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Abstract The problem of generating uniform deterministic samplesr dke rota-
tion group,SQ(3), is fundamental to computational biology, chemistry, pty,sand
numerous branches of computer science. We present th&rhmst: method to date
for constructing incremental, deterministic grids 8@(3); it provides: 1) the low-
est metric distortion for grid neighbor edges, 2) optimalpdirsion-reduction with
each additional sample, 3) explicit neighborhood strgtand 4) equivolumetric
partition of SQ(3) by the grid cells. We also demonstrate the use of the sequence
motion planning problems.

1 Introduction

Numerical computations on continuous spaces often regeineration of a repre-
sentative set of samples. The performance of various metimédngineering and
scientific fields, such as numerical optimization and iraéign as well as collision-
free path generation in robot motion planing, rely heavihtloe quality of the sam-
pling technique. Hence, it is important that the underlysagnples are as good as
possible.

A particular problem of discretization &Q(3), the space of 3D rotations, arises
in applications, such as biological protein docking pratderobot motion planning,
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aerospace trajectory design, and quantum computatiopgalyoperations on this
space include numerical optimization, searching, intégma sampling, and path
generation. Multiresolution grids are widely used for mafyhese operations on
other spaces which are nicely behaved, such as rectangblsets ofR? or R3.

It would be wonderful to achieve the same 8@(3); however, the space of 3D
rotations is substantially more complicated. In its basiof, SQ(3) is defined as a
set of matrices that satisfy orthogonality and orientationstraints. It is an implic-
itly defined, three-dimensional surface embeddeinOne approach is to place
a coordinate system on the surface, causing it to behave Ipagch inR3. How-
ever, many of such coordinates cause metric distortionsnmparison to distances
on the original surface. Only few representation§6x3), such agjuaternionsand
Hopf coordinatespreserve distances and volumes. They t88B) as a unit sphere
S® ¢ R* with antipodal points identified. The volumes of surfacechas orS® cor-
respond to the unique Haar measure $8)3), which is the only way to obtain
distortion-free notions of distance and volume. This imglhat if we want to make
multiresolution grids or5Q(3), we are faced with warping them on8&. It may
seem that such curvature prohibits the introduction ofodiiin-free grids, simi-
lar to the problem of making distance-preserving maps ofitbed (e.g., Green-
land usually looks too big on a flat map). In addition, the tifexation of antipodal
points causes a minor complication in which only halfSfis used, with unusual
connectivity in the equatorial three-plane. However, iis thaper we use intrinsic
properties unique t&Q(3) (first described in [17]) to build almost distortion-free
grids and avoid the issue of having to identify the antipqutahts onS®.

Due to widespread interest in discretizi8@(3) in numerous fields, there have
been considerable efforts in the past. The problem of géngrpoint sets on
spheres minimizing various criteria, such as energy fonsti discrepancy, dis-
persion, and mutual distances, has been extensively dtimlicmathematics and
statistics [8, 15, 22, 25, 28, 29]. Random sampling methaglewlso developed in
[2, 24, 27, 34]. Problems of sampling rotational groups agfiteses have been stud-
ied and applied in the context of computational structuraldgy, physics, chem-
istry, computer graphics and robotics [4, 7, 16, 19, 21, 2633, 32].

In this paper, we introduce the best-known deterministichoe to date for
SQ(3) in terms of providing:

. incremental generation,

. optimal dispersion-reduction with each additional slemp
. explicit neighborhood structure,

. the lowest metric distortion for grid neighbor edges,

. equivolumetric partition 08Q(3) into grid regions.
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The rest of the paper is organized around the presentatite afiethod. Section
2 defines the topological properties 0(3) together with its representations that
are crucial for presenting our method. Section 3 overvieavspding requirements
for the sequence. We discuss the relevant sampling methatstiuenced our work
in Section 4. Finally, we present our method in Section 5gexpental results and
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its application to motion planning problems in Section 6. &aclude our work in
Section 7.

2 Properties and Representations of SQ(3)

Thespecial orthogonal grouSQ(3), arises from rotations around the originR.
Each rotation, by definition, is a linear transformationt th@serves the length of
vectors and orientation of space. The element$©f3) form a group, with the
group action being the composition of rotatioB€X3) is not only a group, but also
a manifold, which makes it kie group

To sampleSQ(3) uniformly, it is necessary to understand its topology. Any
method known to date that produces uniform rotations reliegpology and Haar
measure of SO(3) (see Section 4).

Topology of SQ(3)

SQ(3) is diffeomorphic to theeal projective spaceRP3. It is hard to visualize the
real projective space, because it cannot be embeddRd. iFortunately, it can be
represented d&P° = S*/(x~ —x), the more familiaB-sphereS®, embedded iiR?,
with antipodal points identified. Topologists say that thepBere is alouble cover
of RP3, since one point of the projective space has two correspgruhints on the
3-sphere.

