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Abstract The problem of generating uniform deterministic samples over the rota-
tion group,SO(3), is fundamental to computational biology, chemistry, physics, and
numerous branches of computer science. We present the best-known method to date
for constructing incremental, deterministic grids onSO(3); it provides: 1) the low-
est metric distortion for grid neighbor edges, 2) optimal dispersion-reduction with
each additional sample, 3) explicit neighborhood structure, and 4) equivolumetric
partition ofSO(3) by the grid cells. We also demonstrate the use of the sequenceon
motion planning problems.

1 Introduction

Numerical computations on continuous spaces often requiregeneration of a repre-
sentative set of samples. The performance of various methods in engineering and
scientific fields, such as numerical optimization and integration as well as collision-
free path generation in robot motion planing, rely heavily on the quality of the sam-
pling technique. Hence, it is important that the underlyingsamples are as good as
possible.

A particular problem of discretization ofSO(3), the space of 3D rotations, arises
in applications, such as biological protein docking problems, robot motion planning,
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aerospace trajectory design, and quantum computations. Typical operations on this
space include numerical optimization, searching, integration, sampling, and path
generation. Multiresolution grids are widely used for manyof these operations on
other spaces which are nicely behaved, such as rectangular subsets ofR2 or R

3.
It would be wonderful to achieve the same forSO(3); however, the space of 3D

rotations is substantially more complicated. In its basic form,SO(3) is defined as a
set of matrices that satisfy orthogonality and orientationconstraints. It is an implic-
itly defined, three-dimensional surface embedded inR

9. One approach is to place
a coordinate system on the surface, causing it to behave likea patch inR

3. How-
ever, many of such coordinates cause metric distortions in comparison to distances
on the original surface. Only few representations ofSO(3), such asquaternionsand
Hopf coordinates, preserve distances and volumes. They treatSO(3) as a unit sphere
S3 ⊂ R

4 with antipodal points identified. The volumes of surface patches onS3 cor-
respond to the unique Haar measure forSO(3), which is the only way to obtain
distortion-free notions of distance and volume. This implies that if we want to make
multiresolution grids onSO(3), we are faced with warping them ontoS3. It may
seem that such curvature prohibits the introduction of distortion-free grids, simi-
lar to the problem of making distance-preserving maps of theworld (e.g., Green-
land usually looks too big on a flat map). In addition, the identification of antipodal
points causes a minor complication in which only half ofS3 is used, with unusual
connectivity in the equatorial three-plane. However, in this paper we use intrinsic
properties unique toSO(3) (first described in [17]) to build almost distortion-free
grids and avoid the issue of having to identify the antipodalpoints onS3.

Due to widespread interest in discretizingSO(3) in numerous fields, there have
been considerable efforts in the past. The problem of generating point sets on
spheres minimizing various criteria, such as energy functions, discrepancy, dis-
persion, and mutual distances, has been extensively studied in mathematics and
statistics [8, 15, 22, 25, 28, 29]. Random sampling methods were also developed in
[2, 24, 27, 34]. Problems of sampling rotational groups and spheres have been stud-
ied and applied in the context of computational structural biology, physics, chem-
istry, computer graphics and robotics [4, 7, 16, 19, 21, 26, 30, 31, 32].

In this paper, we introduce the best-known deterministic method to date for
SO(3) in terms of providing:

1. incremental generation,
2. optimal dispersion-reduction with each additional sample,
3. explicit neighborhood structure,
4. the lowest metric distortion for grid neighbor edges,
5. equivolumetric partition ofSO(3) into grid regions.

The rest of the paper is organized around the presentation ofthe method. Section
2 defines the topological properties ofSO(3) together with its representations that
are crucial for presenting our method. Section 3 overviews sampling requirements
for the sequence. We discuss the relevant sampling methods that influenced our work
in Section 4. Finally, we present our method in Section 5; experimental results and
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its application to motion planning problems in Section 6. Weconclude our work in
Section 7.

2 Properties and Representations of SO(3)

Thespecial orthogonal group, SO(3), arises from rotations around the origin inR
3.

Each rotation, by definition, is a linear transformation that preserves the length of
vectors and orientation of space. The elements ofSO(3) form a group, with the
group action being the composition of rotations.SO(3) is not only a group, but also
a manifold, which makes it aLie group.

To sampleSO(3) uniformly, it is necessary to understand its topology. Any
method known to date that produces uniform rotations relieson topology and Haar
measure of SO(3) (see Section 4).

Topology of SO(3)

SO(3) is diffeomorphic to thereal projective space, RP
3. It is hard to visualize the

real projective space, because it cannot be embedded inR
3. Fortunately, it can be

represented asRP
3 = S3/(x∼−x), the more familiar3-sphere, S3, embedded inR4,

with antipodal points identified. Topologists say that the 3-sphere is adouble cover
of RP

3, since one point of the projective space has two corresponding points on the
3-sphere.

Haar Measure on SO(3)

Up to a scalar multiple, there exists a unique measure onSO(3) that is invariant
with respect to the group action. This is called theHaar measure. That is, the Haar
measure of a set is equal to the Haar measure of all of the rotations of the set. In
our particular situation, we can think of the Haar measure asbeing invariant under
all orthogonal coordinate changes. The Haar measure is an intrinsic property of
SO(3) which comes from the group structure, and is independent of its topological
structure.

