
SUBMITTED TO IEEE TRANSACTIONS ON ROBOTICS 1

Distance-Optimal Navigation in an Unknown
Environment without Sensing Distances

Benjaḿın Tovar, Rafael Murrieta-Cid, and Steven M. LaValle

Abstract— This paper considers what can be accomplished
using a mobile robot that has limited sensing. For navigation
and mapping, the robot has only one sensor, which tracks the
directions of depth discontinuities. There are no coordinates, and
the robot is given a motion primitive that allows it to move
toward discontinuities. The robot is incapable of performing
localization or measuring any distances or angles. Nevertheless,
when dropped into an unknown planar environment, the robot
builds a data structure, called the Gap Navigation Tree, which
enables it to navigate optimally in terms of Euclidean distance
traveled. In a sense, the robot is able to learn the critical
information contained in the classical shortest-path roadmap,
although surprisingly it is unable to extract metric information.
We prove these results for the case of a point robot placed into
a simply connected, piecewise-analytic planar environment. The
case of multiply connected environments is also addressed, in
which it is shown that further sensing assumptions are needed.
Due to the limited sensor given to the robot, globally optimal
navigation is impossible; however, our approach achieves locally
optimal (within a homotopy class) navigation, which is the best
that is theoretically possible under this robot model.

Index Terms— Visibility, navigation, optimality, map building,
minimal sensing, shortest paths, information spaces, sensor-based
planning, bug algorithms.

I. I NTRODUCTION

In the design of many mobile robot systems, the intuition is
often that “more information is better”. This typically leads
to the integration of powerful sensors that provide dense,
accurate measurements of distance information. The goal is
typically to construct a complete geometric map of the robot’s
environment while localizing the robot with respect to its
map [39]. As the number of sensors and the amount of data
increase, there are substantial burdens in terms of cost, power
consumption, reliability, and modeling. Therefore, our work
investigates theminimal information that is needed to solve
some tasks. By establishing that certain tasks can be solved
using simple sensors, it may be possible to avoid costly sensors
and substantial modeling challenges. Perhaps “less information
is better”.

We model the robot as a point moving in an unknown
planar environment. The robot is assumed to have an ab-
stract sensor (in the sense of [14]) that reports the order

Manuscript submitted as a regular paper
B. Tovar and S. M. LaValle are with the Dept. of Computer Science,

University of Illinois, Urbana-Champaign.
R. Murrieta is with the Center for Mathematical Research (CIMAT),

Guanajuato, Mexico.
The corresponding author is B. Tovar. 201 N. Goodwin 3340, Urbana, IL,

61801. email: btovar@uiuc.edu. phone: +1 (217) 244-5972, fax: +1 (217)265-
6591

This work was founded by ONR Grant N000014-02-1-0488 and NSF-
CONACyT Grant 0296126.

(a) (b) (c)

(d) (e) (f)

Fig. 1. All of these environments are indistinguishable to the robot with
limited sensing; however, it can still navigate optimally using the Gap
Navigation Tree shown in (f).

of depth discontinuities of the boundary, from the current
position of the robot. These discontinuities are calledgaps,
and the abstract sensor may be implemented in a number of
ways, including using an omnidirectional camera or a low-
cost laser scanner. To characterize its environment, the robot
builds a dynamic data structure, called theGap Navigation
Tree (GNT), entirely from online sensor measurements. Once
constructed, it encodes paths from the current position of the
robot to any place in the environment. As the robot moves, the
GNT is updated to maintain shortest-path information from
the current position of the robot. These paths are globally
optimal in Euclidean distance traveled if the environment is
simply connected, even though geometric information, such
as lengths, angle measurements and robot orientation, is not
available.

Our approach is based on the careful consideration of
information spaces. To illustrate, consider Figure 1. Using
the sensing and action history available to the robot, the five
environments are indistinguishable, and generate the same
GNT, shown in Figure 1.(f). Their scale and orientation are
also unknown. All such environments fall into an enormous
equivalence class (called a nondeterministic I-state in [25]).
Surprisingly, the robot can perform optimal navigation without
trying to resolve these ambiguities. Thus, the sensing model
is close to the information requirements of the task.

The current paper is derived from previous conference
publications in [40]–[42].

II. PREVIOUS WORK

In our work, the data structure generated by the robot can
be considered as a topological map, as opposed to grid-based



SUBMITTED TO IEEE TRANSACTIONS ON ROBOTICS 2

maps [3], [13], [28] or exact geometric representations [17]. A
topological map usually takes the form of a graph, in which the
vertices represent particular sensor readings and configurations
and the edges represent the controls between two different con-
figurations [36]. Our work differs from previous approaches
in that we are interested in alocal representation, defined for
the current position of the robot, rather than a global one, like
in [5], [6], [8], [10], [38].

Our research considers minimal sensing for mobile robots,
which was also considered inbug algorithms[20], [21], [27],
in which a robot that combines global knowledge with local
information is able to navigate among boundary components
and reach a known goal. The robot navigation capabilities are
simple (movement towards boundary components and wall-
following), no representation of the environment is maintained,
and the global information consists only of the position of the
goal. These characteristics allow the use of bug algorithmsin
robots that have very limited sensing capabilities and unreli-
able motion control. More importantly, the memory required
for the algorithms is constant.

In general, minimal sensing does not allow the full knowl-
edge of the state. In robotics, the problem of driving a system
from an unknown state to a goal state was considered in the
context of manipulation [15]. For example, up to convex hull
symmetry it is possible to manipulate polygonal parts to a final
configuration without any sensor information [16]. Of course,
not all robotics tasks can be solved without sensors, but it
is very interesting, and scientifically important, to determine
the minimum information necessary to complete a given task
[2], [9]. Moreover, one may go a step further and design a
sensor that exactly suits the robotics task. One can think of
an abstract sensorthat gives the “ideal” minimal information
to the robotics system to work correctly, and its physical
implementation using a “subideal” sensor [14].

One such abstract sensor reports the set of points visible
from the current position of the robot. This sensor gives the
visibility region, which formally is defined as the setV (x), in
whichx is the position of the robot, andq ∈ V (x) implies that
the open line segment joiningx and q does not intersect the
environment boundary. As a robot moves, the visibility region
changes, modifying the information about the environment or
its progress towards a goal. The changes in the visibility region
have been extensively studied, from the art-gallery problem
[31], to decompositions of the environment into regions of
similar visibility. In [33], a cell complex decomposition is
presented: thevisibility complex, in which points inside a
cell see the same set of objects in the environment. The
environment can also be decomposed also into equivalence
classes of similar visibility of an object. Elements insidea
class have a similar qualitative view of the object: they seethe
sameaspect. An aspect is defined as the set of views of an
object that share the same combinatorial structure. This leads
to the aspect graph[4], [23]. In [18], a planar environment
is decomposed into cells thatsee the same aspect of the
environment boundary. Such a decomposition is called the
visibility cell decomposition, and each cell is called avisibility
cell.

In the decompositions mentioned before, as the robot moves

inside of a cell, there is no significant change in information.
The robot receives the same combinatorial information from
the sensors. In contrast, as the robot crosses a cell boundary,
the combinatorial structure of the visibility region drastically
changes, and the robot’s information may be modified. Such
sudden changes are calledvisual events[12]. Our paper
focuses on the use of visual events for optimal navigation in
the plane.

Finally, a similar data structure to the GNT was presented
in [1], where the shortest-path tree is updated when a point
crossesconstraint lines. For this approach, complete knowl-
edge of the polygon where the point is moving is assumed,
which corresponds to exact localization and perfect sensor
measurements. The focus of that work was to compute online
changes in the visibility polygon of an observer in motion.

