
An Improved Random Neighborhood Graph Approach

Libo Yang Steven M. LaValle

Dept. of Computer Science Dept. of Computer Science

Iowa State University University of Illinois

Ames, IA 50011 USA Urbana, IL 61801 USA

lyang@cs.iastate.edu lavalle@cs.uiuc.edu

Abstract

As a general framework to determine a collision-free
feedback motion strategies, the Random Neighborhood
Graph (RNG) approach [19] defines a global navigation
function over an approximate representation of the free
configuration. In this paper, we improve the RNG ap-
proach in several aspects. We present an ANN-accelerated
RNG construction algorithm to achieve near logarithmic
running time in each iteration of the RNG expansion.
Two probabilistic termination conditions of the RNG con-
struction algorithm are presented and analyzed. To help
overcome the difficulty of narrow corridors, we also in-
troduce a randomized perturbation algorithm to enhance
the sampling quality. Our implementation illustrates a
significant performance improvement.

1 Introduction

Determining a collision-free feedback motion strategy
is one of the greatest challenges in the design of many
robotics systems. Inspired by both the success of random-
ized path planning techniques [1, 2, 5, 7, 8, 11, 17] and
previous work on feedback motion strategies (such as fun-
nels [4, 13], deployments [4, 12], artificial potential fields
[9, 10], and navigation functions [16]), we have proposed
a randomized framework for generating feedback motion
strategies for robots with high degrees of freedom, called
the RNG approach, in [19]. The RNG approach can be
considered as a method to compute a deployment in com-
plicated configuration spaces. The philosophy of the RNG
is similar in some ways to the PRM. We want to capture
the topology of the free space in a data structure that
can be used for efficient multiple queries. However, the
RNG is particularly designed for representing navigation
functions.

In previous work [19], we divide the design of a feed-
back motion strategy into two stages: constructing an
approximate representation of Cfree, and constructing a
navigation function over this representation. The first
stage is performed only once, while the second stage may
be iterated many times for a variety of changing goals.
The RNG captures topological information of the free
configuration space with overlapping neighborhoods, such
as n-dimensional balls or n-dimensional cylinders, on each
of which an collision-free partial potential function is de-
fined. A global navigation function can be defined over

most of Cfree by combining all of the partial potential
functions. The RNG construction algorithm terminates
if a probabilistic termination condition is satisfied.

In this paper, we improve the RNG approach in several
aspects. We present an efficient point location and neigh-
borhood intersection algorithm based on ANN (Approx-
imate Nearest Neighbor Searching) [15] to accelerate the
RNG construction. A detailed analysis of the termina-
tion conditions of the RNG construction algorithm is pre-
sented. A sampling enhancement technique, named ran-
domized perturbation, is introduced and implemented. It
increases the sizes of neighborhoods, which reduces the
complexity of the RNG.

2 Problem Formulation

Assume that a robot moves in a bounded 2D or 3D
world, W ⊂ RN , such that N = 2 or N = 3. An
n-dimensional configuration vector, q, captures position,
orientation, joint angles, and/or other information for the
robot. Let C be the configuration space. Let A(q) denote
the set of points in W that are occupied by the robot
when it is in configuration q. Let O ⊂ W denote a static
obstacle region in the world. Let Cfree denote the set of
configurations, q, such that A(q) ∩ O = ∅.

The task is to find a motion strategy that uses feedback
and guides the robot to a goal configuration from any
initial configuration while avoiding collisions. For a given
goal, qgoal, this can be accomplished by defining a real-
valued navigation function, U : Cfree → R that has a
single stable local minimum, which is at qgoal. The robot
is guided to the goal by following directions given by the
negative gradient of U . If qgoal is changed, U can be
quickly recomputed to guide the robot to the new qgoal.