Haar Measure on SQ(3)

Up to a scalar multiple, there exists a unique measur8@(8) that is invariant
with respect to the group action. This is called Hear measureThat is, the Haar
measure of a set is equal to the Haar measure of all of theaagadf the set. In
our particular situation, we can think of the Haar measureeiisg invariant under
all orthogonal coordinate changes. The Haar measure istansio property of
SQ(3) which comes from the group structure, and is independerts ddpological
structure.

We have not used any coordinate system or parametrizatiS8iO@) yet, since
the notion of Haar measure is abstracted from represensatitSO(3). One has to
use extreme caution when expressing the measure in termy of &he representa-
tions we describe next. Not all of these naturally presemedHaar measure.
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Orthogonal Matrices

The elements 08Q(3) are defined as 3 3 orthogonal matrices with determinant
+1. The group operation is multiplication of matrices. Bessrotation matrices are
less efficient and less numerically stable than quaternitiey are generally used
less often than quaternions.

Quaternions

One of the most useful representations of the projectiveesfmathe set of quater-
nions. Letx = (X1, X2, X3, X4) € R* be a unit quaternion + Xoi +Xaj 4+ x4k, | [X|| = 1,
representing a 3D rotation. Because of the topologicalioglship between the pro-
jective space and the 3-sphere, once the identificationseo&itipodal points on
the 3-sphere are taken into account, metrics similar tcetbesined for the 3-sphere
can be used for the projective space. Moreover, such metiiceespect the Haar
measure o15Q(3).

The most natural way to define a metric for any two poktse SQ(3) is as
the length of the shortest arc betweeandy on the 3-sphere, which quaternions
conveniently allow to do:

Psqz)(X.y) = cos *|(x-y)], 1)

in which (x-y) denotes the dot product for vectorsif, and the absolute value,
|.|, guarantees that the shortest arc is chosen among thefickrns of the two
quaternions [11].

Quaternion representation is also convenient for calgahe composition of
rotations, which is expressed as multiplication of quatere. Any rotation invari-
ant surface measure @& naturally preserves the Haar measureS@3) and can
be used for quaternions. However, the surface measure &na@htforwardly ex-
pressed using quaternions. Other representations, shascal or Hopf coordi-
nates, are more convenient for measuring the volume of&rigions.

Spherical Coordinatesfor SQ(3)

Because of the topological relationship between the 3+gphrdSQ(3), hyper-
spherical coordinates can be used 8@(3). Consider a point8,¢,y) € S, in
which ¢ € [0,71/2] (to compensate for the identifications, we consider only one
hemisphere of%), 6 < [0, i1, andg < [0,27). For eachy, the full ranges oB and

@ define a 2-sphere of radius &if). The quaterniox = (x1,X2, X3,X4) correspond-
ing to the rotation 0, @, ) can be obtained using the formula:
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Fig. 1: Visualization of the spherical and Hopf coordinatesS@3) using angle and axis repre-
sentation. This representation corresponds to a projectitire&® onto the equatorial solid sphere
which we draw inR3. (a) The full range of the spherical coordinafie [0, 71/2] is shown while
the coordinate$, @) form a discretization of size 20 ov&f. (b) The half-spheres show the full
ranges of the spherical coordinats [0, 11, and@ € [0,2m), while ¢ takes four discrete values
over |0, 17/2]. (c) The full range of the Hopf coordinate € [0,2m) is shown while the coordinates
(8, ¢) form a discretization of size 12 ov&f. (b) The spheres show the full ranges of the Hopf
coordinated € [0, ] and@ € [0,2m), while @ takes four discrete values ovi€x 2m).

X1 = cosy/

X = siny cosO

X3 = sinysinf cosg
X4 = sinysin@sing.

(2)

The volume element 08Q(3) defines the Haar measure and has the following
expression in spherical coordinates:

dV = sir? sinde dedy. (3)

This representation is not as convenient for integratiotheddopf coordinates,
which have a simpler expression for the Jacobian. Sphermaidinates are also
cumbersome for computing compositions of rotations.
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Hopf Coordinates for SQ(3)

As opposed to spherical coordinates for hyperspheresHt coordinatesare
unique for bothiSQ(3) and the 3-sphere. They naturally describe the intrinsicstr
ture of both of these spaces and provide a natural tool faiwibg uniform distri-
butions on these spaces.

