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The Sampling-Based Neighborhood Graph:

An Approach to Computing and Executing Feedback Motion Strategies
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Abstract—
This paper presents a sampling-based approach to com-

puting and executing feedback motion strategies by defin-
ing a global navigation function over a collection of neigh-
borhoods in configuration space. The collection of neigh-
borhoods and their underlying connectivity structure are
captured by a Sampling-based Neighborhood Graph (SNG),
on which navigation functions are built. The SNG con-
struction algorithm incrementally places new neighborhoods
in the configuration space using distance information pro-
vided by existing collision detection algorithms. A termi-
nation condition indicates the probability that a specified
fraction of the space is covered. Our implementation illus-
trates the approach for rigid and articulated bodies with
up to six-dimensional configuration spaces. Even over such
spaces, rapid on-line responses to unpredictable configura-
tion changes can be made in a few microseconds on standard
PC hardware. Furthermore, if the goal is changed, an up-
dated navigation function can be quickly computed without
performing additional collision checking.
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I. Introduction

Determining a collision-free motion strategy is one of the
most basic operations in robotics. One of the greatest chal-
lenges in the design of many robotic systems is to perform
global, geometric reasoning while also allowing quick on-
line responses to unexpected events. In a traditional view
of robotics, an off-line path planning algorithm considers
global, geometric issues to determine a collision-free path
for a given robot and set of obstacles. The solution is then
passed to an on-line control algorithm that attempts to fol-
low the path, while hoping that localization errors, control
errors, dynamical constraints, and responses to unexpected
obstacles do not cause failure. Recognizing this difficulty,
many interesting alternatives have been proposed, such as
the BUG paradigm [24], [25], [40], [39], [54] and potential
field approaches [12], [22], [28], [29], [42], [50], [56].

We propose a sampling-based framework for generating
feedback motion strategies (see Figure 1) for robots with
many degrees of freedom. The work presented here incor-
porates and expands the work reported in [59], [60]. The
key idea of this work is to fill the collision-free subset of
the configuration space with overlapping neighborhoods,
such as balls, and define a collision-free potential function
on each neighborhood (a similar covering of neighborhoods
was applied to trajectories in [47], [48]).
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(a) Coverage of Cfree (b) A navigation function
defined over it

Fig. 1. The configuration space is covered by balls on which naviga-
tion functions are defined.

Over the neighborhoods, the task is to compute a navi-

gation function, which is a potential function that has only
one local minimum, which is at the goal [49]. To achieve
this, topological information is captured by an underlying
connectivity graph. We refer to the resulting structure as
a Sampling-based Neighborhood Graph (SNG); it has two
main advantages:

1. A navigation function can be defined over most of
the configuration space, enabling rapid response to un-
predictable changes in the configuration. Such unpre-
dictability could occur due to calibration errors, mod-
eling errors, and disturbances. Based on our experi-
ments, such responses are made in a few microseconds for
a six-dimensional navigation function, implemented on a
500MHz PC. This is much faster than what can be obtained
by replanning with existing path planning algorithms.
2. The navigation function is quickly reconfigurable for a
given SNG. If the goal changes a small amount (remain-
ing in the same neighborhood), the navigation function
can be recomputed in constant time. This could be use-
ful, for example, in target tracking applications. If the
goal changes substantially, then a new navigation function
can be quickly computed from scratch by performing graph
search over the SNG without additional collision checking.
This latter computation is similar to the benefit obtained
in the multiple-query paradigm introduced in [26] for path
planning.

To obtain the advantages above, efficient construction of
an SNG of critical importance. We present a construction
algorithm that has the following properties: 1) it exploits
information computed from existing, efficient distance com-
putation algorithms (e.g., [17], [18], [35], [44], [47]); 2) tech-
niques from computational geometry can be exploited to
efficiently construct the SNG with little sensitivity to di-
mension (for example, [43] enables O(lg n) expected run-
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ning time to locate a configuration among a collection of
balls, and O(n lg n) expected running time to compute the
neighborhood-connectivity structure regardless of dimen-
sion); 3) a statistical stopping condition indicates that a
specified fraction of the space is covered with a specified
probability. Deterministic guarantees of coverage may al-
ternatively be possible by applying other sampling methods
[6], [33].

II. Related Work

Feedback strategies as funnels. In previous work, feed-
back motion strategies were considered as funnels that pas-
sively guide any state in the domain into the goal state.
The notion of a funnel was introduced by Mason nearly two
decades ago [41]. In his work, a funnel is a positive definite
function that is centered at a goal point, which represents
the only zero and unique local minimum over the funnel’s
domain of attraction. If from any state in the domain, the
resulting feedback control law that follows the negative gra-
dient of the funnel converges to the goal, then the funnel
defines a Lyapunov function. Similar ideas have also been
introduced by other researchers in robotics and fine-motion
planning, including Ish-Shalom [21]; Lozano-Pérez, Mason,
and Taylor [38]. Burridge, Rizzi, and Koditschek [10] ex-
tended Mason’s idea. In their definition, a funnel repre-
sents an attraction region of a dynamical system within
a known invariant region. Burridge’s funnel recognizes the
“obstacle”, in which all states must be avoided, and adapts
itself to a complicated domain that avoids the obstacle. Al-
though each funnel represents a Lyapunov function, it may
be difficult to find. Moreover, there is a large and impor-
tant class of systems for which no single funnel (continuous
stabilizing feedback control law) exists [8], [31].

The sequential composition of funnels: Deploy-

ments. Due to difficulty of finding a single funnel, a se-
quential composition of funnels was introduced. Lozano-
Pérez, Mason, and Taylor [38] introduced the notion of
preimage backchaining. There is a collection of controllers
whose induced funnels each has a local goal set that is ei-
ther contained in a another controller’s domain or in the
global task goal. In this case, it is possible to backchain

away from the global task goal [14]. Such a backchain is
also called a deployment [10]. A deployment partitions the
state space into cells. Inside each cell, a different controller
will become active. As each controller drives the system
toward its local goal, the state crosses a boundary into
a region of state space where another controller is active.
This process is repeated until the state reaches the final
cell, which is the only one that contains the goal. Using
backchaining, a strategy is derived that switches between
controllers to drive any initial state from the union of all
cell domains into the goal state.

Potential fields. Artificial potential fields are an efficient
approach to feedback motion generation. In traditional
path planning approaches, the motion planning problem is
usually decomposed into three parts: 1) plan the collision-
free path; 2) transform this path into a trajectory that

satisfies the dynamics; and 3) apply a feedback control law
that guides the robot to the goal. Unlike traditional path
planning approaches, the potential field approach solves
the problem in one step. The potential field idea was orig-
inally developed as an on-line collision avoidance approach
by Khatib in his Ph.D. dissertation [27]. Later, several
approaches were developed to compute the potential field
[1], [5], [57]. Potential field methods typically suffer from
local minima and are often referred to as “local methods”.
Koditschek showed that a global navigation function does
not exist in general [30]. However, it is possible to de-
fine an “almost global navigation function” (or navigation
function ) that has a minimum located at qgoal and a set of
saddle points that are unstable configurations. Any small
perturbation allows the planner to evade them. Much re-
search has been done on computing a navigation function
[4], [13], [29], [34], [49], [50], [56]. Rimon and Koditschek
constructed a navigation function for a generalized sphere
world for a point-mass robot [49], [50]. Sundar and Shiller
proposed a pseudo-return function for a point robot in a
workspace with circular obstacles [56]. Level-set methods
have also been proposed to compute navigation functions
[29]. LaValle and Konkimalla presented a dynamic pro-
gramming approach to computing feedback strategies for
nonlinear systems [34]. The main difficulty with general-
purpose navigation function methods to date is that they
are limited to low-dimensional problems.