We have not used any coordinate system or parametrization ofSO(3) yet, since
the notion of Haar measure is abstracted from representations of SO(3). One has to
use extreme caution when expressing the measure in terms of any of the representa-
tions we describe next. Not all of these naturally preserve the Haar measure.



4 Anna Yershova, Swati Jain, Steven M. LaValle, and Julie C. Mitchell

Orthogonal Matrices

The elements ofSO(3) are defined as 3×3 orthogonal matrices with determinant
+1. The group operation is multiplication of matrices. Because rotation matrices are
less efficient and less numerically stable than quaternions, they are generally used
less often than quaternions.

Quaternions

One of the most useful representations of the projective space is the set of quater-
nions. Letx= (x1,x2,x3,x4)∈R

4 be a unit quaternion,x1+x2i +x3j +x4k, ||x||= 1,
representing a 3D rotation. Because of the topological relationship between the pro-
jective space and the 3-sphere, once the identifications of the antipodal points on
the 3-sphere are taken into account, metrics similar to those defined for the 3-sphere
can be used for the projective space. Moreover, such metricswill respect the Haar
measure onSO(3).

The most natural way to define a metric for any two pointsx,y ∈ SO(3) is as
the length of the shortest arc betweenx andy on the 3-sphere, which quaternions
conveniently allow to do:

ρSO(3)(x,y) = cos−1 |(x ·y)|, (1)

in which (x·y) denotes the dot product for vectors inR
4, and the absolute value,

| . |, guarantees that the shortest arc is chosen among the identifications of the two
quaternions [11].

Quaternion representation is also convenient for calculating the composition of
rotations, which is expressed as multiplication of quaternions. Any rotation invari-
ant surface measure onS3 naturally preserves the Haar measure forSO(3) and can
be used for quaternions. However, the surface measure is notstraightforwardly ex-
pressed using quaternions. Other representations, such asspherical or Hopf coordi-
nates, are more convenient for measuring the volume of surface regions.

Spherical Coordinates for SO(3)

Because of the topological relationship between the 3-sphere andSO(3), hyper-
spherical coordinates can be used forSO(3). Consider a point(θ ,φ ,ψ) ∈ S3, in
which ψ ∈ [0,π/2] (to compensate for the identifications, we consider only one
hemisphere ofS3), θ ∈ [0,π], andφ ∈ [0,2π). For eachψ, the full ranges ofθ and
φ define a 2-sphere of radius sin(ψ). The quaternionx = (x1,x2,x3,x4) correspond-
ing to the rotation(θ ,φ ,ψ) can be obtained using the formula:
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(a) (b)

(c) (d)

Fig. 1: Visualization of the spherical and Hopf coordinates onSO(3) using angle and axis repre-
sentation. This representation corresponds to a projection oftheS3 onto the equatorial solid sphere
which we draw inR

3. (a) The full range of the spherical coordinateψ ∈ [0,π/2] is shown while
the coordinates(θ ,φ) form a discretization of size 20 overS2. (b) The half-spheres show the full
ranges of the spherical coordinatesθ ∈ [0,π], andφ ∈ [0,2π), while ψ takes four discrete values
over[0,π/2]. (c) The full range of the Hopf coordinateψ ∈ [0,2π) is shown while the coordinates
(θ ,φ) form a discretization of size 12 overS2. (b) The spheres show the full ranges of the Hopf
coordinatesθ ∈ [0,π] andφ ∈ [0,2π), while ψ takes four discrete values over[0,2π).

x1 = cosψ
x2 = sinψ cosθ
x3 = sinψ sinθ cosφ
x4 = sinψ sinθ sinφ .

(2)

The volume element onSO(3) defines the Haar measure and has the following
expression in spherical coordinates:

dV = sin2 ψ sinθdθ dφ dψ. (3)

This representation is not as convenient for integration asthe Hopf coordinates,
which have a simpler expression for the Jacobian. Sphericalcoordinates are also
cumbersome for computing compositions of rotations.
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Hopf Coordinates for SO(3)

As opposed to spherical coordinates for hyperspheres, theHopf coordinatesare
unique for bothSO(3) and the 3-sphere. They naturally describe the intrinsic struc-
ture of both of these spaces and provide a natural tool for obtaining uniform distri-
butions on these spaces.

TheHopf fibrationdescribesSO(3) in terms of the circleS1 and the ordinary 2-
sphereS2. Intuitively, SO(3) is composed of non-intersecting fibers, such that each
fiber is a circleS1 corresponding to a point on the 2-sphere. This fiber bundle struc-
ture is denoted asSO(3)∼= S1⊗̃S2. The Hopf fibration has the important property of
locally being a Cartesian product space. The spaceSO(3), however, is not (globally)
the Cartesian product ofS2 andS1. Intuitively, SO(3) is the product ofS2 andS1 sim-
ilarly to the way the M̈obius band is locally the Cartesian product of an interval and
a circleS1. That is, locally, a sequence of coordinates from each subspace results in
a global parametrization of the space, whereas the global embedding into the Eu-
clidean space introduces a twist, and does not have the Cartesian product structure.
The Hopf coordinates can also be used for the 3-sphere, because of the topological
relationship between the 3-sphere andSO(3).

