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Abstract

This paper addresses the problem of generating uni-
form deterministic samples over the spheres and the
three-dimensional rotation group, SO(3). The target
applications include motion planning, optimization,
and verification problems in robotics and in related
areas, such as graphics, control theory and computa-
tional biology. We introduce an infinite sequence of
samples that is shown to achieve: 1) low-dispersion,
which aids in the development of resolution complete
algorithms, 2) lattice structure, which allows easy
neighbor identification that is comparable to what is
obtained for a grid in Rd, and 3) incremental qual-
ity, which is similar to that obtained by random sam-
pling. The sequence is demonstrated in a sampling-
based motion planning algorithm.

1 Introduction

Many important algorithms developed in robotics
and related areas require careful sampling over
spheres. In recent years, the paradigm of sampling-
based motion planning has led to algorithms that can
solve many challenging problems by combining colli-
sion detection, search algorithms, and sampling strate-
gies over the configuration space. General sampling
over spheres arises in many forms of planning and op-
timization in which some number of directions are lo-
cally explored. For example, some potential field ap-
proaches [3, 10] involve sampling local directions to
obtain an approximate gradient descent. The exact
expression of the gradient may be too costly or even
unavailable. One important special case of sampling
over spheres is sampling over the 3D rotation group,
SO(3), which involves sampling over half of the three-
sphere, S3. One of the main motivations for this paper

Figure 1: Distribution of points on the sphere S2 gen-
erated by a grid (Sukharev [20]) on each spherical face.

is the problem of motion planning for a rigid body in
R3.
We are particularly interested in the development

of deterministic sampling methods. Although most
existing motion planning methods currently use ran-
dom sampling, they are limited to probabilistic forms
of completeness. With deterministic sampling, reso-
lution completeness guarantees are possible. This is
particularly valuable in the area of system verifica-
tion, in which one must guarantee that a system be-
haves correctly under all possible trajectories. The
intractability of most of these problems leads natu-
rally to sampling based approaches. While it may be
valuable to verify a system down to some level of res-
olution, random sampling might leave doubts about
whether the space was adequately covered. In some
cases, deterministic sampling has even led to practical
performance improvements in comparison to random
sampling [13, 14, 15]. The techniques presented in the
present paper build on recent work to develop uniform,
deterministic sampling techniques for motion planning
[6, 12, 13].
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The particular problem of sampling over spheres
presents many unique challenges. The vast majority of
sampling literature considers placing points in a unit
d-dimensional cube, [0, 1]d ⊂ Rd (see [12, 15]). This
might correctly capture some configuration spaces
that arise in robotics; however, the majority of appli-
cations involve other topological spaces, such as RP 3,
which arises from rigid body rotations, or toroidal
manifolds, which arise from a series of revolute joints
of a manipulator. In these cases, special sampling
techniques should be developed because quality mea-
sures for sets of samples depend on the topology. For
example, the maximum distance that a configuration
could be from its nearest sample depends on the met-
ric, which is induced partly by the topology.

In addition to topological issues, the way that a
configuration space is parameterized is of critical im-
portance to defining notions of uniformity. A col-
lection of samples that are uniform with respect to
one parameterization of the configuration space might
seem extremely biased using another parameteriza-
tion. It might seem that there is no way to avoid
this frustrating issue, but fortunately for the case of
SO(3), there is an intrinsic notion of uniformity that
is given by the Haar measure [7] (this will be defined in
Section 2). Using this notion, the natural parameter-
ization of SO(3) is the set of unit quaternions (with
antipodal identification), and our sampling methods
will be developed to achieve rigorous notions of uni-
formity in this case.

To maximize the potential for impact on motion
planning and related areas, our goal has been to de-
velop a sampling method that achieves 1) uniformity,
2) lattice structure, and 3) incremental quality. Uni-
formity means good covering of the space is obtained
without unwanted bias, clumping or gaps. This can be
formulated in terms of optimizing discrepancy or dis-
persion [14, 15, 4]. The uniformity notion considered
here is actually more “uniform” than what is obtained
by random sampling. Lattice structure means that for
every sample, the location of nearby samples can eas-
ily be determined as part of a regular pattern (as in
neighbors on a grid, for example). Incremental quality
means that if the sampling method is considered as an
infinite sequence, then the sequence may be truncated
after any finite number of samples and good coverage
will be obtained. This is an important characteris-
tic of pseudo-random number sequences, making them
desirable for many past motion planning algorithms
[1, 5, 9, 19, 22]. We would like to obtain the same
behavior, even though the sequence is deterministic,
uniform, and has lattice structure.