III. ROBOT MODEL

The robot is modeled as a point moving in an unknown
environment, which could be any compact setR ⊂ R

2 for
which the interior ofR is connected, and let the boundary
of R, ∂R, be the image of a piecewise-analytic closed curve.
Note thatR is simply connected, which is an assumption that
will be removed in Section VI.

A. The gap sensor

The robot has only one sensor, called agap sensor, which
is only able to detect and track discontinuities in depth
information. The gap sensor is anabstract sensor[14], which
means that its physical implementation may vary. It can be
imagined as a crude range sensor that gives inaccurate distance
information, but from which a kind of edge detector can
be used to extract the discontinuities in the measurement.
This sensor can be implemented with a laser range finder,
sonars, cameras, or with another ad hoc sensing system. For
example, imagine an inexpensive laser pointer rotating rapidly
horizontally on the robot position, so that a horizontal line is
drawn in the field of view of the robot. An omnidirectional
camera can detect where this linebreaks, thus detecting the
discontinuities in depth information. The robot does not have
any geometric information about the discontinuities, other than
their cyclic ordering with respect to the robot’s local frame of
reference.

Each discontinuity will be referred to as agap [34], [37],
which also corresponds to a region ofR that is not visible to
the robot1. For example, Figure 2 (right) shows the gaps for
the environment shown in Figure 2 (left). It is assumed that
the robot can track and distinguish the gaps at all times and
record any of their combinatorial changes.

Let G(x) = [g1, . . . , gk] denote the sequence of gaps as
they appear in the gap sensor when the robot is atx ∈
R. If x lies in the interior of R, then G(x) is a cyclic
ordering; therefore, due to being cyclic, statements such as
[g1, . . . , gk] = [g2, . . . , gk, g1] can be made. Ifx ∈ ∂R,
then part of the sensor view is obstructed by the boundary,
and a linear ordering of gaps is obtained; however, this extra

1The gaps correspond to the spurious edges defined in [18].



SUBMITTED TO IEEE TRANSACTIONS ON ROBOTICS 3

Fig. 2. The robot’s view of the environment. The position of the robot
is shown with a black disk. On the left, the environment and thevisibility
region of the robot. On the right, angular position of the gaps detected in the
visibility region.

(a) (b)

Fig. 3. Gaps from the environment’s boundary. On (a), the boundary to
the right is smooth and curves below from the right tangent ray. On (b), the
degenerate polygonal case is shown.

information will not be important and is not necessarily known
to the robot. It is important to define which gaps appear if
x ∈ ∂R. A gap will appear to the right (counterclockwise
direction along∂R) of x if either of the two cases shown in
Figure 3 occurs. In Figure 3.a, the boundary to the right is
smooth and curves below from the right tangent ray. Figure
3.b shows a degenerate polygonal case in which the boundary
remains on the right tangent ray and then curves below (either
smoothly, or abruptly at a nonsmooth point). The potential
gap to the left ofx is defined the same way. Note that if the
robot moves across a nonsmooth point on the boundary, the
boundary gaps can jump discontinuously. We assume these
are nevertheless tracked because all of the other gaps moved
continuously, and the proper correspondence can be made.

For anyx ∈ R, eachgi ∈ G(x) is merely a unique label,
and does not contain information about lengths or angles.
Most often, as the robot moves a small amount, the gap
sequence does not change. Occasionally, fundamental changes
occur, such as gaps may appearing, disappearing, merging, or
splitting; these cases will be covered in detail shortly. Suppose
that the robot moves along any path,τ : [0, 1] → R. If there
is some gapg for which g ∈ G(τ(s)) for all s ∈ [0, 1], then
it is assumed that the robot maintains its unique label. Thus,
the robot is not confused about the identity of any gaps that
remain in the gap sequence as it moves. However, if some
gap disappears and then reappears later, we do not require the
robot to recall of the old label. Thus, there is no registration
problem.

Recall that the robot has no previous knowledge ofR and
it is not capable of building an exact map of the environment.

Fig. 4. The chase motion primitive. When the boundary is not smooth,
the robot may not necessarily transverse an interval of∂R when executing a
chase motion primitive.

The robot has no compass, odometers, or other sensors that
might be used to derive distances.

B. Motion primitives

Since the robot does not have access to coordinates, it is
important to define a control model that does not require them.
The robot motions are expressed as a sequence ofmotion
primitives, which are described solely in terms of information
from the sensor. This enables motions to be expressed without
referring to coordinates inR2. For a gapg ∈ G(x), a gap
chasing motion primitive is denoted as chase(g); note that
there is no reference tox because this is unknown to the
robot. In this motion primitive, the robot rotates to align its
heading with the gap and moves forward with unit speed. The
robot uses sensor feedback to continue the motion, which is
guaranteed to be collision free, except for tangential motions
along the boundary. If the robot trajectory would be directed
into the interior of the complement ofR, then the gap would
not have appeared inG(x). Note that chase(g) might cause
the robot to follow the boundary, as shown in Figure 4.

The motion primitive can be considered as an action in
a hierarchical approach. It is therefore important to specify
the conditions under which a motion primitive terminates. Let
τ : [0, tf ] → R denote the trajectory taken by the robot when
executing a motion primitive chase(g). Consider howG(τ(t))
evolves as the robot moves. It should be possible to chase
g only when it is present inG(τ(t)). Therefore, chase(g)
terminates wheng disappears fromG(τ(t)). This termination
is guaranteed by Lemma 2, which is presented in Section IV-
C. All robot motions are based on primitives. Therefore, any
motion strategy for the robot must be a finite sequence of
primitives.

IV. T HE GAP NAVIGATION TREE

Suppose that the robot moves along any path,τ : [0, 1] →
R. Consider the information obtained from the gap sensor.
For everys ∈ [0, 1], a cyclic sequence,G(τ(s)), of gaps is
observed. In this section, we will define a compact representa-
tion of information that is relevant for optimal navigationand
appears inG(τ(s)) for all s ∈ [0, 1].

A. Compressing the sensor history

Suppose that initially, the gaps are labeled with consec-
utive positive integers, starting withg1. For each new gap



SUBMITTED TO IEEE TRANSACTIONS ON ROBOTICS 4

that appears, it is assigned the next unused integer inN to
ensure uniqueness. To consider the problem of maintaining
information, suppose that the robot moves along some path
τ , and initially, G(τ(0)) = [g1, g2, g3]. Now suppose that at
some s′ ∈ (0, 1), gap g2 splits into two new gaps, which
are labeled by convention asg4 and g5. The gap sensor
readsG(τ(s′)) = [g1, g4, g5, g3]. Now suppose that at some
s′′ ∈ (s′, 1), gaps g4 and g5 merge into a single gap.
By convention,g6 is assigned, rather than worrying about
correspondence to the original gap labeledg2. It will be
useful for navigation purposes to remember thatg4 and g5

were merged to obtain gapg6. Perhaps this could be encoded
as G(τ(s′)) = [g1, [g4, g5], g3], in which [g4, g5] is used
as the gap label instead ofg6. This idea could be applied
iteratively to make complicated, nested expressions for the
structure of merged gaps that appear inG(τ(1)). Note that the
cyclic order ofG(τ) is enough to generate the correct label
correspondences when a gap splits. In the previous example,
this means that when gapg6 splits, of the new two gaps that
are detected, the one detected after gapg1 is actually gap
g4. Also note that given a geometric constraint (Lemma 1 in
Section IV-C), the correspondence between gapsg2 andg6 can
be determined, but such information is not currently needed.

