
Sufficient Conditions for the Existence of
Resolution Complete Planning Algorithms

Dmitry S. Yershov and Steven M. LaValle

Abstract This paper addresses theoretical foundations of motion planning with dif-
ferential constraints in the presence of obstacles. We establish general conditions
for the existence of resolution complete planning algorithms by introducing a func-
tional analysis framework and reducing algorithm existence to a simple topological
property. First, we establish metric spaces over the control function space and the
trajectory space. Second, using these metrics and assuming that the control system
is Lipschitz continuous, we show that the mapping between open-loop controls and
corresponding trajectories is continuous. Next, we prove that the set of all paths
connecting the initial state to the goal set is open. Therefore, the set of open-loop
controls, corresponding to solution trajectories, must be open. This leads to a simple
algorithm that searches for a solution by sampling a control space directly, without
building a reachability graph. A dense sample set is given by a discrete-time model.
Convergence of the algorithm is proven in the metric of a trajectory space. The re-
sults provide some insights into the design of more effective planning algorithms
and motion primitives.

1 Introduction
We consider the general problem of motion planning under both differential con-

straints and obstacles. A control system, geometric robot model, and a model of ob-
stacles in the workspace are given. The task is to compute a control signal that brings
a robot along a trajectory from an initial state into a goal region in a state space that
may represent configurations and possibly their time derivatives. This problem is a
unification of several fundamental, classical problems in robotics: 1) Nonholonomic
planning: In this case, the differential constraints may arise from wheeled mobile
robots and planning occurs in the configuration space [1]; however, dynamics and

Dmitry S. Yershov
University of Illinois, Urbana, IL 61801, e-mail: yershov2@uiuc.edu

Steven M. LaValle
University of Illinois, Urbana, IL 61801 e-mail: lavalle@uiuc.edu

1

2 Dmitry S. Yershov and Steven M. LaValle

constraints due to angular momentum may also be included. Such problems usu-
ally arise from underactuated (less controls than the number of degrees of freedom)
systems. 2) Kinodynamic planning: Here, there are both velocity and acceleration
bounds, and the system is fully actuated [2]. 3) Trajectory planning: This problem
has been pursued for several decades [3, 4, 5] and typically involves computing an
open loop control for a manipulator while satisfying the kinematics and dynamics
expressed as a control system. See Chapter 14 of [6] for a detailed presentation of
this unified class of problems.

In spite of all of this effort, there is still no general characterization of the par-
ticular conditions under which an algorithmic solution exists. Since basic motion
planning (without differential constraints) is already PSPACE hard [7], and par-
ticular instances of motion planning with differential constraints are even harder,
there is not much hope for efficient, complete solutions. In this context, complete
means that the planning algorithm must return a solution whenever one exists; other-
wise, report failure. Therefore, virtually all approaches to the problem are sampling-
based, which employ discretization and heuristics to incrementally explore the state
space by concatenating pieces of control signals to obtain a search tree of collision-
free trajectories. In this case, the most we can hope for is resolution completeness
[8], which means that the algorithm correctly finds a solution whenever one exists;
however, it may run forever if one does not. This is analogous to classical Turing
decidability vs. Turing recognizability, which are comparable to completeness and
resolution completeness, respectively. We believe that having general conditions for
the existence of resolution complete algorithms may be useful in the formulation of
solvable robotics problems, in the design of better sampling-based planning algo-
rithms, in the design of motion primitives [9, 10, 11], and possibly for the verifi-
cation problem [12, 13], which is a negated form of planning that establishes path
nonexistence.

Motion primitives

��

Input space

��

State space

��Finite length sequences of
motion primitives

// Control space // Trajectory space

Fig. 1 Sets, spaces, and relations

In this paper, we determine simple, general requirements for the existence of a
resolution complete planning algorithm based mainly on Lipschitz conditions on the
control system mapping. This allows substantial generality and is inspired by anal-
ysis of the convergence of numerical dynamic programming algorithms [14, 15].
Our basic approach in this paper is to analyze the relationships between the six
spaces shown informally in Fig. 1. The input space is the set of possible control
system inputs and the state space is the configuration space or more generally the

Sufficient Conditions for the Resolution Completeness 3

phase space of the system. Considering inputs and states parametrized over time,
we design suitable metric spaces for both the space of control signals (called the
control space) and the space of trajectories (the trajectory space). By establishing
the continuity of the mapping between these spaces induced by the control system,
we show that resolution completeness boils down to a simple topological condition.
Furthermore, we constructively prove existence by providing a resolution complete
algorithm that systematically enumerates candidate solution trajectories by concate-
nating sequences of motion primitives, which form a discrete set, suitable for com-
putation. This is closely resembles the execution trace of most existing planning
algorithms, which incrementally sample and search the state space (see [16, 6] for
surveys).

Resolution completeness in this general setting is provided by ensuring that the
set of all computed control signals is dense in the space of all control signals. One
surprising observation, however, is that this may be achieved even where it is impos-
sible to incrementally reduce the radius of the largest empty ball (dispersion [17])
in the space of control signals. This peculiar behavior is explained in Section 2,
where basic sampling concepts are defined. Section 3 formally defines the general
problem. Section 4 develops a continuous mapping from control space to trajectory
space by carefully designing appropriate metric spaces. The main algorithmic con-
structions and theorems are presented in Section 5, which give sufficient conditions
for the existence of a resolution complete planning algorithm. Conclusions appear
in Section 6.