Decomposition-based path planning. One straightfor-
ward approach of defining a navigation function is to use
cell decomposition methods [3], [11], [53], [51], [52], [37],
[9], [32], [15], [23], [61], by combining the partial potential
functions each of which is defined over each cell. However,
it is difficult to do so for the problems of interest in this
paper. Usually, cell decomposition methods suffer in high
dimensions, especially when the models of the robot and
obstacle have high complexity. Another disadvantage is
that the cells do not have overlapping interiors. This in-
creases the difficulty of switching from one control law to
another, which can be done in an open set for the case of
overlapping regions.

An interesting approach that is similar to ours (devel-
oped in parallel) in that overlapping neighborhoods are
used to build a potential function is the recent work of
Brock and Kavraki [7]. This leads to fast performance in
many cases, but the primary difference lies in the space in
which neighborhoods are considered. They develop neigh-
borhoods in the workspace, and in our case, we develop
neighborhoods in the configuration space. The tradeoff is
that our method is more expensive, but it is able to avoid
local minima that arise from neglecting the Cfree topology.

III. Problem Formulation

Assume that a robot moves in a compact 2D or 3D
world, W ⊂ RN , such that N = 2 or N = 3. An n-
dimensional configuration vector, q, captures position, ori-
entation, nd/or joint angles. Let C be the n-dimensional
configuration space (i.e., the set of all possible configura-
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tions). Let A(q) denote the set of points in W that are
occupied by the robot when it is in configuration q. Let
O ⊂ W denote a static, closed obstacle region. Let Cfree
denote the set of configurations, q, such that A(q)∩O = ∅.

We generally assume that there are some factors, such
as external disturbances, calibration, or modeling errors,
which prevent the motions of the robot from being com-
pletely predictable. The robot does, however, have an
ideal sensor that can measure the current configuration.
A discrete-time control problem is assumed in which a sen-
sor provides measurements, and the robot chooses a con-
trol based on the sensor output. Thus, it can incorporate
feedback to determine subsequent motion commands, even
if the configuration drifts from expectations. The study
of particular control systems is beyond the scope of this
algorithmic paper. It will generally be assumed that the
system is small-time controllable, and there exists a control
law that can be implemented to perform gradient descent
of a navigation function.

The robot control model can be described as xk+1 =
f(xk, uk), in which xk is the state (usually taken from the
tangent bundle of C) at time step k, and uk is an input
chosen from a predetermined set. The model can be ex-
tended to explicitly account for prediction uncertainty as
xk+1 = f(xk, uk, θk), in which θk represents an unknown
disturbance chosen from a known set. At each time step,
the robot must determine an action uk; however, the fu-
ture state is unpredictable due to the disturbance. In this
case, an open-loop control that simply specifies the input
sequence is insufficient.

The task is to find a motion strategy that uses feed-
back from a configuration sensor, and computes inputs that
guide the robot to a goal configuration while avoiding col-
lisions. For a given goal, qgoal, this can be accomplished by
defining a real-valued navigation function, γ : Cfree → R
that has a single stable local minimum, which is at qgoal.
It is assumed that the controller can use this function to
determine the appropriate input. The robot is guided to
the goal in each iteration by choosing an input, uk, from
the current configuration, qk, that reduces γ(qk+1) as much
as possible. In this work, we do not explicitly model the
disturbance, θk. This is common in classical feedback con-
trol; from the system formulation, it appears that feed-
back is unnecessary; however, it is still assumed that un-
predictabilities can occur. To explicitly model bounded
disturbances, our approach could be modified by appropri-
ately “growing” the obstacles by an amount that ensures
disturbances will not lead to collision.

Finally, we assume that qgoal is frequently changed for a
fixed environment. In this case, we would like a multiple-

query approach to building navigation functions. This will
be accomplished by the SNG in a manner that avoids using
collision detection if the goal is changed.

IV. A General Framework

There are three separate phases of computation to keep
in mind.

Precomputation: Construction an SNG for a new envi-
ronment.
Building a Navigation Function: Given the SNG and
a goal, construct a navigation function.
Execution: Given a navigation function over an SNG, it-
eratively compute motion commands from an initial state
until the goal is reached.

For the first two phases, the philosophy is similar to the
multiple-query approach used for the probabilistic roadmap
(PRM) [26]. We precompute a data structure under
the assumption that the goal configuration will frequently
change, while the geometry remains the same. However,
instead of computing a path in the second phase, our ap-
proach computes a navigation function. Also, note that
we focus on a third phase, which is where the key advan-
tages of the SNG emerge. Rapid response to unpredictable
changes in configuration can be made because we represent
a navigation function. Thus, a feedback motion strategy is
obtained, as opposed to an open-loop path.

Each of the subsections below describes one of the three
phases. The construction of the SNG is by far the most
difficult of the three; therefore, the SNG is defined in IV-A,
and the construction algorithm is deferred until Sections V
to VII. Sections IV-B and IV-C describe the remaining two
phases and their associated algorithms. These primarily
emphasize the use of the SNG, assuming that it has already
been precomputed.

A. The Sampling-based Neighborhood Graph

Our approach can be considered as a method to compute
a deployment in complicated, high-dimensional configura-
tion spaces. The first phase is to compute a collection
of domains that cover as much of Cfree as possible. The
Sampling-based Neighborhood Graph (SNG) is defined as
follows:

• Associated with the SNG is an undirected graph, G =
(V,E), in which V is the set of vertices and E is the set of
edges.
• Each vertex, v ∈ V , represents a unique convex, open
neighborhood, Bv ⊂ Cfree, and a point, qv ∈ Bv, which is
called the center of Bv. Nonconvex neighborhoods could
be considered, as long as it is simple to ensure that they
are collision free and to define a navigation function over
them.
• It is assumed that no neighborhood is a subset of another
neighborhood.
• An edge, e ∈ E, exists for each pair of vertices, vi and vj ,
if and only if their neighborhoods intersect, Bi ∩Bj 6= ∅.
• Let B be the union of all neighborhoods,

B =
⋃

vi∈V

Bi .

The sampling-based term arises from the fact the center
of each neighborhood will be chosen according to some in-
finite sequence of samples that lie in Cfree. In practice, this
sequence is terminated after a finite number of iterations,
and the resulting SNG is considered as an approximate rep-
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resentation of Cfree that is both volumetric and captures
its connectivity.

We prefer sample sequences that enable convergence in
measure in the following sense. Suppose that an SNG
has been constructed using k samples. Let γ represent
a bounded, real-valued navigation function over Cfree.
Consider approximating γ with a function, γk, such that
γ(q) = γk(q) if q ∈ B, and γ(q) = 0, otherwise. We want
to use sample sequences that make γk converge in measure
to γ as k tends to infinity. To achieve this, any sequence
that is dense in Cfree will suffice. This could, for exam-
ple, be a deterministic sequence, such as Halton, Sobol’,
Faure, Niederreiter-Xing, or the extensible grid in [36]. Us-
ing a smooth probability density function over Cfree, a se-
quence of samples simulated from the density function will
be dense with probability one. Although many reasonable
choices are possible, we focus the implementation and anal-
ysis in this paper on uniform, random sampling to obtain
probabilistic coverage bounds.