3 The RNG Approach

Assume Cfree is bounded. Let µ(X) denote the mea-
sure (or n-dimensional volume) of a subset of Cfree (ob-
viously the measure is sensitive to the parameterization
of the configuration space). For a given α ∈ (0, 1), and
a probability, Pc, the first phase consists of building a
data structure that fills Cfree with a set B ⊂ Cfree, such
that µ(B)/µ(Cfree) ≥ α with probability Pc. As goals
are changed, it must be possible to efficiently recompute
a new navigation function. If the system is small-time
controllable, a trajectory, not only for basic (holonomic)

path planning problems, but also for problems involving
differential constraints, can be found by using the navi-
gation function.

Definition 1 An RNG is an approximate topological repre-

sentation of Cfree, defined as:

• an undirected graph, G = (V, E), in which V is the set of

vertices and E is the set of edges.

• a set of neighborhoods N . Let B be the union of all neigh-

borhoods in N ,

B =
⋃

B∈N

B .

• each vertex, v ∈ V , represents an n-dimensional neigh-

borhood, Bv ∈ N , which lies entirely in Cfree.

• an edge, e ∈ E, exists for each pair of vertices, vi and vj ,

if and only if their neighborhoods intersect, Bi ∩ Bj 6= ∅.

Obviously, B is the subset of Cfree that is occupied by
neighborhoods. B gives an approximate representation
of Cfree. The following lemma shows that under certain
conditions, B converges to Cfree as the number of vertices
increases.

Lemma 1 Assume Cfree and Bv are both open sets in an n-

dimensional Euclidean space, and let µ(X) denote the measure

of a subset of Cfree. Let |V | denote the number of vertices in

V . If the center of Bv is chosen uniformly and randomly from

Cfree, then

lim
|V |→∞

µ(Cfree \ B) = 0 .

Proof: Since unions of open sets are open sets, there
must exist a sequence of Bv such that Cfree can be rep-
resented as the union of all Bv. We want to show that
uniformly and randomly choosing the center of Bv from
Cfree will yield such a sequence. By contradiction, assume
B does not converge to Cfree as |V | increases. Then, there
must exist a open subset of Cfree, T ⊂ Cfree, that con-
tains no Bv. The probability of Bv falling into T is 0.
Thus, the probability distribution of Bv over Cfree is not
uniform. This contradicts the lemma’s condition that the
center of Bv is chosen from Cfree randomly and uniformly.
Therefore, as the number of vertices in G increases, the
union of all neighborhoods, B, will converge to Cfree in
measure.

4 An ANN Accelerated RNG Algorithm

We grow the RNG iteratively by adding a new node
chosen randomly and uniformly in Cfree. To make sure
the RNG will cover Cfree efficiently, we only keep a new
node if its configuration is outside of B. Figure 1 gives
an outline of the algorithm. For a given α ∈ (0, 1) and
Pc ∈ (0, 1), the algorithm will construct an RNG such
that with probability Pc, µ(B)/µ(Cfree) ≥ α.

Checking whether qnew ∈ B is a nontrivial point loca-
tion problem. A naive method yields O(n) running time,
assuming the number of nodes in the RNG is n. How-
ever, there exist techniques from computational geome-
try can be exploited to efficiently solve the problem. For

GENERATE RNG(α,Pc)
1 G.init(qinit);
2 while (TerminationUnsatisfied(G,α,Pc) do

3 repeat

4 qnew ← RandomConf(G);
5 d ← DistanceComputation(qnew);

6 G
′

← NearestNeighbor(qnew, w);

7 until ((d > 0) and (qnew 6∈ G
′

))
8 r ← ComputeRadius(d);
9 vnew ←G.AddVertex(qnew, r);

10 G.AddEdges(vnew, G
′

);
11 Return G

Figure 1: This algorithm constructs the RNG and determines

automatically when to terminate based on estimated coverage

of Cfree. ANN is used to accelerate the RNG construction.

example, the random geometric separators technique [14]
can provide O(lg n) expected running time to locate a
new configuration and O(n lg n) expected running time
to make edges. In this paper, another approach named
ANN (Approximate Nearest Neighbor Searching) [15] is
used to accelerate the progress of locating a new configu-
ration and making edges.