The Hopf fibrationdescribesSQ(3) in terms of the circleSt and the ordinary 2-
sphereS’. Intuitively, SQ(3) is composed of non-intersecting fibers, such that each
fiber is a circleSt corresponding to a point on the 2-sphere. This fiber bundle-st
ture is denoted aS8Q(3) = S'\® <. The Hopf fibration has the important property of
locally being a Cartesian product space. The sj@8), however, is not (globally)
the Cartesian product & andS'. Intuitively, SO(3) is the product o&” andS! sim-
ilarly to the way the Mbbius band is locally the Cartesian product of an intervadl an
acircleSt. That is, locally, a sequence of coordinates from each sudesgesults in
a global parametrization of the space, whereas the globhédding into the Eu-
clidean space introduces a twist, and does not have thes@artgroduct structure.
The Hopf coordinates can also be used for the 3-sphere, ecdithe topological
relationship between the 3-sphere 8@3).

Each rotation in Hopf coordinates can be written(8sg, ), in which ¢ €
[0,271) parametrizes the circl®!, and6 € [0, i1 andg € [0, 27) represent spherical
coordinates or?. The transformation to a quaternion= (X1,%X2,X3,%X4) Can be
expressed using the formula:

x| = cos% cosl%

Xo = COS3 Sin%
X3 :singcos(zfp+;2”) ()

X =singsin(@+%).

A detailed derivation of the Hopf Coordinates is shown in Apgix 8.1. Briefly,
Eq. (4) represents each rotation fr@@(3) as a rotation by anglgy € St around the
z axis, followedby the rotation, which placesin a position(8, ¢) € . Eq. (4) is
obtained after theompositiorof these two rotations. The Hopf coordinates define
exactly half ofS%, since the coordinatg, never takes negative values. The Hopf
coordinates can be extended to the enSiteby increasing the range af to be
[0,4m).

The volume element 08Q(3), which is also the surface volume elementSn
can be computed from Eq. (4) (see Appendix 8.2 for a detakenyation), and has
the following form:

av = %sine do dpdy. (5)

Note that sir@ d6 dg represents the surface area on the 2-sphere, gnd the
length element ors'. This formula additionally demonstrates that the lengtta of
portion of St is multiplied by the surface area of the base sp&geto obtain the
volume onSQ(3). The coefficient 18 results from the fact that neither fibe&gsnor
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the base spac® are unit. In fact, in Appendix 8.3 we compute the lengths ef th
fibers and the surface area of the base space, which is usetbladietermining the
grid cell sizes for our sequence.

As we have shown, the Hopf coordinates preserve the fibectateiof SQ(3)
and are convenient for integration &Q(3). However, composition of rotations is
best expressed using quaternions.

Angle-Axis Representation for SQ(3)

One of the most intuitive ways to represent rotations is bygiEuler's theorem
which states that every 3D rotation is a rotation by someefigiround a unit axis
n= (ng,Ny,n3),||n|| = 1. The transformation from the angle-axis representation t
quaternions is achieved by:

x = (cos§,singny,singny,singng). (6)

The angle-axis representation is useful for visualiziregitojective space iR3.
Each rotation is drawn as a vector with directipand a magnitude corresponding
to 6 (a multiple or a function oB can be used; see Section 5.6, and [3]). Figure 1
shows the visualization of the spherical and Hopf coordisanSQ(3) using the
angle-axis representation. From this visualization orreicanediately notice the
singularities introduced by the spherical coordinatess HIso possible to see the
advantage of using Hopf coordinates from this visualizatidopf coordinates do
not introduce singularities. The circles represented leyrémge of the variablgy
are all of equal length (see App. 8.3) and non-intersectingy uniformly cover
SQ(3). The fiber structure formed by these circles is also seereifigire.

Euler Angles Representation

Euler angles are often used in robotics to represent rogtibach rotation is then
a vector(x1,%2,X3),% € [T, 1]/ — 1~ 1. The topology of the resulting space is
St x St x S, and, therefore, Euler angles do not correctly capture tifuetsire of
SQ(3). There are many detrimental consequences of this. Speicied (see [11])
are needed to implement metric and measure that preservartéaaure. Moreover,
Euler angles are hard to compose, and present problems gflaiities and the
gimbal lock [23].

Understanding and respecting the global topology of SC{3)ucial for per-
forming other numerical computations on the space. For gi@nsampling and
interpolation of SO(3) using Euler angles in [33] led todad in producing motion
planning path on a relatively simple problem, which was edlin seconds using
the correct parametrizations. In the rest of the paper weHagé coordinates and
quaternions to represent rotations.
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3 Sampling Terminology and Problem Formulation

In applications such as motion planning, the algorithmsodtien terminated early
and the particular order in which samples are chosen becomeial. Sampling lit-
erature distinguishes between a sanggiand a samplsequenceFor a sample set,
the number of points), is specified in advance, and a senhgdoints is then chosen
to satisfy the requirements of the method. The notion of imdebetween points is
not defined for a sample set but becomes important for seqaeBaccessive points
in a sequence should be chosen carefully so that the regshimple sets are all of
good quality. Sequences are particularly suitable for amopilanning algorithms, in
which the number of points needed to solve the problem is notvk in advance.