Rather than representing merge information syntactically,
it will be convenient to express it as a rooted tree in which
all children are ordered. Suppose once again that a pathτ :
[0, 1] → R is executed. Let theGap Navigation Tree (GNT)
be a rooted tree, defined as follows. Every non-root vertex of
the GNT is a gap that appears inG(τ(s)) for somes ∈ [0, 1].
Every child vertex of the root is a gap inG(τ(1)), and they
are cyclically ordered around the root in the same way that
they appear inG(τ(1)). All remaining vertices (i.e., not the
root and its children) in the GNT are gaps that appeared in
G(τ(s)) for somes < 1, but not appear inG(τ(1)) due to
merging. The children of any non-root vertex,v, are precisely
the gaps that were merged to formv, and are assumed to be
ordered in the same way that they once appeared in the gap
sensor.

When is a GNT as complete as possible for a particular
environment? This question will be addressed in detail shortly;
however, it is convenient to have the definition now. Consider
the leaf vertices of a GNT. If any leaf vertex has the potential
to split, then the GNT is incomplete because it could expand.
Recall that some gaps split when approached using chase(g)
and others simply disappear. Let the gaps that disappear and
their corresponding vertices in the GNT be calledprimitive.
If all leaves of a GNT are primitive, then the GNT is said to
be complete. A geometric interpretation of this will be given
in Section IV-C.

The primary use of the GNT is to define a sequence of
motion commands that guides the robot to a gap that once
was once observed by the gap sensor and is consequently not
a child of the root. Letg be such a gap. It appears in the
GNT because it was involved in one or more gap merges.
The merges can be undone by applying the chase(·) primitive
to every gap in the GNT that is an ancestor ofg. Suppose,
for example, that the path from the root tog is (g1, g2, . . . , g)
(ignoring the root, which is not a gap). The primitive chase(g1)

forcesg1 to split, which enables chase(g2) to be applied. This
process is applied inductively untilg is observed by the gap
sensor, and chase(g) can be applied. Letchase(g) denote
the corresponding sequence of motion primitives. We may
therefore say that any gap in the GNT can bechased, which
means that a sequence of motion primitives is executed until
the gap is eventually chased.

B. Critical events and incremental GNT construction

The GNT can be constructed incrementally as the robot
moves along a pathτ . Initially, the GNT consists of a root
vertex that is connected to one leaf vertex for every gap in
G(τ(0)). Each timet at which a change inG(τ(t)) occurs
corresponds to acritical event. This requires updating the
GNT. There are four different kinds of critical events (see
Figure 5):

1) A new gapg appears:A vertex g is added as a child of
the root, while preserving the cyclic ordering from the
gap sensor.

2) Gapsg1 andg2 merge intog: Verticesg1 andg2 become
children of a new vertex,g, which is added as a child
of the root and preserves the cyclic ordering.

3) A gapg disappears:The vertexg, which must be a leaf,
is removed.

4) Gap g splits into g1 and g2: If g is a leaf vertex, then
g1 andg2 become new vertices; otherwise, they already
exist as children ofg. Both g1 andg2 are connected to
the root, preserving the cyclic ordering.

C. Geometric interpretation of the GNT

Now consider the geometric information that can be inferred
about the environment from the GNT. This will help us to
prove that the GNT enables optimal navigation. We begin the
discussion with the relation between critical events and the
geometry of the environment. Critical events are determined
by generalized inflectionsand generalized bitangentsof ∂R.
Following the presentation of [26], a generalized inflection of
∂R is identified with a connected, open setI ⊂ ∂R if there
exist a lineL that partitionsI into three connected setsI1, I2

and I3 such that: 1)I1 is an open set that does not intersect
L, 2) I2 is a closed subset ofL, and 3)I3 is an open set that
does not intersectL, and that lies on the opposite side ofL

from I1. If I2 is a single point, then the right derivative of
∂R (taken in the limit of open intervals inI3) evaluated at
I2 corresponds to the slope ofL. Likewise, a pair of disjoint
connected open setsI andJ identify a generalized bitangent if
at least one point ofI is visible to one point ofJ , and if there
is a lineL that partitionsI andJ into setsI1, I2, andI3, and
J1, J2, andJ3 respectively, such that: 1)I1 (J1) is an open
set that does not intersectL, 2) I2 (J2) is a closed subset of
L, and 3)I3 (J3) is an open set that does not intersectL, and
that lies on the same side ofL from I1 (J1). From now on,
when we writeinflection or bitangent, we meangeneralized
inflectionandgeneralized bitangent, respectively.

Given an inflection, identified by lineL and setsI1, I2 and
I3, as defined before, aninflection ray is found by extending
a ray insideR with the same slope asL, from a point inI2



SUBMITTED TO IEEE TRANSACTIONS ON ROBOTICS 5

(a) Appearance (b) Merge

(c) Disappearance (d) Split

Fig. 5. Updates in the Gap Navigation Tree. (a) Chasing gapg1, gap g3 appears, and the respective vertex is added to the root. (b) When gapg3 is
chased, gapsg1 andg2 merge. They become children of a new gapg4, and the tree is updated accordingly. (c) Gapg3 disappears when chased. The vertex
corresponding tog3 is removed from the tree. (d) Gapg4 splits into gapsg1 andg2. The two cases for the split are presented here: Ifg4 was known to have
descendants, these become children of the root; otherwise two new vertices are created.

until a point of ∂R is hit. Given a bitangent, identified by
the setsI1, I2, I3, J1, J2, J3, and by the lineL, a bitangent
line segmentis any of the open segments with endpoints in
I2 andJ2 completely contained inR. For each bitangent, two
bitangent complementsare defined. These correspond to the
two rays with the same slope ofL, starting at a point inI2 and
J2, extending until∂R is hit, and not containing any point of
the bitangent line segments of the corresponding bitangent.

Inflection rays and bitangent complements decomposeR

into cells of similar visibility, called aspect cells (also called
visibility cells). We use a common general position assumption
that no line is tangent to more than two points of the
boundary, since suchtritangentswould not survive a small
deformation of the environment [22]. Without this general
position assumption, the simple capabilities given to the gap
detector make it impossible to distinguish some critical events
that occur simultaneously. For example, a gap splitting into
three gaps from a gap splitting into two gaps occurring very
close and simultaneously to a gap appearance. Appearances
and disappearances of gaps are related to inflections of∂R.

As illustrated in Figure 6.(a), appearances and disappearances
of gaps occur when the robot crosses inflection rays. The
other critical events, merges and splits of gaps, are related to
bitangent line segments of∂R. Merges and splits occur when
the robot crosses bitangent complements (Figure 6.(b)).

Together with the previous discussion, the following lemma
is presented:

Lemma 1:Let g1 and g2 be two gaps that merge into gap
g3. When g3 splits, g1 and g2 appear at the same angular
position in R at the time of the merge, independently from
the robot’s motion.

Proof: Merges and splits occur when the pursuer crosses
a bitangent complement of∂R. Thusg1, g2, andg3 are aligned
with the bitangent at the split or the merge. This is independent
of where the bitangent complement is crossed.

The previous lemma associates two critical events to a
particular bitangent complement: a split and a merge. This is
the basis for the correct encoding of critical events in the GNT.
Even though the robot may not be able to recognize that a gap
that appears was detected previously, Lemma 1 implies that



SUBMITTED TO IEEE TRANSACTIONS ON ROBOTICS 6

(a) (b)

Fig. 6. Critical events. (a) Appearance and disappearance of gaps occur
when the robot crosses inflection rays. (b) Splits and merge occur by crossing
bitangent complements.

when a gap splits, it can only split into gaps that merged be-
fore. Lemma 1 also provides the correct label correspondences
after a gap split. The identification of the gaps is done purely
by the order of the gaps before the corresponding merge, and
not by the “features” of the environment that produced them.