2 Quality Measures for the Distribu-

tions of Points on Spheres

We consider generating samples over spheres and
SO(3). Let Sd represent a d-dimensional sphere, em-
bedded in Rd+1 as

Sd = {x ∈ Rd+1 | ‖x‖ = 1}.

The set of all rotations in R3 is denoted as SO(3),
which is defined as the set of all 3×3 orthonormal ma-
trices. It will be helpful to sometimes represent SO(3)
as the set, H, of unit quaternions, each of which is ex-
pressed as h = a+ bi+ cj+ dk, with the identification
h ∼ −h [11]. Note that it appears that H = S3,
except that antipodal points on S3 are identified in
the definition of H. This leads to a close relationship
between sampling on sphere and sampling on SO(3).
Now that the spaces have been defined, the next

task is to define the quality of samples. Consider
sphere Sd over which the finite set of points A is gen-
erated.

Definition 2.1 For a finite point set A generated

over the sphere Sd the discrepancy of A with respect

to a given family R of subsets of Sd, called ranges, is

defined by

DR(A) = sup
R∈R

∣∣∣∣
|A ∩R|

|A|
− µ(R)

∣∣∣∣ ,

where µ denotes the rotation invariant measure of the

sphere Sd in Euclidean space Rd+1, and | · | applied to

a finite set denotes its cardinality.

In the case of SO(3) the measure defined on S3 as
above corresponds to the Haar measure defined over
the set of all rotation matrices.
The range spaces that are usually considered on the

sphere are the set of spherical caps, i.e., intersections
of the sphere with half spaces; or the set of spherical
slices, i.e., intersections of two half-spheres [4, 16].

Definition 2.2 The dispersion of a finite set A is de-

fined by

dR(A) = sup
q∈Sd

min
p∈A

ρ(q, p),

in which ρ is a rotation invariant metric over Sd.

Having these definitions of uniformity in mind, in
what follows we propose a general approach to sam-
pling on spheres and SO(3). As a particular example
we show how to generate a low-dispersion and low-
discrepancy sample set which has additional useful
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properties: it is incremental, has lattice structure, and
it can be efficiently generated. We show how these
samples can be applied to the problems of motion
planning.

3 Exploiting the Regularity of Pla-

tonic Solids

Our general approach to sampling is based on Pla-
tonic solids. In R3, a Platonic solid or regular polyhe-
dron, is a polyhedron for which every face is a copy
of a regular polygon, fixed over all faces, and the
degree of every vertex is fixed. Let (v, e, f) denote
the numbers of vertices, edges, and faces of a regu-
lar polyhedron. Although there are an infinite num-
ber of regular polygons, there are only five regular
polyhedra: tetrahedron (4,6,4), cube (8,12,6), octahe-
dron (6,12,8), icosahedron (12,30,20), and dodecahe-
dron (20,30,12). The notion of regular polyhedron can
be generalized to higher dimensions to obtain a regular
polytope. In R4, it turns out that there are six regu-
lar polytopes: simplex (5,10,10,5), cube (16,32,24,8),
cross polytope (8,24,32,16), 24 cell (24,96,96,24), 120
cell (600,1200,720,120), 600 cell (120,720,1200,600).
The forth element in each sequence denotes the num-
ber of 3D cells (which are regular polyhedra). Finally,
in Rd for any d > 4, there are only three regular poly-
topes: simplex, cube, and cross polytope.

We first address the problem of generating a uni-
formly distributed set of points over Sd. Consider in-
scribing any (d + 1)-dimensional regular polytope in-
side of Sd, so that all of its n vertices lie in Sd. The set
of vertices are beautifully arranged around Sd so that
the points are evenly spaced. Furthermore, the edges
of the polytope yield a regular lattice structure that is
natural for building roadmaps in planning problems.
For the case of sampling SO(3), we simply use a set
of vertices that lie in one hemisphere (making sure
that no antipodal pairs of points appear in the set).
The edges can be obtained directly from the polytope
by making the appropriate identification of antipodal
pairs.