Now that the background definitions f8(3) have been presented in Section 2,
to generate samples 0v80(3) we need to formulate the desirable properties for the
samples. The first requirement is that samples form a sequé/ecalso require that
samples get arbitrarily close to every point3@(3), i.e. that the sequence of sam-
ples isdensein SQ(3). Next, we formulate several requirements on the uniformity
properties of samples.

3.1 Discrepancy and Dispersion

Additional requirements that the sequence needs to satisfgiescribed by the uni-
formity measuresiscrepancyanddispersion

Intuitively, discrepancy can be thought of as enforcing tmiteria: first, that no
region of the space is left uncovered; and second, that norreg left too full.
Dispersion eliminates the second criterion, requiring/dhe first. It can be shown
that low discrepancy implies low dispersion [18].

To define discrepancy, chooseaange spaceZ, as a collection of subsets of
SQ(3). LetR € # denote one such subset. Range spaces that are usuallyezedsid
on spheres are the set of spherical caps (intersectioned-8phere with half-
spaces) or the set of spherical slices (intersections oBtivemispheres) [20], which
can be used 08Q(3) once the identifications of the 3-sphere are taken into adcou

Let u(R) denote the Haar measure of the suliRelf the samples in the s&
are uniform in some ideal sense, then it seems reasonablié¢hfzaction of these
samples that lie in any sub$eshould be roughly (R) divided byu (SQ(3)) (which
is simply 772, see App. 8.3). We define tliiscrepancy18] to measure how far from
ideal the sample sétis:

PR
PR =RINT  sa@) |

in which |- | applied to a finite set denotes its cardinality. Figure 2 @ndnstrates
the notion on the 2-sphere.

()
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Fig. 2: An illustration of the notions of dispersion and discrepefor a set of points on a 2-sphere.
(a) The discrepancy searches for the suBdet which the deviation from the measure®fo the
number of samples placed insiBes the largest. (b) The dispersion searches for a mport the
sphere which is the farthest from the sample points.

While discrepancy is based on measure, a metric-basedanitdispersion can

be introduced:
0(P,p) = max minp(q,p). 8
(P.p) = max minp(d, p) (8)

Above, p denotes any metric 08Q(3) that agrees with the Haar measure, such
as (1). Intuitively, this corresponds to the spherical wadif the largest empty ball
that fits in between the samples (assuming all ball centersnliSQ(3)). See Fig-
ure 2(b) for an illustration.

3.2 Problem Formulation

In summary, the goal of this paper is to define a sequence wofeglts fromSQ(3)
which:

is incremental,

is deterministic,

minimizes the dispersion (8) and discrepancy (756%3),
has grid structure with respect to the metric (1)3®(3).

4 Sampling M ethods Overview

Our work was influenced by many successful sampling methedsldped recently
for spheres and(Q(3). As demonstrated in Table 1, several of them are highly
related to the problem formulated in Section 3.2. Howevenenof the methods
known to date has all of the desired properties.



10 Anna Yershova, Swati Jain, Steven M. LaValle, and Julie Cchéi

RandomSucc. Orth. Imagekayered SukharetHEALPIx|this work
incremental |yes no yes no yes
uniform yes yes no yes yes
deterministi¢no yes yes yes yes
grid no nolyes yes yes yes
spaces SQ3) [SAn) SQ(3) andS' g SQ3)

Table 1: The comparison of different sampling methods relateuetptoblem of Section 3.2. The
rows correspond to the desired properties of these methods.

Random Sequences of Elements from . To generate uniformly distributed
random points on a hypersphe®&, spherical symmetry of the multidimensional
Gaussian density function can be exploited [6]. For eachef+ 0...d + 1 coor-
dinates use a zero-mean Gaussian distribution with the garizce to generate.
This is done approximately by generatikginiformly distributed values from the
interval [—1, 1] and adding them following th€entral Limit Theoremin practice,
anyk > 12 is a reasonable choice. Then the normalized végipitx | ) is uniformly
distributed over the hypersphege.

Random Sequence of SQO(3) Rotations. There are several ways of sampling the
space of rotations uniformly at random [2, 24, 27, 34]. Thénndificulty in doing
so is the choice of a convenient parametrizatior5@3). If a parameter space is
sampled uniformly, the resulting samples 8@(3) are not necessarily uniform.
As was shown in Section 2, not all of the parametrization§©0f3) are natural
representations of rotations, and some of them lead to mediortions, and even
singularities. Only few parametrizations, such as the Humufrdinates, result in a
local isometry tdSQ(3).