D. The gap-based roadmap

Consider a path segmentτ : [0, 1] → R followed by the
robot with the motion primitive chase(g). Assume now that
the chase(g) has not been issued, but that the robot is at a
point τ(t), with 0 < t < 1. If chase(g) is issued, then the
robot follows the same pathτ , restricted to[t, 1]. This is
because gap detection depends only on the current position
of the robot. Consider now the paths followed by each of the
possible motion primitives after a critical event. The set of
points ofR visited by all such paths is called thegap-based
roadmap, and it is denoted byS. Once the robot is on a point
of S, chase motion primitives may only reach points insideS.
All of the paths that generate the roadmap have finite length,
which is is a direct consequence from the following theorem:

Lemma 2:Termination of chase(g) is guaranteed for any
g ∈ G(x) and anyx ∈ R, and is caused by only two possible
critical events: disappearance or splitting ofg.

Proof: The heading of the robot is always aligned with
g, which forbids the robot to follow any cycle, or to move
away from g. Consider now Figure 7. As the robot moves
with unit speed towards the gap, the starting point of the gap
slides on∂R, towards the respective inflection ray or bitangent
complement. When the robot reaches∂R, the position of the
robot and the starting point of the gap coincide, and three
cases should be considered: 1) the robot moves away from
the inflection ray or bitangent complement, 2) the robot is
stationary in∂R, 3) the robot moves towards the inflection
ray or bitangent complement. Cases 1 and 2 cannot occur,
since the heading of the robot always points to the gap, and
the robot moves tangentially on∂R with unit speed. Thus, the
remaining case always occurs, and the respective inflectionray
or bitangent complement is eventually crossed. It is clear that
the termination critical event cannot be an appearance, since
the gap is already detected (g ∈ G(x)). The critical event
cannot be a merge either, because the corresponding merging
gap for the bitangent complement pair is not yet visible.

(a) (b)

Fig. 7. Every chase motion primitive terminates, either with a disappearance
or with a split critical event. The black disc represents theposition of the robot
when the chase motion primitive is issued. After reaching∂R, the robot moves
tangentially to∂R, until an inflection ray (a) or a bitangent complement (b)
is crossed.

E. Constructing a complete GNT

Now that we have specified how the GNT is expanded as the
robot follows a fixed path, the next task is to determine what
motion commands should be executed so that the robot follows
a path that builds a complete GNT. Incompleteness of the GNT
is caused by any nonprimitive leaves. Therefore, the GNT is
forced to be complete by iteratively chasing leaves. Each time
that a leaf splits, one of its children can be arbitrarily chosen
and chased. If a leaf disappears, then another nonprimitiveleaf
is selected for chasing. The order in which the nonprimitive
leaves is chased is not important. Eventually, all leaves will
be primitive, in which case the GNT is complete.

As an example of constructing a complete GNT, suppose the
robot is in the environment as shown in Figure 8. In Figure 8.a
we show the boundaries of the aspect cells. The root of the
GNT is shown as a solid black disk. Vertices that are not
known to be primitive are shown as circles, and vertices that
are primitive are squares. The robot begins to build the GNT as
shown in Figure 8.(a). There the robot first executes chase(g1).
When this gap is followed, the robot triggers an appearance
event, and gapg3 is added to the tree (Figure 8.(b)). Later,
gapsg2 and g3 merge, and they become children of a new
vertex, g4 (Figure 8.(c)). Wheng1 disappears (Figure 8.(d)),
g2 is the only remaining nonprimitive gap, and the robot
executeschase(g2), which generates[chase(g4), chase(g2)].
The robot chasesg4 until it splits, and theng2 is chased
(Figure 8.(e)). Finally, wheng2 disappears, all of the leaf
vertices are primitives. (Figure 8.(f)).

Lemma 3:The procedure of iteratively chasing nonprimi-
tive leaves terminates with a resulting complete GNT.

Proof: Consider the pathτ executed during the proce-
dure. The key observation is that any time that a new gap
appears inG(τ(s)), it must be primitive. If the gap is chased,
it cannot split. Therefore, the only gaps that contribute tothe
incompleteness of the GNT are ones that either appeared in
G(τ(0)) or were formed by a sequence of splits of these gaps.
Even though chasing a leaf may reveal new gaps via splitting,
the number of primitive gaps for a given environment is finite
because each corresponds to a inflection. There are finitely
many inflections because∂R is piecewise-analytic. Each time
that the procedure forces a gap to disappear, it is one step
closer to having a complete GNT. Since the number of gaps
is finite, the procedure must terminate with a complete GNT.



SUBMITTED TO IEEE TRANSACTIONS ON ROBOTICS 7

(a) (b)

(c) (d)

(e) (f)

Fig. 8. Building the Gap Navigation Tree. (a) The thin lines show the places
where gap critical events are triggered. The robot chases nonprimitive gaps
from (a) to (f), updating the GNT accordingly, until all of the leaf vertices
are primitive. Squares and circles denote primitive and nonprimitive vertices,
respectively.

Note that even though a GNT is complete, it nevertheless
changes as the robot moves in its environment. This happens
because the tree always expresses how the environment ap-
pears relative to the local frame of the robot. Once a complete
GNT has been constructed, however, it remains complete in
spite of any motions executed by the robot.

V. OPTIMAL NAVIGATION

Given that the GNT is built from critical events, and
these correspond to the boundaries of the aspect cells in
decompositions such as [18], points inside of an aspect cell
have the same GNT. In fact, once the GNT is constructed, it
encodes the same information as if the single-source, shortest-
path problem would be solved from a given aspect cell.

A. Moving along the gap-based roadmap

We now argue the optimality of the paths generated by
chasing sequences of gaps in the GNT. In the following
discussion we prove the optimality (in the Euclidean sense)
using chase motion primitives of paths starting and ending in

S. In Section IV-C we will extend the optimality arguments
to points not inS. For the following discussion, letp, q ∈ S,
and letU = (u1, u2, ..., un), with ui ⊂ ∂R, be the sequence
of maximal connected intervals of∂R that the robot traverses
(in order) in the shortest path fromp to q.

Lemma 4:Let H = (g1, g2, ..., gn) be a sequence of gaps,
in which gi is the gap chased when the robot traverses the
intervalui ∈ U . The path generated by chasing iteratively the
sequenceH is the shortest path betweenp andq.

Proof: It is sufficient to prove that the path between
ui and ui+1 is optimal, since the sequenceU is optimal
by definition. The shortest path between two points in the
Euclidean plane is unique and is a straight line. When the
robot transverses the interior ofR, from ui to ui+1 when
following gi+1, the trajectory is a straight line tangential to
ui+1. Finally, the intervalui+2 is visible until gi+1 has a
critical event; otherwise, this contradicts the order ofU for
the shortest path betweenp andq.

Theorem 1:If R is simply connected and the robot is at a
point in S, then the path encoded in the Gap Navigation Tree
between the root and any pointq ∈ S is globally optimal in
Euclidean distance.

Proof: Let p ∈ S be the current position of the robot.
From the GNT, a sequenceH = (g1, g2, ..., gn, gq) of gaps is
generated such that if chased, the robot reachesq. By following
H, the intervalsU = (u1, u2, ..., un) of the boundary are
transversed by the robot, in that order. LetHo be the sequence
of gaps that generates the shortest path betweenp and q, as
in Lemma 4. Letgd ∈ H, generated from intervalud ∈ U , be
the first gap in whichH and Ho differ. Since critical events
are recorded in the GNT as they become visible, this means
that the intervalud is visible before the rest of the path in
Ho, and it becomes visible whengd splits. The shortest path
between the current position of the robot and the rest of the
path encoded inHo is the one that starts by chasinggd (by
Lemma 4). Therefore,Ho containsgd, and we conclude that
H = Ho.