Each rotation in Hopf coordinates can be written as(θ ,φ ,ψ), in which ψ ∈
[0,2π) parametrizes the circleS1, andθ ∈ [0,π] andφ ∈ [0,2π) represent spherical
coordinates onS2. The transformation to a quaternionx = (x1,x2,x3,x4) can be
expressed using the formula:

x1 = cosθ
2 cosψ

2
x2 = cosθ

2 sin ψ
2

x3 = sin θ
2 cos

(
φ + ψ

2

)

x4 = sin θ
2 sin

(
φ + ψ

2

)
.

(4)

A detailed derivation of the Hopf Coordinates is shown in Appendix 8.1. Briefly,
Eq. (4) represents each rotation fromSO(3) as a rotation by angleψ ∈S1 around the
z axis, followedby the rotation, which placesz in a position(θ ,φ) ∈ S2. Eq. (4) is
obtained after thecompositionof these two rotations. The Hopf coordinates define
exactly half ofS3, since the coordinatex2 never takes negative values. The Hopf
coordinates can be extended to the entireS3 by increasing the range ofψ to be
[0,4π).

The volume element onSO(3), which is also the surface volume element onS3,
can be computed from Eq. (4) (see Appendix 8.2 for a detailed derivation), and has
the following form:

dV =
1
8

sinθ dθ dφ dψ. (5)

Note that sinθ dθ dφ represents the surface area on the 2-sphere, and dψ is the
length element onS1. This formula additionally demonstrates that the length ofa
portion of S1 is multiplied by the surface area of the base space,S2, to obtain the
volume onSO(3). The coefficient 1/8 results from the fact that neither fibersS1 nor
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the base spaceS2 are unit. In fact, in Appendix 8.3 we compute the lengths of the
fibers and the surface area of the base space, which is used later for determining the
grid cell sizes for our sequence.

As we have shown, the Hopf coordinates preserve the fiber structure ofSO(3)
and are convenient for integration onSO(3). However, composition of rotations is
best expressed using quaternions.

Angle-Axis Representation for SO(3)

One of the most intuitive ways to represent rotations is by using Euler’s theorem,
which states that every 3D rotation is a rotation by some angle θ around a unit axis
n = (n1,n2,n3), ||n|| = 1. The transformation from the angle-axis representation to
quaternions is achieved by:

x =
(
cosθ

2 ,sin θ
2 n1,sin θ

2 n2,sin θ
2 n3

)
. (6)

The angle-axis representation is useful for visualizing the projective space inR3.
Each rotation is drawn as a vector with directionn and a magnitude corresponding
to θ (a multiple or a function ofθ can be used; see Section 5.6, and [3]). Figure 1
shows the visualization of the spherical and Hopf coordinates onSO(3) using the
angle-axis representation. From this visualization one can immediately notice the
singularities introduced by the spherical coordinates. Itis also possible to see the
advantage of using Hopf coordinates from this visualization. Hopf coordinates do
not introduce singularities. The circles represented by the range of the variableψ
are all of equal length (see App. 8.3) and non-intersecting;they uniformly cover
SO(3). The fiber structure formed by these circles is also seen in the figure.

Euler Angles Representation

Euler angles are often used in robotics to represent rotations. Each rotation is then
a vector(x1,x2,x3),xi ∈ [−π,π]/−π ∼ π. The topology of the resulting space is
S1×S1×S1, and, therefore, Euler angles do not correctly capture the structure of
SO(3). There are many detrimental consequences of this. Special tricks (see [11])
are needed to implement metric and measure that preserve Haar measure. Moreover,
Euler angles are hard to compose, and present problems of singularities and the
gimbal lock [23].

Understanding and respecting the global topology of SO(3) is crucial for per-
forming other numerical computations on the space. For example, sampling and
interpolation of SO(3) using Euler angles in [33] led to failure in producing motion
planning path on a relatively simple problem, which was solved in seconds using
the correct parametrizations. In the rest of the paper we useHopf coordinates and
quaternions to represent rotations.
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3 Sampling Terminology and Problem Formulation

In applications such as motion planning, the algorithms areoften terminated early
and the particular order in which samples are chosen becomescrucial. Sampling lit-
erature distinguishes between a samplesetand a samplesequence. For a sample set,
the number of points,n, is specified in advance, and a set ofn points is then chosen
to satisfy the requirements of the method. The notion of ordering between points is
not defined for a sample set but becomes important for sequences. Successive points
in a sequence should be chosen carefully so that the resulting sample sets are all of
good quality. Sequences are particularly suitable for motion planning algorithms, in
which the number of points needed to solve the problem is not known in advance.

Now that the background definitions forSO(3) have been presented in Section 2,
to generate samples overSO(3) we need to formulate the desirable properties for the
samples. The first requirement is that samples form a sequence. We also require that
samples get arbitrarily close to every point inSO(3), i.e. that the sequence of sam-
ples isdensein SO(3). Next, we formulate several requirements on the uniformity
properties of samples.

