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Abstract. The problem of generating uniform deterministic samples over the ro-
tation group, SO(3), is fundamental to many fields, such as computational struc-
tural biology, robotics, computer graphics, astrophysics. We present the best-known
method to date for constructing incremental, deterministic grids on SO(3); it pro-
vides the: 1) lowest metric distortion for grid neighbor edges, 2) optimal dispersion-
reduction with each additional sample, 3) explicit neighborhood structure, and 4)
equivolumentic partition of SO(3) by the grid cells. We also demonstrate the use
of the sequence on motion planning problems.

1 Introduction

Discretization of SO(3), the space of 3D rotations, is a difficult problem that
arises in numerous engineering and scientific fields. Examples include biolog-
ical protein docking problems, robot motion planning, aerospace trajectory
design, and quantum computations. Typical operations on this space include
numerical optimization, searching, integration, sampling, and path genera-
tion. Multiresolution grids are widely used for many of these operations if
the space is nicely behaved, as in the case of rectangular subsets of R

2 or R
3.

It would be wonderful to achieve the same for SO(3); however, the space
of 3D rotations is substantially more complicated. In its basic form, SO(3)
is defined as a set of matrices that satisfy orthogonality and orientation con-
straints. It is an implicitly defined, three-dimensional surface embedded in
R

9. One approach is to place a coordinate systems on the surface, causing
it to behave like a patch in R

3. However, any such coordinates cause met-
ric distortions in comparison to distances on the original surface. Only the
quaternion parametrization preserves distances, which treats SO(3) as a unit
sphere S3 ⊂ R

4 with antipodal points identified. The volumes of surface
patches on S3 correspond to the unique Haar measure for SO(3), which is
the only way to obtain distortion-free notions of distance and volume. This
implies that if we want to make multiresolution grids on SO(3), we are faced
with warping them onto S3. Such curvature prohibits the introduction of
distortion-free grids, much in the same way as the familiar problem of mak-
ing distance-preserving maps of the world (e.g., Greenland usually looks too
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big on a flat map). In addition, the identification of antipodal points causes a
minor complication in that only half of S3 is used, with unusual connectivity
in the equatorial three-plane.

Due to widespread interest in discretizing SO(3) in numerous fields, there
have been considerable efforts in the past. The problem of generating point
sets on spheres minimizing such criteria as energy functions, discrepancy, dis-
persion, and mutual distances has been extensively studied in mathematics
and statistics [8,13,21,23,26,27]. Random sampling methods were also devel-
oped in [2,22,25,33]. Problems of sampling rotational groups and spheres have
been studied and applied in the context of computational structural biology,
physics, chemistry, computer graphics and robotics [5,7,14,18,20,24,28,30,31].

In this paper, we introduce the best-known deterministic method to date
for SO(3) in terms of providing the:

1. incremental generation,
2. optimal dispersion-reduction with each additional sample,
3. explicit neighborhood structure,
4. lowest metric distortion for grid neighbor edges,
5. equivolumetric partition of SO(3) into grid regions.

The rest of the paper is organized around the presentation of the method.
Section 2 defines the topological properties of SO(3) together with differ-
ent parametrization that are crucial for presenting our method. Section 3
overviews the sampling requirements we obtain for the sequence. We discuss
the most relevant sampling methods, which influenced our work in Section
4. Finally, we present out method in Section 5, and experimental results we
obtained in application to several motion planning problems in Section 6. We
conclude our work in Section 7.

2 Properties and Representations of SO(3).

The special orthogonal group, SO(3), arises from rotations around the origin
in R

3. Each rotation, by definition, is a linear transformation that preserves
the length of vectors and orientation of space. The elements of SO(3) form
a group, with the group action being the composition of rotations. SO(3) is
not only a group, but also a manifold, which makes it a Lie group.

• Topology of SO(3). SO(3) is diffeomorphic to the real projective space,
RP

3. It is hard to visualize the real projective space, because it can not
be embedded in R

3. Fortunately, it can be represented as RP
3 = S3/(x∼

−x), the more familiar 3-sphere, S3, embedded in R
4, with antipodal

points identified. Topologists say that the 3-sphere is a double covering of
RP

3, since one point of the projective space has two corresponding points
on the 3-sphere.
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• Haar Measure on SO(3). Up to a scalar multiple, there exists a unique
measure on SO(3) that is invariant with respect to group actions. This
is called the Haar measure. That is, the Haar measure of a set is equal
to the Haar measure of all of the rotations of the set. In our particular
situation, we can think of the Haar measure as being invariant under all
orthogonal coordinate changes.
It is important to note, that the Haar measure is an intrinsic property of
SO(3) which comes from the group structure, and is independent of its
topological structure.