The idea of using ANN is motivated by the observa-
tion that there are limited number of edges per node in
average (about 30) in the RNG. As the RNG grows, the
number of edges of a new node is usually reduced because
the size of new neighborhood is usually reduced, there-
fore resulting in less connections. Thus, it is reasonable
to narrow the search for point location and neighborhood
intersection into a subset of G without losing topologi-
cal information. Such a subset of G can be defined as w
nearest neighborhoods of qnew in G. The ANN acceler-
ated RNG construction algorithm is an approximation of
the original RNG construction algorithm. Figure 1 shows
the ANN accelerated RNG construction algorithm.

Let G
′

be a subset of G selected by ANN, which con-
tains w (usually w < 30) nearest neighborhoods of qnew.

Line 6 finds G
′

for each qnew. In line 7, we test if
qnew 6∈ G

′

to approximate if qnew 6∈ B. If true, we ex-
pand the RNG. qnew is added as a new vertex of G in line
9. Line 10 makes edges between qnew and G

′

to approxi-
mate the edges between qnew and G. Obviously, there is a
little chance that qnew is actually inside B or some edges
of qnew are missed. However, as we discussed above, the
probability of such errors is small and converges to zero
as the RNG grows. ANN can find w nearest neighbor-
hoods of qnew in near logarithmic time. Therefore, each
iteration of adding a new neighborhood into the RNG can
be performed in near logarithmic time.

5 Termination Condition

One advantage of the RNG approach is it has a prob-
abilistic termination condition, similar to VisPRM [17].
Some randomized path planning algorithms [1, 2, 7, 8]

have to be terminated arbitrarily. Others [3, 11] do not
terminate until a path is found. However, the RNG con-
struction algorithm in Figure 1 can decide to terminate
by itself based on a statistical estimate of the fraction of
Cfree that is covered by the RNG.

The volumes of Cfree and B, denoted by µ(Cfree) and
µ(B), are assumed unknown. Although it is theoretically
possible to incrementally compute µ(B), it is generally
too complicated. A probabilistic termination condition
can be derived based on the number of samples that fall
into B, as opposed to Cfree \B. For a given α and Pc, the
algorithm will terminate when 100α percent of the volume
of Cfree has been covered by the RNG with probability
Pc.

Let Y be a random variable corresponding to a new
configuration in each iteration of the RNG construction
algorithm. The experiment of Y has two possible out-
comes: either the random configuration, qnew ∈ B, which
is a “failure”, or qnew ∈ Cfree \ B, which is a “success”.
Let Y = 0 denote qnew ∈ B, and let Y = 1 denote
qnew ∈ Cfree \ B. Since each new configuration is chosen
uniformly from Cfree, then Y has Bernoulli distribution,
i.e.,

P [Y = 0] = θ and P [Y = 1] = 1 − θ,

in which θ = µ(B)/µ(Cfree). The following lemma shows
that the trials of Y can be used to estimate θ.

Lemma 2 Let Y1, Y2, . . . , Ym represent a sequence of trails of

Y , and they constitute a random sample. Let Ȳ be the sample

mean, then 1 − Ȳ is an unbiased estimator of θ. Moreover,

for given fraction α and T ∈ (0, 1), the probability, Pc, that

1 − Ȳ ≥ T implies θ ≥ α is

Pc = 1 − α
m+1

bm(1−T)c
∑

i=0

(

m

i

) (

1

αi(m − i + 1)
−

1

m + 1

)

.

(1)
We call Pc the confidence level.

Proof: The first part of the lemma that 1 − Ȳ is
an unbiased estimator of θ is obvious from the fact that
Y has the Bernoulli distribution. Now we prove the sec-
ond part of the lemma. First, consider the error of our
hypothesis. There are two kinds of errors: rejection of
the null hypothesis if it is true is called a type I error;
acceptance of the null hypothesis if it is false is called
a type II error. More precisely, 1 − Ȳ < T if θ ≥ α
causes a type I error. 1 − Ȳ ≤ T if θ < α causes a
type II error. Let PI and PII represent the probability
that a type I error and a type II error occurs, respec-
tively. Then, we have PI = P

[

1 − Ȳ < T ; θ ≥ α
]

and

PII = P
[

1 − Ȳ ≥ T ; θ < α
]

. Note that, Pc = 1 − PII .
Let y1, y2, . . . , ym represent the outcomes of a sequence

of experiments of Y . Let X be a random variable that
denotes the number of trials of Y at which the k successes
occur. X has a binomial distribution. Then, PII can be
written as:

PII = P
[

(1 − Ȳ) ≥ T ; θ < α
]

= α
m+1

bm(1−T)c
∑

i=0

(

m

i

) (

1

αi(m − i + 1)
−

1

m + 1

)

.