Unfortunately, there are only a few combinations
of n and d, for which these ideal samples may be con-
structed for Sd and SO(3). This might be suitable for
some applications, such as picking a set of candidate
directions from Sd for gradient descent of a potential
function; however, in general, we would like to a have
a nice distribution of points for any value of n.

To the best of our knowledge, it is impossible to
perfectly space n points around Sd, for any n and for

d > 1. One simple idea that increases the number
of samples is place one point in the center of each of
the c d-cells of some regular polytope, and lift it to
Sd. If we take the union of these points with the set
of v polytope vertices, a nice point set of size c + v
may be obtained. If more points are placed; however,
the problem becomes more complicated. Therefore,
we are willing to tolerate some distortion in the dis-
tribution of points. It still seems useful, however, to
borrow some of the properties of the regular polytopes
to generate good samples. The general idea pursued
in this paper is to sample uniformly on the surface of
the regular polytope, and then transform generated
distribution on the surface of the sphere. We next
describe this general method and discuss the induced
distortion.

Consider a (d+1)-dimensional regular polytope in-
scribed in the sphere Sd. Suppose there exists a good
method of sampling the surface of this polytope. The
faces (d-dimensional cells) of the polytope, if projected
outward to the surface of the sphere, form a tiling of
the surface with the d-dimensional spherical polytopes.
Consider some particular face, F , and its correspond-
ing spherical face, F ′. Each point inside F can be
described by the barycentric coordinate systems in-
duced by vertices of F after its triangulation. Now
imagine that a distribution of points is generated in-
side F . Each of the points in this distribution can
be obtained through several steps of linear interpola-
tion between the vertices of the barycentric coordinate
systems. The distribution on F ′ can be obtained then
through similar steps of interpolating between the ver-
tices of F ′, except that the interpolation should be
done on the surface of the sphere [17]. This idea is
similar to the one proposed in [2] for stratified sam-
pling of spherical triangles. As an example, consider a
cube inscribed in the sphere S2, and sample the sur-
face of the cube by putting the Sukharev grid [12, 20]
on each square face. Using the proposed method we
get a distribution of samples on S2 as shown on Figure
1.

The distribution of points on the sphere Sd ob-
tained by this method will introduce distortion since
spherical arcs corresponding to the intervals inside F
with the same length may have different lengths in F ′.
The amount of the distortion, and therefore bounds
on the dispersion and discrepancy, can be obtained
through the analysis of the maximal arc differences.

This idea can also be adapted to SO(3) (and in gen-
eral to the projective space of any dimension). Take a
four-dimensional regular polytope inscribed in S3 and
use only half of the faces to generate the distribution
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on the surface. We pick the faces so that in the set
of used faces, there must not exist a pair of antipo-
dal points, one from each of two different faces. This
way the obtained samples will cover exactly half of the
sphere, which forms SO(3) surface.
Next we show how to generate a layered Sukharev

grid sequence on Sd based on the inscribed cube and
the bounds on the dispersion and the discrepancy of
this sequence.

4 A Sample Sequence Based on Cubes

In this section first we make an overview of the
techniques existing for sampling unit cubes. Next we
show a particular sequence adapted to the spheres us-
ing the proposed general method and we analyze the
uniformity properties of this sequence.

4.1 Sampling in Cubes

The subject of uniform sampling inside unit cube
[0, 1]d has been studied extensively for decades (see
[14, 15]). Here are some brief concepts.
There are two main sampling families that are con-

sidered in the literature: point sets and sequences.
For a point set, the number of points, n, that should

be placed in the set is specified in advance, and a set
of n points is chosen so that the sampling criterion
(dispersion or discrepancy) is optimized. The notion
of ordering between the points is not defined for the
point sets. As an example we could consider the point
sets generated by classical grid and Sukharev grid [20]
of resolution l in [0, 1]d. Each of these sets contains l
points per axis and ld points total. The difference be-
tween them is in the way each of these grids places its
points in each of the ld subregions of the cube. Clas-
sical grid places a vertex in the origin of each region,
whereas Sukharev grid places a vertex at the center
of each region. It was proven that the Sukharev grid
optimizes the l∞ dispersion over all of the point sets
of size ld [15, 20]. Classical grid has low dispersion but
is not dispersion optimal.
For sequences the ordering of the points becomes

important. Each next point in a sequence should be
chosen so that the sampling criterion is optimized. Se-
quences are particularly suitable for the motion plan-
ning algorithms, where the number of points needed
to solve a given problem is not known in advance.
When designing sequences that optimize dispersion,