We have not used any coordinate system or parametrization of SO(3) yet,
since the notion of Haar measure is very abstract. One has to use extreme
caution when expressing the measure in terms of any of the parametrizations
we describe next. Not all of these naturally preserve the Haar measure.

• Quaternions. One of the most useful parametrizations of the projective
space is the set of quaternions. Let x = (x1, x2, x3, x4) ∈ R

4 be a unit
quaternion, x1 + x2i + x3j + x4k, ||x|| = 1, representing a 3D rotation.
Because of the topological relationship between the projective space and
the 3-sphere, once the identifications of the opposite points on the 3-
sphere are taken into account, metrics similar to those defined for the
3-sphere can be used for the projective space. Moreover, such metrics
will respect the Haar measure on SO(3).
The most natural way to define a metric for any two points x, y ∈ RP

3

is as the length of the shortest arc between x and y on the 3-sphere:

ρRP3(x, y) = cos−1 |(x · y)|, (1)

in which (x · y) denotes the dot product for vectors in R
4, and the ab-

solute value, | . |, guarantees that the shortest arc is chosen among the
identifications of the two quaternions (for a more detailed explanation,
see [10]).
Quaternion representation is also very useful for calculating the compo-
sition of rotations, which is expressed as the multiplication of quater-
nions. Any rotation invariant surface measure on S3 naturally preserves
the Haar measure for SO(3) and can be used for quaternions. However,
the surface measure is not straightforwardly expressed using quaternions.
Other representations, such as spherical or Hopf coordinates, are more
convenient for measuring the volume of surface regions.

• Spherical Coordinates for SO(3). Because of the relationship between
the 3-sphere and RP

3, hyperspherical coordinates can be used for SO(3).
Consider a rotation (θ, φ, ψ), in which ψ has a range of π/2 (to compen-
sate for identifications on the 3-sphere), θ has a range of π, and φ has a
range of 2π. For each ψ, the ranges of θ and ψ define a 2-sphere of radius
sin(ψ). The quaternion x = (x1, x2, x3, x4) corresponding to the rotation
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(a) (b)

(c) (d)

Fig. 1. Visualization of the spherical and Hopf coordinates on SO(3). (a) The full
range of the spherical coordinate ψ ∈ [0, π/2] is shown while the coordinates (θ, φ)
form a discretization of size 20 over S2. (b) The half-spheres show the ranges of
the spherical coordinates (θ, φ), while ψ takes four discrete values over [0, π/2]. (c)
The full range of the Hopf coordinate ψ ∈ [0, 2π] is shown while the coordinates
(θ, φ) form a discretization of size 12 over S2. (b) The spheres show the ranges of
the Hopf coordinates (θ, φ), while ψ takes four discrete values over S1.

(θ, φ, ψ) can be obtained using the formula:

x1 = cos(ψ)
x2 = sin(ψ) cos(θ)
x3 = sin(ψ) sin(θ) cos(φ)
x4 = sin(ψ) sin(θ) sin(φ).

(2)

The volume element of the SO(3) defines the Haar measure and has the
following expression in spherical coordinates:

dV = sin2(ψ) sin(θ)dθ dφ dψ (3)

This representation is not convenient for integration though, because of
the complicated expression for the Jacobian. Spherical coordinates are
also cumbersome for computing composition of rotations.

• Hopf Coordinates for SO(3). As opposed to spherical coordinates for hy-
perspheres, the Hopf coordinates are unique for the 3-sphere, and thus for
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RP
3. They naturally describe the intrinsic structure of both the 3-sphere

and RP
3 and provide a natural tool for obtaining uniform distributions

on these spaces.

The Hopf fibration describes RP
3 in terms of a circle, S1, and an ordi-

nary 2-sphere, S2. Intuitively, RP
3 is composed of non-intersecting fibers,

such that each fiber is a circle corresponding to the 2-sphere. This fiber
bundle structure is denoted as RP

3 = S1⊗̃S2. The Hopf fibration has the
important property of locally being a product space. RP

3, however, is
not (globally) a product of S2 and S1. Intuitively, RP

3 is the product of
S2 and S1 similarly to how the Möbius band is locally the product of an
interval and a circle S1. That is, locally a sequence of coordinates from
each subspace results in a global parametrization of the space, whereas
the global embedding into the Euclidean space does not have the Carte-
sian product structure. The Hopf coordinates can also be used for the
3-sphere, because of the topological relationship between the 3-sphere
and RP

3.