B. Constructing Navigation Functions

We now assume that an SNG and goal, qgoal ∈ Cfree,
have been given, and the task is to construct a navigation
function, γ : B → R. Assume that G(V,E) is augmented
to include finite weights on all edges. These could all be
unit weights, or values that correspond to desirability of
the neighborhood transition, based on distance, clearance,
etc.

Once qgoal has been given, the computation proceeds as
follows:

1. The first step is to find a neighborhood, Bg, that con-
tains it. Let vg denote its corresponding vertex in V .
2. Starting with vg, run an exhaustive search algorithm
over G, such as breadth-first, depth first, or Dijkstra’s al-
gorithm. This results in cost-to-go values that are stored
at every vertex. Let c(v) denote the cost-to-go value at a
vertex, v.
3. Consider the partial ordering on V obtained using the
cost-to-go values. Construct a mapping, π, on V that
assigns a unique positive integer to each vertex, in such
as way that if c(v1) ≤ c(v2), then π(v1) < π(v2). The
mapping π can be considered as an assignment of strict
priorities over the vertices in V (we interpret a lower value
as having higher priority).
4. Over each neighborhood, Bv, with center qv, we define a
local navigation function, γv : Bv → [0,∞). This could, for
example, be any Lyapunov function or optimal cost-to-go
function for a particular system. The zero value for γv is
placed qvi, which is chosen as a point in the highest-priority
neighborhood that intersects Bv (see Figure 2). Thus, the
local navigation function will try to guide the configuration
into a neighborhood that is closer to the goal (closer in the
sense of path cost in G). There is one special exception.
The local navigation function for Bg places its zero point at
qgoal, because there are no other balls with higher priority.
5. A global navigation function is defined over B by com-
bining the local navigation functions and information from
priorities. A configuration, q, may lie in one or more neigh-

Bv Bvi

Fig. 2. Executing motions that decrease the values of a local naviga-
tion function sends the configuration to a higher-priority neigh-
borhood.

borhoods. Let Bq denote this collection of neighborhoods.
The global navigation function utilizes the local naviga-
tion function from the highest-priority neighborhood in Bq.
Let Bh(q) denote this neighborhood. To obtain a naviga-
tion function, one simply has to “activate” γh (defined for
Bh(q)) for any q ∈ B.

To provide an example of an actual navigation function,
we define a simple quadratic function, γv(q) = ‖q − qvi‖

2,
which can be applied for any v ∈ V over its corresponding
Bv. For the neighborhood that contains the goal, we let
qvi = qgoal. This notation neglects topological issues which
must also be considered, and assumes that for any neigh-
borhood, a smooth coordinate chart exists that covers it.
Let w denote an upper bound on the maximum value possi-
ble of γv, over all v ∈ V . This is proportional to the square
of the maximum Euclidean distance between any pair of
points within the same neighborhood. Using the priorities,
a global navigation function can be defined as:

γ(q) = wπh(q) + ‖q − qhi‖
2,

in which the h subscripts are derived from Bh, the highest-
priority neighborhood that contains q. The wπh term is
added to ensure that each time a higher-priority ball is
reached, the navigation function will decrease.

The navigation function as defined might seem to cause
difficulties due to discontinuities. This is also permitted in
the deployment model of [10]. This is acceptable is that ev-
ery nonempty neighborhood intersection contains an open
set, within which switching between controllers can occur
gracefully. This is the approach taken in many hybrid sys-
tems (see, for example, [16]). If such discontinuities are
still a problem, then interpolation schemes could be ap-
plied over the open set. Such issues are interesting, but
beyond the scope of our algorithmic framework.

We provide the following proposition based on the com-
putation steps given above:
Proposition 1: An SNG with an underlying graph,

G(V,E), can compute a navigation function for a speci-
fied goal in time O(|V |+ |E|).
Proof: Assuming that point location within a single

neighborhood can be performed in O(1) time, Step 1 takes
O(|V |) time to naively locate a neighborhood that contains
q (this can be dramatically improved for many neighbor-
hood systems). Applying breadth-first or depth-first search
to G in Step 2 requires O(|V |+|E|) time. Once the cost-to-
go values have been assigned, the priorities can be assigned
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in O(|V |) time in Step 3. Step 4 requires O(|V |+ |E|) time
to determine all highest-priority neighbors in G. It is as-
sumed that qvi can be identified from a neighborhood-pair
intersection that can be computed in O(1) time. Step 5
is actually computed during execution because it depends
on q. Thus, once the first four steps have been completed,
the global navigation function has been defined for any q.
Combining the total running time from all of the steps
yields O(|V |+ |E|) time to compute a navigation function.

We make one final remark about the computation of nav-
igation functions. Suppose that the goal changes continu-
ously over time. In most cases, the same neighborhood,
Bg, will contain the goal. When this occurs, only the local
navigation function for Bg needs to be changed, to ensure
convergence to the new goal. This can be performed in
constant time, which could be convenient in applications
such as tracking a moving target.

C. The Execution Phase

We finally consider the execution phase. Here is it as-
sumed that an SNG has been given with a navigation func-
tion computed over it. The goal of the first two phases
was to precompute data structures that expedite the exe-
cution phase as much as possible. Therefore, the execution
phase is straightforward. Assume that discrete-time con-
trol is used for the robot, and that at any time increment,
it measures the configuration. Initially, the highest-priority
neighborhood that contains the initial configuration must
be found. This takes time O(|V |) using a naive algorithm,
but can be significantly improved for most neighborhood
systems of interest by using point location data structures.

In each time increment, the highest-priority neighbor-
hood that contains the current configuration must be de-
termined. It is assumed that the configuration changes
only by a small amount. Therefore, most of the time,
the highest-priority neighborhood will not change. Local
graph computations can be performed to determine the
collection of neighborhoods that need to be checked for
priority. In our experiments, this takes a few microseconds
on a standard PC, even for high-dimensional configuration
spaces. The advantages are similar to those of “almost con-
stant time,” performance for incremental distance collision
checking due to temporal coherency [35], [44].

Although one could easily imagine rapidly iterating along
a path obtained from a standard path planning algorithm,
replanning would have to be performed if the configuration
drifts unpredictably from the path. This almost always
happens in practice, which causes the need for path clear-
ance assumptions, tracking assumptions, etc. In the case
of the SNG, motion commands can continue to be applied
to the robot regardless of the configuration that it enters,
as long as it stays within B. In this sense, it represents a
configuration-feedback motion strategy.

We provide a simple example to help understand the
philosophy. In our experiments we have considered the

simple transition equation

qk+1 = qk + uk + θk, (1)

in which dim(uk) = dim(θk) = n, and uk is a directional
heading input. The θk term represents a small disturbance
parameter that is bounded, but unpredictable. At each it-
eration, uk is chosen in the direction that most decreases
the navigation function. If the disturbances are chosen as
simulations of a random process, each execution will yield
different paths; however, the same navigation function is
used in every case. Obviously, our simple formulation here
does not take into account differential constraints; how-
ever, such consideration is possible as long as a Lyapunov
or other return functions can be defined over each neigh-
borhood. It is beyond the scope of this paper to address
the control of particular systems.

V. SNG Construction Algorithm

This section contains two parts. Section V-A presents
the general components of the algorithm, and Section V-B
presents and analyzes the probabilistic termination condi-
tion, which is applied in the general algorithm.

