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Abstract— Recent work has produced methods to solve
the winding-constrained optimal feedback navigation problem.
Given the start and the goal positions and the winding con-
straints, the solution to this problem is a feedback vector field
such that, when integrated from the start, the trajectory is
the shortest path connecting the start and the goal which
satisfies given constraints. Such constraints intuitively restrict
the direction and the number of times the path winds around
given planar regions. We formulate a continuous version of this
problem that contrasts with the discrete treatments previously
presented. This leads to a geometrical characterization of
the problem for which simplicial complex approximation is
particularly useful. Thus, it yields theoretical insight as well
as a practical algorithm for approximating the continuous
problem using an efficient and high-accuracy heuristic-driven
front propagation method on simplicial meshes. Experimental
results are given evaluating the solution quality and efficiency
of the method versus methods based on the discrete formulation
and without using heuristics.

I. INTRODUCTION

Recent work has posed the following topologically-
constrained navigation problem: given two points in the
plane, find the shortest path connecting them that satisfies
winding constraints [3], [4], [18]. These winding constraints
specify in what way the path should wind around specified
regions of the plane. An example of a problem that can
be formulated in such a way is planning for surveillance,
as illustrated in Fig. 1. Here, winding constraints can be
enforced to ensure that the generated path circles around
specified regions of interest in a particular way.

Whereas previous approaches [3], [8], [18] have solved
this problem via graph search, we formulate and solve the
winding-constrained planning problem in a more natural
continuous setting. Such an approach has several advantages:
First, it yields important insight into the underlying geometry
of the problem. In fact, we present an equivalent three-
dimensional underactuated system that is “trapped” on the
configuration space of the original problem. Second, this
insight leads to a useful algorithm, since the configuration
space can be constructed explicitly, allowing us to apply
front-propagation methods that lack the discretization arti-
facts inherent in graph-based approaches. Finally, we show
that it is possible to obtain these advantages without signif-
icant loss in computational efficiency; in particular, we take
advantage of a recently developed A*-like front propagation
method that retains optimality of solutions [19].
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Fig. 1. Result of applying our method to the problem of winding-
constrained planning for UAV surveillance. UAV path depicted as yellow
line. Red areas constitute radar installations of high traversal cost (with
increasing cost towards ellipse centers). Green dashed lines denote areas
subject to winding constraints—UAV is constrained to wind around these
regions in order to observe them.

II. RELATED WORK

Our work can be considered a refinement of various recent
methods involving planning trajectories subject to topologi-
cal constraints. Most relevant are graph-based methods such
as that of Bhattacharya et. al. [3], in which the state of
a point-to-point navigation problem was augmented with
a complex-valued state encoding information about path
winding. Simplified variants using more direct encodings of
the winding number were presented in [8] and [18]. These
methods were applied to vision-based tracking and planning
loops for robotics applications, respectively. Unfortunately,
these discrete, graph-based constructions obscure the intrin-
sic geometry of the problem. The continuous formulation
presented here reveals the geometry in a way that aids
intuition and enables the use of efficient and highly accurate
numerical methods.

We identify the configuration space of the winding-
constrained planar navigation problem as a covering space
of the multiply punctured plane. A similar construction
appeared in [12], in which a planning algorithm for a robot
attached to a cable was developed. However, that work
employs a graph-based discretization of the configuration
space that additionally abstracts away details of specific
winding angles; we consider a continuous version of this
structure that encodes winding angles, allowing us to plan
with explicit winding constraints. Also related is work from
computational geometry on the problem of finding the short-
est path homotopic to a given path (or set of paths) such
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Fig. 2. Illustration of winding angles (2a) and winding-constrained paths
(2b). Fig. 2b shows winding-constrained paths in an environment with
obstacles. Numbers indicate winding numbers of path with respect to the
adjacent circular regions. Fig. 2b taken from [18], used with permission.

as [2], [6], [11]. Our work differs from these in that we seek
paths subject to winding constraints, which are equivalent to
homology constraints for our domain (as opposed to homo-
topy constraints) [10]. We also employ numerical methods
that allow us to easily use spatially varying, non-Euclidean
metrics that often arise in path planning for robotics.