Each rotation in Hopf coordinates can be written as (θ, φ, ψ), in which ψ
parametrizes a circle S1 and has a range of 2π. The ranges of θ and φ are
π and 2π respectively, and they represent spherical coordinates for S2.
The transformation to a quaternion x = (x1, x2, x3, x4) can be expressed
using the formula:

x1 = cos(θ/2) cos(ψ/2)
x2 = cos(θ/2) sin(ψ/2)
x3 = sin(θ/2) cos(φ+ ψ/2)
x4 = sin(θ/2) sin(φ+ ψ/2).

(4)

The volume element on RP
3 which respects the Haar measure is then

defined as the surface volume on S3:

dV = sin θ dθ dφdψ. (5)

Note that sin θ dθ dφ represents the surface area on the 2-sphere, and
dψ is the length element on the circle. This formula additionally demon-
strates that the volumes from the two subspaces, S2 and S1, are simply
multiplied to obtain the volume on SO(3). The Hopf coordinates, though,
are not convenient for expressing compositions of rotations.

• Axis-Angle Representation for SO(3). One of the most intuitive ways
to represent rotations is by using Euler’s theorem, which states that
every 3D rotation is a rotation by some angle θ around a unit axis
n = (n1, n2, n3), ||n|| = 1. The transformation from angle and axis repre-
sentation to quaternions is achieved by using this formula:

x = (cos(θ/2), sin(θ/2)n1, sin(θ/2)n2, sin(θ/2)n3). (6)
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The angle and axis representation is useful for visualizing the projective
space in 3D. Each rotation is drawn as a vector with direction n and
a magnitude corresponding to θ (a multiple or a function of θ can be
used; see Section 5.5, and [4,16,31]). Figure 1 shows the visualization of
the spherical and Hopf coordinates on SO(3) using the angle and axis
representation. From this visualization one can immediately notice the
singularities produced by the spherical coordinates. It is also possible to
see the advantage of using Hopf coordinates from this visualization. Hopf
coordinates do not introduce singularities. The circles represented by the
range of the variable ψ are non-intersecting; they uniformly cover the
SO(3). The fiber structure formed by these circles is also seen on the
figure.

3 Sampling Terminology and Problem Formulation

In applications such as motion planning the algorithms are often terminated
early, and the particular order in which samples are chosen becomes crucial.
Sampling literature distinguishes between a sample set and a sample sequence.
For a sample set, the number of points, n, is specified in advance, and a
set of n points is then chosen to satisfy the requirements of the method.
The notion of ordering between points is not defined for a sample set but
becomes important for sequences. Successive points in a sequence should be
chosen carefully so that the resulting sample sets are all of good quality.
Sequences are particularly suitable for motion planning algorithms, in which
the number of points needed to solve the problem is not known in advance.

Now that the background definitions for SO(3) have been presented in
Section 2, to generate samples over SO(3) we need to formulate the desir-
able properties for the samples. The first requirement is that samples form a
sequence. We also require that samples get arbitrarily close to every point in
SO(3), i.e. that the sequence of samples is dense in SO(3). Next we formulate
several requirements on the uniformity properties of the samples.

3.1 Discrepancy and Dispersion

Additional requirements that the sequence needs to satisfy are described by
the uniformity measures, discrepancy and dispersion.

Intuitively, discrepancy can be thought of as enforcing two criteria: first,
that no region of the space is left uncovered; and second, that no region is left
too full. Dispersion eliminates the second criterion, requiring only the first.
It can be shown that low discrepancy implies low dispersion [17].

To define discrepancy formally, choose a range space, R, as a collection of
subsets of SO(3). Let R ∈ R denote one such subset. The range spaces that
are usually considered on spheres are the set of spherical caps (intersections of
the 3-sphere with half spaces) or the set of spherical slices (intersections of two
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(a) (b)

Fig. 2. An illustration of the notions of dispersion and discrepancy for a set of
points on a 2-sphere. (a) The discrepancy searches for the subset R for which the
deviation from the measure of R to the number of samples placed inside R is the
largest. (b) The dispersion searches for a point q on the sphere which is the farthest
from the sample points.