Therefore, we have,

Pc = 1 − α
m+1

bm(1−T)c
∑

i=0

(

m

i

) (

1

αi(m − i + 1)
−

1

m + 1

)

.

Thus, we are done.
Equation (1) implies that Pc increases as m increases.

For given fraction α and Pc, Lemma 2 provides a method
to estimate whether the fraction of B over Cfree is at least
α with confidence level at least Pc. However, it is not
the only method to do so. The following lemma presents
another way to estimate θ.

Lemma 3 Let Y1, Y2, . . . , Ym represent a sequence of trails of

Y , and they constitute a random sample. Assume the first

success occurs at Ym. Then, 1− Ȳ is an unbiased estimator of

θ. Moreover, for given fraction α and M > 0, the probability,

Pc, that m ≥ M implies θ ≥ α is

Pc = 1 −
αM

M
. (2)

Both Lemma 2 and Lemma 3 provide a method to
estimate θ, based on the different statistical hypothesises.
Two termination conditions can be derived from them
respectively:

• h1: terminate based on m trials of Y , at which k
success have been counted.

• h2: terminate based on m successive failures followed
by the first success.

The following proposition shows how h1 and h2 help to
make the termination decision.

Proposition 1 For given fraction α and Pc, the probability

of the fraction θ ≥ α is at least Pc, i.e.,

P [θ ≥ α] ≥ Pc,

if the termination condition satisfies either one of the follow-

ing:

• h1:

Pc ≥ 1 − α
m+1

k
∑

i=0

(

m

i

) (

1

αi(m − i + 1)
−

1

m + 1

)

(3)

• h2:

m ≥
ln(1 − Pc)

ln α
− 1 (4)

Although both h1 and h2 are feasible termination con-
ditions in practice, they have different performance. The
following proposition shows for the same Ȳ , h1 has better
or equal confidence level than h2.

Proposition 2 For the same Ȳ , the termination condition

h1 has higher confidence level than h2.

l

lr

d
q
e

q
new

Cfree

CobsCobs

Figure 2: Enhance qnew by randomized perturbations.

According to Proposition 2, it seems h1 is always better
than h2. However, to achieve the same Ȳ , h1 needs more
samples than h2. This yields more computation time. A
better strategy is to terminate the algorithm if either h1

is satisfied or h2 is satisfied. During execution, we open a
sample window with a fixed window size m in the sample
process. Inside the window, k successes are observed. In
each iteration of adding a new configuration, we advance
the sample window to include the new experiment and
apply the termination condition h1 on it. This process
continues until a success is found. We count the number
of successive failures before this success, and apply the
termination condition h2 on it. The algorithm terminates
if either one of h1 and h2 is satisfied. In general, if a larger
m is chosen, then a more accurate decision has been made,
but more computation time is needed. Notice, inside the
sample window, θ is not fixed in practice. Once a new
configuration is found, a new neighborhood is added into
B, which increases θ. However, if the α and Pc are close
to 1, such an increase is negligible and is ignored.

6 Sampling Enhancement

Sometimes, choosing a new configuration uniformly
and randomly from Cfree is not enough, especially when
dealing with narrow corridors. In Figure 2, if qnew is close
to the obstacles, the distance d is small, resulting a small
neighborhood and less efficiency. The volume of a new
neighborhood is determined based on distance computa-
tion information. A larger d implies a larger neighbor-
hood. The goal is to find a sampling scheme to maximize
d. One such sampling scheme is sampling onto the medial
axis [6, 18]. However, it involves finding the closest point
of the sampled node in Cobs, which is expensive.