it is useful to consider multiresolution grid sequences

[13]. A multiresolution grid of resolution l is a grid
with 2l points per axis and 2dl points total. From this

definition it follows that a grid of resolution l contains
all of the points from resolution l − 1. The natural
way to make this grid incremental is to build it one
resolution at a time. During construction of the points
from the same resolution level, the recursive procedure
at each step adds those points that maximally decrease
the discrepancy of the sequence, which extends van der
Corput’s one-dimensional sequence [21].
As an example, consider a square, [0, 1]2, with four

grid points inside. The best order of placing these
points is: (0, 0), (0.5, 0.5), (0, 0.5), (0.5, 0). To
add the next 12 points from resolution 3, what point
should be placed first, second, and third out of this
sequence? The idea is that every four points should
follow the same ordering of quadrants as the first four
points (i.e., the first point should fall into the left-
bottom rectangle, the next into right-top, and so on).
Where exactly the point should be placed within the
left-bottom rectangle should be decided by the same
criterion that was used to place the first 4 points. In
this case the next point is (0.25, 0.25).
The resulting sequence has several important prop-

erties: it is incremental, it has low dispersion at each
resolution level, it has optimal discrepancy with re-
spect to the set of canonical rectangles, it has lattice
structure, and there are efficient methods for gener-
ating the sequence and performing nearest neighbor
queries on it [13]. This makes multiresolution grid
sequences particularly useful for motion planning ap-
plications.
We will be using a layered version of this sequence.

A layered Sukharev grid of resolution l is a point set
containing all the points of Sukharev grids of res-
olutions 1, 2, 4, ...2l. It follows that this grid has

n =
l∑

i=0

(2i)d = (2d(l+1) − 1)/(2d − 1) points total.

A layered Sukharev grid sequence builds one
Sukharev grid of resolution 2i at a time, i = 1, 2, ....
Points from each of these grids then are generated
by the same procedure as for building multiresolution
grid sequences.
In what follows we generalize layered Sukharev grid

sequence to the sphere Sd. We first show how the
points should be generated in each of the spherical
cubes, and then how all these points can be combined
into one sequence on the sphere.

4.2 Layered Sukharev Grid Sequence for
a Spherical Cube

Consider a face, F , of a (d+ 1)-cube inscribed in a
sphere Sd. F is a d-dimensional cube, which in each
of its corners has d edges. If we project all of these
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edges onto the surface of the sphere they form arcs,
which delineate a spherical d-cube, F ′. The lengths,
α, of these arcs are equal for all edges of F . If we
consider those equatorial angles that correspond to the
edges coming from a common vertex of F , we can
define an angular coordinate system for the spherical
face F ′. Indeed, the coordinates (x1, x2, ...xn−1) with
all possible values xi ∈ [0, α] specify all possible points
of F ′.

The construction of the sequence, T , essentially fol-
lows the construction of the layered Sukharev grid se-
quence for the unit cube, except that instead of the
Euclidean coordinate system we use the angular coor-
dinate system defined above.

To analyze the dispersion and discrepancy of this
sequence we need several definitions. Define the points
of the Sukharev spherical grid of resolution 2l as fol-
lows:

P d
l =

{(
i1α
2l +

1
2l+1 ,

i2α
2l +

1
2l+1 , ...,

idα
2l +

1
2l+1

)
:

i ∈ Z, 0 ≤ i ≤ 2l − 1
}

Next we define the set of spherical canonical rectan-
gles, which is an extension to the canonical rectangles
defined in [13].

Definition 4.1 Given positive integers d and m, let

Qd
m be the following family of the d-dimensional spher-

ical canonical rectangles:

Qd
m =

{[
i1α
2m , (i1+j1)α

2m

)
× ...×

[
idα
2m , (id+jd)α

2m

)
:

i, j ∈ Z, 0 ≤ i ≤ 2m − 1, 1 ≤ j ≤ min(2m − i, 2)
}

The following results can be stated about the dis-
persion and discrepancy of T .

Proposition 4.2 The dispersion of the sequence T at

the resolution level, l, is

dρ(T ) ≤
2π

d
√
n(2d − 1) + 1

Proof: The largest spherical cap which does not con-
tain any of the points in T will be smaller than the
spherical cap with the center at (α/2, α/2, ..., α/2)
and the spherical radius π/2l. Since 2l =(

d
√
n(2d − 1) + 1

)
/2 we have that the dispersion is

not bigger than π/2l = 2π/
(

d
√
n(2d − 1) + 1

)
.