Note that optimality follows uniquely from gap critical
events, and no distance measurement is ever performed by the
robot. For polygons, some of the intervals defined forU may
degenerate into single points, and the gap-based roadmap cor-
responds to theshortest-path roadmap, also called thereduced
visibility graph [24], [30]. It is important to remember that
optimality is possible when the GNT is used for navigation,
but the construction time of the GNT may not be optimal. In
fact, the distance traveled in the construction may be arbitrarily
bad compared to the one traveled if the map of the environment
was available [32]. If the environments have some restrictions,
though, some bounds can be found for certain explorations,
such as object searching insidegeneralized streets, presented
in [7].

B. Complexity

In our case, the environment is unknown, and it is not
encodedas an input to an algorithm in the usual sense. For this
reason, we analyze the GNT complexity in terms of relevant
environment features. Consider the numbern of inflections



SUBMITTED TO IEEE TRANSACTIONS ON ROBOTICS 8

in the environment. The construction of the GNT cannot take
more thanO(n) gap-chasing motion commands. Since there
are O(n2) bitangents, and all of the visual events may be
triggered while chasing a gap, the tree is updated at most
O(n3) times. Note that this bound corresponds to the naive
algorithm for constructing the visibility graph, in which each
pair of vertices is tested for mutual visibility. The robot cannot
predict a visibility event, given thatR is unknown; thus, it has
to sense each of the events to have all of the information of
the shortest paths. When the GNT is completely constructed,
its number of vertices is maximum when it is a complete
binary tree, with a path to each of the inflections. Thus, it
requiresO(n) space in the worst case. However, the GNT is
not generally a complete binary tree, and it is not necessarily
balanced. A query forchase takes in the worst caseO(n)
time.

C. Traveling anywhere in the environment

Rather than be confined to the subset ofR that corresponds
to the gap-based roadmap,S, we would like to define tasks that
allow the robot to move anywhere inR. It is difficult to even
define such problems without using coordinates. Suppose that
the environment may contain both static, interesting places and
some movable objects. Imagine that some objects are placed
in R, and the robot is required to retrieve them. LetO =
{o1, o2, . . . , om} be a collection ofm point objects, and let
L = {l1, l2, . . . , ln} ⊂ R be a set of staticlandmarks. The
robot could be asked, for example, to deliver objects from
one landmark to another. Note that each landmark is a point
in R. Each object has a current position inR at any given
time; however, the precise position is unknown to the robot.

Assume that each object and landmark is uniquely identifi-
able and may be placed anywhere inR. An objectoi ∈ O is
said to berecognizedwhen the robot is atx ∈ R if and only
if oi ∈ V (x). Recognition of a landmark is defined similarly.
The gap sensor can be enhanced to recognize objects and
landmarks. LetG(x) be a cyclic sequence that may contain
gaps or objects. Ifo ∈ O and o ∈ V (x), thenG(x) contains
o precisely between the appropriate gaps from the robot’s
position. For example, ifo3 lies between gapsg2 andg5, then
the sensor observation might beG(x) = [g1, g2, o3, g5, g7].
Likewise, landmarks may also appear inG(x).

For the task of retrieving objects or moving to landmarks,
the motion primitive, chase, is adapted. A fifth critical event is
included, which corresponds to the appearance of an object or
landmark inG(x). Thus, chase terminates if a disappearance
or split occurs to the gap being chased, or if an object or
landmark appears. We also allow the robot to chase an object
or landmark, yielding chase(o) or chase(l). To enable this
primitive, the object or landmark must be visible from the
robot position.

The algorithm from Section IV for constructing a complete
GNT proceeds in the same way; however, additional informa-
tion is now stored in the tree. The GNT definition is extended
to allow objects and landmarks to appear as vertices. If an
object or landmark disappears behind a gapg (it will appear
very much as a merge), then it is added to the GNT as a child

of g. The robot can return to any previously visible landmarkl

by chasingg until l appears inG(x). We can therefore define
chase(l), which is a sequence of motion primitive that leads
to l. An object o ∈ O can be handled in the same way in
the GNT, resulting inchase(o). Objects are different from
landmarks in that the robot is allowed tocarry an objecto ∈ O

to another part ofR and drop it. As the robot moves away,o

will be incorporated into the GNT in the appropriate way, in
case a request is made to return too.

The next theorem states that once completely constructed,
the extended GNT can be used for navigation from the
current position of the robot to any object or landmark in
the environment.

Theorem 2:The extended GNT encodes a path to any ob-
ject or landmark in the environment from the current position
of the robot.

Proof: There are two cases for paths inside∂R, depend-
ing of whether the object or landmark are visible from the
current position of the robot. If it is visible, then the robot can
travel in a straight line, following the line of sight. Otherwise,
if the object or landmark was visible at some point, it is now
hidden behind some gap, in which case following the sequence
of gaps in the GNT will make it visible. We now prove that
every point ofR was visible at least once to the robot while
constructing the GNT. Assume that there is at least one point,
p, which was never visible. By definition,p is not currently
visible, which means it is behind one of the currently detected
gaps, sayg (p either belongs to the current visibility region
or not). If by chasingg it disappears, thenp will be visible,
which is a contradiction. If it splits, the argument is repeated
recursively. Since all of the gaps are chased until they either
split or disappear, all points ofR are visible to the robot at
least once.

As a corollary to Theorem 1, we extend the path optimality
for points not inS:

Corollary 1: In the extended GNT,chase(l) andchase(o)
lead to distance optimal motions tol or o, between any
possible pair of positions inR.

Proof: The argument is the same as the proof of
Theorem 1. For paths starting inS, we only have to include
the extension of the chase motion primitive for objects and
landmarks. For paths that do not start onS, consider the
sequence of gaps that generate the optimal path, and the
sequence read from the extended GNT. Apply the the argument
presented for Theorem 1 considering the gap for which they
first disagree to be the first gap followed.

VI. M ULTIPLY CONNECTED ENVIRONMENTS

So far we have only considered simply connected environ-
ments. Now we study the problem in whichR is multiply
connected, which is more common in practice. In this case∂R

have several components. It is assumed that each component
of ∂R is bounded and it is the image of a piecewise-analytic
closed curve. The construction and use of the GNT was based
in the motion primitive of chasing gaps until a critical event
occurs. Although this offers a clean and simple feedback
control to the robot, it is not sufficient for multiply connected



SUBMITTED TO IEEE TRANSACTIONS ON ROBOTICS 9

Fig. 9. Encoding objects in the Gap Navigation Tree. When the triangular
object hides behind the gap, we associate such an object withthe gap. The
gap encodes the last time the object was visible (the object ishiddenbehind
the gap).

(a) (b)

Fig. 10. Gaps in a multiply connected environment may not disappear. (a)
The robot will chase any of the two gaps shown, and none of themwill
disappear. (b) Using only the gap sensor, the spiral looks the same as the disc
in (a).

environments. We state this negative result formally in the
following theorem:

Theorem 3:Termination of gap-chasing motion primitives
is not guaranteed in multiply connected environments.

Proof: Refer to Figure 10.(a). The environment does not
have an inflection ray, or a bitangent complement. The robot
will chase one of the gaps, expecting it to split or disappear,
and it will keep going around a boundary component forever.

Furthermore, only using gap sensing, path optimality in
multiply connected environments cannot be achieved:

Theorem 4:Global path optimality is in general not possi-
ble using only gap sensing.