2 Precompactness and Sampling Convergence
Before providing the main technical results of the paper, a counterintuitive prop-

erty regarding sampling and convergence needs to be addressed. Consider sampling-
based planning algorithms for the basic motion planning problem (no differential
constraints). Achieving resolution completeness (or alternatively, probabilistic com-
pleteness) amounts to assuring that the computed samples are dense in the limit as
the number of iterations tends to infinity. Intuitively, the sampling resolution gradu-
ally increases over time. This notion can be nicely captured by defining dispersion
of a sample set P in a subset of any metric space X [17]:

δ (P) = sup
x∈X
{ inf

p∈P
{ρ(x, p)}} , (1)

in which ρ is the metric.
Typically, the sample set increases gradually during the execution of a planning

algorithm, and the dispersion converges to zero in the limit. This is formalized by
considering P as an infinite sample sequence P, which is a set together with a spec-
ified linear ordering. We say that P converges to X if and only if

lim
N→∞

δ (P|N) = 0 , (2)

in which P|N denotes the first N elements of P. Note that the convergence rate may
depend on the ordering.

4 Dmitry S. Yershov and Steven M. LaValle

In the coming sections, we consider notions of denseness, dispersion, and conver-
gence over the function spaces of control signals and trajectories. For these spaces,
it might be surprising that there are dense sample sequences for which the dispersion
does not converge to zero. In other words, the samples may eventually get arbitrarily
close to every point in the space, even though they are not converging to that space.
For a simple example of this behavior, let X = R. For any finite set of samples in R,
the dispersion is always infinite. Nevertheless, any ordering placed on Q, the set of
rationals, yields a sequence that is dense1 in R. For a bounded space, such as S1 and
the configuration spaces arising in robotics, this behavior does not occur: A dense
sequence must drive the dispersion to zero.

Here is a critical question for sampling-based planning with differential con-
straints: What property must X have to enable convergence? Define X to be precom-
pact if and only if for any ε > 0 there exists a finite cover of X with open balls of
radius ε . The following lemma answers the question.

Lemma 1. A sequence P that is dense in X converges to X if and only if X is pre-
compact.

Proof. We prove necessary and sufficient conditions separately.

Necessary condition: Assume P is convergent, and let ε be greater than zero. Find
Nε such that δ (P|Nε

) < ε . Consider a set of open balls of radius ε centered at points
of P|Nε

. From the definition of dispersion, it follows that this set of balls is a finite
cover of X . Since ε is arbitrary, X is precompact by definition.

Sufficient condition: Suppose, on the other hand, that X is precompact. Thus, for
any ε > 0, there exists a finite cover of X with open balls of radius ε . Denote these
balls as Bi. Since the sequence P is dense, the intersection of P with each Bi is
nonempty. Take the smallest Nε such that P|Nε

has at least one element in each Bi.
By construction, the dispersion of P|Nε

in X is bounded by 2ε . Since ε is arbitrary
and for N > Nε we have δ (P|N)≤ δ (P|Nε

), the sequence converges. ut
Note that this is a property of the space X , and not a particular sample sequence.

Our analysis will demonstrate that under general conditions space of all control
signals is not precompact. Therefore, it is impossible to achieve convergence in the
control space. However, we will show precompactness of the space of finite-time
trajectories. In this case, the denseness implies convergence, which means that if a
solution is not found in a finite number of steps, it either does not exist or the goal
set must be smaller than the reached dispersion of the sampled trajectories.

3 Problem Definition
Let the state space, X ⊂ Rm, be a smooth manifold of dimension n. Let U be

the input space, which is a compact subset of Rk with k ≤ n. A given mechanical
system is expressed in local coordinates as2

1 Here, dense means that the topological closure of Q is all of R.
2 We may consider more general case of time-varying systems ẋ = f (x,u, t), without changing
further analysis in the paper. We choose the time-invariant case for notational convenience.

Sufficient Conditions for the Resolution Completeness 5

ẋ = f (x,u) , (3)

in which ẋ = dx/dt. Also, in the equation above, x ∈ X and u ∈U .
It is assumed that f is a Lipschitz continuous function in both x and u, which

implies that there exists positive real-valued constants Lx and Lu such that∥∥ f (x,u)− f (x′,u)
∥∥≤ Lx‖x− x′‖ and

∥∥ f (x,u)− f (x,u′)
∥∥≤ Lu‖u−u′‖ (4)

for all x , x′ ∈ X , and u , u′ ∈ U . The norms used here are defined on the ambient
vector spaces Rm and Rk, respectively. Furthermore, it is assumed that there exists
M > 0 such that

‖ f (x,u)‖ ≤M (5)

for all x ∈ X and u ∈U .
Let U be the set of all measurable functions, ũ defined on [0 , T], for all

T ∈ [0 , ∞), with values in U . Similarly, denote X to be the set of all Lipschitz
continuous functions x̃ defined on [0 , T], for T ≥ 0, with values in X . We re-
quire that for all functions in X the Lipschitz constant is bounded by M. In other
words, for any element x̃ ∈X and any given t and t ′ in the domain of x̃, we have
‖x̃(t)− x̃(t ′)‖ ≤M|t− t ′|. Also, define τ : U ∪X → [0 , ∞) to return the duration
of a control or a trajectory, depending on the argument.

Constraints are imposed on X that account for mechanical limits due to kine-
matics and dynamics, and also to avoid collisions with static obstacles. Let Xfree
denote an open and bounded subset of X that consists of all states satisfying these
constraints. Usually, Xfree is defined only implicitly via representations of the kine-
matics and obstacles. Therefore, a collision detection algorithm is often needed to
evaluate whether states lie in Xfree.