Proposition 4.3 The relationship between the dis-

crepancy of the sequence T at the resolution level, l,

taken over Q̃d
l =

l⋃
m=0

Qd
m and the discrepancy of the

optimal over Q̃d
l sequence, To, is:

D
Q̃d

l
(T ) ≤ D

Q̃d
l
(To) + (Vmax − Vmin)

Proof: The optimal sequence, To, may place the
points in some different order than T . The maximal
change in discrepancy that may occur in T comparing
to To is the difference between the maximal, Vmax, and
the minimal, Vmin, volumes of the spherical canonical
rectangles. Therefore, D

Q̃d
l
(T ) ≤ D

Q̃d
l
(To) + (Vmax −

Vmin)

Proposition 4.4 The sequence T has the following

properties:

• The position of the i-th sample in the sequence T
can be generated in O(log i) time.

• For any i-th sample any of the 2d nearest grid

neighbors from the same layer can be found in

O((log i)/d) time.

Proof: For the i-th sample it takes O(log2d i) =
O((log i)/d) to find its resolution level l. Once l is
found, the corresponding point in Sukharev grid of res-
olution 2l needs to be generated. It was proved in [13]
that this takes O(log i). Therefore, the total running
time for generating one point is O((log i)/d+ log i) =
O(log i).
The layer of the i-th sample is the Sukharev grid

of resolution 2l. Any of the 2d nearest grid neighbors
from this layer can be found in O((log i)/d) using the
algorithm described in [13].

In our analysis we essentially ignored all of the
points from the layers below the i-th sample layer,
since the number of them is not significant. In prac-
tice, it may be efficient to use other layers for gener-
ating nearest neighbors. Better bounds on dispersion
and discrepancy may also be achieved then.

4.3 Layered Sukharev Grid Sequence for
Sd

Now, that we have defined a sequence for each of
the spherical cubes, we need to define an ordering in
which all of the points from those sequences will be
placed on the surface of the sphere. One straightfor-
ward way to do this is to place one point from each
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of the faces’ sequences at a time. The order in which
each face should be considered is decided from the fol-
lowing considerations.
Let the union of all of the spherical canonical rect-

angles determine the range space for the whole sphere.
Using the criterion of optimizing the discrepancy over
the range space, the ordering of the first 2(d+1) points
for the resolution level 0 of the sphere can be explicitly
computed. Hence, from this point on we can assume
that we have such an ordering. Therefore, each next
set of 2(d+1) points from each of the sequences should
follow the same ordering, since this will minimize the
discrepancy over the range space. This will guarantee
that Proposition 4.3 holds for the generated sequence
on the sphere.
Our ongoing research is directed on proving that

the same result holds for the larger range spaces, i.e.,
the ones that include combinations of the spherical
rectangles from different spherical cubes.
We can state the following result for the dispersion

of the sequence, Ts, on the sphere:

Proposition 4.5 The dispersion of the sequence Ts
at the resolution level l containing n = 2(d + 1) ·
(2d(l+1) − 1)/(2d − 1) points is

dρ(T ) ≤
2π

d

√
n(2d−1)
2(d+1) + 1

Proof: Applying the same argument as in the proof
of Proposition 4.2, and considering that now 2l =(

d
√
n(2d − 1)/(2(d+ 1)) + 1

)
/2, we obtain the de-

sired bound.

5 Experiments

We have implemented our algorithm in C++ and
applied to implementations of PRM-based planner [9]
in the Motion Strategy Library. The experiments re-
ported here were performed on a 2 Ghz Pentium IV
running Linux and compiled under GNU C++.
Performance results are shown in Figures 2, 3.