In this paper, we present a new approach based on
randomized perturbation. The randomized perturbation
algorithm has two steps: selecting the right direction and
optimizing in this direction. The idea is similar to retrac-
tion [18]; from a given qnew, randomly choose several di-
rections and pick up the one that has most significant gra-
dient in terms of d, then optimize qnew in this direction.
The randomized perturbation algorithm can be treated
as an approximation of sampling onto the medial axis.

RANDOM PERTURB(qnew)
1 qe ← qnew, d ← DistanceComputation(qnew);
2 if d < dtiny then

3 Grad ← 0;
4 for i ← 0 to k do

5 ~li ← RandomDirection(qnew);

6 if Gradient(~li) > Grad then

7 Grad ← Gradient(~li), ~l ← ~li;
8 Terminate ← True;
9 while (Terminate) do

10 qt ← Enhancement(~l, qnew, qe);
11 dt ← DistanceComputation(qt);
12 if dt > d and ‖qnew − qt‖ < dt then

13 qe ← qt, d ← dt, Terminate ← False;
14 Return qe.

Figure 3: The randomized perturbation algorithm.

Figure 3 shows the randomized perturbation algorithm.

Lines 3-7 find the most significant direction, ~l, along
which d has the most significant increase, among k ran-
domly generated directions. Usually, using a larger k will

result a better ~l. As k increases, ~l converges to the optimal
value. However, a larger k also means more computation
time for collision checking. In practice, it is sufficient to
choose k between 5 and 10.

Lines 8-13 optimize qnew following ~l. The enhancement
procedure terminates and returns an enhanced configura-
tion, qe, until d no longer increases or the neighborhood
centered at qe no longer contains qnew. The latter guaran-
tees the enhanced neighborhood covers the most of space
that is covered by the original neighborhood. Line 10
finds a better configuration, qt, during each iteration. qt

is choosing in the following way: we start with a qt that is

far away from qnew in the direction ~l; if it does not satisfy
the termination conditions, the next candidate is the one
at the middle of qnew and qt. Such an optimization proce-
dure is very efficient in practice because only logarithmic
time is needed to obtain the qe.

To avoid too many edges that may potentially be gen-
erated, we limit the randomized perturbations algorithm
to the sample that has small d. Line 2 corresponds to
such a preselecting procedure. We use dtiny as a thresh-
old to represent the smallest d with which a simple does
not need to be enhanced. dtiny is chosen according to
different applications. A smaller dtiny results a better
sampling strategy but more edges result in G.

The randomized perturbation algorithm can be treated
as an approximation of sampling onto the medial axis.
Sampling onto the medial axis guarantees that the en-
hanced neighborhood includes the entire original neigh-
borhood. It also guarantees that the enhancement follows
the most efficient direction. The randomized perturba-
tion algorithm follows the direction that may not be the
most efficient one. It guarantees that most of the orig-
inal neighborhood has been contained by the enhanced

(a) (b)

(c) (d)

Figure 4: The comparison of randomized perturbation algo-

rithm with no sampling enhancement in a 2D point robot ex-

ample: (a), (c) show sampling without enhancement with 100

and 300 nodes respectively; (b), (d) show sampling with ran-

domized perturbations with 100 and 300 nodes respectively.

neighborhood. However, the randomized perturbation al-
gorithm is much time efficient than sampling onto the
medial axis.

Figure 4 illustrates the advantage of the randomized
perturbation algorithm through a simple 2D point robot
example. Most of the tiny balls have been enlarged by
using randomized perturbation. The coverage of Cfree

has also been increased significantly. After adding 300
nodes to G, the maximum number of trials to put a new
sample is 16 if using randomized perturbation, but only 7
if without enhancement. Since the random perturbation
is an approximation of sampling onto the medial axis, and
has no guarantee that every tiny ball will be enlarged,
there are still a few tiny balls remaining in Figures 4.b
and 4.d.