The planning problem is as follows. Assume X , U , and f are given. Furthermore,
an initial state, xI ∈ Xfree, and open goal set XG ⊆ Xfree are specified. The problem is
to compute ũ ∈U such that for the corresponding x̃, satisfying (3) with given ũ, the
following is true: 1) x̃(0) = xI, 2) x̃(τ(ũ)) ∈ XG, and 3) the image of x̃ lies in Xfree.

To accomplish this task, we assume the existence of an integration module which
integrates (3) to produce trajectory segments, and a collision detection module
which determines whether a trajectory segment lies entirely in Xfree.

4 Preliminary Concepts and Properties
In this section we introduce some preliminary concepts that are necessary to

establish basic properties for an algorithm to be resolution complete and convergent.
We define metrics on the space of controls and the trajectory space, and show that
the relation between controls and trajectories is a well-defined continuous function.

4.1 Designing Metric Spaces on U and X

The control space, U , can be made into a metric space as follows. Let α be the
diameter of the smallest ball that contains U . We call α the diameter of U . It is easy
to verify α < ∞ because U is assumed to be compact. For two controls ũ and ũ′ in
U define the L1-type metric

6 Dmitry S. Yershov and Steven M. LaValle

ρU (ũ, ũ′) =
∫ T

0
‖ũ(t)− ũ′(t)‖dt +α|τ(ũ)− τ(ũ′)| , (6)

in which T = min(τ(ũ),τ(ũ′)).
Note that this metric is different from a standard L1 metric due to variable domain

length of functions in U , which is accounted by an additional term in (6). The extra
term separates any meaningful controls from the control defined on the zero length
time interval, we call it zero control.

The choice of the metric is motivated by Figs. 2a and 2b. Consider driving a
car around a corner. The trajectory deviates only slightly if steering is applied with
small delays. Moreover, the trajectory deviation depends on the delay continuously.
The introduced L1-type metric (6) captures this behavior.

��
��
��
��
��
��
��

��
��
��
��
��
��
��

��
��
��
��

��
��
��
��

τ(ũ) R

U
ũ

ũ′

τ(ũ′) xI
x̃(xI, ũ′)

x̃(xI, ũ)

Fig. 2a Control signals. The area of the
shaded regions corresponds to ρU (ũ, ũ′)

Fig. 2b Corresponding trajectories

To save space, we omit the (tedious) proof of the following lemma:

Lemma 2. The control space U is a metric space3 with respect to (6).

Next we describe a metric on the space of all trajectories, X . For two trajectories
x̃ and x̃′ define the L∞-type metric

ρX (x̃, x̃′) = sup
0≤t≤T

{
‖x̃(t)− x̃′(t)‖

}
+M|τ(x̃)− τ(x̃′)| , (7)

in which T = min(τ(x̃),τ(x̃′)).
On the trajectory space, an L1-type metric cannot be used because it ignores

“spikes” in the trajectory deviation. The two trajectories illustrated in Fig. 3a are
“close” in terms of the L1-type metric. However, they exhibit qualitatively differ-
ent behavior; the first one does not intersect the obstacle and the second one does.
Moreover, it is possible to find two trajectories arbitrary close in L1-type metric, but
with arbitrary large deviation between them. On the other hand, later we will show
that two trajectories which are “close” in the L∞-type metric behave similarly; see
Fig. 3b.

Lemma 3. The trajectory space X is a metric space with respect to (7).

(The proof is omitted to save space.)

3 More precisely, it is a pseudometric space [18] because ρU (ũ, ũ′) = 0 for some ũ 6= ũ′. However,
if two controls are identified in case their distance is zero, then the resulting space is a metric space.

Sufficient Conditions for the Resolution Completeness 7

�����
�����
�����

�����
�����
�����

xI

x̃′

x̃

�����
�����
�����

�����
�����
�����

xI

x̃′

x̃

Fig. 3a L1-type metric Fig. 3b L∞-type metric

4.2 Relating Controls to Trajectories
Next, we analyze the mapping between a control ũ ∈ U and the corresponding

trajectory originating from some x0 ∈ X . Denote the mapping as a function x̃(x0, ũ) :
X ×U →X . Note that for fixed ũ and x0, the trajectory x̃(x0, ũ) is a function of
time and it satisfies the integral equation

x̃(x0, ũ, t) = x0 +
∫ t

0
f (x̃(x0, ũ,s), ũ(s))ds , (8)

which is equivalent to (3). In the integral equation, x̃(x0, ũ, t) denotes the point of
the trajectory x̃(x0, ũ) at time t.

Lemma 4 (Well-defined trajectories). For any initial state x0 ∈ X and any control
signal ũ ∈U , the trajectory x̃(x0, ũ) belongs to X .

Proof. For any given ũ ∈U , function f (x, ũ(t)) as a function of x and t satisfies the
Caratheodory conditions. Hence, the solution for the differential equation (3), with
initial value at any x0, exists, is unique, and is absolutely continuous on [0 , τ(ũ)].
We now use the integral equation (8) to prove that x̃(x0, ũ, t) is Lipschitz continuous
as a function of time. Consider∥∥∥x̃(x0, ũ, t)− x̃(x0, ũ, t ′)

∥∥∥≤ ∥∥∥∫ t

t ′
f (x̃(x0, ũ,s), ũ(s))ds

∥∥∥≤M|t− t ′| . (9)

Note that the Lipschitz constant is bounded by M; therefore, x̃(x0, ũ) is in X . ut
To show the continuity of x̃(x0, ũ), we first prove the following lemma.