A. Algorithm Overview

Recall from Section IV-A that the SNG construction al-
gorithm can be defined using any sample sequence that is
dense in Cfree. In this section, we assume that uniform ran-
dom sampling is used, which leads to a probabilistic termi-
nation criterion. Figure 3 gives an outline of the algorithm,
which has two inputs, α ∈ (0, 1) and Pc ∈ (0, 1). This en-
ables the user to prescribe the quality of the Cfree approxi-
mation. The algorithm will terminate when the probability
is at least Pc that 100α percent of Cfree has been covered.
In other words, µ(B)/µ(Cfree) ≥ α with probability at least
Pc, in which µ denotes Lebesgue measure in Cfree. Alter-
natively, a deterministic, dense sequence could be used to
obtain deterministic guarantees of coverage; however, this
case is not considered here.

GENERATE SNG(α,Pc)
1 G.init(qinit);
2 while (TerminationUnsatisfied(G,α,Pc) do
3 repeat

4 qnew ← RandomConf();
5 d← DistanceComputation(qnew);
6 until ((d > 0) and (qnew 6∈ B))
7 r ← ComputeRadius(d);
8 vnew ←G.AddVertex(qnew, r);
9 G.AddEdges(vnew);
10 G.DeleteEnclaves();
11 G.DeleteSingletons();
12 Return G

Fig. 3. This algorithm constructs the SNG using uniform random
sampling, and determines automatically when to terminate based
on estimated coverage of Cfree.
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Each execution of Lines 3-9 corresponds to the addition
of a new neighborhood, Bvnew

, to the SNG. This results in
a new vertex in V , and new edges that each corresponds
to a neighborhood that intersects Bvnew

. Neighborhoods
are added to the SNG until the probabilistic termination
condition is met, causing TerminationUnsatisfied to return
FALSE. The repeat loop from Lines 3 to 6 generates a
new sample in Cfree \ B, and might require multiple iter-
ations. Collision detection and distance computation are
performed in Line 5. Many algorithms exist that either
exactly compute or compute a lower bound on the closest
distance in W between A and O [17], [18], [35], [44], [47],

d(qnew) = min
a∈A(qnew)

min
o∈O
‖a− o‖.

If d is not positive, then qnew is in collision, and another
configuration is chosen. Also, qnew must lie outside of B
before the repeat loop terminates. This forces the SNG
to quickly expand into Cfree, and leads to fewer edges per
vertex in V . Finally, Lines 10 and 11 perform some simple
cleaning to remove neighborhoods strictly contained within
other neighborhoods, and to remove neighborhoods that
intersect no others.

There are three costly parts to the algorithm at each
iteration: 1) the distance computation in Line 5, 2) test-
ing whether qnew lies in B in Line 6, and 3) determining
the new edges in Line 9. The distance computation cost
depends, of course, on the complexity of the robot and ob-
stacles. Distance computation algorithms are very efficient
in practice, and their existence is essential to our approach.
In our implementation, we reply on the PQP package from
the University of North Carolina. The neighborhood size
is computed in Line 7 using this distance information; this
is presented in Section VI.

The other two expensive parts of the algorithm can be
greatly accelerated by exploiting efficient algorithms from
computational geometry. Theoretically, it is possible to
perform these operations in logarithmic expected time in
terms of the number of neighborhoods, regardless of di-
mension. The random geometric separators technique [43]
can provide O(lg n) expected running time to locate a new
configuration in the SNG, and O(n lg n) expected running
time to make all edges. While many theoretical algorithms
have superior complexity, an implementation is often im-
practical or inefficient for the range of problems of interest.
For this reason, we have adapted the Approximate Nearest
Neighbors package from the University of Maryland to our
application [45], [2], even though the theoretical complex-
ity is somewhat higher (it is still much improved over naive
computations), and nearest-neighbor searching is not pre-
cisely the problem of interest. The algorithms are based on
Kd-trees and related data structures. The work in [2] ex-
tended the algorithms and package to work for topological
spaces that usually arise in motion planning.

The acceleration of Lines 6 and 9 using nearest neighbor
techniques proceeds as follows. For determining whether
qnew ∈ B, nearest neighbor searching is performed on the
neighborhood centers. A prescreening using k neighbor-
hoods that have the nearest centers to qnew is performed.

In practice, we have selected k = 30. If qnew lies in any
of these neighborhoods, it is quickly rejected. Otherwise,
there are two different ways to implement the algorithm.
At this point, qnew can be checked for containment among
all neighborhoods. This will not be too costly because as
the algorithm runs for a while, most of the time is wasted
evaluating new configurations that lie in B. The nearest
neighbor technique eliminates most of this cost. The other
way to implement the algorithm is simply to allow qnew
to be added if it is not contained in one of the nearest
neighbors. In practice, this leads to a little inefficiency by
introducing a small number of neighborhoods that are not
strictly needed. For constructing edges, we only attempt
to connect the new neighborhood to the neighborhoods
that correspond to the k nearest centers (an intersection
test must also be performed with each one). It might be
possible that some other neighborhoods intersect the new
neighborhood; however, this does not cause any practical
difficulty. Simple connected component analysis can be to
ensure that the connectivity is being preserved. In fact, it
might make sense to limit the total number of edges per
vertex, as long as Cfree topology is preserved. Fewer edges
will lead to solutions that are further from optimal, but this
might not be an important concern in many applications.

B. Termination Condition

In this section, the termination condition from Line 2
of the algorithm in Figure 3 is derived. The ability of the
algorithm to estimate the quality of the coverage is one of
the advantages of our approach. A similar condition ap-
pears in the Visibility PRM approach [55]. The basic idea
behind our termination condition is to derive estimates of
µ(B)/µ(Cfree) by analyzing the statistics gathered from at-
tempts to find a new configuration at random which lies
in Cfree \ B. As µ(B)/µ(Cfree) becomes closer to one, we
expect the number of failed attempts to find a new configu-
ration to increase. Our analysis concludes with a condition
that uses the inputs, α and Pc, of the algorithm to assert
that 100α percent of the volume of Cfree has been covered
with probability Pc.

Let Y be a random variable corresponding to a new con-
figuration in an iteration of the SNG construction algo-
rithm. The experiment of Y has two possible outcomes:
either qnew ∈ B, which is a “failure”, or qnew ∈ Cfree \ B,
which is a “success”. Let Y = 0 denote failure, and let
Y = 1 denote success. Since each qnew is chosen uniformly
at random from Cfree, Y has a Bernoulli distribution,

P [Y = 0] = θ and P [Y = 1] = 1− θ,

in which θ = µ(B)/µ(Cfree).

The following lemma shows that the trials of Y can be
used to estimate θ. Let Y1, Y2, . . . , Ym represent a sequence
of independent trails of Y , and let Ȳ be the sample mean.
Note that 1− Ȳ is an unbiased estimator of θ.

Lemma 1: For given fraction α and T ∈ (0, 1), the
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probability, Pc, that 1− Ȳ ≥ T implies θ ≥ α is

Pc = 1−αm+1

bm(1−T )c
∑

i=0

(

m
i

)(

1

αi(m− i+ 1)
−

1

m+ 1

)

.