Proof: Consider Figure 11.a. The robot has the choice of
following a path to the left, or the right, to reach a goal. The
path on the left is longer in the number of gaps to chase, but
it is shorter in distance. The only information available isthe
number of gaps to chase, but this is only an indication of how
“cluttered” a region is, and is not related to the distance tobe
traveled. Given that no length is associated to the gaps, both
paths are equivalent, and the robot cannot determine which is
shorter. Furthermore, as shown in Figure 11.b, the path chosen
by the robot may be arbitrarily longer than the shortest path.

Together with these results, note that using only gap sensing
a robot cannot determine whether it is surrounding a convex
boundary component or it is traveling inside of an boundary
component that has a spiral-like shape (compare Figure 10 (a)
and (b)). Even though these negative results may be discourag-
ing from an implementation point of view, they provide a clear
formal distinction regarding minimal information requirements

b

a

(a) (b)

Fig. 11. (a) Global optimal navigation is not guaranteed in multiply connected
environments. Paths with least number of gaps are preferred. The robot will
follow the path on the right, because it offers fewer gaps to chase, although
it is not the shortest path. With only gap information, the robot cannot do
better. (b) A worst case navigation example. Ifb ≫ a, and if the robot
chooses to follow the gap on the right, almost the whole triangle boundary
will be followed to reach the circle.

in simply and multiply connected environments. In simply
connected environments, gap critical events are sufficient; in
multiply connected environments they are not.

From a minimalist perspective, which critical events should
be addedfor multiply connected environments? There are, of
course, many ways in which this question can be answered,
and it depends ultimately on the task the robot has to solve.
In our case, we are interested in a data structure that encodes
at leastone path from the current position of the robot to any
place in the environment. Thus, the data structure is still atree.
When two paths to the same location are detected in the GNT,
the one with the least number of gaps is recorded, and the
other one is eliminated. Although paths are no longer globally
optimal, they are optimal in the homotopy class to which the
path belongs. No algorithm based only on our gap-chasing
model can do better. In [20], a similar problem is considered.
It is solved by changing the direction of navigation if the
robot moves in the direction opposite to the goal. Without
a measurement of direction or distance, this is not possible
under our gap-chasing model2.

A. New assumptions for multiply connected environments

Given Theorem 3, a critical event should be introduced
that guarantees a chasing motion primitive terminates. One
way to do this is to provide the robot with the capability
of recognizing a location it visited before. This can be done
providing the robot withmarkersor pebbles. When the robot
makes contact for the first time with a boundary component
while chasing a gap, a pebble can be dropped. Later, if by
chasing the same gap, the pebble is found, a critical event is
triggered. This indicates that the boundary component has been
surrounded completely once. The robot is provided with a new
motion primitive, surround(b), which commands the robot to
transverse completely the boundary componentb once.

The pebbles, as the gap sensor, are considered in an abstract
sense, with an implementation that can vary. For example, they
may be implemented using computer vision, or with GPS,
as it is done for the bug algorithms [27]. Note that even if
GPS is available, its use is relegated exclusively to the pebble
implementation. The particular implementation of the pebble
is not important, as long as the robot is able to detect that
it has surrounded a boundary component once. Note that the

2In practice, crude distance information could be used to make such
decisions.



SUBMITTED TO IEEE TRANSACTIONS ON ROBOTICS 10

Fig. 12. Start and end of a gap. From the robot’s perspective,the boundary
components can be related to the beginning and end of a depth discontinuity.

pebblecould beimplemented with a localization method, but
localization itself is not required.

The number of pebbles needed depends on the particular
GNT construction algorithm. As we will develop later, the
algorithm proposed surrounds each boundary component, one
by one, recording all the gap critical events. If we further
assume that each of the boundary component is uniquely
identifiable, only one pebble is needed. The somewhat strong
assumption that each boundary component is identifiable is
justified from a minimalist point of view. Such critical events
should be detected to guarantee that the robot has explored the
whole environment. As the size of the boundary components
increases, the implementation of the sensors becomes more
challenging. Nevertheless, such information should be present
to make performance guarantees.

As with objects and landmarks, components of∂R are
associatedwith a gap. Particularly, the start and end of the gap
are associated with the respective boundary components. For
example, in Figure 12, gapg2 begins at boundaryq and ends
at the outer boundary. Gapg3 begins at boundary componentr

and ends at boundary componentq, and gapg4 begins and ends
at boundary componentr. These are referred, respectively, as
the start and end of a gap, and are recorded together with
each gap, updating them accordingly if they change (a gap
end may change without causing a visibility event). Note that
if the boundary is never visible to the robot, there will not be
a gap associated with it. This is the case when the boundary
component cannot be reached in the connected component of
R in which the robot is.

B. Constructing the GNT for multiply connected environments

To construct the GNT, the vertices are now classified into
three types:

1) Primitive: Primitive vertices encode gaps that appear as
the robot moves.

2) Nonprimitive: Nonprimitive vertices are the parents of
vertices corresponding to gaps that merge, or they are
leaves that are not primitive but that merged with an
object, a landmark, or they are the only gap associated
with a particular boundary component.

3) Block: A block vertex is a leaf that is not primitive,
and its associated boundary components are the same of
some primitive or nonprimitive gap.

As before, when the robot is placed in a new environment,
all of the leaves of the GNT are marked nonprimitive because
the robot has not yet seen what is behind the corresponding
gaps. To guarantee that the robot will see the whole envi-
ronment, a surround motion primitive is executed for each
of the components of∂R. The robot chooses arbitrarily to
follow a boundary component not traversed before, and once
this is completed, a new boundary component is selected. In-
crementally, the robot determines how to reach every boundary
component, as various gaps get associated with them.

The critical events are encoded in the same way as be-
fore, with the following exception. Since the environment is
multiply connected, the homotopy class of paths between two
locations may not be unique. From the robot’s perspective,
however, all paths through the GNT are equivalent because
the robot lacks distance information. Therefore, paths that
chase the least number of gaps are preferred. This heuristic
does not guarantee that optimal paths will be preserved, but
prefers paths that drive the robot through less cluttered areas.
To achieve this, some paths are eliminated from the GNT as
follows. Suppose that the sequence(g1, ..., gm) of gaps read
from the GNT is the shortest sequence of gaps which reach
a particular object, landmark, or boundary component. The
association of the object, landmark or boundary component
with any gap other thangm is removed. If the object, landmark
or boundary component is visible from the current position of
the robot, then the association with any vertex is removed.

Given the previous procedure, some nonprimitive gaps may
not be associated with any object, landmark or boundary
component. Any vertex corresponding to such gap is labeled
as block. Furthermore, if all of the children of a vertex are
labeled as block, and the vertex itself is not associated with
an object, landmark or boundary component, then the vertex
itself is labeled as block and all of its children are eliminated.
Thus, two block vertices cannot merge in the tree, since only
one is kept. Figure 13 illustrates this process. A splittingblock
vertex yields two block vertices. A block vertex returns to a
nonprimitive status if it is associated with a new goal. In a
sense, keeping a branch full of block vertices does not increase
the robot knowledge of the environment, because it can reach
all of the goals chasing other gaps. To summarize the previous
discussion, the following theorem is presented:

Theorem 5:In the GNT for multiply connected environ-
mentschase(l) andchase(o) lead to motions locally optimal
in distance tol or o, between any possible pair of positions in
R.

Proof: With the argument of the proof for Theorem 2,
we argue that each object, landmark and boundary component
is visible at least once to the robot. Thus, if vertices are
not eliminated from the GNT, there is at least one path to
each object, landmark, or boundary component. Furthermore,
vertices are eliminated only if there is another path (which
generates a smaller sequence of gaps). Once such path is
selected to remain in the GNT, local optimality follows from
Theorem 1.