It is easy to make the mistake of sampling rotations usingang/parametriza-
tion [1]. The subgroup algorithm [5] for selecting randoraraknts foISQ(3) is the
correct and most popular method for uniform random sammfr®Q(3). It uses the
fact that any Lie group can be uniformly sampled, by comlgrétements from a
subgroup (in case @Q(3) itis S), and the quotient, or coset spa&d)(at random.
Essentially, this method utilizes the Hopf coordinatesndRem sequences of rota-
tions are used in many applications. However, they lackrdetgstic uniformity
guarantees, and the explicit neighborhood structure.

Successive Orthogonal Images on SQ(n). Related to the subgroup method for
generating random rotations, is the deterministic metHdlacessive Orthogonal
Images [17], which generates lattice-like sets with a djpetlength step based on
uniform deterministic samples from the subgro8h,and the coset spacg?. The
method utilized Hopf coordinates, and is also generalizeatbitrarySQ(n).

The deterministic point sets from [17] can be applied to trebfems in which
the number of the desired samples is specified in advandee Ket of samples on
&’ is chosen so that it has a grid structure, the resulting ssawifples or8Q(3)
has the explicit neighborhood structure. Part of the ctirsemk will be in applying
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(b) (d)

Fig. 3: Different sampling methods &. (a) 200 random samples (b) 192 Sukharev grid samples
[33] (c) icosahedron samples (d) 216 HEALPix samples [7]

this method in a way that provides the incremental qualityessary for our motion
planning applications.

Layered Sukharev Grid Sequencefor Spheresand SQ(3). Uniform, determin-
istic sequences were first designed for the unit ci@b#d [13]. To minimize dis-
persion, the method places one resolution of grid at a tirsielénof the unit cube.
A discrepancy-optimal ordering is then generated for eashlution. The sequence
can be extended to spheres &@3) [33] using the projection from faces of an
inscribed cube. FOBQ(3), though, the distortions produced by the method result in
some grid cells being four times the volume of others.

The general method for designing Layered Sukharev Grid esemps inside
Cartesian products was later presented in [14]. Our cupepér builds on top of
these works by combining the method in [14], with the SudeesSrthogonal Im-
ages [17] generation of rotations, Hopf coordinates, ardHEALPix spherical
sampling method [7] described next.

HEALPix Multiresolution Grids on S%. The HEALPix package [7] was de-
signed for efficient and incremental discretization of-&kly maps in application to
the satellite missions to measure the cosmic microwavegvaakd in astrophysics.
It provides a deterministic, uniform, and multiresolutismmpling method for the
2-sphere. Moreover, it possesses additional qualitie$, as equal area partitioning
of the 2-sphere, and isolatitude sampling on the 2-sphdriehwmake computations
of the spherical harmonics integrals even more efficient.

The method takes advantage of the measure preserving egéihgrojection of
the 2-sphere. This intrinsic property of the 2-sphere cabea@eneralized directly
to higher dimensional spheres. However, this work showtsathaxtremely uniform
grid can be constructed on such a non-trivial curvatureespache 2-sphere. It is
also not difficult to make this grid incremental using the Inoet from [14]. We have
done this as part of our implementation for the current warld the code can be
found at [9].
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5 Our Approach

In this section we present our approach of sampB@3) which satisfies all of
the requirements of Section 3.2, and Table 1. The fiber bustdleture ofSQ(3)
locally behaves similarly to the Cartesian product of twags St andS%. There-
fore, the method presented in [14] for constructing mudttation grid sequences
for Cartesian products of spaces, can be used for constguatgrid sequence on
SQ(3). The resulting rotations are computed using the Hopf coattess, as was first
described in [17]. It is a much simpler problem to construcely behaved grids on
the 1-sphere and 2-sphere. Hopf coordinates allow the tids ¢ be lifted to the
space of rotations without loss of uniformity. Next, we mglthe details of this
construction.

5.1 Description of the Grid Structure on SQ(3)

Let ¢ be the angle parametrizing the circ&, and (8, ) be the spherical coor-
dinates parametrizing the sphe&, Using these coordinates, defifigto be the
multiresolution grid over the circle ant; to be the multiresolution grid over the
2-sphere. Letny andmp be the number of points at the base resolution 0 of the grids
T1 andT;, respectively.

There are numerous grids that can be define®o(see Figure 3 for an illus-
tration of some). In this work we have selected the HEALPixl §7] on S, and
the ordinary grid foiSt. Both of these grids are uniform, have simple neighborhood
structure, and can have multiple resolutions. MoreoverAHEx divides the sur-
face of the 2-sphere into subregions of equal area. Aftetipiyihg these by equal
length fibers ofS', this results in equivolumetric partition &Q(3) into the grid
regions.