(2)
Let Pc be called the confidence level.
Proof: There are two kinds of hypothesis errors: re-
jection of the null hypothesis if it is true is called a Type

I error; acceptance of the null hypothesis if it is false is
called a Type II error. More precisely, 1 − Ȳ < T while
θ ≥ α causes a Type I error, and 1 − Ȳ ≤ T while θ < α
causes a Type II error. Let PI and PII represent the
probabilities that Type I and Type II errors occur, respec-
tively. Using this notation, PI = P

[

1− Ȳ < T ; θ ≥ α
]

and PII = P
[

1− Ȳ ≥ T ; θ < α
]

. Note that,

Pc = 1− PII . (3)

Let y1, y2, . . . , ym represent the outcomes of a sequence
of experiments of Y . Let X be a random variable that
denotes the number of trials of Y at which the k successes
occur, i.e.,

m
∑

i=1

yi = k.

Notice that X has a binomial distribution,

P [X = k] =

(

m
k

)

θm−k(1− θ)k.

Thus, PII can be written as

PII = P
[

(1− Ȳ ) ≥ T ; θ < α
]

= P [X ≤ bm(1− T )c; θ < α]

=

∫ α

0

P [X ≤ bm(1− T )c] dθ

=

∫ α

0

bm(1−T )c
∑

i=0

(

m
i

)

θm−i(1− θ)i dθ

= αm+1

bm(1−T )c
∑

i=0

(

m
i

)(

1

αi(m− i+ 1)
−

1

m+ 1

)

.

Therefore, we have,

Pc = 1−αm+1

bm(1−T )c
∑

i=0

(

m
i

)(

1

αi(m− i+ 1)
−

1

m+ 1

)

,

which completes the proof.

Equation 2 implies that Pc increases as m increases. For
given fraction α and Pc, Lemma 1 provides a method to
estimate whether the fraction of B over Cfree is at least α
with confidence level at least Pc. However, it is not the
only method to do so.

The following lemma presents another way to estimate θ.
Once again, consider random trials Y1, Y2, . . . , Ym. Assume
the first success occurs at Ym.
Lemma 2: For given fraction α and M > 0, the proba-

bility, Pc, that m ≥M implies θ ≥ α is

Pc = 1−
αM

M
. (4)

Proof: Borrowing from the proof of Lemma 1, we start
with (3). Let y1, y2, . . . , ym represent the outcomes of a
sequence of experiments of Y . Let X be a random variable
that denotes the number of trials of Y at which the first
success occurs at ym,

yi = 0 , i = 1, · · · ,m− 1 , ym = 1.

Note that X has a geometric distribution,

P [X = m] = θm−1(1− θ).

Thus, PII can be written as:

PII = P [X ≥M ; θ < α]

=

∫ α

0

P [X ≥M ] dθ

=

∫ α

0

(1− P [X < M ]) dθ

=

∫ α

0

(

1−
M−1
∑

i=1

θi−1(1− θ)

)

dθ

=
αM

M

Therefore, we have,

Pc = 1−
αM

M
,

which establishes the lemma.

Each of Lemma 1 and Lemma 2 provides a method to
estimate θ, based on the different statistical hypotheses.
Two termination conditions can be derived from them, re-
spectively:

• h1: terminate based onm trials of Y , at which k successes
have been counted.
• h2: terminate based on m consecutive failures followed
by the first success.

The following proposition shows how h1 and h2 can be
used to make the termination decision.
Proposition 2: For given a fraction α and Pc, the prob-

ability of the fraction θ ≥ α is at least Pc, i.e.,

P [θ ≥ α] ≥ Pc,

if the termination condition satisfies either one of the fol-
lowing:
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• h1:

Pc ≥ 1− αm+1
k
∑

i=0

(

m
i

)(

1

αi(m− i+ 1)
−

1

m+ 1

)

(5)

• h2:

m ≥
ln(1− Pc)

lnα
− 1 (6)

Proof: For condition h1, let the confidence level be at
least Pc as shown in (2). Substitute bm(1 − T )c with the
expected number of success k to immediately obtain (5).

For condition h2, we use (4) to obtain

Pc = 1−
αM

M
≥ 1− αM . (7)

Equation 7 yields a lower bound on Pc. Letting the confi-
dence level be at least Pc will yield a lower bound on m as
provided in (6).

Although both h1 and h2 are feasible termination condi-
tions in practice, they have different performance, as indi-
cated by the following proposition.
Proposition 3: For the same Ȳ , the termination con-

dition h1 has a better or equal confidence level than h2.
Proof: For the same Ȳ , the size of the sample sequences
differ, mh1

≥ mh2
. Therefore, according to (2) and (4), it

follows that P h1
c ≥ Ph2

c .

According to Proposition 3, it seems h1 is always better
than h2. However, this is not the whole story. To achieve
the same Ȳ , h1 needs more samples than h2. This yields
more computation time because in each trial, we have to
check for collision and check whether the new configuration
is inside B, which are expensive. The computation time
increase of h1 may be significant. A better strategy is to
terminate the algorithm if either h1 is satisfied or h2 is
satisfied.

While the construction algorithm iterates, we open a
sample window with a fixed window size m in the sam-
ple process. Inside the window, k successes are observed.
In each iteration of adding a new configuration, we ad-
vance the sample window to include the new experiment
and apply the termination condition h1 on it. This process
continues until a success is found. We count the number
of successive failures before this success and apply the ter-
mination condition h2 on it. The algorithm terminates if
either one of h1 and h2 is satisfied. In general, if a larger
m is chosen, then a more accurate decision has been made,
but more computation time is needed. Note that inside the
sample window, θ is not fixed. Each time a new configura-
tion is found, a new neighborhood is added into B, which
increases θ. This means that the termination conditions
are somewhat conservative, but if α and Pc are close to 1,
we expect this effect to be negligible.

VI. Neighborhood Selection

Up to now, the SNG has been presented in terms of
generic neighborhoods. This section addresses the critical

issue of how to construct neighborhoods from information
provided by a distance computation algorithm. The goal of
selecting a new neighborhood is to have it enclose as much
of Cfree as possible, while keeping its geometry as simple
as possible. Generally it is hard to satisfy both of those
two conditions, which leads to tradeoffs. In this section,
we will focus on the simplest neighborhood shape, an n-
dimensional ball, and discuss how to determine the radius
of a ball in Cfree based on the distance information ob-
tained from collision detection in W. We will also address
using the union of n-dimensional balls and n-dimensional
axis-aligned cylinders, which is often more efficient than
just using balls.

A. Guaranteed Collision-Free Balls

For a given qnew, the task is to select the largest radius,
r, such that the ball

Bnew = {q ∈ Cfree | ‖qnew − q‖ ≤ r},

is a subset of Cfree. The definition of Bnew assumes
that C is an n-dimensional Euclidean space; however,
minor notational modifications can be made to include
other frequently-occurring topologies, such as R2×S1 and
R3×P 3. The following proposition indicates how to select
r based on distance information in W.
Proposition 4: Given a robot, A, for any two configu-

rations q and q′, and any real number d > 0, there exists a
positive number r such that

‖q − q′‖ ≤ r ⇒ max
a∈A
‖a(q)− a(q′)‖ < d, (8)

in which a(q) refers to the position in W of a point a ∈ A,
transformed to configuration q.
Proof: Let f : A × Rn → Rm denote the expression of
the kinematics of a ∈ A, which is assumed to be a smooth
mapping from an n-dimensional configuration space to an
m-dimensional world (see Figure 4). Let τ(a, q, q′, t) be the
following curve that sends f(a, q) to f(a, q′):