3-hemispheres) [3,19], which can be used on SO(3) once the identifications
of the 3-sphere are taken into account.

Let µ(R) denote the Haar measure of the subset R. If the samples in
the set P are uniform in some ideal sense, then it seems reasonable that the
fraction of these samples that lie in any subset R should be roughly µ(R)
divided by µ(SO(3)) (which is simply π2). We define the discrepancy [29] to
measure how far from ideal the sample set P is:

D(P,R) = sup
R∈R

∣∣∣∣
|P ∩R|

N
−

µ(R)

µ(SO(3))

∣∣∣∣ (7)

in which | · | applied to a finite set denotes its cardinality. Figure 2 (a) demon-
strates the notion on the 2-sphere.

While discrepancy is based on measure, a metric-based criterion, disper-
sion, can be introduced:

δ(P, ρ) = max
q∈SO(3)

min
p∈P

ρ(q, p). (8)

Above ρ denotes any metric on SO(3) that agrees with the Haar measure,
such as 1. Intuitively, this corresponds to the spherical radius of the largest
empty ball (assuming all ball centers lie on SO(3)). See Figure 2(b) for an
illustration.

3.2 Problem Formulation

In summary, the goal of this paper is to define a sequence of elements from
SO(3) which is:

• incremental,
• deterministic,
• minimizes the dispersion (8) and discrepancy (7) on SO(3),
• has a grid structure with respect to the metric (1) on SO(3).
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Random Succ. Orth. Images Layered Sukharev HEALPix this work

incremental yes no yes no yes

uniform yes yes no yes yes

deterministic no yes yes yes yes

grid no no/yes yes yes yes

spaces SO(3) SO(n) SO(3) and Sn S2 SO(3)

Fig. 3. The comparison of different sampling methods related to the problem of
Section 3.2. The rows correspond to the desired properties of these methods. The
columns represent different methods.

4 Sampling Methods Overview

Our work was influenced by many successful sampling methods developed
recently for spheres and SO(3). As demonstrated in the table of Figure 3,
several of them are highly related to the problem formulation in Section 3.2.
However, none of the methods known to date has all of the desired properties.

Random Sequence of SO(3) Rotations. There are several ways of
sampling the space of rotations uniformly at random [2,22,25,33]. The main
difficulty in doing so is the choice of a convenient parametrization of SO(3). If
a parameter space is sampled uniformly, the resulting samples on SO(3) are
not necessarily uniform. As was shown in Section 2, not all of the parametriza-
tions of SO(3) are natural representations of rotations, and some of them lead
to measure distortions, and even singularities. Only few parametrizations,
such as the Hopf coordinates, result in a local isometry to SO(3).

It is easy to make the mistake of sampling rotations using a wrong para-
metrization [1]. The subgroup algorithm [6] for selecting random elements for
SO(3) is the correct and most popular method for uniform random sampling
of SO(3). It uses the fact that any Lie group can be uniformly sampled, by
combining elements from a subgroup (in case of SO(3) it is S1), and the
quotient, or coset space (S2) at random. Essentially, this method utilizes the
Hopf coordinates.

Random sequences of rotations are used in many applications, however,
they lack deterministic uniformity guarantees, and the explicit neighborhood
structure.

Successive Orthogonal Images on SO(n). Related to the subgroup
method for generating random rotations is the deterministic method of Suc-
cessive Orthogonal Images [15], which generates lattice-like sets with a spec-
ified length step based on uniform deterministic samples from the subgroup,
S1, and the coset space, S2. The method is also generalized to arbitrary
SO(n).

The deterministic point sets can be applied to the problems in which the
number of the desired samples is specified in advance. If the sample on S2

is chosen so that it has a grid structure, the resulting sample on SO(3) has



Uniform Incremental Grids on SO(3) Using the Hopf Fibration 9

the explicit neighborhood structure. Part of our work will be in applying
this method in a way that provides the incremental quality necessary for our
motion planning applications.

Successive Orthogonal Images is the deterministic method which, simi-
larly to the random sequences, utilizes Hopf coordinates. This method was
our motivation for designing the uniform deterministic sequences on SO(3).

Layered Sukharev Grid Sequence. The uniform, deterministic se-
quences were first designed for the unit cube [0, 1]d [11]. To minimize the
dispersion, it was placing one resolution of grid at a time inside the unit
cube. Each time the next level resolution is selected. An ordering on the
samples inside each resolution is chosen to minimize the discrepancy.