The models that we designed are allowed only to ro-
tate; therefore, the configuration space is RP 3. We
compared the number of nodes generated by the ba-
sic PRM planner using a pseudo-random sequence of
quaternions [18], a pseudo-random sequence of Euler
angles, and the layered Sukharev grid sequence. The
results for pseudo-random quaternions and Euler an-
gles sequences were averaged over 50 trials. When
we tested the deterministic sequence, we made sure

Random Random Layered Sukharev
Quaternions Euler Angles Grid Sequence

1088 3021 1067

Figure 2: This problem involves moving a robot
(black) from the north pole to the south pole. Mul-
tiple views of the geometry of the problem are shown
(obstacles are drawn in lighter shades) as well as com-
parisons of the number of nodes generated by different
sampling strategies.

that each particular problem does not have any ad-
vantage due to coincidental alignment with the grid
directions of the sequence. Therefore, in each trial a
fixed, random quaternion rotation was premultiplied
to each sample, to displace the entire sequence. The
results obtained were averaged over 50 trials (a differ-
ent random rotation was used in each).
Based on our experiments we have observed that

the performance of the deterministic sequence is equiv-
alent to the performance of the random sequence for
the PRM-based planner, which makes it an alterna-
tive approach to random sampling. It is important to
note, however, that for some applications, such as veri-
fication problem, only deterministic guarantees are ac-
ceptable, making random sequences not appropriate.
The results we obtained for the problem in Fig-

ure 3 using Euler angles emphasizes the importance
of using quaternions and sampling in a way that re-
spects the Haar measure. This problem was never
solved using the random Euler angles. The experiment
was running for several days, generated 80000 nodes,
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Random Random Layered Sukharev
Quaternions Euler Angles Grid Sequence

909 > 80000 1013

Figure 3: In this example the goal is to move a robot
along the corridor. Comparisons of the number of
nodes generated by different sampling strategies are
shown.

but never found the solution. It is generally known
that Euler angle parameterization has its drawbacks,
such as gimbal lock and interpolation problems. How-
ever, in motion planning, it has been a popular way
to parameterize rotations. This example demonstrates
the inadequateness of Euler angles parameterization.
The interpolation method, ignoring the dependence
between the three rotations (yaw-pitch-roll), tries to
rotate around three axes simultaneously. In the con-
figuration space with the narrow corridor this results
only in those configurations that are in collision.

6 Conclusions

We have proposed a general framework for perform-
ing deterministic uniform sampling over spheres and
SO(3). We have developed and implemented a par-
ticular sequence which extends the layered Sukharev
grid sequence designed for the unit cube. We have
tested the performance of the sequence in PRM-like
motion planning algorithms, which demonstrated that
this sequence is a useful alternative to a random sam-
pling. This is in addition to the advantages that this
sequence has over random sampling, such as deter-
ministic resolution completeness guarantees and the
regular lattice structure.

There are many ways to improve the current work.
The spherical distortion grows with the size of the
polytope faces and with the dimension. One improve-
ment would be to use regular polytopes that have more
faces. For example, for the case of SO(3), a 600-face
polytope exists (only 300 of them would be used be-
cause of antipodal identification). The difficulty is
that our current approach would require sampling over
a simplex, as opposed to a cube. Another possibility
is to cut and unroll the (d + 1)-dimensional polytope
so that all of its d-dimensional faces form a connected
subset of Rd. It may then be possible to adapt a sam-
pling method for rectangular subsets of Rd to Sd by
rolling the polytope back up after sampling.
Another important direction of research is to de-

termine how to combine deterministic sampling meth-
ods for two spaces into a method over the Cartesian
product space. For example, how can a sample se-
quence developed for [0, 1]3 and another developed for
SO(3) be combined to yield a good sequence for a six-
dimensional configuration space that corresponds to a
set of translations and rotations for a 3D rigid body?
In the case of random sampling, it is trivial to com-
bine independent random samples; however, for deter-
ministic methods, one must be very careful to avoid
degeneracies. This is the reason, for example, why the
Halton sequence [8] uses relatively prime integers as
the basis for each dimension.

Acknowledgments We are grateful for the fund-
ing provided in part by NSF CAREER Award IRI-
9875304, NSF ANI-0208891, and NSF IIS-0118146
The layered sequence idea was developed by Steve Lin-
demann and Steve LaValle in the context of [13].

References

[1] N. M. Amato and Y. Wu. A randomized roadmap
method for path and manipulation planning. In IEEE
Int. Conf. Robot. & Autom., pages 113–120, 1996.

[2] J. Arvo. Stratified sampling of spherical triangles.
In Computer Graphics (SIGGRAPH ’95 Proceedings),
pages 437–438, 1995.

[3] J. Barraquand and J.-C. Latombe. A Monte-Carlo al-
gorithm for path planning with many degrees of free-
dom. In IEEE Int. Conf. Robot. & Autom., pages
1712–1717, 1990.
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