III. WINDING-CONSTRAINED OPTIMAL FEEDBACK
NAVIGATION PROBLEM

The basic idea of our work is to reduce the problem of
winding-constrained planning in the plane to that of finding
a minimum-cost path on a surface embedded in R3. Once
this is accomplished, it is straightforward to apply any of
several existing numerical methods to find such a path on
a manifold. Although, recently developed heuristic-driven
methods are significantly more efficient for this, intrinsically
combinatorial, problem.

A. Problem formulation

In intuitive terms, our problem may be expressed simply
as that of finding the minimum-cost continuous path in the
plane while avoiding obstacles that also satisfies winding
constraints. We assume the winding constraints are defined
with respect to points located within obstacles of nonzero
area. Fig. 2b shows some examples of winding-constrained
paths.

A more formal definition of the problem is as follows.
We regard a path as a continuous function [0 , 1]→ R2 \ O,
in which O is an open subset of R2 representing obstacle
locations (or holes in the environment). We assume that some
holes are associated with constraints describing how the path
should wind around them. These constraints are expressed

in terms of winding angles [14], the concept of which is
illustrated in Fig. 2a. Winding constraints are encoded as
vectors in RN that specify desired winding angles to achieve
for each of N predetermined holes. Start and end winding
angle vectors denoted by sθ ∈ RN and gθ ∈ RN . Start and
end locations are denoted by sx and gx respectively. Our
objective is specified in terms of a cost function C : R2 →
R+ (where R+ represents the positive reals). We then wish to
find x̃∗, defined as the solution to the following optimization
problem:

x̃∗ = arg min
x̃:[0 ,1]→R2\O

∫ 1

t=0

C(x̃(t))‖ ˙̃x(t)‖dt (1)

subject to x̃(0) = sx, x̃(1) = gx

θ̃(0) = sθ, θ̃(1) = gθ

Implicit in this optimization problem is another constraint
coupling the optimized path x̃ in space to the dependent
path of winding angles θ̃ : [0 , 1] → RN ; the latter is
dependent on the former in the sense that the winding angles
are completely determined by the spatial path.

B. The geometry of winding-constrained planning

We first explore the geometry of the configuration space
in the case that only one winding constraint is present. Fig. 3
shows a visualization of the configuration space for this
problem. Since only one winding constraint is present, it
suffices to keep track of one winding angle for the purpose of
planning. The winding angle is visualized along the vertical
direction in the figure.

In the topological sense, this kind of construction is known
as a covering space [10]. A covering space is everywhere
locally similar to the base space, which is in this case a plane
with a single hole (representing an obstacle) removed. The
covering space in this case is constructed as a surface with
the property that points on the surface correspond to valid
combinations of position and winding states. Furthermore,
paths on the surface correspond to feasible paths through
the joint space of position and winding. Therefore, we can
find an optimal path subject to a single winding constraint
by finding an optimal path lying on a surface such as that
illustrated in Fig. 3.

The general case appears significantly more complex, as
the configuration space may contain winding information
about multiple holes. It is perhaps counterintuitive, but it is
possible to represent the configuration space as a surface em-
bedded in R2 without self-intersections in the most general
case.

The construction of this surface relies on a trick borrowed
from [18], in which all of the of the winding angles θi are
reversibly encoded into a single real value Θ. For example, Θ
may be simply a linear combination of winding angles with
coefficients that are equal to logarithms of distinct prime
numbers zi:

Θ =
∑
i

θi log zi . (2)



(a) Projection onto original planar domain (b) Frontal view of winding-augmented configura-
tion space

Fig. 3. Visualization of configuration space of planning with a single winding constraint. Fig. 3a shows the planar domain with a hole depicted as a white
disc. The thick yellow tube depicts an optimal loop (computed by our method) constrained to wind twice around the hole. The path is constrained to begin
and end at the yellow sphere. Fig. 3b shows a rendering of the covering space that constitutes the configuration space of the planning problem, along with
the computed path in configuration space. Hue indicates cost-to-go function: redness of hue is proportional to distance to the goal in configuration space.
Holes in configuration space are represented as gray cylinders. Small triangles show simplicial decomposition of surface.