7 An Implementation with Examples

We have implemented the RNG construction algorithm
in Gnu C++ using the LEDA library on a Pentium III 500
Mhz PC running Linux. A variety of experiments have
been performed for robots in 2D and 3D environments
and up to six degrees of freedom. Figure 5 shows robot
trajectories of some of our examples. The computation
times of constructing those RNGs are listed in Figure 6.

The RNG construction time can be improved in many
different ways. We can observe significant improvement

(a) (b)

(c) (d)

Figure 5: (a) A 3D RNG for a 2D rigid robot; (b) a 5D RNG

for an 2D articulated robot; (c) a 6D RNG for a 3D L-shape

robot; (d) a 6D RNG for a 3D rigid robot.

α/Pc # of # of # of Construction
Fails Nodes Edges Time(s)

5.a .95/.99 100 20000 78676 9747.6/87.0
5.d .90/.65 10 12000 74432 4614.3/25.0
5.c .90/.88 20 83922 1792958 66444.7/168.8
5.d .90/.99 40 6059 335630 13318.0/13.2

Figure 6: The improvement of applying ANN for different

examples. Construction time shows without applying ANN

versus ANN.

in the RNG construction time by applying the ANN al-
gorithm. The computation time can also be improved by
weakening the requested percentage of coverage. Notice
that the termination conditions we used imply different
combinations of the percentage of coverage and the con-
fidence level associated with it. Suppose h1 is used. For
the given α and Pc, we choose the sample window size, m,
and the expected number of successes inside the sample
window, k, based on (3). Once the algorithm is termi-
nated according to m and k, it implies that, not only the
percentage of coverage α is achieved with the confidence
level Pc, but also a percentage of coverage that is higher
than α, is achieved with a confidence level that is less
than Pc. A similar result can be obtained for h2.

The sampling enhancement techniques can improve the
performance of the RNG in narrow corridors. By apply-
ing the randomized perturbation algorithm from Section

6, we expect fewer nodes in the RNG and less computa-
tion times. Figure 7 shows the comparison of applying
randomized perturbation algorithm and sampling with-
out enhancement for several examples. Notice that the
purpose of sampling enhancement is to improve the sam-
pling quality in the narrow corridors, not for the samples
in the open spaces. Figure 5.c involves a narrow corridor,
and Figure 5.d is relatively easy. This is why a significant
performance improvement is observed in Figure 5.c, while
there is not much change in Figure 5.d.

α/Pc # of Nodes # of Nodes Improvement
(a) (b) factor

5.c .90/.88 83922 11073 7.56
5.d .90/.99 6059 4952 1.22

Figure 7: Randomized perturbations yield significant im-

provement. (a) corresponds to no enhancement. (b) corre-

sponds to applying randomized perturbations.

8 Discussion

The RNG approach [19] establishes a general frame-
work for planning feedback motion strategies, which is
expected to have applications to robotics systems that
involve changing environments, moving obstacles, unex-
pected obstacles, sensing uncertainties, and uncertainties
in control. In this paper, we have improved the RNG ap-
proach in several aspects. Although there are other exist-
ing algorithms for efficient point location, and neighbor-
hood intersections, an ANN accelerated RNG construc-
tion algorithm achieves near logarithmic running time in
each iteration of the RNG expansion. We have demon-
strated two different types of termination conditions. By
taking the advantage of both of them, a hybrid termina-
tion condition has been implemented, which terminates
the RNG construction algorithm more accurately and effi-
ciently. The sampling enhancement algorithm, a random
perturbation algorithm, helps improve the performance
of the RNG by yielding larger neighborhoods.

Our implementation and experimental results have
been encouraging. However, although the random per-
turbation algorithm helps to improve the sampling qual-
ity, our method is expected to suffer, along with other
randomized planning methods, from the narrow passage
problem [7]. Randomized path planning techniques, such
as probabilistic roadmaps [8] and rapidly-exploring ran-
dom trees [11] might also be helpful to locate locations
for balls that will improve RNG performance in narrow
passages.

