpredictable agents moving in and out of the field-
of-view of moving sensors. After analyzing the problem,
we provide both exact and efficient algorithms that handle
the several possible scenarios depending on the number of
agents and observations in a system. In solving the more
general, probabilistic version of the tracking problem, a clear
link is also established between combinatorial filtering and
Bayesian filtering methods: The final agent distribution is
in essence associating the combinatorial solution, a polytope
structure, with appropriate probabilities. Viewing it from an-
other angle, the probabilistic shadow information space ex-
tends naturally from its nondeterministic counterpart, adding
merely additional dimensions to record probabilities.

In our problem formulation we have assumed that agents
are indistinguishable. We note that it is also possible to work
with agents at different levels of distinguishability (fully
distinguishable, partially distinguishable or teams, indistin-
guishable) by introducing team labels over the agents. If
distinguishability is desirable, the analysis and result from
[15] can be applied here with minimal modifications by
treating each team individually.

Our study of the probabilistic shadow information spaces
is by no means the end of a storyline. On the contrary, it is
meant to be the starting point of a general method that unifies
and simplifies the treatment of the problem of tracking unpre-
dictably moving agents. Further research is under way with
the goal of offering more efficient algorithms and concrete
example applications that demonstrate the practicality of the
algorithms. In the end, we hope to provide a framework
serving as a module in solving complex robotics problems.
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