Next, consider the spa@®S'. The multiresolution grid sequence that we de-
fine for SQO(3) hasm; - my - 23 points at the resolution levé) in which every 3
points falling into a single grid cell comprise a cube in Hopbrdinates. Each el-
ement of the sequence is obtained by combining the correéppicoordinates in
the subspaces§! and<?, using the Eq. (4). The dispersion and discrepancy of the
resulting sequence can then be computed using the repméearfor the metric and
volume element from Eq. (1) and (5).

5.2 Choosing the Base Resolution on St and S?

One of the issues arising when combining the two grids fBmandS? is the length
of a grid cell edge along each of the coordinates. For thishaxe to match the
number of cells in each base grids on both of the subspacésasthey have cell
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Fig. 4. The base grid of the HEALPix sequence consists of 12 paihis.cylindrical projection
of the grid cells fron to (cog8), @) coordinates is shown. Each next resolution subdivides each
of the spherical squares into 4 squares of equal area [7].

sides of equal lengths [17]. That is, the following equattiould hold fomy and
my:

1
ur(nS ) _ [H&) ©)
1 m

in which p(S') is the circumference of the circ& andu(S?) is the surface area
of . In Appendix 8.3 we explicitly show that both of these valaes equal tot.

In our particular case, the base HEALPix grid consistsnpf= 12 cells (Fig-
ure 4). Therefore, the number of points in the base resolufahe grid onSt is
my = 6. The base grid of the sequence $8(3) then consists afy -my =6-12=72
points (the projections of the grid regions on the Hopf cawatkes are shown in Fig-
ure 5).

5.3 Choosing the Base Ordering

The next step is to choose the ordering of the= nym, points within the base
resolution onSQ(3). In general, the initial ordering will influence the quality
the resulting sequence, and a method similar to [14] can éd fos deciding the
ordering of the base sequence.

In our case, we have to define the ordering on the first 72 pofrttee sequence
(see Figure 5 for the illustration of the associated gridaeg). In our implemen-
tation [9] we have manually selected such an ordering. Hewewis possible to
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Fig. 5 The base grid of the
proposedSQ(3) sequence
consists of 72 points. For the
Hopf coordinate$0, @, ) the <t
projections of the grid cells
on each of the coordinates
are shown. Grid cells for

Y are chosen according to
the ordinary grid or8. The
grid cells for(cog0), p) are
obtained using HEALPIx. The
manually selected ordering of
the cells is shown for both of
the projectionsSt and <.

coso

design a program that would run through the orderings aretstie one that min-
imizes the discrepancy or any other desired property. Femptirpose of further
analysis we assume that such an optimal ordering fundijgr: N — [1,...72 is
available.

In our implementation [9] we first have selected an orderiith® 12 base points
on$? and 6 base points d8t (these orderings are shown in Figure 5). For each point
on S we then generated the 6 points $naccording to th&' ordering. The points
on$? are chosen according to ti$2 ordering.

5.4 The Sequence

The sequence fo8Q(3) is constructed one resolution level at a time. The order
in which the points from each resolution level are placedchim $equence can be
described as follows. The orderifgase: N — [1,...,m] of the firstm points in the
base resolution determines the order of the grid regionsim@Q(3) and is taken
from the previous section. The points in other resolutiatigrito the base resolution
grids according to the functiofyasdi) = fhasdi modm). Every successivm points
in the sequence should be placed in these grid regions inatine srder. Each of
the grid regions is isomorphic to tfi@, 1], and is subdivided into 8 grid regions in
each successive resolution. Where exactly each point sheydthced within each
of the grid regions is determined by the orderifaghe: N — [1,...8] and recursion
procedure defined for the culi@ 1]3 in [13].

The resulting procedure for obtaining the coordinates efitih element in the
sequence is the following:

1. Assignfpasdi) to be the index of the base grid region thatitile element has to
be placed within.

2. Assign the floor of the divisionigype= |i/m], to be the number of subregions al-
ready generated in the base grid region. This index themrdates the subregion
of the regionfp,sdi) that thei-th element has to be placed within.
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(b)

()

Fig. 6: Different sets of samples dQ(3) (a) 2000 random samples (b) 2048 Sukharev grid
samples (c) 1944 icosahedral samples (d) 1944 HEALPix samples

3. Call the recursive procedure from [13] to determine therdmates of the subre-
gion of the cubd0, 1]2 determined by the indeypeand the orderindeupe The
i-th element is then placed within this subregion of fhgdi) region.

5.5 Analysis

Several claims, similar to those obtained in [13], can bearfadthe new approach.
The most important distinction is that the new sequenceigesvequal volume par-
tition of SQ(3) which results in a strong dispersion guarantee.