Similar idea was later adopted for spheres, and SO(3) [32] by taking
advantage of the natural grid structure provided by the inscribed cube into
a sphere of any dimension. However, this method results in distortions in
the middle of the faces of the spherical hypercube, which get worse with the
dimension. This is because the arcs of different lengths are getting subdivided
into a grid on the spherical faces of the d-sphere. In case of SO(3) some of
the grid cells become four times the volume of others.

In [12] the general method for designing Layered Sukharev Grid sequences
inside Cartesian products was presented. However, poor uniformity proper-
ties of the underlying sequences would propagate to the Cartesian products.
Combining this idea with the Successive Orthogonal Images [15] generation
of rotations along with the HEALPix spherical sampling method described in
the next section, is the basis of the method we present in the current paper.

HEALPix. The HEALPix package [7] was designed for efficient and in-
cremental discretization of full-sky maps in application to the satellite mis-
sions to measure the cosmic microwave background in astrophysics. It pro-
vides a deterministic, uniform, and multiresolution sampling method for the
2-sphere. Moreover, it possesses additional qualities, such as equal area parti-
tioning of the 2-sphere, and isolatitude sampling on the 2-sphere, which make
computations of the spherical harmonics integrals even more efficient.

This method takes advantage of the property of the cylindrical coordinates
of the 2-sphere, which is measure preserving. That is, equal area partition on
the cylindrical projection results in the equal area partition on the surface
of the sphere. The distribution of one of the coordinates of the cylindrical
projection is uniform, if the samples are uniformly distributed on the 2-
sphere.

These are intrinsic properties of the 2-sphere that cannot be generalized
directly to higher dimensional spheres. However, this work shows that an
extremely uniform grid can be constructed on such a non-trivial curvature
space as the 2-sphere. It is also not difficult to make this grid incremental
using the method from [12].
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(a) (b) (c) (d)

Fig. 4. Different sampling methods on S2. (a) 200 random samples (b) 192
Sukharev grid samples [32] (c) icosahedron samples (d) 216 HEALPix samples [7]

5 Our Approach

In this section we present an approach which satisfies all of the requirements
of Section 3.2, and Figure 3. The fiber bundle structure of SO(3) locally be-
haves similarly to the Cartesian product of two spaces, S1, and S2. Therefore,
the method presented in [12] for constructing multiresolution grid sequences
for Cartesian products of spaces, can be used for constructing a grid sequence
on SO(3). The resulting rotations are computed using the Hopf coordinates,
as was first described in [15]. It is a much simpler problem to construct nicely
behaved grids on the 1-sphere and 2-sphere. Hopf coordinates allow the two
grids be lifted to the space of rotations without loss of uniformity. Next we
outline the details of this construction.

Let ψ be the angle parametrizing the circle, S1, and (θ, φ) be the spherical
coordinates parametrizing the sphere, S2. Using these coordinates, define T1

to be the multiresolution grid over the circle, and T2 be the grid over the
sphere. Let m1 and m2 be the number of points at the base resolution 0 of
the grids T1 and T2 respectively.

There are numerous grids that can be defined on S2 (see Figure 4 for an
illustration of some). In this work we have selected the HEALPix grid [7] on
S2, and the ordinary grid for S1. Both of these grids are uniform, have simple
neighborhood structure, and can have multiple resolutions.

Next consider the space S2⊗̃S1. The multiresolution grid sequence that
we define for SO(3) has m1 ·m2 · 2

3l points at the resolution level l, in which
every successive 23 points define a cube in Hopf coordinates. Each element of
the sequence is obtained by combining the corresponding coordinates in the
subspaces, p = (θ, φ, ψ). If the grid regions are defined on the two subspaces
S1 and S2, the corresponding grid regions are also obtained on SO(3) by
combining the corresponding coordinates. The dispersion, and discrepancy
of the resulting sequence can be easily computed using the representation for
the metric and volume element from equations (1), and (5).
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Fig. 5. Base grid of the HEALPIX sequence consists of 12 points. The cylindrical
projection of the grid cells from S2 to (cos(θ), φ) coordinates is shown. Each next
resolution subdivides each of the spherical squares into 4 squares of equal area.
Figures are borrowed from [7].