Lemma 5 (Bounded trajectory deviation).
Let ũ and ũ′ be two independent controls, with τ(ũ) = τ(ũ′) = T . Assume further

that x̃ = x̃(x0, ũ) and x̃′ = x̃(x′0, ũ
′) are the corresponding trajectories. The deviation

between trajectories x̃ and x̃′ at any time t ∈ [0 , T] is bounded by

‖x̃(t)− x̃′(t)‖ ≤
(
‖x0− x′0‖+Lu

∫ t

0
exp(−Lxs)‖ũ(s)− ũ′(s)‖ds

)
exp(Lxt) . (10)

Proof. Trajectories x̃ and x̃′ satisfy the integral equation (8), with ũ and ũ′, respec-
tively. Using the integral equation and the Lipschitz continuity of f , we derive the
integral inequality for the trajectory deviation

8 Dmitry S. Yershov and Steven M. LaValle

‖x̃(t)− x̃′(t)‖=
∥∥∥x0− x′0 +

∫ t

0

[
f
(
x̃(s), ũ(s)

)− f
(
x̃′(s), ũ′(s)

)]
ds
∥∥∥

≤ ‖x0− x′0‖+
∫ t

0
Lu‖ũ(s)− ũ′(s)‖+Lx‖x̃(s)− x̃′(s)‖ds . (11)

From the integral form of Gronwall-Bellman inequality [19] a bound on the tra-
jectory deviation at any time t ∈ [0 , T] follows as

‖x̃(t)− x̃′(t)‖ ≤ ‖x0− x′0‖exp(Lxt)+Lu

∫ t

0
‖ũ(s)− ũ′(s)‖ds

+LxLu

∫ t

0

∫ r

0
exp(Lx(t− r))‖ũ(s)− ũ′(s)‖ds dr . (12)

The double integral is reduced to a single integral by applying Fubini’s theorem
[18] to obtain∫ t

0

∫ r

0
exp(Lx(t− r))‖ũ(s)− ũ′(s)‖ds dr

=
∫ t

0

∫ t

s
exp(Lx(t− r))‖ũ(s)− ũ′(s)‖dr ds

=
1
Lx

∫ t

0
‖ũ(s)− ũ′(s)‖(exp(Lx(t− s))−1

)
ds (13)

The combination of the results above finishes the proof. ut
The next theorem establishes the continuity of the function x̃(x0, ũ) with respect

to both x0 and ũ.

Theorem 1 (Continuity of x̃(x0, ũ)). The mapping x̃(x0, ũ) is continuous.

Proof. Take two initial points x0 and x′0 in X and two control signals ũ and ũ′ in
U . Let x̃ and x̃′ be defined as in Lemma 5, and let T ∗ = min(τ(x̃),τ(x̃′)). It follows
from Lemma 5 that for all t ∈ [0 , T ∗]

‖x̃(t)− x̃′(t)‖ ≤
(
‖x0− x′0‖+Lu

∫ t

0
exp(−Lxs)‖ũ(s)− ũ′(s)‖ds

)
exp(Lxt) . (14)

Take the supremum over the interval [0 , T ∗] on both sides and derive

sup
0≤t≤T ∗

‖x̃(t)− x̃′(t)‖ ≤ exp(LxT ∗)
(
‖x0− x′0‖+Lu

∫ T ∗

0
‖ũ(s)− ũ′(s)‖ds

)
. (15)

Using the derivation above, we bound the distance between trajectories in terms
of the distances between initial values and control signals

Sufficient Conditions for the Resolution Completeness 9

ρX (x̃, x̃′) = sup
0≤t≤T ∗

‖x̃(x0, ũ, t)− x̃(x′0, ũ
′, t)‖+M|T −T ′|

≤ exp(LxT ∗)
(
‖x0− x′0‖+Lu

∫ T ∗

0
‖ũ(s)− ũ′(s)‖ds

)
+

M
α

α|T −T ′|

≤ exp(LxT ∗)‖x0− x′0‖+max
(

Lu exp(LxT ∗),
M
α

)
ρU (ũ, ũ′) . (16)

The inequality above proves continuity of the map. ut
Since X and U are metric spaces and x̃(x0, ũ) is continuous, we may employ

topological methods to analyze properties of subsets and sequences in control and
trajectory spaces, as well as relations between them.

4.3 Topological Properties
We next address properties of the set of collision-free paths connecting xI with

XG. Consider XI, the subset of X containing all trajectories that originate from xI.
Define the induced subset topology on XI. Also, consider the set Xsol of solutions
to the path planning problem, which consists of all paths in X that originate from
xI, terminate in XG, with the image contained in Xfree (collision-free). Note that an
element of Xsol may not be necessarily a trajectory governed by the system (3).

Theorem 2. If Xfree and XG are open in X, then Xsol is an open subset of XI.

Proof. Let x̃ be in Xsol, and let T = τ(x̃). According to the definition, the image of
x̃ is contained in Xfree and the terminal point, x̃(T), is in XG. Since the image of x̃ is
compact and the complement of Xfree is closed, the distance between these two sets,
δ1, is well-defined and strictly positive. Moreover, the distance from the terminal
point to the complement of XG, δ2, is also well-defined and positive.