(a) Projection onto original planar domain (b) Frontal view of winding-augmented configuration space

Fig. 4. Visualization of path planning with winding constraints for a simple environment with two holes (refer to caption of Fig. 3 for interpretation).
Path is constrained to wind once counterclockwise around the left hole and once clockwise around the right hole. Vertical coordinate represents Θ-value,
as defined by Eq. (2).

This idea is illustrated in Fig. 4b, in which we have visualized
the configuration space with two winding constraints. Here
we see that every feasible combination of winding angles
at a given location x is represented by a unique point on a
covering space of the twice-punctured plane.

We can then characterize feasible trajectories in (x,Θ)
space as those that obey the dynamics of the following
underactuated system, where ũ : [0, tf ] → U , in which
U = {u ∈ R2 | ‖u‖ = 1}, is a control input trajectory:

Definition 3.1 (Joint position and winding dynamics):

˙̃x(t) = ũ(t) (3)

˙̃Θ(t) =

N∑
i=1

˙̃
θi(x̃(t), ũ(t)) log zi (4)

This definition allows us to draw a formal correspondence
between the configuration space in (x,Θ) coordinates and a
surface embedded in R3. The following theorem establishes
this result.

Theorem 3.1: Assume |θi| < M, ∀i for some M ∈ R.
Then the set of all feasible trajectories of the dynamical
system in Def. 3.1 constitutes a two-dimensional manifold.

Proof: The proof is technical and is omitted due to
strict space requirements.

From the derivations above it follows that the optimization



problem (2) is equivalent to the optimal control problem
defined using the underactuated system (Definition 3.1) and
the cost functional as in (2).

C. Hamilton-Jacobi-Bellman equation

The optimal control problem for underactuated system
(Definition 3.1) results in the Hamilton-Jacobi-Bellman
(HJB) Partial Differential Equation (PDE) for the cost-to-
go function V (x,Θ) = min

ũ
L(x̃, Θ̃, ũ). The HJB is derived

using Bellman’s dynamic programming principle [1], and it
reads:

0 = min
u∈U

{
C(x)‖u‖+∇xV (x,Θ) · u

}
. (5)

This equation above is accompanied with boundary condi-
tions at gx and gΘ, such that V (gx, gΘ) = 0. Clearly, once
the robot is at the goal with correct winding angles, the
cost-to-go is zero. Additionally, to guarantee a collision-free
trajectory we require V (x,Θ) =∞ for all Θ if x ∈ Xobs.

Once the optimal cost-to-go function is computed, a feed-
back policy function, π : S → U , is given as a minimizer
of the right-hand-side of (5). In this sense, the cost-to-go
function can be considered an optimal version of a navigation
function [15]. Note that in the local coordinates parameters
of the equations above are independent of Θ, although Θ
determines which chart of the configuration space is used to
define the local projection. Thus, the cost-to-go function, V ,
and the optimal feedback policy, π, depend on Θ implicitly,
as they may take different values at the same point x of the
environment but different winding angles.

Generally, a closed-form solution does not exist for (5).
Therefore, we must resort to numerical methods, which
approximate the cost-to-go function. This leads to an approx-
imated feedback policy, which, when integrated, produces
an approximation of the shortest path that satisfies winding
angle constraints.

IV. NUMERICAL ALGORITHMS

A. Simplicial Methods

Simplicial complexes are widely used in computational
physics and numerical methods to approximate differen-
tial equations on smooth manifolds. Thus, motivated by
Theorem 3.1, we discretize the configuration space us-
ing a two-dimensional simplicial complex, (Sd, T ). Here,
Sd = {(xi,Θi) ∈ R3}Ni=1 is a finite set of verticies sampled
from the configuration space, and T is an abstract two-
dimensional complex; see definitions in [20] and references
therein. Intuitively, a two-dimensional simplicial complex is
a triangular tessellation of the configuration space.

Define a geometric representation, ST , of a simplex T ∈
T to be a convex hull of its nodal points, {xi}i∈T . Let ĈT
be a piecewise constant discretization of C, such that ĈT is
a constant on ST , which is equal to the value of C at the
simplex center. Let also V̂ be a piecewise linear discretiza-
tion of V , such that V̂ (x,Θ) =

∑
i∈T αiV (xi,Θi) for all

(x,Θ) =
∑
i∈T αi(xi,Θi) in a geometric representation ST .