SUBMITTED TO IEEE TRANSACTIONS ON ROBOTICS 11

Fig. 13. Block vertices elimination. The vertices in the trees are marked
with the corresponding boundary component at their starts. Block vertices are
denoted with dotted outlines. In (a), after the robot transverses the trajectory
shown, the shaded vertex will be eliminated, since itself andits children have
goals already in the tree, yielding (b). As the robot moves (c), the boundary
componentr becomes associated with a gap closer to the root, which produces
further elimination of block vertices (d).

VII. I MPLEMENTATION

We implemented a simulation of the algorithms for the
GNT in simply and multiply connected environments. We also
validated the GNT sensing requirements on a mobile robot.

A. Simulations

Figure 14 shows a simulation of the GNT construction. The
position of the robot is marked with the large black disc,
which also serves as the root of the graphical representation
of the GNT. Primitive vertices are shown with a square;
nonprimitive ones with a disc. Dark (red) and light (green)
color vertices hide regions of the environment to the right
or to the left, respectively. The branches of the GNT are
aligned with the gap they represent, but this is only for clarity
of presentation. Recall that no exact angular information is
used when constructing the GNT. The initial position of the
robot is shown in Figure 14.(a). Because no gap has been
explored, all vertices of the tree are circles (nonprimitive gaps).
Figure 14.(b) and (c) show different states of the the GNT, as
nonprimitive gaps are being explored. In Figure 14.(c) it is
particularly clear that the two vertices on the bottom-leftare
encoding two regions that will not split, whereas all of the
other branches encode all of the other possible destinations in
the environment. Figure 14.(d) shows the moment just before
the last nonprimitive gap disappears. It can be seen that all
other leaves of the GNT are squares.

Figure 15 shows an example in which the robot was asked
to construct the GNT, and to encode the position of the objects

(a) (b)

(c) (d)

Fig. 14. Graph Navigation Tree simulation for a simply connected environ-
ment. (a) Initial position. (b) and (c) Intermediate moments in the construction.
(d) The instant before the last nonprimitive gap disappears.

present in the environment. Once this task is completed, the
robot moves all the square objects of a certain color to the
corresponding circle of the same color. Figure 15.(a) shows
the tree when the construction is completed (all of the leaves
are squares). From this point, the robot begins to deliver the
objects until this new task is completed (Figure 15.(b)).

Finally, in Figure 16, a simulation in a multiply connected
environment is presented. The GNT is shown for the position
of the robot, denoted as a black disc. The two trees correspond
to the GNT before and after the boundary componentb3 was
surrounded.

B. Experiments with a Pioneer mobile robot

We performed some limited experiments to test the validity
of our sensing model.T he platform was a Pioneer 2-DX with
two laser range finders. A merge event is shown in Figure 17,
in which two gaps are merged into one when the robot
hides behind a corner. Although the gap-chasing procedure
implemented here was enough for our simple experiments,
a more robust navigation system following discontinuities
should be implemented (such as the one presented in [29],
which uses similar models).

Even though our experiments were much simpler than the
ones we used in simulation, we are hopeful that the sensing
requirements are met in many real settings. For example,
topological maps, similarly based also on visibility events and
constructed by two robots, were presented in [35], in more
challenging environments. Further experimental work is still
needed to evaluate the full applicability of our model. For
example, the use of two laser range finders seems an overkill
for the problem at hand. Also, the experiments were done in
an artificial environment using cardboard as the environment
boundary. The robustness of gap sensing in the presence
of small gapsin a real environment remains to be tested.



SUBMITTED TO IEEE TRANSACTIONS ON ROBOTICS 12

(a)

(b)

Fig. 15. Object finding simulation for a simply connected environment. In
(a) the state of the Gap Navigation Tree is shown, after the construction phase
concluded. In (b) the tree is shown, after all of the objects have been delivered.

(a) (b) (c)

Fig. 16. Simulation in a multiply connected environment. The GNT is shown
for the position of the robot denoted with the the black disc in (a). In (b) and
(c), the GNT is shown before and after the boundary componentb3 was
surrounded, respectively. The labelbij of some vertices indicates their start
and end boundary component. Vertices without such label are either primitive
or block.

Finally, and perhaps more importantly, in a real setting the
robot is not a point. This raises two main issues. The first is
that a robust wall-following procedure should be implemented
(this becomes even more important in the multiply connected
case). The second issue is that optimality is potentially lost,
because the gap-chasing procedure does not incorporate the
robot radius.

VIII. C ONCLUSIONS

This paper presented the Gap Navigation Tree (GNT) data
structure, and its use for optimal navigation in unknown envi-
ronments with a robot that has limited sensing. The navigation
paths are optimal, even though no distance or other exact
geometric measurements are made by the robot. The GNT

robot

gap

gap

laser measurements

(a) (b)

Fig. 17. Gaps merging. Figures (a) and (b) showing the state ofthe tree and
the position of the robot before and after the critical eventis detected.

is constructed from detecting online visual events, yielding
a simple but powerful framework for solving visibility based
tasks in the plane. Our approach studies minimal information
a robot should gather to solve a task. The GNT shows that the
need of an exact geometric representation of the environment,
or localization, may be ignored to solve some visibility-
based tasks. Moreover, not only are exact representations
eliminated, but the information needed by the robot can be
greatly minimized.

The GNT is well suited for solving other visibility tasks. We
applied it for pursuit-evasion in unknown environments [19],
but its use for other tasks is still open. As mentioned in the
introduction, the localization problem is easily described in
terms of visual events, and the use of the GNT in this case is
straightforward, following the algorithms in [11], [18]3.

Although experiments validating the sensing model were
presented, some practical issues remain to be solved. The most
important ones are related to the gap tracking process. Since
the gaps have to be tracked at all times, the implementation of
the gap sensor should be robust enough. An important issue
is when a critical event is not detected by the robot (due
a noisy reading from the gap sensor, for example). In this
case, complete branches of the GNT may be lost, or the robot
may chase the “wrong” gaps to reach a goal. An interesting
problem is to detect such errors also from the critical events,
and to devise a strategy to recover as much of the already-
built tree as possible. Another direction is to determine which
sensing capabilities should be added to make the gap sensor
more robust. In doing so, the minimalist approach should be
still considered in terms of the abstract sensors. Our proposal
here is that by removing information requirements in the
algorithmic side, measurement errors in the sensors could be

3Instead of comparingvisibility skeletons, configurations of the GNT should
be used. It is remarkable that such an algorithm will work withexactly the
information discarded by the visibility skeletons, becausethe spurious edges
correspond to the visible gaps in an aspect cell.



SUBMITTED TO IEEE TRANSACTIONS ON ROBOTICS 13

solved cleanly and directly. One example of this is the pebble
implementation proposed in Section III, through a GPS. If a
GPS is available, it is tempting to build a geometric model
of the environment, since the localization problem has been
solved for us. In such a case, we will have to rely on the error
measurements of the range finders, and of the GPS itself. If
instead the effort focuses on the task at hand, we may find
that such measurements are not needed. In the tasks presented
in this paper, only depth discontinuities, and a pebble should
be detected. Using the GPS as a pebble solves the sensing
requirement easily and cleanly, and we may even ignore the
GPS measurement errors. Moreover, the sensing requirement
is not compromised to any implementation, since the pebble
can be implemented through computer vision, or even, with a
robot arm droppingreal pebbles.

ACKNOWLEDGMENTS

The authors thank Javier Minguez, Boris Simov, Stjepan
Rajko, Shai Sachs and Wes Huang for useful discussions and
suggestions. The robot platform was provided by the ITESM
Campus Ciudad de Ḿexico and by the ITESM Campus More-
los, México. This work is supported in part by ONR Grant
N000014-02-1-0488 and NSF-CONACyT Grant 0296126.