Proposition 0.1. The dispersion of the sequence T at the resolution leveldfizt:

2
5(T) < 2sin 't ;\/62(T2)+(m]fz|> ,

in which &(T») is the dispersion of the sequencedEfined over 5

Proof: It was shown in [17] that the fiberS! are locally orthogonal to the base
spaceS’ in the sense that an equivalent of the Pythagorean theoré&is foy the
Hopf coordinates. The bound follows directly from the Pygtbieean theorem, and
the dispersion bound on the ordinary grid$nat the resolution levdl O

Proposition 0.2. The sequence T has the following properties:
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e It is discrepancy-optimal with respect to the set of axigtadd grid regions de-
fined over $and S.

e The position of the i-th element of T can be generated(lo@) time.

e For any i-th sample, any of thed nearest grid neighbors from the same layer
can be found in Qlogi)/d) time.

Proof: The proof closely follows similar considerations in [13]0

5.6 Visualization of the Results

To visualize our sequence and compare it with other seqseatesigned fo8Q(3),

we use the angle-axi$f,n), representation from Section 2. It can be shown that
if the rotations are uniformly distributed, then the distiion of the angled is
(sin(B) — 8)/m. This allows us to draw the elements®(3) as the points inside a
ball in such a way that every radial line has uniform disttid of elements. This
provides a more intuitive visualization, which partiallyegerves the uniformity.
See Figure 6 for visualization of several of the methods affgag overSQ(3),
compared to the proposed approach. Specifically, the imsiges points in the
direction of the axis of rotation and with distance to thegoriequal to(sin(6) —
6)/m. Using this representation, the distribution of pointsréases linearly as a
function of distance from the origin. In comparison, a sgtahts that was uniform
with respect to the measure &3 would have a distribution that varies as the cube
of distance from the origin.

6 Implementation and Application to M otion Planning

We have implemented our sampling algorithm in C++ as parhefrtew library
publicly available at [9]. The experiments reported hereengerformed on a 2.2
GHz Pentium IV running Linux and compiled under GNU C++.

We first compared the uniformity of the new sequence with tngelred Sukharev
sequence and random sequence. To demonstrate the imgodfinoderstanding
the topology of SO(3), we have included the evaluation ofarmity for random
Euler angles in this experiment. For each of the deterniinggquences, we gen-
erated a fixed set of points, in the range 50 to,D00, which is shown on thr
axis of the graph in Figure 7. We then calculated the distdrama a randomly
generated point 08Q(3) to the nearest neighbor in each of the sets, and selected
the largest such distance among@@0 random points. We have averaged the same
computations over 10 runs for each of the random sequenbesofitained value
approximates the dispersion. The results are shown for efatte sequences as a
separate curve in Figure 7. In all of the cases, the small#sireed value was the
one generated with our new method, which demonstrates hleatesulting sam-
ples are more uniformly distributed compared to other segegknown foSQ(3).
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Coverage Results (a) e (b)
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Fig. 7: (a) For each of the deterministic sequences, we genexditeztl set of points, in the range
50 to 100000, which is shown on the axis of the graph. We then calculated the distance from
a randomly generated point @Q(3) to the nearest neighbor in each of the sets, and selected the
largest such distance among, @00 random points. The obtained value approximates the disper-
sion and is shown on theaxis for each of the sequences. We have averaged the same coamsutati
over 10 runs for each of the random sequences. A portion of tighgs magnified in (b).

Coverage

Even though it might appear that the actual difference ipeatision is not significant
for data sets of a particular size, there is another inteapom of the results on the
graph. Consider a particular value of dispersion on thetgrmp exampled = 0.06.

If a sample set has this dispersion then no ball of radit€.06 can be placed be-
tween the samples. To achieve such dispersion, the Hopéreeguequired around
50,000 samples, whereas the sample set generated using randenaigles with
twice as many points does not reach the same resolution (Ge&(b)).

We also used our library as the sampling method in the impiéatien of PRM-
based planner [10] in the Motion Strategy Library [12]. lingportant to note that
the experiments we present here are just one of possiblecafphs of the devel-
oped sequences to motion planning problems. Alternatacapioins may exist in
other areas of computer science, or related fields.

In our experimental setup we consider the rotation-only ef®dor which the
configuration space 8Q(3). For the two problems shown in Figure 8 we have com-
pared the number of nodes generated by the basic PRM plasimgy the pseudo-
random sequence (with quaternion components [24]), theréaly Sukharev grid
sequence, and the new sequence. For the first problem thes r@su 258, 250, and
248 nodes, respectively. To solve the second problem the plRivher needed 429,
446 and 410 nodes, respectively. In each trial a fixed, rangieaternion rotation
was premultiplied to each deterministic sample, to dispthe entire sequence. The
results obtained were averaged over 50 trials.