5.1 Choosing the Base Resolution

One of the issues arising when combining the two grids from S1 and S2 is
the step length of a grid cell alone each of the coordinates. For this we have
to match the number of cells in each base grids on both of the subspaces, so
that they have cell sides of equal lengths [15]. That is the following equation
should hold for m1 and m2:

2π

m1
=

√
4π

m2
, (9)

in which 2π is the circumference of the circle S1, and 4π is the surface area
of S2.

In our particular case, the base HEALPix grid consists of m2 = 12 cells,
and the volume of each cell is equal to 4π/12 = π/3 (Figure 5). Therefore,
the length of the side of each grid cell is approximately the square root of
that value, that is 1. Then, the number of points in the base resolution of
the grid on S1 needs to be m1 = 6, since it should be close to the length of
the circle, which is 2π. Therefore, the base grid of the sequence for SO(3)
consists of m1 ·m2 = 6 · 12 = 72 points (the projections of the grid regions
on the Hopf coordinates are shown on Figure 6).
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θcos

ψ

ϕ

Fig. 6. The base grid of the proposed SO(3) sequence consists of 72 points. For
the Hopf coordinates (θ, φ, ψ) the projections of the grid regions on each of the
coordinates are shown. Grid regions for ψ are chosen according to the ordinary grid
on S1. The grid regions for (cos(θ), φ) are obtained using the HEALPix method.

5.2 Choosing the Base Ordering

The next step is to choose the ordering of the m = m1m2 points within the
base resolution on SO(3). In general, the initial ordering will influence the
quality of the resulting sequence, and a method similar to [12] can be used
for deciding the ordering of the general base sequences.

In our case we have to define the ordering on the first 72 points of the
sequence (see Figure 6 for the illustration of the associated grid regions). To
do this, it is important to notice that there are antipodal grid cells in both of
the subspaces. Antipodal cells are the maximally distanced regions on both
of S1 and S2; they should alternate in the final sequence. Therefore, it is only
necessary to select an ordering on the first 18 points of the base resolution
grid of SO(3).

In our preliminary experiments in the application to motion planning
problems (Section 6) we have manually selected such an ordering. However,
it is possible to design a simple program that would run through the orderings
and select the ones that minimize the discrepancy. For the further analysis
results we assume that the optimal ordering function fbase : N → [1, . . . 72] is
given.

5.3 The Sequence

The sequence for SO(3) is constructed one resolution level at a time. The
order in which the points from each resolution level are placed in the sequence
can be described as follows. The ordering fbase() of the first m points in the
base resolution determines the order of the grid regions within SO(3) and is
taken from the previous section. Every successive m points in the sequence
should be placed in these grid regions in the same order. Each of the grid
regions is isomorphic to the [0, 1]3, and is subdivided into 8 grid regions in
each successive resolution. Where exactly each point should be placed within
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each of the grid regions is determined by the ordering fcube : N → [1, . . . 8]
and recursion procedure defined for the cube [0, 1]3 in [11].

The resulting procedure for obtaining the coordinates of the ith element
in the sequence is the following:

1. Assign fbase(i) to be the index of the base grid region that the i-th element
has to be placed within.

2. Assign the ceiling of the division, icube = di/me, be the index that deter-
mines the subregion of the region fbase(i) that the i-th element has to be
placed within.

3. Call the recursive procedure from [11] to determine the coordinates of
the subregion of the cube [0, 1]3 determined by the index icube and the
ordering fcube. The i-th element is then placed within this subregion of
the fbase(i) region.

5.4 Analysis

Several claims, similar to those obtained for the Layered Sukharev Grid se-
quences, can be made for the new approach. The most important distinction
is that the new sequence provides equal volume partition of the SO(3) which
results in strong dispersion guarantees.

Proposition 1. The dispersion of the sequence T at the resolution level l
satisfies:

δ(T ) ≤ 2 sin−1


1

2

√

δ2(T2) +

(
π

m12l

)2

 ,

in which δ(T2) is the dispersion of the sequence T2 defined over S2.

Proof: The bound follows directly from the Pythagorean theorem, and the
dispersion bound on the ordinary grid T1 at the resolution level l.

Proposition 2. The sequence T has the following properties:

• It is discrepancy-optimal with respect to the set of grid regions defined
over S1 and S2.

• The position of the i-th sample in the sequence T can be generated in
O(log i) time.

• For any i-th sample any of the 2d nearest grid neighbors from the same
layer can be found in O((log i)/d) time.