3.1 Discrepancy and Dispersion

Additional requirements that the sequence needs to satisfyare described by the uni-
formity measures,discrepancyanddispersion.

Intuitively, discrepancy can be thought of as enforcing twocriteria: first, that no
region of the space is left uncovered; and second, that no region is left too full.
Dispersion eliminates the second criterion, requiring only the first. It can be shown
that low discrepancy implies low dispersion [18].

To define discrepancy, choose arange space, R, as a collection of subsets of
SO(3). Let R∈R denote one such subset. Range spaces that are usually considered
on spheres are the set of spherical caps (intersections of the 3-sphere with half-
spaces) or the set of spherical slices (intersections of two3-hemispheres) [20], which
can be used onSO(3) once the identifications of the 3-sphere are taken into account.

Let µ(R) denote the Haar measure of the subsetR. If the samples in the setP
are uniform in some ideal sense, then it seems reasonable that the fraction of these
samples that lie in any subsetRshould be roughlyµ(R) divided byµ(SO(3)) (which
is simplyπ2, see App. 8.3). We define thediscrepancy[18] to measure how far from
ideal the sample setP is:

D(P,R) = sup
R∈R

∣∣∣∣
|P∩R|

N
−

µ(R)

µ(SO(3))

∣∣∣∣ , (7)

in which | · | applied to a finite set denotes its cardinality. Figure 2 (a) demonstrates
the notion on the 2-sphere.
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(a) (b)

Fig. 2: An illustration of the notions of dispersion and discrepancy for a set of points on a 2-sphere.
(a) The discrepancy searches for the subsetR for which the deviation from the measure ofR to the
number of samples placed insideR is the largest. (b) The dispersion searches for a pointq on the
sphere which is the farthest from the sample points.

While discrepancy is based on measure, a metric-based criterion, dispersion, can
be introduced:

δ (P,ρ) = max
q∈SO(3)

min
p∈P

ρ(q, p). (8)

Above, ρ denotes any metric onSO(3) that agrees with the Haar measure, such
as (1). Intuitively, this corresponds to the spherical radius of the largest empty ball
that fits in between the samples (assuming all ball centers lie onSO(3)). See Fig-
ure 2(b) for an illustration.

3.2 Problem Formulation

In summary, the goal of this paper is to define a sequence of elements fromSO(3)
which:

• is incremental,
• is deterministic,
• minimizes the dispersion (8) and discrepancy (7) onSO(3),
• has grid structure with respect to the metric (1) onSO(3).

4 Sampling Methods Overview

Our work was influenced by many successful sampling methods developed recently
for spheres andSO(3). As demonstrated in Table 1, several of them are highly
related to the problem formulated in Section 3.2. However, none of the methods
known to date has all of the desired properties.
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RandomSucc. Orth. ImagesLayered SukharevHEALPix this work
incremental yes no yes no yes
uniform yes yes no yes yes
deterministicno yes yes yes yes
grid no no/yes yes yes yes
spaces SO(3) SO(n) SO(3) andSn S2 SO(3)

Table 1: The comparison of different sampling methods related to the problem of Section 3.2. The
rows correspond to the desired properties of these methods.

Random Sequences of Elements from Sd. To generate uniformly distributed
random points on a hypersphereSd, spherical symmetry of the multidimensional
Gaussian density function can be exploited [6]. For each of the i = 0. . .d+1 coor-
dinates use a zero-mean Gaussian distribution with the samevariance to generatexi .
This is done approximately by generatingk uniformly distributed values from the
interval [−1,1] and adding them following theCentral Limit Theorem. In practice,
anyk≥ 12 is a reasonable choice. Then the normalized vector(xi/‖xi‖) is uniformly
distributed over the hypersphereSd.

Random Sequence of SO(3) Rotations. There are several ways of sampling the
space of rotations uniformly at random [2, 24, 27, 34]. The main difficulty in doing
so is the choice of a convenient parametrization ofSO(3). If a parameter space is
sampled uniformly, the resulting samples onSO(3) are not necessarily uniform.
As was shown in Section 2, not all of the parametrizations ofSO(3) are natural
representations of rotations, and some of them lead to measure distortions, and even
singularities. Only few parametrizations, such as the Hopfcoordinates, result in a
local isometry toSO(3).

It is easy to make the mistake of sampling rotations using a wrong parametriza-
tion [1]. The subgroup algorithm [5] for selecting random elements forSO(3) is the
correct and most popular method for uniform random samplingof SO(3). It uses the
fact that any Lie group can be uniformly sampled, by combining elements from a
subgroup (in case ofSO(3) it is S1), and the quotient, or coset space (S2) at random.
Essentially, this method utilizes the Hopf coordinates. Random sequences of rota-
tions are used in many applications. However, they lack deterministic uniformity
guarantees, and the explicit neighborhood structure.

Successive Orthogonal Images on SO(n). Related to the subgroup method for
generating random rotations, is the deterministic method of Successive Orthogonal
Images [17], which generates lattice-like sets with a specified length step based on
uniform deterministic samples from the subgroup,S1, and the coset space,S2. The
method utilized Hopf coordinates, and is also generalized to arbitrarySO(n).