τ(a, q, q′, t) = f(a, q + t(q′ − q)),

for t ∈ [0, 1]. Using this definition,

‖∆f‖ ≡ ‖f(a, q)− f(a, q′)‖

= ‖τ(a, q, q′, 0)− τ(a, q, q′, 1)‖

=

∥

∥

∥

∥

∫ 1

0

∂τ(a, q, q′, t)

∂t
dt

∥

∥

∥

∥

≤

∫ 1

0

∥

∥

∥

∥

∂τ(a, q, q′, t)

∂t

∥

∥

∥

∥

dt

≤

∫ 1

0

∥

∥

∥

∥

∂f(a, q + t(q′ − q))

∂q

∥

∥

∥

∥

‖q′ − q‖ dt

in which ∂f(a,q)
∂q

is a m×n matrix that represents the Jaco-
bian of the kinematics in terms of a particular point on the
robot. One can determine a point, af ∈ A that maximizes
∂f(a,q)

∂q
over all a ∈ A. In other words, af moves most
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Fig. 4. The effect on distance of the kinematic mapping from an
n-dimensional configuration space to an m-dimensional world.

rapidly as the configuration varies along the path from q
to q′. Let

D = max
t∈[0,1]

∥

∥

∥

∥

∂f(af (t), q + t(q′ − q))

∂q

∥

∥

∥

∥

.

We will use af to denote the af (t) that achieves the max-

imum above. Note that ‖ ∂f
∂q

(a, q)‖ is uniformly upper
bounded by D over A× C:

∥

∥

∥

∥

∂f(a, q)

∂q

∥

∥

∥

∥

≤ D ∀a ∈ A, ∀q ∈ C.

Thus, for any a ∈ A,

‖f(a, q′)− f(a, q)‖ ≤ D ‖q′ − q‖,

which leads directly to (8) by choosing r = d
D
.

Proposition 4 implies that, if Line 5 of the algorithm in
Figure 3 returns d, a ball,

Bv = {q ∈ C | ‖qnew − q‖ ≤ r},

can be constructed with assurance that Bv ⊂ Cfree, and
r = d/D. Since the radius is inversely proportional to D,
the maximum Jacobian magnitude, it appears desirable to
have D small. We next consider nonstandard kinematics
formulations that attempt to minimize the adverse effects
of D.

B. Benefits of Nonstandard Kinematics Parameterizations

The size of the collision free ball depends greatly on
the particular parameterization of the kinematics. To un-
derstand the issue, suppose af is far from the origin. In
this case, small rotations induce large displacements of af .

Even if the robot is far from obstacles, a small ball will have
to be used because a small amount of change in rotation
could cause collision. One could use an ellipsoid instead of
a ball to solve the problem, but then the SNG could have to
incorporate ellipsoids of varying eccentricities, which would
be more expensive in other parts of the algorithm.

Luckily, there is a way out of this problem by carefully
formulating the kinematics. It turns out that there exist
nonstandard parameterizations that lead to improved per-
formance. We present a general method for reformulating
kinematic equations to improve the ball size. The method
is critical to the success of the SNG, although other meth-
ods may be possible.

We consider expressions for arc length of the path tra-
versed by a point, a ∈ A, in the world, W, as the configu-
ration is changed from q to some q′. In general, differential
arc length in W, based on differential changes in configu-
ration, is specified by the metric tensor,

ds2 =

n
∑

i=1

n
∑

j=1

gij dqi dqj ,

in which

gij =

m
∑

k=1

∂fk
∂qi

∂fk
∂qj

.

In the expressions above, the qi is the ith component of q
(which corresponds to an abuse of notation with respect
to other subscripts applied to q). The total arc length
is given by

∫

ds, which can be evaluated by a suitably-
parameterized path integral. Consider a pair, q, q′, of
configurations such that ‖q − q′‖ = d, for some positive
constant, d. Consider using a linear interpolation function,
τ , that connects q to q′, as defined in Proposition 4.

Suppose that the gij are constant, and that M denotes
an n × n symmetric positive definite matrix of constant
metric tensor components. In this case, the arc length for
the path τ is given by the quadratic form (q−q′)TM(q−q′).
This yields the following bound

‖f(a, q′)− f(a, q)‖2 ≤ (q′ − q)TM(q′ − q) = d2. (9)

The left side above indicates the amount of displacement
in W of a, which is certainly bounded by the total arc
length of the path traversed by a. The right side represents
the equation of an ellipsoid whose eccentricity is given by
differences between eigenvalues of M .

Suppose now that d is the value given by the distance
computation algorithm at some particular q. In trying to
place a ball around q, we would like any configuration,
q′, of distance d from q to be collision-free. This will be
assured if (9) is satisfied. Since we are only allowed to
use spheres, instead of ellipsoids, we are forced to use the
largest ball contained in the ellipsoid. This means that the
largest eigenvalue of M will dominate. To fix this problem,
we reparameterize the kinematics so that all eigenvalues of
M are of equal value.

Our approach is based on an assumption that the gij are
constant. This method can also be used when the gij are
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not constant, but poorer performance is obtained. In this
case, we utilize worst-case bounds over all of C to treat the
metric tensor as a constant.

Rigid Robots. To illustrate the approach, consider a 2D
rigid robot with translation and rotation, leading to C =
R2×S1, and af is selected as the point in A that is furthest
from the origin, O (it would have maximum magnitude in
polar coordinates). Suppose rotation is parameterized from
0 to 2π; the effects of rotation would dominate the metric
tensor if the translation coordinates have a large range,
such as 0 to 1000. Let rm be the Euclidean distance from
af to O. If a scaled rotation, q3 = rmθ, is used, then
(9) will represent the equation of a sphere. Although the
fraction of S1 that is covered is the same in either case,
the amount of R2 that is covered is increased substantially.
This subtle relationship between the parameterization and
the size of spheres is quite important to the success of the
SNG, and therefore is discussed in detail in the remainder
of this section for different kinds of robots.

As mentioned above, for 2D rigid robots we use scaled
rotation, q3 = rmθ, instead of standard parameterization
of rotation θ. The following homogeneous transformation
can be used for the kinematics




xnew
ynew
1



 =





cos(q3/rm) − sin(q3/rm) q1

sin(q3/rm) cos(q3/rm) q2

0 0 1









x
y
1



 ,

(10)
in which q1 is x-translation, q2 is y-translation, and q3 is
scaled rotation. Equation 10 provides an easy way to cal-
culate the arc length, if af is fixed and known in advance.
Consider substituting (10) into (9). In this case, M simpli-
fies to the identity matrix, and (9) yields the equation of a
sphere with radius d. Therefore, we have a 3-dimensional
ball Bv ⊂ Cfree such that

Bv = {q′ ∈ Cfree | ‖q
′ − q‖ ≤ d} ,

For a 3D rigid robot with translation and rotation,
C = R3 × S1 × S1 × S1, the same result can be obtained
if roll, pitch, and yaw are used to represent rotation. The
reason for not using quaternions is to keep the metric ten-
sor constant. Once again, scaled rotation is used. Let q1,
q2, and q3 be x, y, and z translations, respectively. Let
q4 = rmγγ, q5 = rmββ, and q6 = rmαα be scaled rotations
corresponding to roll (γ), pitch (β), and yaw (α), respec-
tively. Let rmγ , rmβ , rmα be the maximum radii, if we ro-
tate A around the axis X (roll), Y (pitch), and Z (yaw),
respectively. Thus, a 6-dimensional ball, Bv ⊂ Cfree, is
generated with radius r = d, centered at q.