Proof: The proof closely follows the similar considerations in [11].
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(a) (b)

(c) (d)

Fig. 7. Different sets of samples on SO(3) (a) 2000 random samples (b) 2048
Sukharev grid samples (c) 1944 icosahedral samples (d) 1944 HEALPix samples

5.5 Visualization of the Results

To visualize our sequence and compare it with other sequences designed for
SO(3), we use the angle and axis representation from Section 2. It was shown
in [4,31,16] that if the rotations are uniformly distributed, then the distri-
bution of an angle is (sin(θ) − θ)/π. This allows us to draw the elements of
SO(3) as the points inside a ball in such a way that every radial line has
uniform distribution of elements. This provides a more intuitive visualiza-
tion, which partially preserves the uniformity. See Figure 7 for visualization
of several of the methods of sampling over SO(3), compared to the proposed
approach. Specifically, the images show points in the direction of the axis of
rotation and with with distance to the origin equal to (sin(θ) − θ)/π. Using
this representation, the distribution of points increases linearly as a function
of distance from the origin. In comparison, a set of points that was uniform
with respect to the measure on R

3 would have a distribution that varies as
the cube of distance from the origin.
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(a) (b)

Fig. 8. Motion planning problems involving: a) moving a robot (black) from the
north pole to the south pole. Multiple views of the geometry of the problem are
shown (obstacles are drawn in lighter shades); and b) moving a robot along the
corridor.

6 Application: Motion Planning

We have implemented our algorithm in C++ and applied to implementations
of PRM-based planner [9] in the Motion Strategy Library. The experiments
reported here were performed on a 2.2 Ghz Pentium IV running Linux and
compiled under GNU C++.

It is important to note that the experiments we present here are just
one of possible applications of the developed sequences to motion planning
problems. Alternate applications exist in other areas of computer science, or
related fields.

In our experiments setup we consider the robot models which are only
allowed to rotate; therefore, the configuration space is SO(3). For the two
problems shown in Figure 8 we have compared the number of nodes gen-
erated by the basic PRM planner using the pseudo-random sequence (with
quaternion components [22]), the layered Sukharev grid sequence, and the
new sequence derived from the use of Successive Orthogonal Images, the
HEALPix method and incremental Sukharev ordering. For the first problem
the results are: 258, 250, and 248 nodes, respectively. To solve the second
problem the PRM planner needed 429, 446 and 410 nodes, respectively. The
results for pseudo-random sequences were averaged over 50 trials. When we
tested the deterministic sequences, we made sure that each particular prob-
lem does not have any advantage due to coincidental alignment with the grid
directions of the sequence. Therefore, in each trial a fixed, random quaternion
rotation was premultiplied to each sample, to displace the entire sequence.
The results obtained were averaged over 50 trials (a different random rotation
was used in each).

Based on our results we have observed that the performance of the method
described herein is equivalent or better than the performance of the previ-
ously known sequences for the basic PRM-based planner, which makes our
approach an alternative approach for use in motion planning. It is important
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to note, however, that for some applications, such as verification problem,
only strong resolution guarantees are acceptable. The method we propose in
this paper has the best known uniformity bounds on dispersion for resolution
completeness.

7 Conclusions

In conclusion we have developed and implemented a deterministic incremen-
tal grid sequence on SO(3) that is highly uniform, can be efficiently gener-
ated, and divides the surface of SO(3) into regions of equal volume. Sequences
that minimize uniformity criteria, such as dispersion and discrepancy, at each
step of generation are especially useful in applications in which the required
number of samples is not known in advance. One such application is robotic
motion planning. We have demonstrated the use of our method on several
motion planning problems, showing not only that resolution completeness
guarantees can be achieved, but also the number of samples required to solve
problems is smaller than using conventional random sequences.

There is a number of ways to improve current work, which we plan to
address in the future. We plan to complete a more rigorous analysis, as well as
comparison of different base sequences for S2 to improve our understanding
of the benefits of our method. A more extensive experimental evaluation
of the sequences is also a part of our future work. It is yet inconclusive,
but tempting, to assess the general rate of convergence for motion planning
solution using different sampling sequences.

There are many general open problems arising from this line of research.
Nicely distributed grids are not yet developed for general n-spheres, n > 3.
Implicitly defined manifolds, such as the ones arising from motion planning
for closed linkages, are very hard to efficiently and uniformly sample. As
well, such manifolds can arise as the conformation spaces of protein loops. In
such cases, efficient parametrization is the bottleneck for developing sampling
schemes.
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