The deterministic point sets from [17] can be applied to the problems in which
the number of the desired samples is specified in advance. If the set of samples on
S2 is chosen so that it has a grid structure, the resulting set ofsamples onSO(3)
has the explicit neighborhood structure. Part of the current work will be in applying
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(a) (b) (c) (d)

Fig. 3: Different sampling methods onS2. (a) 200 random samples (b) 192 Sukharev grid samples
[33] (c) icosahedron samples (d) 216 HEALPix samples [7]

this method in a way that provides the incremental quality necessary for our motion
planning applications.

Layered Sukharev Grid Sequence for Spheres and SO(3). Uniform, determin-
istic sequences were first designed for the unit cube[0,1]d [13]. To minimize dis-
persion, the method places one resolution of grid at a time inside of the unit cube.
A discrepancy-optimal ordering is then generated for each resolution. The sequence
can be extended to spheres andSO(3) [33] using the projection from faces of an
inscribed cube. ForSO(3), though, the distortions produced by the method result in
some grid cells being four times the volume of others.

The general method for designing Layered Sukharev Grid sequences inside
Cartesian products was later presented in [14]. Our currentpaper builds on top of
these works by combining the method in [14], with the Successive Orthogonal Im-
ages [17] generation of rotations, Hopf coordinates, and the HEALPix spherical
sampling method [7] described next.

HEALPix Multiresolution Grids on S2. The HEALPix package [7] was de-
signed for efficient and incremental discretization of full-sky maps in application to
the satellite missions to measure the cosmic microwave background in astrophysics.
It provides a deterministic, uniform, and multiresolutionsampling method for the
2-sphere. Moreover, it possesses additional qualities, such as equal area partitioning
of the 2-sphere, and isolatitude sampling on the 2-sphere, which make computations
of the spherical harmonics integrals even more efficient.

The method takes advantage of the measure preserving cylindrical projection of
the 2-sphere. This intrinsic property of the 2-sphere cannot be generalized directly
to higher dimensional spheres. However, this work shows that an extremely uniform
grid can be constructed on such a non-trivial curvature space as the 2-sphere. It is
also not difficult to make this grid incremental using the method from [14]. We have
done this as part of our implementation for the current work,and the code can be
found at [9].
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5 Our Approach

In this section we present our approach of samplingSO(3) which satisfies all of
the requirements of Section 3.2, and Table 1. The fiber bundlestructure ofSO(3)
locally behaves similarly to the Cartesian product of two spaces,S1 andS2. There-
fore, the method presented in [14] for constructing multiresolution grid sequences
for Cartesian products of spaces, can be used for constructing a grid sequence on
SO(3). The resulting rotations are computed using the Hopf coordinates, as was first
described in [17]. It is a much simpler problem to construct nicely behaved grids on
the 1-sphere and 2-sphere. Hopf coordinates allow the two grids to be lifted to the
space of rotations without loss of uniformity. Next, we outline the details of this
construction.

5.1 Description of the Grid Structure on SO(3)

Let ψ be the angle parametrizing the circle,S1, and(θ ,φ) be the spherical coor-
dinates parametrizing the sphere,S2. Using these coordinates, defineT1 to be the
multiresolution grid over the circle andT2 to be the multiresolution grid over the
2-sphere. Letm1 andm2 be the number of points at the base resolution 0 of the grids
T1 andT2 respectively.

There are numerous grids that can be defined onS2 (see Figure 3 for an illus-
tration of some). In this work we have selected the HEALPix grid [7] on S2, and
the ordinary grid forS1. Both of these grids are uniform, have simple neighborhood
structure, and can have multiple resolutions. Moreover, HEALPix divides the sur-
face of the 2-sphere into subregions of equal area. After multiplying these by equal
length fibers ofS1, this results in equivolumetric partition ofSO(3) into the grid
regions.

Next, consider the spaceS2⊗̃S1. The multiresolution grid sequence that we de-
fine for SO(3) hasm1 ·m2 · 23l points at the resolution levell , in which every 23

points falling into a single grid cell comprise a cube in Hopfcoordinates. Each el-
ement of the sequence is obtained by combining the corresponding coordinates in
the subspaces,S1 andS2, using the Eq. (4). The dispersion and discrepancy of the
resulting sequence can then be computed using the representation for the metric and
volume element from Eq. (1) and (5).

5.2 Choosing the Base Resolution on S1 and S2

One of the issues arising when combining the two grids fromS1 andS2 is the length
of a grid cell edge along each of the coordinates. For this, wehave to match the
number of cells in each base grids on both of the subspaces, sothat they have cell
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Fig. 4: The base grid of the HEALPix sequence consists of 12 points.The cylindrical projection
of the grid cells fromS2 to (cos(θ),φ) coordinates is shown. Each next resolution subdivides each
of the spherical squares into 4 squares of equal area [7].

sides of equal lengths [17]. That is, the following equationshould hold form1 and
m2:

µ(S1)

m1
=

√
µ(S2)

m2
, (9)

in which µ(S1) is the circumference of the circleS1 andµ(S2) is the surface area
of S2. In Appendix 8.3 we explicitly show that both of these valuesare equal toπ.