Articulated Robots. For problems that involve articu-
lated bodies, similar expressions can be derived based on
the distance from the robot to the obstacles in the world.
For example, suppose we have a 2D articulated body which
has configuration space C = R2 ×S1×S1×S1 (see Figure
5). As the configuration varies, af is fixed on the last body
of the chain, as shown in Figure 5. Given q, as θ1 varies, the
furthest distance the af can travel is by following a circle

a f

d
3

O

O

O2

1

θ1

θ2

θ3

a 1

a2

Fig. 5. A 2D articulated chain of bodies with C = R
2×S1×S1×S1.

In this case, af is a fixed point on the last body.

that is centered at O with radius a1+a2+d3. Similarly, as
θ2 varies, the furthest distance af can move is by following
the circle that is centered at O1 with radius a2 + d3. As θ3

varies, the furthest distance af can move is following the
circle that is centered at O2 with radius d3. Thus, if we
use the scaled rotation again, the furthest distance that af
can move is bounded by

5
∑

i=1

(q′i − qi)
2 ≤ ‖f(amax, q

′)− f(amax, q)‖
2 < d2, (11)

in which q1 is x-translation, q2 is y-translation, and q3 =
θ1(a1 +a2 +d3), q4 = θ2(a2 +d3), and q5 = θ3d3 are scaled
rotations. This yields a 5-dimensional ball in Cfree that is
centered at q, and has radius d.

C. Using Unions of Balls and Cylinders

Performance will be much better if cylinders can be used,
where appropriate, in addition to balls. The reason is that
when the robot is far away enough from the obstacles, it
might be able to rotate freely with respect to a fixed axis
without colliding. In such a case, instead of using a ball,
we should place a cylinder along this axis, which will signif-
icantly increase the efficiency of covering Cfree. Thus, each
free variable in q can be left unconstrained. The remaining
variables will be constrained with a sphere equation to ob-
tain solid, axis-aligned cylinders. The cross section of each
cylinder will be a k dimensional ball, if there are n−k free
parameters.

Consider a 2D rigid robot with C = R2 × S1. For a
given q, assume d > rm; in this case, the robot cannot
collide no matter how it is rotated. Thus, we can place a
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d

Fig. 6. Using unions of cylinders and balls in the case of a 2D rigid
robot with C = R

2 × S1.

cylinder centered at q1, q2 with radius d−rm along the axis
q3 = θrm (see Figure 6). We can also place a ball centered
at q with radius d. Therefore, the new neighborhood Bv

has the form
Bv = Bc

v ∪Bb
v ,

in which Bc
v is a cylinder,

Bc
v = {q′ ∈ Cfree | (q

′
1 − q1)

2 + (q′2 − q2)
2 ≤ (d− rm)2},

along the q3 axis, and Bb
v is a ball,

Bb
v = {q′ ∈ Cfree | ‖q

′ − q‖ ≤ d}.

In the case of a 3D rigid robot with C = R3 × S1 ×
S1×S1 (assuming yaw, pitch, and roll are used), a similar
result is obtained. For example, suppose d > rmγ and
d > rmβ . Since d > rmγ , the robot cannot collide while
rotating about the X-axis. Likewise, d > rmβ , the robot
cannot collide while rotating about the Y -axis. Thus, two
cylinders centered at q, can be placed along axes q4 = rmγγ
and q5 = rmββ, with radii d−rmγ and d−rmβ , respectively.
The neighborhood is Bv = BcX

v ∪BcY
v ∪Bb

v, in which BcX
v

and BcY
v are cylinders along X and Y axes respectively,

and Bb
v is a ball. Using unions of cylinders and balls can

significantly reduce the size and construction time of the
SNG. We will present some experimental results that show
the benefit of using unions of cylinders and balls in Section
VIII.

VII. Sampling Enhancement

For many problems, it might be advantageous to apply
nonuniform sampling, especially for problems that involve
narrow corridors in Cfree. In the context of sampling-based
path planning, one interesting approach to alleviate this
difficulty is sampling onto the medial axis [19], [46], [58].
This general idea is particularly well-suited to the SNG be-
cause maximizing distance from obstacles will yield larger
neighborhoods, which ultimately reduces the size of the
SNG.

In this section we briefly present a sampling-based
method that attempts to perturb a new configuration, qnew
from Figure 3, towards the medial axis. The approach is
based on two steps:

(a) (b)

(c) (d)

Fig. 7. The comparison of generating the SNG both with and with-
out sampling enhancement in a 2D point robot example: (a), (c)
show sampling without enhancement with 100 and 300 nodes, re-
spectively; (b), (d) show sampling with randomized perturbations
with 100 and 300 nodes, respectively.

1. The first step is to choose a direction along which qnew
can be adjusted to rapidly increase d, the distance between
the robot and obstacles in W. Rather than performing
a costly optimization, we employ a simple, but effective
approach. Several direction vectors are generated at ran-
dom. In each direction, a new sample is generated at a
fixed distance from qnew. The direction, v, along which the
maximum increase in d occurs is saved. An alternative ap-
proach is to calculate v by using least-squares algorithms.
For example, one can find v by following the gradient of
the distance function d, which in turn can be calculated
by solving linear equations formed by the projection of the
gradient in k selected directions. In our implementation,
however, we used the simpler sampling approach and ob-
tained satisfactory results.
2. The second step iteratively computes improved configu-
rations along the direction of v from qnew. In each iteration
two conditions are checked: the enhanced configuration,
qe, must increase d, and qe must yield a neighborhood that
contains qnew. The second condition is requred to ensure
the convergence of the planner; it is guaranteed that some
amount of new coverage is obtained in each iteration. It
also avoids checking whether qe ∈ B. In each iteration, sev-
eral distances along v from the current qe are attempted
by starting with a large distance and repeatedly halving
until the conditions for progress are satisfied. If the condi-
tions are not met, even for a very small distance, then the
enhancement algorithm is terminated, and qe is returned.
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In combination with the SNG, we only apply the en-
hancement algorithm to the samples that yield distance
values below some threshold. Samples that already yield
large neighborhoods are left alone. Figure 7 illustrates the
advantage of the enhancement algorithm through a simple
2D point robot example. Figures 7.a and 7.c show sam-
pling without enhancement with 100 and 300 nodes, re-
spectively. Figures 7.b and 7.d show corresponding results
with the same number of nodes, but applying enhancement.
Most of the tiny balls in Figures 7.a and 7.c have been en-
larged by using enhancement. The coverage of Cfree has
also been increased significantly. After adding 300 nodes
to the G, the maximum number of random trials to put
a new sample in Cfree \ B was 16 using enhancement, but
only 7 without (more trials fail as the a larger fraction of
the Cfree is covered). Since the random perturbation is
only an approximation to sampling onto the medial axis,
there is no guarantee that every tiny ball will be enlarged.
This fact can be found in Figures 7.b and 7.d; there are
still a few tiny balls remaining. Nevertheless, are observed
substantial performance improvements for problems that
involve narrow corridors; more sample enhancement results
are presented in Section VIII.

VIII. An Implementation with Examples

We have implemented the three phases of computation
described in Section IV: precomputation, building a nav-
igation function, and execution. These were implemented
in Gnu C++ on a 500Mhz PC running Linux. A variety of
experiments have been performed for robots in 2D and 3D
environments with up to six degrees of freedom.