REFERENCES

[1] B. Aronov, L. Guibas, M. Teichmann, and L. Zhang. Visibility queries
in simple polygons and applications.Algorithms and Computation, 9th
International Symposium, ISAAC ’98, 1533, 1998.

[2] M. Blum and D. Kozen. On the power of the compass (or, why mazes
are easier to search than graphs). InProc. Annual Symposium on
Foundations of Computer Science, pages 132–142, 1978.

[3] J. Borenstein and Y. Koren. The vector field histogram-fast obstacle
avoidance for mobile robots. IEEE Transactions on Robotics and
Automation, 7(3), 1991.

[4] K. W. Bowyer and C. R. Dyer. Aspect graphs: An introduction and
survey of recent results.Int. J. of Imaging Systems and Technology,
2:315–328, 1990.

[5] H. Bulata and Michel Devy. Incremental construction of a landmark-
based and topological model of indoor environments by a mobile robot.
In IEEE Int. Conf. Robot. & Autom., pages 1054–1060, 1996.

[6] H. Choset and J. Burdick. Sensor based planning, part I: The generalized
Voronoi graph. InIEEE Int. Conf. Robot. & Autom., pages 1649–1655,
1995.

[7] A. Datta and C. Icking. Competitive searching in a generalized street.
In Proceedings of the Tenth Annual Symposium on Computational
Geometry, pages 175–182, Stony Brook, New York, 1994.

[8] G. Dedeoglu, M. J. Mataric, and G. S. Sukhatme. Incremental, on-line
topological map building with a mobile robot. InMobile Robots XIV -
SPIE, pages 129–139, 1999.

[9] B. R. Donald. On information invariants in robotics.Artif. Intell.,
72:217–304, 1995.

[10] G. Dudek, P. Freedman, and S. Hadjres. Using local information in a
non-local way for mapping graph-like worlds. InProc. Int. Joint Conf.
on Artif. Intell., pages 1639–1645, 1993.

[11] G. Dudek, K. Romanik, and S. Whitesides. Localizing a robot with
minimum travel. InACM-SIAM Symposium on Discrete Algorithms,
pages 437–446, 1995.

[12] F. Durand.3D Visibility: Analytical study and applications. PhD thesis,
Universit́e Grenoble I – Joseph Fourier Sciences et Géographe, July
1999.

[13] A. Elfes. Sonar-based real world mapping and navigation. IEEE J.
Robot. & Autom., 3(3):249 – 264, 1987.

[14] M. Erdmann. Understanding action and sensing by designing action-
based sensors.Int. J. Robot. Res., 14(5):483–509, 1995.

[15] M. A. Erdmann and M. T. Mason. An exploration of sensorless
manipulation. IEEE Trans. Robot. & Autom., 4(4):369–379, August
1988.

[16] K. Y. Goldberg. Orienting polygonal parts without sensors. Algorith-
mica, 10:201–225, 1993.

[17] H. H. Gonzalez, E. Mao, J. C. Latombe, and T. M. Murali. Planning
robot motion strategies for efficient model construction. InRobotics
Research - The 9th Int. Symp., 1999.

[18] L. J. Guibas, R. Motwani, and P. Raghavan. The robot localization
problem. In K. Goldberg, D. Halperin, J.-C. Latombe, and R. Wilson,
editors, Proc. 1st Workshop on Algorithmic Foundations of Robotics,
pages 269–282. A.K. Peters, Wellesley, MA, 1995.

[19] L. Guilamo, B. Tovar, and S. M. LaValle. Pursuit-evasionin an unknown
environment using gap navigation graphs. InIEEE/RSJ Int. Conf. on
Intelligent Robots & Systems, 2004.

[20] I. Kamon and E. Rivlin. Sensory-based motion planning with global
proofs. IEEE Trans. Robot. & Autom., 13(6):814–822, December 1997.

[21] I. Kamon, E. Rivlin, and E. Rimon. A new range-sensor basedglobally
convergent navigation algorithm for mobile robots. InIEEE Int. Conf.
Robot. & Autom., 1996.

[22] J.J. Koenderink.Solid Shape. MIT Press, 1990.
[23] J.J. Koenderink and A.J. van Doorn. The singularities of the visual

mapping.Biological Cybernetics, 24:51–59, 1976.
[24] J.-C. Latombe.Robot Motion Planning. Kluwer Academic Publishers,

Boston, MA, 1991.
[25] S. M. LaValle.Planning Algorithms. Cambridge University Press, 2006.

Available at http://msl.cs.uiuc.edu/planning/.
[26] S. M. LaValle and J. Hinrichsen. Visibility-based pursuit-evasion: The

case of curved environments.IEEE Transactions on Robotics and
Automation, 17(2):196–201, April 2001.

[27] V. J. Lumelsky and A. A. Stepanov. Path planning strategies for a point
mobile automaton moving amidst unknown obstacles of arbitrary shape.
Algorithmica, 2:403–430, 1987.

[28] L. Matthies and A. Elfes. Integration of sonar and stereo range data
using a grid-based representation. InIEEE Int. Conf. Robot. & Autom.,
pages 727–733, 1988.

[29] J. Minguez and L. Montano. Nearness diagram navigation(ND):
Collision avoidance in troublesome scenarios.IEEE Transactions on
Robotics and Automation, February 2004.

[30] N. J. Nilsson. A mobile automaton: An application of artificial intel-
ligence techniques. In1st International Joint Conference on Artificial
Intelligence, pages 509–520, 1969.

[31] J. O’Rourke.Art Gallery Theorems and Algorithms. Oxford University
Press, New York, NY, 1987.

[32] C. Papadimitriou and M. Yannakakis. Shortest paths without a map.
Theoretical Computer Science, 84:127–150, 1991.

[33] M. Pocchiola and G. Vegter. The visibility complex.Int. J. Comput.
Geom. & Appl., 6(3):279–308, 1996.

[34] S. Rajko and S. M. LaValle. A pursuit-evasion bug algorithm. In Proc.
IEEE Int’l Conf. on Robotics and Automation, pages 1954–1960, 2001.

[35] Ioannis M. Rekleitis, Gregory Dudek, and Evangelos Milios. Multi-
robot collaboration for robust exploration.Annals of Mathematics and
Artificial Intelligence, 31(1-4):7–40, 2001.

[36] E. Remolina and B. Kuipers. Towards a general theory of topological
maps.Artificial Intelligence, 152, 2004.

[37] S. Sachs, S. Rajko, and S. M. LaValle. Visibility-basedpursuit-evasion
in an unknown planar environment.To appear in International Journal
of Robotics Research, 2003.

[38] H. Shatkay and L. P. Kaelbling. Learning topological maps with weak
local odometric information. InInternational Joint Conference on
Artificial Intelligence, pages 920 – 929, 1997.

[39] S. Thrun, W. Burgard, and D. Fox. Probabilistic mapping of an
environment by a mobile robot. InIEEE Int. Conf. Robot & Autom.,
1998.

[40] B. Tovar, L. Guilamo, and S. M. LaValle. Gap navigation trees: Minimal
representation for visibility-based tasks. InProc. Workshop on the
Algorithmic Foundations of Robotics, 2004.

[41] B. Tovar, S. M. LaValle, and R. Murrieta. Locally-optimal navigation in
multiply-connected environments without geometric maps. InIEEE/RSJ
Int’l Conf. on Intelligent Robots and Systems, 2003.

[42] B. Tovar, S. M. LaValle, and R. Murrieta. Optimal navigation and
object finding without geometric maps or localization. InProc. IEEE
International Conference on Robotics and Automation, 2003.