In our particular case, the base HEALPix grid consists ofm2 = 12 cells (Fig-
ure 4). Therefore, the number of points in the base resolution of the grid onS1 is
m1 = 6. The base grid of the sequence forSO(3) then consists ofm1 ·m2 = 6·12= 72
points (the projections of the grid regions on the Hopf coordinates are shown in Fig-
ure 5).

5.3 Choosing the Base Ordering

The next step is to choose the ordering of them = m1m2 points within the base
resolution onSO(3). In general, the initial ordering will influence the qualityof
the resulting sequence, and a method similar to [14] can be used for deciding the
ordering of the base sequence.

In our case, we have to define the ordering on the first 72 pointsof the sequence
(see Figure 5 for the illustration of the associated grid regions). In our implemen-
tation [9] we have manually selected such an ordering. However, it is possible to
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Fig. 5 The base grid of the
proposedSO(3) sequence
consists of 72 points. For the
Hopf coordinates(θ ,φ ,ψ) the
projections of the grid cells
on each of the coordinates
are shown. Grid cells for
ψ are chosen according to
the ordinary grid onS1. The
grid cells for(cos(θ),φ) are
obtained using HEALPix. The
manually selected ordering of
the cells is shown for both of
the projections,S1 andS2.

θ

ψ

ϕ

cos

1

3

5

4

6

2

S1

S2

12 3

2 7 1 8
10 5 11 4

69

design a program that would run through the orderings and select the one that min-
imizes the discrepancy or any other desired property. For the purpose of further
analysis we assume that such an optimal ordering functionfbase: N → [1, . . .72] is
available.

In our implementation [9] we first have selected an ordering of the 12 base points
onS2 and 6 base points onS1 (these orderings are shown in Figure 5). For each point
onS2 we then generated the 6 points onS1 according to theS1 ordering. The points
onS2 are chosen according to theS2 ordering.

5.4 The Sequence

The sequence forSO(3) is constructed one resolution level at a time. The order
in which the points from each resolution level are placed in the sequence can be
described as follows. The orderingfbase: N → [1, . . . ,m] of the firstm points in the
base resolution determines the order of the grid regions within SO(3) and is taken
from the previous section. The points in other resolutions fall into the base resolution
grids according to the functionfbase(i) = fbase(i modm). Every successivem points
in the sequence should be placed in these grid regions in the same order. Each of
the grid regions is isomorphic to the[0,1]3, and is subdivided into 8 grid regions in
each successive resolution. Where exactly each point shouldbe placed within each
of the grid regions is determined by the orderingfcube: N → [1, . . .8] and recursion
procedure defined for the cube[0,1]3 in [13].

The resulting procedure for obtaining the coordinates of the ith element in the
sequence is the following:

1. Assign fbase(i) to be the index of the base grid region that thei-th element has to
be placed within.

2. Assign the floor of the division,icube= ⌊i/m⌋, to be the number of subregions al-
ready generated in the base grid region. This index then determines the subregion
of the regionfbase(i) that thei-th element has to be placed within.
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(a) (b)

(c) (d)

Fig. 6: Different sets of samples onSO(3) (a) 2000 random samples (b) 2048 Sukharev grid
samples (c) 1944 icosahedral samples (d) 1944 HEALPix samples

3. Call the recursive procedure from [13] to determine the coordinates of the subre-
gion of the cube[0,1]3 determined by the indexicubeand the orderingfcube. The
i-th element is then placed within this subregion of thefbase(i) region.

5.5 Analysis

Several claims, similar to those obtained in [13], can be made for the new approach.
The most important distinction is that the new sequence provides equal volume par-
tition of SO(3) which results in a strong dispersion guarantee.

Proposition 0.1. The dispersion of the sequence T at the resolution level l satisfies:

δ (T) ≤ 2 sin−1


1

2

√

δ 2(T2)+

(
π

m12l

)2

 ,

in whichδ (T2) is the dispersion of the sequence T2 defined over S2.

Proof: It was shown in [17] that the fibersS1 are locally orthogonal to the base
spaceS2 in the sense that an equivalent of the Pythagorean theorem holds for the
Hopf coordinates. The bound follows directly from the Pythagorean theorem, and
the dispersion bound on the ordinary grid onS1 at the resolution levell . ⊓⊔

Proposition 0.2. The sequence T has the following properties:
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• It is discrepancy-optimal with respect to the set of axis-aligned grid regions de-
fined over S1 and S2.

• The position of the i-th element of T can be generated in O(logi) time.
• For any i-th sample, any of the2d nearest grid neighbors from the same layer

can be found in O((logi)/d) time.

Proof: The proof closely follows similar considerations in [13].⊓⊔

5.6 Visualization of the Results

To visualize our sequence and compare it with other sequences designed forSO(3),
we use the angle-axis,(θ ,n), representation from Section 2. It can be shown that
if the rotations are uniformly distributed, then the distribution of the angleθ is
(sin(θ)−θ)/π. This allows us to draw the elements ofSO(3) as the points inside a
ball in such a way that every radial line has uniform distribution of elements. This
provides a more intuitive visualization, which partially preserves the uniformity.
See Figure 6 for visualization of several of the methods of sampling overSO(3),
compared to the proposed approach. Specifically, the imagesshow points in the
direction of the axis of rotation and with distance to the origin equal to(sin(θ)−
θ)/π. Using this representation, the distribution of points increases linearly as a
function of distance from the origin. In comparison, a set ofpoints that was uniform
with respect to the measure onR

3 would have a distribution that varies as the cube
of distance from the origin.