Acknowledgments

This work was funded in part by NSF CAREER Award
IRI-9875304 (LaValle). We thank Ahmad Massoud and
Sunder Sethuraman for their helpful comments and dis-
cussions.

References
[1] N. M. Amato and Y. Wu. A randomized roadmap method

for path and manipulation planning. In IEEE Int. Conf.
Robot. & Autom., pages 113–120, 1996.

[2] J. Barraquand and J.-C. Latombe. Robot motion plan-
ning: A distributed representation approach. Int. J.
Robot. Res., 10(6):628–649, December 1991.

[3] R. Bohlin and L. Kavraki. Path planning using lazy prm.
In IEEE Int. Conf. Robot. & Autom., 2000.

[4] R. R. Burridge, A. A. Rizzi, and D. E. Koditschek. Se-
quential composition of dynamically dexterous robot be-
havious. Int. J. Robot. Res., 18(6):534–555, 1999.

[5] D. Challou, D. Boley, M. Gini, and V. Kumar. A paral-
lel formulation of informed randomized search for robot
motion planning problems. In IEEE Int. Conf. Robot. &
Autom., pages 709–714, 1995.

[6] C. Holleman and L. Kavraki. A framework for using the
workspace medial axis in prm planners. In IEEE Int.
Conf. Robot. & Autom., 2000.

[7] D. Hsu, L. E. Kavraki, J.-C. Latombe, R. Motwani, and
S. Sorkin. On finding narrow passages with probabilistic
roadmap planners. In et al. P. Agarwal, editor, Robotics:
The Algorithmic Perspective, pages 141–154. A.K. Peters,
Wellesley, MA, 1998.

[8] L. E. Kavraki, P. Svestka, J.-C. Latombe, and M. H.
Overmars. Probabilistic roadmaps for path planning
in high-dimensional configuration spaces. IEEE Trans.
Robot. & Autom., 12(4):566–580, June 1996.

[9] O. Khatib. Commande dynamique dans l’espace
opérational des robots manipulateurs en présence
d’obstacles. PhD thesis, Ecole Nationale de la Statistique
et de l’Administration Economique, France, 1980.

[10] D. E. Koditschek. Exact robot navigation by means of
potential functions: Some topological considerations. In
Proc. IEEE Int. Conf. Robot. & Autom., pages 1–6, 1987.

[11] S. M. LaValle and J. J. Kuffner. Randomized kinody-
namic planning. In Proc. IEEE Int’l Conf. on Robotics
and Automation, 1999.

[12] T. Lozano-Pérez, M. T. Mason, and R. H. Taylor. Auto-
matic systhesis of fine-motion strategies for robots. Int.
J. Robot. Res., 3(1):3–24, 1984.

[13] M. T. Mason. The mechanics of manipulation. In Proc.
IEEE Int. Conf. Robot. & Autom., pages 544–548, 1985.

[14] G. L. Miller, S.-H. Teng, W. Thurston, and S. A. Vava-
sis. Separators for sphere-packings and nearest neighbor
graphs. Journal of the ACM, 44(1):1–29, January 1997.

[15] D. Mount and S. Arya. ANN: Library for Ap-
proximate Nearest Neighbor Searching. Available at
http://www.cs.umd.edu/ mount/ANN/, 1998.

[16] E. Rimon and D. E. Koditschek. Exact robot navigation
using artificial potential fields. IEEE Trans. Robot. &
Autom., 8(5):501–518, October 1992.

[17] T. Simeon, J.-P. Laumond, and C. Nissoux. Visibility
based probabilistic roadmaps for motion planning. Ad-
vanced Robotics Journal, 14(6), 2000.

[18] S. A. Wilmarth, N. M. Amato, and P. F. Stiller.
MAPRM: A probabilistic roadmap planner with sam-
pling on the medial axis of the free space. In Proc. of the
1999 IEEE Int. Conf. Robot. & Autom., pages 1024–1031,
1999.

[19] L. Yang and S. M. LaValle. A framework for planning
feedback motion strategies based on a random neighbor-
hood graph. In IEEE Int. Conf. Robot. & Autom., 2000.