For the first set of examples, no enhancement or nearest
neighbor-based acceleration was performed. Figure 1 shows
the balls of the SNG for a point robot in a 2D environment.
Figure 8.a shows the SNG edges as line segments between
ball centers. The SNG construction required 23s, and the
algorithm terminated after 500 successive failures (termina-
tion condition h2 is used and m = 500) to place a new ball.
The SNG contained 535 nodes, 525 of which are in a single
connected component. There were 1854 edges, resulting in
an average of only 3.46 edges per vertex. We have observed
that this number remains low, even for higher-dimensional
problems. This is an important feature for maintaining
efficiency because of the graph search operations that are
needed to build navigation functions. Figures 8.b and 8.c
show level sets of two different navigation functions that
were quickly computed for two different goals (each in less
than 10ms). The first goal is in the largest ball, and the
second goal is in the upper right corner. Each ball guides
the robot into another ball, which is one step closer to the
goal. Using this representation, the particular path taken
by the robot during execution is not critical. Figure 8.d
shows another result for a 2D point robot. In this case, the
robot travels into a narrow corridor, and the SNG contains
a single connected component.

For higher-dimensional configuration spaces, we only
show robot trajectories, even though much more informa-
tion is contained in the SNG. Figure 9 shows a complicated

(a) (b)

(c) (d)

Fig. 8. (a) The SNG for a 2D point robot (b), (c) two navigation
functions computed from a single SNG; (d) another example for
a 2D point robot.

Fig. 9. A path constructed from a 3D SNG, for a rigid robot.
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Fig. 10. A path for an articulated robot, constructed from a 5D
SNG.

path followed by the robot for an SNG that was computed
for a 2D rigid robot that can rotate and translate in a 2D
environment. Figure 10 shows paths that were obtained
by constructing an SNG in a 5D configuration space for an
articulated robot that consists of three free-floating bod-
ies, joined by revolute joints. Figure 11 shows paths that
were obtained by following the 6D navigation function that
was computed for a 3D L-shape robot that can rotate and
translate in a 3D environment. Figure 12 shows a path
that moves a long thin feather into a coffee mug, obtained
from a navigation function on a 6D SNG. The computa-
tion times of constructing SNGs for the examples above
are listed in Figure 13.

As expected, smaller α or Pc values result in faster SNG
construction time, as shown in Figure 14, in which termi-
nation condition h2 is used. Observe that the size of the
SNG and the construction time increase significantly if α
or Pc increases. Larger α and Pc imply higher confidence
that a larger percentage of Cfree has been covered, which
represents the tradeoff between the requested quality of
coverage and the construction time. In other experiments
(not shown here), we observed slightly better performance
by using both h1 and h2 together.

As discussed in Section VI, unions of n-dimensional
cylinders and n-dimensional balls significantly improves ef-
ficiency. Figure 15 compares the number of neighborhoods
needed to achieve the same coverage of Cfree. Compared
to using only balls, up to three times improvement is ob-
served.

The SNG construction is slower when dealing with nar-
row passages, as mentioned in Section VII. By applying the
enhancement algorithm from Section VII, we obtain fewer
nodes in the SNG and lower computation times. Figure

Fig. 11. A path constructed from a 6D SNG for a 3D L-shape robot
in 3D environment.

Fig. 12. A path constructed from a 6D SNG: placing a feather into
a cup.

16 compares performance with and without sampling en-
hancement for two examples. Note that the purpose of
sampling enhancement is to improve the sampling quality
in narrow corridors, not for samples in uncluttered regions.
Figure 11 involves a narrow corridor, and Figure 12 is rel-
atively easy. This is why more performance improvement
is observed for the problem in Figure 11, as opposed to the
problem in Figure 12.

One advantage of the SNG approach is it enables real-
time control of the robot without being forced to track
a preplanned path. For the simple system in (1), Figure
17 shows the average running time to compute the mo-
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α/Pc # of # of # of Construction
Fails Nodes Edges Time

9 .95/.99 100 20000 78676 87.0s
10 .90/.65 10 12000 74432 25.0s
11 .90/.88 20 83922 1792958 168.8s
12 .90/.99 40 6059 335630 13.2s

Fig. 13. The SNG construction time for various examples. Nearest
neighbor-based accelerations were performed, in which 30 neigh-
bors per iteration were checked. No sample enhancement was
performed.

α/Pc # of # of Construction
Fails Nodes Time

.90/.65 10 247 0.61s

.90/.88 20 6901 21.73s

.90/.99 40 49074 193.69s

Fig. 14. The comparision of using different α and Pc. The experiment
is run in a 6D SNG, shown as Figure 12, by using termination
condition h2.

tion command at each step on a Pentium III 500 Mhz PC
running Linux. Several different values for ∆t are shown,
which are proportional to the amount of distance traveled
by the robot in each iteration. If the robot travels a smaller
distance, then the highest-priority ball is more likely to re-
main unchanged, resulting in less computation time. We
found that over a very large range of ∆t values, the exe-
cution times remain similar. For 6D configuration spaces,
the execution algorithm uses the SNG to compute the next
motion command for the robot in several microseconds on
a slow PC. Thus, the SNG can yield motion commands at
a rate much faster than typical feedback control rates. It is
also orders of magnitude faster than what can be achieved
by using existing path planning algorithms to replan paths
from new configurations.

IX. Conclusions

We have introduced an algorithmic framework for effi-
ciently computing and executing navigation functions on
high-dimensional configuration spaces. There are three
phases to the computation: 1) precomputation, in which
the SNG is constructed for a given environment, 2) the
computation of a navigation function for a given goal, and

α/Pc Balls Unions of Balls Improvement
Only and Cylinders factor

11 .90/.88 259807/619.3s 83922/168.8s 3.10/3.67
12 .90/.99 20349/58.9s 6059/13.18s 3.36/4.47

Fig. 15. Improvements are obtained by using unions of cylinders
and balls, as opposed to only balls. The left and right sides of
“/” list the number of SNG nodes and total construction time,
respectively.

α/Pc No With Improvement
Enhancement Enhancement factor

11 .90/.88 83922/168.8s 11073/10.9s 7.56/15.5
12 .90/.99 6059/13.2s 4952/11.1s 1.22/1.19

Fig. 16. Sample enhancement yields significant improvement. The
left and right sides of “/” list the number of SNG nodes and the
construction time, resectively.

∆t 2D Problem: Fig. 8 6D Problem: Fig. 12
0.001s 1.389µs 2.70µs
0.008s 1.383µs 2.86µs
0.064s 1.380µs 3.98µs
0.128s 1.389µs 5.15µs

Fig. 17. The average running time to compute the motion command
using the navigation function stored in the SNG.

3) the execution of a feedback motion strategy by using
the navigation function. Based on our implementation, we
conclude that the method is practical for problems of up to
six degrees of freedom. On a standard PC, the SNG can be
constructed in seconds, and feedback motion strategies can
be executed with a response time of several microseconds.

Several topics remain for further research. It would be
interesting to attempt more-challenging problems, either
with more degrees of freedom or more environment com-
plexity. Our method is expected to suffer, along with
sampling-based path planning methods, from the narrow
corridor problem [20]. Although our algorithm converges in
volume to a covering of Cfree, it does not indicate the prob-
ability that B will capture the topology of Cfree. Although
the enhancement algorithm helps to improve the sampling
quality, it would be desirable to have better sampling tech-
niques. It might be feasible to develop an SNG construction
algorithm that can both add and delete neighborhoods. As
better neighborhoods are discovered, poorer ones can be
deleted. Finally, deterministic sample sequences should be
carefully considered and analyzed in this context.
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