6 Implementation and Application to Motion Planning

We have implemented our sampling algorithm in C++ as part of the new library
publicly available at [9]. The experiments reported here were performed on a 2.2
GHz Pentium IV running Linux and compiled under GNU C++.

We first compared the uniformity of the new sequence with the Layered Sukharev
sequence and random sequence. To demonstrate the importance of understanding
the topology of SO(3), we have included the evaluation of uniformity for random
Euler angles in this experiment. For each of the deterministic sequences, we gen-
erated a fixed set of points, in the range 50 to 100,000, which is shown on thex
axis of the graph in Figure 7. We then calculated the distancefrom a randomly
generated point onSO(3) to the nearest neighbor in each of the sets, and selected
the largest such distance among 10,000 random points. We have averaged the same
computations over 10 runs for each of the random sequences. The obtained value
approximates the dispersion. The results are shown for eachof the sequences as a
separate curve in Figure 7. In all of the cases, the smallest obtained value was the
one generated with our new method, which demonstrates that the resulting sam-
ples are more uniformly distributed compared to other sequences known forSO(3).
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Fig. 7: (a) For each of the deterministic sequences, we generateda fixed set of points, in the range
50 to 100,000, which is shown on thex axis of the graph. We then calculated the distance from
a randomly generated point onSO(3) to the nearest neighbor in each of the sets, and selected the
largest such distance among 10,000 random points. The obtained value approximates the disper-
sion and is shown on they axis for each of the sequences. We have averaged the same computations
over 10 runs for each of the random sequences. A portion of the graph is magnified in (b).

Even though it might appear that the actual difference in dispersion is not significant
for data sets of a particular size, there is another interpretation of the results on the
graph. Consider a particular value of dispersion on the graph, for example,d = 0.06.
If a sample set has this dispersion then no ball of radiusr > 0.06 can be placed be-
tween the samples. To achieve such dispersion, the Hopf sequence required around
50,000 samples, whereas the sample set generated using random Euler angles with
twice as many points does not reach the same resolution (see Fig. 7(b)).

We also used our library as the sampling method in the implementation of PRM-
based planner [10] in the Motion Strategy Library [12]. It isimportant to note that
the experiments we present here are just one of possible applications of the devel-
oped sequences to motion planning problems. Alternate applications may exist in
other areas of computer science, or related fields.

In our experimental setup we consider the rotation-only models for which the
configuration space isSO(3). For the two problems shown in Figure 8 we have com-
pared the number of nodes generated by the basic PRM planner using the pseudo-
random sequence (with quaternion components [24]), the layered Sukharev grid
sequence, and the new sequence. For the first problem the results are: 258, 250, and
248 nodes, respectively. To solve the second problem the PRMplanner needed 429,
446 and 410 nodes, respectively. In each trial a fixed, randomquaternion rotation
was premultiplied to each deterministic sample, to displace the entire sequence. The
results obtained were averaged over 50 trials.

Based on our results we have observed that the performance ofour method is
equivalent or better than the performance of the previouslyknown sequences for the
basic PRM-based planner. This makes our approach an alternative approach for use
in motion planning. It is important to note, however, that for some applications, such
as verification problems, only strong resolution guarantees are acceptable.
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(a) (b)

Fig. 8: Motion planning problems involving: a) moving a robot (black) from the north pole to
the south pole. Multiple views of the geometry of the problem are shown (obstacles are drawn in
lighter shades); and b) moving a robot along the corridor.

7 Conclusions

In conclusion, we have developed and implemented a deterministic incremental grid
sequence onSO(3) that is highly uniform, can be efficiently generated, and divides
the surface ofSO(3) into regions of equal volume. Sequences that minimize uni-
formity criteria, such as dispersion and discrepancy, at each step of generation are
especially useful in applications in which the required number of samples is not
known in advance.

In the paper we report the performance of the deterministic sequence on motion
planning examples for demonstration purposes only. We believe that the value of this
method is in providing strong provable guarantees (the bound on dispersion, neigh-
borhood structure, and deterministic generation). These guarantees are not always
required in motion planning. Therefore, we do not perform extensive experimen-
tal evaluation. However, for the motion planning examples in Section 6, the prov-
able guarantees of the method come at no additional cost. Moreover, it is consistent
with the performance of other deterministic sampling methods on Euclidean spaces
we have observed on numerous motion planning examples in ourprevious works.
Therefore, we conclude that the sequence can be applied in the context of motion
planning, in case deterministic guarantees are required, or in any other applications
with such guarantees.

There are a number of ways to improve the current work which weconsider
as future directions. It is an interesting problem to determine the criteria for an
optimal selection of the base sequence onSO(3) to improve the performance of the
sequence. It is also tempting to assess the general rate of convergence for motion
planning solutions using different sampling sequences.