Consider δ = min(δ1,δ2) and any trajectory x̃′ from XI such that ρX (x̃, x̃′) < δ .
First, we show that the image of x̃′ is in Xfree. Assume to the contrary that there
exists some t ′ ∈ [0 , τ(x̃′)] such that x̃′(t ′) /∈ Xfree. Let t = min(t ′,T). The bound

‖x̃(t)− x̃′(t ′)‖ ≤ ‖x̃(t)− x̃′(t)‖+‖x̃′(t)− x̃′(t ′)‖
≤ ‖x̃(t)− x̃′(t)‖+M|t− t ′|
≤ ρX (x̃, x̃′) < δ ≤ δ1 (17)

contradicts the definition of δ1.
Second, we prove that x̃′(T ′) ∈ XG, in which T ′ = τ(x̃′). Assume to the contrary

that x̃′(T ′) /∈ XG. Let T ∗ = min(T,T ′) and consider the bound

‖x̃(T)− x̃′(T ′)‖ ≤ ‖x̃(T)− x̃(T ∗)‖+‖x̃(T ∗)− x̃′(T ∗)‖+‖x̃′(T ∗)− x̃′(T ′)‖
≤M|T −T ∗|+‖x̃(T ∗)− x̃′(T ∗)‖+M|T ∗−T ′|
= ‖x̃(T ∗)− x̃′(T ∗)‖+M|max(T ′,T)−min(T ′,T)|
≤ ρX (x̃, x̃′) < δ ≤ δ2 , (18)

which contradicts the definition of δ2. By definition, x̃′ belongs to Xsol. ut

10 Dmitry S. Yershov and Steven M. LaValle

Denote a set of solutions to the motion planning problem as Usol. Clearly, for
any given ũ in Usol, the trajectory x̃(xI, ũ) belongs to Xsol. Therefore, Usol is a
preimage of Xsol with respect to x̃(xI, ũ) : U →X . From the continuity of x̃(xI, ũ)
and Theorem 2 it follows that Usol is open. We state this result as a separate theorem:

Theorem 3. Assume all the conditions of Section 3 are met, then Usol is open.

5 Planning Algorithm and Resolution Completeness Conditions
In this section we establish sufficient conditions under which resolution complete

algorithms to the motion planning problem exist. A simple resolution complete algo-
rithm is constructed. We also prove the convergence of sampling-based algorithms
in the trajectory space.

5.1 Controls Via Concatenation of Primitives
Let Σ ⊂ U be a countable set of motion primitives, each defined over a closed

and bounded time interval. Borrowing concepts from the theory of computation, Σ

can be interpreted as an alphabet. If motion primitives are applied in succession, a
control that represents their concatenation is obtained. For example, if σ1,σ2 ∈ Σ , in
which σ1 : [0 , t1]→U and σ2 : [0 , t2]→U , are applied in succession, the resulting
control, denoted by σ1σ2 is

(σ1σ2)(t) =
{

σ1(t) if t ∈ [0 , t1)
σ2(t− t1) if t ∈ [t1 , t1 + t2]

. (19)

Allowing any finite number of concatenations, each resulting control can be ex-
pressed as a string, which is a finite sequence of motion primitives in Σ . Considering
this, the set of all controls that can be formed from motion primitives is the Kleene
star of Σ , which is denoted and defined as

Σ
∗ = {σ1σ2 · · ·σk | k ≥ 0 and each σi ∈ Σ}. (20)

Note that we do not allow infinite sequences of motion primitives to be applied. The
definition of Σ ∗ allows the empty string, which is assumed to be zero control.

The following lemma establishes a useful property of Σ ∗ for the purposes of
computation.

Lemma 6 (Rectangular enumeration argument). For any set, Σ , of motion prim-
itives, the set, Σ ∗, of all strings is countable.

Proof. Consider Σ ∗n , which consists of all strings of length not greater than n and
composed of any characters of the alphabet Σ |n. For example, Σ ∗1 = {σ1}, Σ ∗2 =
{σ1,σ2,σ1σ1,σ1σ2,σ2σ1,σ2σ2}, and so on; see Fig. 4. Verify that each Σ ∗n is finite,
and Σ ∗ =

⋃
∞
n=1 Σ ∗n . Hence, Σ ∗ is countable as a countable union of finite sets. ut

To facilitate the development of resolution complete planning algorithms, it will
be helpful to introduce a set of motion primitives that is straightforward to describe
and utilize. Moreover, assuming that all motion primitives in the set Σ are encoded
digitally, it follows from the lemma above that all strings in Σ ∗ are computable.

Sufficient Conditions for the Resolution Completeness 11

Fig. 4 Even if Σ is countably
infinite, Σ ∗ is countably infi-
nite, as shown by rectangular
enumeration argument. We
show that Σ ∗ =

⋃
∞
n=1 Σ ∗n , in

which sets Σ ∗n correspond to
regions bounded by dashed
lines and finite.

1 2 3

{σ1σ2,
σ2σ1,
σ2σ2}

σ1

σ3

σ2 {σ2}

{σ3}

{σ1} {σ1σ1} {σ1σ1σ1}

. . .

.

Suppose that a system is defined as in (3). First, replace U with a countable
subset. If U is uncountably infinite, then choose a countable, dense subset Ud ⊂U .
For example, Ud could be the set of all u ∈U for which all coordinates are rational
numbers. If U is already countable, then we may simply let Ud = U .

Let Σdt ⊂ U be called the discrete-time model, and be defined as the set of all
constant functions, ũ : [0 , t]→Ud, in which t = 1/2i for all i ∈ N. Thus, the dura-
tion of motion primitives can be 1/2, 1/4, 1/8, and so on. Any sequence of time
intervals that converges to zero may alternatively be used. The set of all strings
that utilizes the alphabet Σdt and the concatenation rule (19) consists of piecewise
constant functions. We denote this set of strings as Σ ∗dt.