Function V̂ is uniquely defined by its values at vertices of

the simplicial complex, which we denote as V̂i for simplicity.
Considering (5) in the neighborhood of (xi,Θi), we derive
a discrete HJB equation

V̂i = min
T∈St(i)

inf
x∈ST

{
ĈT
∥∥xi−∑

j

αjxj
∥∥+
∑
j

αj V̂j

}
, (6)

in which St(i) = {T ∈ T | i ∈ T} is a star of vertex i. The
discrete boundary conditions are imposed in simplex T , for
which (gx, gΘ) ∈ ST , and are such that V̂ (gx, gΘ) = 0. Once
(6) is solved, the approximate feedback policy is given as a
minimizer of the right-hand-side in (6)

π̂(x,Θ) = arg min
u∈U

{Ĉ(x)‖u‖+∇xV̂ (x,Θ) · u} . (7)

Note that Ĉ and ∇xV̂ are piecewise constant functions and
so is the approximate feedback policy.

Equation (6) defines a system of nonlinear equations with
respect to {V̂i}

N

i=1. This system can be solved efficiently
in one “sweep” through the simplicial complex using the
Simplicial Dijkstra Algorithm (SDA) [20]. The SDA is a
generalization of the Dijkstra’s graph search algorithm [5]
to arbitrary simplicial complexes. It also generalizes Fast
Marching methods for front propagation problems in Physics
[13], [16], and interpolation-based methods that use grid
discretization for the shortest path problem [7], [17].

B. Heuristic-Driven Algorithms

The SDA is an omnidirectional front propagation al-
gorithm. Hence, it is unaware of extra information given
in the case of a known initial robot position. To include
this information and “focus” costly computations along the
shortest path, we employ ideas from the A* algorithm
[9]. Presented in [20] the Simplicial A* Algorithm (SAA)
reduces the computation of the optimal cost-to-go function
on a simplicial complex by considering an admissible and
consistent heuristic, H , of the cost-to-come function. This
algorithm is outlined below.
Input: Simplicial complex, (Sd, T ), initial and goal posi-

tion, sx and gx, and initial and goal winding angles, sΘ

and gΘ

Output: Approximations V̂ and π̂
1: Initialize set Q of “open” vertices as T , such that

(gx, gΘ) ∈ ST
2: Initialize set of labels {V̂i}

N

i=1, such that V̂i ← ‖xi−gx‖
for i ∈ Q, and V̂i ←∞ otherwise

3: while Q is not empty do
4: Pop j from Q with the lowest value of V̂j +Hj

5: for all T ∈ St(j) do
6: for all i ∈ T \ {j} do
7: (V ∗, π∗)← update(i, T )
8: if V ∗ < V̂i then
9: V̂i ← V ∗ ; πT ← π∗

10: Push i into Q if i /∈ Q
Careful choice of the heuristic is important to improve

the performance of the planning algorithm and guarantee the
optimality of the feedback policy. In previous work [18], the



maximum of minimum-length excursions, which satisfy at
least one constraint, was successfully implemented to solve
the considered problem using the A* graph search algorithm.
On the other hand, in [20] the rescaled Euclidean distance
function was introduced to satisfy admissibility and consis-
tency of the heuristic for the Simplicial A* algorithm. In this
paper, we use a combination of these two ideas: the rescaled
maximum of minimum-length excursions is implemented to
construct an admissible and consistent heuristic for the SAA.

V. RESULTS AND DISCUSSION

The proposed simplicial algorithms for feedback planning
with winding angle constraints were implemented and eval-
uated in numerical experiments. As discussed in Section III,
Figures 3 and 4 show the result of applying our algorithms
to two simple winding-constrained planning problems. Note
that the figures show the actual simplicial decompositions
constructed by the algorithms. Fig. 3 was generated using
SDA, while Fig. 4 was generated using SAA.