There are many general open problems related to the presented work. Nicely
distributed grids are not yet developed for generaln-spheres,n > 3. Implicitly de-
fined manifolds, such as the ones arising from motion planning for closed linkages,
are very hard to efficiently and uniformly sample. Such manifolds also arise as the
conformation spaces of protein loops. In such cases, efficient parametrization is the
bottleneck for developing sampling schemes.
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8 Appendix

8.1 Derivation of the Hopf Coordinates

The group of all 3D rotations,SO(3), has a subgroup of all planar rotations,S1.
Therefore,SO(3) can be represented as a disjoint union of all of the cosets of this
subgroup. Consider a subgroupS1 of all rotations aroundzaxis by angleψ ∈ [0,2π).
Such rotations can be represented by a unit quaternion of theform:

h1 =
(

cos
ψ
2

,0,0,sin
ψ
2

)
.

To obtain the left coset of this subgroup, thez axis should be placed in an ar-
bitrary position on the sphereS2. If the sphere is parametrized using the spherical
coordinatesθ ∈ [0,π] andφ ∈ [0,2π), then the rotation of thez axis to the(θ ,φ)
position on the sphere corresponds to the quaternion of the form:

h2 =

(
cos

θ
2

,sin
θ
2

sinφ ,sin
θ
2

cosφ ,0

)
.

To obtain the Hopf coordinates for an elementx ∈ SO(3), we compose the two
rotationsx = h1∗h2 and obtain the expression in Eq. (4):

x =
(
cosθ

2 cosψ
2 ,sin θ

2 sin(φ + ψ
2 ),cos(φ + ψ

2 )sin θ
2 ,cosθ

2 sin ψ
2

)
.

8.2 Derivation of the Volume Element Using the Hopf Coordinates

The Jacobian,J = (∂x/∂θ ,∂x/∂ψ,∂x/∂φ), of the coordinate transformation in
Eq. (4) is the following:

J =




−1
2 sin θ

2 cosψ
2 −1

2 cosθ
2 sin ψ

2 0
−1

2 sin θ
2 sin ψ

2
1
2 cosθ

2 cosψ
2 0

1
2 cosθ

2 sin(φ + ψ
2 ) 1

2 sin θ
2 cos(φ + ψ

2 ) sin θ
2 cos(φ + ψ

2 )
1
2 cosθ

2 cos(φ + ψ
2 ) −1

2 sin(φ + ψ
2 )sin θ

2 −sin θ
2 sin(φ + ψ

2 )


 .

We next compute the volume element of the transformation by taking a square
root of the following determinant:

dV =
√

det(JTJ)dθdφdψ =
1
8

sinθdθdφdψ.
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8.3 Lengths of the S1 Fibers and the Area of the S2 Base Space for
the Hopf Coordinates

By fixing θ andφ in Eq. (4) we obtain half circles on the hypersphereS3 (which
areS1 fibers onSO(3), after the identifications of the antipodal points are takeninto
account onS3). To compute the length of a fiber, we follow similar derivations to
the Appendix 8.2. For the fixed values ofθ and φ , the Jacobian of the resulting
transformation is the matrix:

J = (∂x/∂ψ) =




−1
2 cosθ

2 sin ψ
2

1
2 cosθ

2 cosψ
2

1
2 sin θ

2 cos(φ + ψ
2 )

−1
2 sin(φ + ψ

2 )sin θ
2


 .

Then the length element forS1 is:

√
det(JTJ)dψ =

1
2

dψ.

Therefore, the length of each fiber is:

1
2

∫ 2π

0
dψ = π.

The area of the corresponding base sphere,S2, is then obtained from the volume
V(SO(3)) = π2 as the remaining contribution. Therefore, it isπ. Note, that these
derivations demonstrate that the base spaceS2 and the fibersS1 are not unit for the
Hopf fibration.

Acknowledgements Primary funding for this project was provided by the NationalScience Foun-
dation (NSF CISE-0535007) in support of Steve LaValle and Anna Yershova at UIUC, along with
the Alfred P Sloan Foundation and US Department of Energy (DE-FG02-04ER25627) in support
of Julie Mitchell. In addition, Anna Yershova’s work while at Duke University was supported by
the following grants to Bruce R. Donald: NIH grants R01 GM-65982 and R01 GM-078031.

References

1. J. Arvo. Random rotation matrices. InGraphics Gems II, J. Arvo (editor), pages 355–356.
Academic Press, Boston, 1991.

2. J. Arvo.Fast random rotation matrices, pages 117–120. Academic Press, Boston, 1992.
3. G. S. Chirikjian and A. B. Kyatkin.Engineering Applications of Noncommutative Harmonic

Analysis. CRC Press, Boca Raton, 2001.
4. R. A. Crowther. The fast rotation function in the molecular replacement method.Int. Sci. Rev.

Ser., 12:173–178, 1972.
5. P. Diaconis and M. Shahshahani. The subgroup algorithm for generating uniform random

variables.Prob. in Eng. and Info. Sci., 1:15–32, 1987.



Generating Uniform Incremental Grids onSO(3) Using the Hopf Fibration 21

6. G. F. Fishman. Monte Carlo: Concepts, Algorithms, and Applications. Springer-Verlag,
Berlin, 1996.
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