The discrete-time model is just one of numerous possible sets of motion primi-
tives. However, the particular choice of Σ depends heavily on the considered system,
the intended application, and the efficiency of the planning algorithm. Virtually any
definition of Σ is allowed, provided that Σ ∗ is dense in U . We will show that this
requirement is sufficient for a resolution complete algorithm to exist.

5.2 Planning algorithm
Based on the background results of Section 4, we are now ready to establish the

existence of resolution complete algorithms in a very general setting. The existence
is demonstrated by construction of a simple string enumeration algorithm; refer to
Algorithm 1.

The selection operation 4 is required to be systematic, which means that strings
are selected so that all of Σ ∗ is enumerated as the number of iterations tends to
infinity. This is always possible because Σ ∗ is countable.

For the integration line 5, validation line 6, and termination line 7, we would ide-
ally like to have them executed in constant time with perfect precision. In practice,
however, this is usually not possible. Most often, a numerical integration is neces-
sary, which causes errors to propagate to the remaining two operations. Due to these
limitations, an alternative will be defined: 1) An exact computation model, and 2) a
numerical computation model.

Let the exact computation model refer to the case in which all operations are per-
formed exactly in finite time without errors. This model is the simplest to analyze;

12 Dmitry S. Yershov and Steven M. LaValle

Algorithm 1 String enumeration algorithm
Input : a set of motion primitives Σ , the initial state xI, a goal set XG, a collision detection module,
an integration module.
Output : a solution control σ̃ ∈ Σ ∗.
1: n← 0
2: loop
3: εi← 1/2n ; n← n+1
4: σ̃ ← select the nth string from Σ ∗
5: x̂(xI, σ̃)← integrate the trajectory, starting from xI under the control σ̃ , with tolerance εi
6: C1← (true or false) determine whether the image of x̂(xI, σ̃) is contained in Xfree
7: C2← (true or false) determine whether the final state of x̂(xI, σ̃) lies in XG
8: if C1∧C2 then
9: return σ̃

10: end if
11: end loop

however, it is also less realistic. Note that for the exact computational model the
parameter εi is ignored in line 5 of the algorithm.

To account for errors arising from a numerical integration error, let the numerical
computation model be defined as shown in Fig. 5. Assume that the precision of the
numerical integration algorithm can be tuned using a parameter εi ∈ (0,∞), and the
error of the numerical trajectory is bounded by

‖x̃(x0, ũ, t)− x̂(x0, ũ, t)‖ ≤ εiF(t) , (21)

in which F is a strictly positive, monotonic function of time, and x̂(x0, ũ) is the
numerical trajectory.

Fig. 5 The numerical com-
putation model. The dotted
region is the error cone con-
structed around the numer-
ically integrated trajectory
(solid line), which contains
the exact trajectory (dashed
line).

����
����
����
����
����

����
����
����
����
����

����
����
����
����

����
����
����
���� XG

xI

The proposed numerical error model allows us to construct an error cone (around
the numerical trajectory), which contains the exact trajectory; see Fig. 5. The error
cone is then used for validation and termination purposes. It will be assumed that
validation and termination algorithms are conservative, that is, the algorithm must
reject a candidate solution if there is any possibility that the trajectory leaves Xfree
or fails to terminate in XG. Moreover, it may also be possible to reject strings under
the numerical computation model by determining that all possible trajectories either
leave Xfree or fail to terminate in XG. However, this will not be considered in detail
in this paper.

Sufficient Conditions for the Resolution Completeness 13

5.3 Sufficient Conditions for Resolution Completeness
We derive a set of sufficient conditions which guarantee that the proposed al-

gorithm is resolution complete. The result is demonstrated for both exact and nu-
merical computational models. Furthermore, we demonstrate that the discrete-time
model satisfies these sufficient conditions.

Theorem 4 (Sufficient conditions for the exact computational model). If Σ ∗ is
dense in U , then Algorithm 1 is resolution complete under the exact computational
model.

Proof. We have already shown that the set Usol ⊂ U is open, and in case a solu-
tion exists, Usol is nonempty. Since Σ ∗ is dense, its intersection with Usol is also
nonempty. Hence, the algorithm, selecting systematically strings from Σ ∗, eventu-
ally finds an element that is also in Usol. Under the exact computational model, the
selected string is accepted. ut
Theorem 5 (Sufficient conditions for the numerical computational model). If
Σ ∗ is dense in U , then Algorithm 1 is resolution complete under the numerical
computational model.

Proof. Let ũ∈Usol be a solution to the motion planning problem and ε be a positive
constant. Furthermore, let δ = ε/

(
2max

[
Lu exp(Lxτ(ũ)),M/α

])
and N ∈N be such

that 1/2N < ε/
(
4F(τ(ũ) + δ/α)

)
. Find σ̃ ∈ Σ ∗, such that its number is greater

than N and ρU (ũ, σ̃) < δ . It is always possible to do so because Σ ∗ is assumed to
be dense in U . With such choice of σ̃ , it follows that |τ(ũ)− τ(σ̃)| < δ/α , and,
following the proof of Theorem 1, the distance ρX (x̃(xI, ũ), x̃(xI, σ̃)) < ε/2.