We also implemented the graph-based method of [18] in
order to compare the quality of the solutions generated thus
to those generated by our method. The graph-based method
constructs and searches a graph on nodes consisting of valid
joint position and winding states (x,Θ); i.e., from a starting
state (x,Θ), we recursively generate successor states of the
form (x + ∆,Θ(x + ∆)), where x and x + ∆ are adjacent
points on a regular grid in position space. In our experiments,
each grid point was considered adjacent to its eight nearest
neighbors. We compared the paths generated in this way to
the paths generated by our simplicial-decomposition-based
methods for the previously discussed examples. The results
are shown in Fig. 5. Since we used a uniform cost function in
this experiment, the optimal solution consists of portions of
obstacle boundaries and straight line segments. The paths
generated by the simplicial methods clearly exhibit this
property with minimal discretization artifacts. By compar-
ison, the graph-based method generated solutions with large
discretization artifacts, as expected.

We also studied the effect of the heuristic on running time.
Fig. 6a shows the surfaces generated by the SDA (left) and
the SAA (right) algorithms under identical initial conditions.
As we see from the figure, the SAA explored only a fraction
of the configuration space compared to that of the SDA. It
was mentioned earlier that the SDA is an omnidirectional
method. Moreover, the information as to whether Θ must
increase or decrease in order to arrive at the goal is not
encoded in the cost functional, and is thus unavailable to the
algorithm. Therefore, the SDA must in theory compute the
cost-to-go function for at least twice as many nodes as the
SAA. In the experiment, however, the SDA explored close to
60 thousand nodes, whereas the SAA explored slightly over
10 thousand nodes.

An experiment applying our method to UAV surveillance
was also performed, borrowing a scenario found in [18].
Here, winding constraints are used as a surrogate for the
constraint that the UAV should obtain 360-degree views
of certain regions of interest. The result shown in Fig. 1

Fig. 5. Comparison of paths generated with our method (left images,
labeled simplicial) against paths generated with the method of [18] (right
images, labeled graph-based) for the example problems depicted in Fig. 3
and Fig. 4.

(a) Simplicial complexes (b) Paths

Fig. 6. Comparison of Simplicial Dijkstra (SDA) and Simplicial A*
(SAA) algorithms for a problem specifying that the path wind twice in the
clockwise direction around each hole. SDA generates a far larger simplicial
complex approximation than SAA, but the found solutions paths are nearly
identical.
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(b) Scaling results

Fig. 7. Results of scaling experiments showing effect of varying number
of winding constraints on runtime (note log scale), for both SDA and SAA
methods. Fig. 7a shows test environment. Numbers indicate order in which
winding constraints were introduced.

demonstrates that the method is applicable to problems of
realistic complexity with non-uniform cost functions.

Finally, the scalability of the algorithms was analyzed in
a simple environment by plotting running time as a function
of the number of winding constraints introduced. The graph
in Fig. 7b shows the running time of both the SAA and
SDA algorithms. Both algorithms scale exponentially as the
number of ROI increases. However, the SAA algorithm is
faster by a factor of four, approximately, for up to five
winding constraints. After the fifth winding constraint, SDA
slowed considerably; hence, those results are not included in
the graph. Therefore, as expected, the heuristic-driven nature
of SAA is of considerable benefit in solving this type of
problem.

VI. CONCLUSION

We have developed a continuous version of the problem
of optimal path planning in the plane subject to winding con-
straints, described the geometry that arises hence, and shown
how recently developed heuristic-driven front propagation
methods may be applied to obtain highly accurate solutions.
We formulated the problem as an optimal control problem
for an underactuated system, which gave insight into the
configuration space of the original system—namely, a two-
dimensional topological manifold, which can be embedded
in R3 without self-intersections. Additionally, we constructed
numerically and illustrated two configuration spaces with

one and two regions of interest. Further, using a simplicial
complex to discretize the configuration space, we proposed
a numerical method that computes an approximation of the
optimal feedback policy for the underactuated system. We
have shown that the shortest path can be computed efficiently
using the heuristic-driven Simplicial A* algorithm instead
of standard fast marching methods for front propagation.
Finally, the presented algorithm computes the approximate
shortest path with considerably fewer discretization artifacts,
compared to methods based on graph search.
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