Based on our results we have observed that the performanaer shethod is
equivalent or better than the performance of the previckisbyvn sequences for the
basic PRM-based planner. This makes our approach an diterapproach for use
in motion planning. It is important to note, however, thatfome applications, such
as verification problems, only strong resolution guaramtge acceptable.
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@ (b)

Fig. 8: Motion planning problems involving: a) moving a robbtack) from the north pole to
the south pole. Multiple views of the geometry of the problem strown (obstacles are drawn in
lighter shades); and b) moving a robot along the corridor.

7 Conclusions

In conclusion, we have developed and implemented a detitnimcremental grid
sequence o8Q(3) that is highly uniform, can be efficiently generated, anddis
the surface o5Q(3) into regions of equal volume. Sequences that minimize uni-
formity criteria, such as dispersion and discrepancy, el atep of generation are
especially useful in applications in which the required bemof samples is not
known in advance.

In the paper we report the performance of the deterministitisnce on motion
planning examples for demonstration purposes only. Webethat the value of this
method is in providing strong provable guarantees (the damdispersion, neigh-
borhood structure, and deterministic generation). Theseantees are not always
required in motion planning. Therefore, we do not perforrtergive experimen-
tal evaluation. However, for the motion planning exampteSéction 6, the prov-
able guarantees of the method come at no additional coseder, it is consistent
with the performance of other deterministic sampling mdthon Euclidean spaces
we have observed on numerous motion planning examples iprevious works.
Therefore, we conclude that the sequence can be applie@ icothitext of motion
planning, in case deterministic guarantees are required,any other applications
with such guarantees.

There are a number of ways to improve the current work whichcamsider
as future directions. It is an interesting problem to deteerthe criteria for an
optimal selection of the base sequences@(3) to improve the performance of the
sequence. It is also tempting to assess the general rateneérgence for motion
planning solutions using different sampling sequences.

There are many general open problems related to the presesids. Nicely
distributed grids are not yet developed for generapheresn > 3. Implicitly de-
fined manifolds, such as the ones arising from motion plapfonclosed linkages,
are very hard to efficiently and uniformly sample. Such malds also arise as the
conformation spaces of protein loops. In such cases, effip@rametrization is the
bottleneck for developing sampling schemes.
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8 Appendix
8.1 Derivation of the Hopf Coordinates

The group of all 3D rotationsSQ(3), has a subgroup of all planar rotatiorg,
Therefore, SQ(3) can be represented as a disjoint union of all of the cosetsi®f t
subgroup. Consider a subgro8hof all rotations around axis by anglap < [0, 2m).
Such rotations can be represented by a unit quaternion édthre

1] "]

hy = (COSi,0,0,Sin§> .

To obtain the left coset of this subgroup, thexis should be placed in an ar-
bitrary position on the sphet®. If the sphere is parametrized using the spherical
coordinated € [0, 1] and @ € [0,27), then the rotation of the axis to the(8, ¢)
position on the sphere corresponds to the quaternion obtine f

hy = cosg sing sin sing cosp,0
2 = 2’ 2 o, 2 SQ, .
To obtain the Hopf coordinates for an elemerd SQ(3), we compose the two
rotationsx = hy x h, and obtain the expression in Eq. (4):

x = (cosd cos¥,sing sin(p+ ¥),cog g+ 4)sing, cosdsiny).

8.2 Derivation of the Volume Element Using the Hopf Coordinates

The Jacobian] = (9x/08,9x/dy,0x/d¢), of the coordinate transformation in
Eq. (4) is the following:

—%sin%cos% —1cosdsin¥ 0

~1sindsiny 1cosf cos¥ 0

I= | 1c0s0sin@+ ¥) Lsin® Wy 0 v
lécosgsm((,tH—g) Eflr.lécos($+.7)9 S|n.§é:o.s(qo+7¢?

5C0S5 COS @+ %) —35SiN(@+ %)sing —singsin(g+ %)

We next compute the volume element of the transformatioraking) a square
root of the following determinant:

dV = |/detJTJ)d0dgdy = %sin@d@dqodtp.
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8.3 Lengths of the S! Fibers and the Area of the > Base Space for
the Hopf Coordinates

By fixing 8 and @ in Eq. (4) we obtain half circles on the hypersph&gwhich
areS! fibers onSQ(3), after the identifications of the antipodal points are taken
account orS®). To compute the length of a fiber, we follow similar derizais to
the Appendix 8.2. For the fixed values 6fand ¢, the Jacobian of the resulting
transformation is the matrix:

~Lcosdsin®

1 cosg cosy
158 w
3sincog @+ %)

—Lsin(p+ ¥)sing

J=(0x/oy) =

Then the length element f& is:

\/detdTd)dy = %dw.

Therefore, the length of each fiber is:

1 r2n
E/0 dy =

The area of the corresponding base sph®ds then obtained from the volume
V(SQ3)) = i as the remaining contribution. Therefore, itris Note, that these
derivations demonstrate that the base sg@amnd the fibers! are not unit for the
Hopf fibration.
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