Consider the distance between the exact trajectory, x̃(xI, ũ), and the numerically
integrated trajectory, x̂(xI, σ̃):

ρX (x̃(xI, ũ), x̂(xI, σ̃))≤ ρX (x̃(xI, ũ), x̃(xI, σ̃))+ρX (x̃(xI, σ̃), x̂(xI, σ̃))

≤ ε

2
+ εiF(τ(σ̃))≤ ε

2
+

εF(τ(σ̃))
4F(τ(ũ)+δ/α)

≤ ε

2
+

ε

4
≤ 3ε

4
. (22)

Furthermore, note that the error cone around x̂(xI, σ̃) stays in ε/4-neighborhood of
the numerical trajectory. Hence, the error cone is contained in the ε-neighborhood
of x̃(xI, ũ). By adjusting ε , which is arbitrary, we can ensure that the error cone is in
Xsol. Therefore, σ̃ is accepted by Algorithm 1. ut

Now that we have a simple test to determine whether Algorithm 1 is resolution
complete, we apply it to the discrete-time model.

Theorem 6 (Denseness theorem). The set Σ ∗dt is dense in U .

Proof. Intuitively, the proof follows from the well known fact that piecewise con-
stant functions are dense in the space of measurable functions [20]. Unfortunately,
the discrete-time model is only a proper subset of the set of all piecewise constant
functions. Here we outline our proof that overcomes this difficulty. Refer to Fig. 6
for details.

14 Dmitry S. Yershov and Steven M. LaValle

Fig. 6 Collection {Ui} is a
partition of U . Sets Ais are
preimages of Uis under the
map ũ. Intervals I js approx-
imate Ais from within. The
function ũ′ is a piecewise
constant approximation of ũ,
defined on the collection {I j}.

U1

U2

U3

A2A2 A1 A3

ũ′

I1 I2 I3 I4 I5 I6 I7 I10 I11

ũ

I12 R

U

I8 I9

Consider any ũ in U and ε greater than zero. Assume that U is partitioned with a
collection of measurable sets {Ui} with nonempty interior such that the diameter of
each set is less than ε/

(
2τ(ũ)

)
. Let Ai be a preimage of Ui with respect to ũ. Since

ũ is a measurable function and Ui is a measurable set, Ai is measurable.
Next, consider the approximation of Ais from within by intervals of length 1/2N ;

denote these intervals as I j = [(j− 1)/2N , j/2N]. Assume the tolerance of the ap-
proximation is less than ε/(2α), collectively for all Ais. This means that the measure
of the difference between Ai and all intervals which are subsets of Ai does not exceed
ε/(2α), collectively for all sets Ai.

Finally, define ui to be any element of Ud that is also in Ui (it is possible to find
such ui because Ui has nonempty interior and Ud is dense in U), and let u0 to be any
in Ud. Construct the approximation

ũ′(t) =
{

ui if ∃ i and ∃ j such that t ∈ I j ⊆ Ai
u0 otherwise . (23)

By construction, ũ′ is in Σ ∗dt. Now, compute the distance

ρU (ũ, ũ′)≤∑
j

′
∫

I j

‖ũ(t)−ui‖dt +α
ε

2α
≤ τ(ũ)

ε

2τ(ũ)
+

ε

2
= ε . (24)

Here, ∑
′ denotes the summation over j such that I j ⊆ Ai for some i.

In conclusion, we note that for any ũ ∈U and ε > 0 we found ũ′ ∈ Σ ∗dt such that
ρU (ũ, ũ′)≤ ε . Therefore, Σ ∗dt is dense in U . ut

Finally, we have established the main result of the paper:

Theorem 7. Under exact and numerical computation models, there exists a set of
motion primitives and a resolution complete planning algorithm.

Proof. The result follows from Theorems 4, 5, and 6. ut
Perhaps surprisingly, the algorithm may be resolution complete without actu-

ally causing convergence in dispersion. As discussed in Section 2, a dense sample
sequence on a precompact set converges. However, U is generally not precom-
pact. Therefore, our proposed algorithm does not converge in U . Nevertheless, it
converges in the trajectory space for the bounded time problem, assuming Xfree is
bounded:

Sufficient Conditions for the Resolution Completeness 15

Theorem 8 (Convergence of Finite Length Trajectories). Assuming that execu-
tion time is bounded by T , the space XI,T = {x̃ ∈XI | τ(x̃) ≤ T} is precompact.
Hence, a dense sequence of controls corresponds to a dense sequence of trajectories
that converges to the set of all feasible trajectories.

Proof. For the set XI,T , the following two conditions hold:

1. Uniform boundedness: There exists C1 > 0 such that ‖x̃(t)‖ ≤ C1 for all x̃ in
XI,T . The condition is easy to verify. Let C1 = MT +‖xI‖ and consider

‖x̃(t)‖ ≤ ‖x̃(t)− x̃(0)‖+‖x̃(0)‖ ≤Mt +‖xI‖ ≤C1 ; (25)

2. Uniform equicontinuity: There exists C2 > 0 such that for all x̃∈XI,T and any t
and t ′ in [0 , τ(x̃)], we have ‖x̃(t)− x̃(t ′)‖ ≤C2|t− t ′|. The above follows directly
from the definition of X , by letting C2 = M.

Using the Arzelà–Ascoli4 theorem [20], it follows that XI,T is precompact. The
convergence of sampled trajectories follows from Lemma 1. ut

6 Conclusions
To summarize, we revisit Fig. 1 with the precise terminology from the paper to

obtain:
Σ

��

U

��

X

��
Σ ∗

⊆ // U
x̃(xI ,ũ) // X .

(26)

The most important step was to relate the space of controls U to the trajectory
space X topologically by forming metric spaces. Furthermore, we have relied on
the fact that U can be sufficiently sampled using primitives Σ to obtain Σ ∗, yielding
a computational approach. Using this formulation, we have introduced a resolution-
complete algorithm for motion planning with differential constraints in the most
general setting known to date, requiring only Lipschitz continuity of the system.

More importantly, the functional analysis framework provides some practical im-
plication. For example, consider a system which is symmetric under Lie group trans-
formations [10]. Moreover, suppose the dispersion of a given set of motion primi-
tives is limited by ε > 0 in the set of all trajectories with the final time bounded by
∆ t. Consider further the set of all strings of length N composed of these primitives
and the set of all trajectories with the final time bounded by N∆ t. It follows from
Lemma 5 that the dispersion of the former set in the later set is bounded by Kε , in
which K depends only on N, ∆ t, and Lx, however, it is independent of a particular
trajectory (we leave it to the reader to verify this fact). Hence, to reach the desired
dispersion in the reachable set, it suffice to build primitives that approximate short
time trajectories with a given resolution. This example illustrates one of the possi-
ble practical implications of our study. Furthermore, we believe that the metric space

4 In the provided reference the theorem is called Arzelà’s theorem, and the synonymous term
“relatively compact” is used instead of “precompact”

16 Dmitry S. Yershov and Steven M. LaValle

formulations and resulting analysis may be practically useful for a broader class of
systems and/or motion planning algorithms.

Acknowledgements This work was supported in part by NSF grants 0904501 (IIS Robotics),
NSF grant 0535007 (IIS Robotics) and 1035345 (Cyberphysical Systems), DARPA SToMP grant
HR0011-05-1-0008, and MURI/ONR grant N00014-09-1-1052.

References
1. J.-P. Laumond, S. Sekhavat, and F. Lamiraux, “Guidelines in nonholonomic motion planning

for mobile robots,” in Robot Motion Planning and Control (J.-P. Laumond, ed.), pp. 1–53,
Berlin: Springer-Verlag, 1998.

2. B. R. Donald, P. G. Xavier, J. Canny, and J. Reif, “Kinodynamic planning,” Journal of the
ACM, vol. 40, pp. 1048–66, Nov. 1993.

3. J. E. Bobrow, S. Dubowsky, and J. S. Gibson, “Time-optimal control of robotic manipulators
along specified paths,” International Journal of Robotics Research, vol. 4, no. 3, pp. 3–17,
1985.

4. J. Hollerbach, “Dynamic scaling of manipulator trajectories,” tech. rep., MIT A.I. Lab Memo
700, 1983.

5. J.-J. E. Slotine and H. S. Yang, “Improving the efficiency of time-optimal path-following
algorithms,” IEEE Transactions on Robotics & Automation, vol. 5, no. 1, pp. 118–124, 1989.

6. S. M. LaValle, Planning Algorithms. Cambridge, U.K.: Cambridge University Press, 2006.
Also available at http://planning.cs.uiuc.edu/.

7. J. H. Reif, “Complexity of the mover’s problem and generalizations,” in Proceedings IEEE
Symposium on Foundations of Computer Science, pp. 421–427, 1979.

8. J.-C. Latombe, Robot Motion Planning. Boston, MA: Kluwer, 1991.
9. M. S. Branicky, R. A. Knepper, and J. J. Kuffner, “Path and trajectory diversity: Theory

and algorithms,” in Proceedings IEEE International Conference on Robotics & Automation,
pp. 1359–1364, 2008.

10. E. Frazzoli, M. A. Dahleh, and E. Feron, “Robust hybrid control for autonomous vehicles mo-
tion planning,” Tech. Rep. LIDS-P-2468, Laboratory for Information and Decision Systems,
Massachusetts Institute of Technology, 1999.

11. L. H. Erickson and S. M. LaValle, “Survivability: Measuring and ensuring path diversity,” in
Proceedings IEEE International Conference on Robotics and Automation, 2009.

12. A. Bhatia and E. Frazzoli, “Sampling-based resolution-complete algorithms for safety falsi-
fication of linear systems,” in Hybrid Systems: Computation and Control (M. Egerstedt and
B. Mishra, eds.), pp. 606–609, Berlin: Springer-Verlag, 2008. Lecture Notes in Computer
Science, 4981.

13. E. Haghverdi, P. Tabuada, and G. J. Pappas, “Bisimulation relations for dynamical, control,
and hybrid systems,” Theoretical Computer Science, vol. 342, pp. 229–261, Sept. 2005.

14. D. P. Bertsekas, “Convergence in discretization procedures in dynamic programming,” IEEE
Transactions on Automatic Control, vol. 20, pp. 415–419, June 1975.

15. S. M. LaValle and P. Konkimalla, “Algorithms for computing numerical optimal feedback
motion strategies,” International Journal of Robotics Research, vol. 20, pp. 729–752, Sept.
2001.

16. H. Choset, K. M. Lynch, S. Hutchinson, G. Kantor, W. Burgard, L. E. Kavraki, and S. Thrun,
Principles of Robot Motion: Theory, Algorithms, and Implementations. Cambridge, MA: MIT
Press, 2005.

17. H. Niederreiter, Random Number Generation and Quasi-Monte-Carlo Methods. Philadelphia:
Society for Industrial and Applied Mathematics, 1992.

18. H. Royden, Real Analysis. Collier-Macmillman Limited, London: The Macmillman Com-
pony, 1988.

19. M. Bardi and I. Capuzzo-Dolcetta, Optimal Control and Viscosity Solutions of Hamilton-
Jacobi-Bellman Equation. Boston, Basel, Berlin: Birkhäuser, 2008.

20. A. N. Kolmogorov and S. V. Fomin, Introductory Real Analysis. Dover Publications, Inc.,
New York: Dover, 1975.

