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Abstract— In this paper we present an algorithm to
build a sensor-based, dynamic data structure useful
for robot navigation in an unknown, multiply-connected
planar environment. This data structure offers a robust
framework for robot navigation, avoiding the need of
a complete geometric map or explicit localization, by
building a minimal representation based entirely on
critical events in online sensor measurements made by
the robot. There are two sensing requirements for the
robot: it must detect when it is close to the walls, to
perform wall-following reliably, and it must be able to
detect discontinuities in depth information. It is also
assumed that the robot is able to drop, detect and recover
a marker. The navigation paths generated are optimal up
to the homotopy class to which the paths belong, even
though no distance information is measured.

I. INTRODUCTION

The goal of this work is to develop robotic
algorithms and systems with minimal sensing re-
quirements, which are able to perform sophisticated
visibility-based tasks. Our motivation is to overcome
some of the problems that classical approaches obtain,
such as mapping uncertainty, registration, localization
errors, and unpredictable control errors. Such problems
arise because previous algorithmic efforts have often
assumed the availability of perfect geometric models.

We believe that reliability can be increased by
developing algorithms and mobile robots that mini-
mize the information requirements. By constructing
an algorithm and control law that use information
directly from the robot sensors, it may be possible to
solve the problem while eliminating the need to make
potentially-flawed measurements. Focusing on the par-
ticular task at hand, many of the classical requirements
are eliminated. This approach can provide low-cost
solutions to challenging problems, while achieving
greater reliability in the face of uncertainties.

The idea of using minimal representations was pop-
ularized in the context of manipulation planning in
[7], [8]. Within mobile robotics, on-line models have
been used for navigation [11], [12], [13], [15], target

tracking [9], pursuit-evasion [17], and localization [3],
[5], [10], [18], [19].

The work presented here is the continuation of
a previous effort, in which only simply-connected
environments were considered [20]. In the context
of minimal representations, this work proposes new
algorithms for environment exploration, navigation,
and object location for environments with nonconvex
obstacles. A dynamic tree data structure is proposed
to serve as a topological map of the environment, in
which geometric information (such as lengths, angles,
distances, or segments) is not necessarily represented.

This tree is called dynamic because it is updated
with visibility critical events as the robot moves in
the environment. A path in this tree gives a sequence
of critical events that the robot must follow to reach
different places. We will show that once this dynamic
tree is constructed, the path traversed by the robot
between two locations is optimal up to a homotopy
class with respect to distance, and that it is possible to
find fixed objects in the environment.

II. PROBLEM DEFINITION

The robot is required to explore an unknown en-
vironment, learning the location of certain interesting
objects. When the exploration phase is finished, the
robot must move efficiently and reliably between any
two locations using sensor feedback. Under these con-
ditions, the robot will be able to perform useful tasks,
such as going where a certain object is located, moving
an object from one place to another, or gathering all
of the objects to one place.

The robot is modeled as a point moving in a con-
nected open set � in the plane. Let ���	��
������ � be the
set of pairwise disjoint nonconvex simply-connected
obstacles, in which � ��� � for �������������! " ! #�%$�& is an
open set. Let '(���*)+� be the free space. Assume
that the boundary of ' is piecewise smooth. The robot
is only able to move in ' . Let ,-�/."0 � �10324�! " " !�103576



(a) (b)

Fig. 1. The robot’s view of the environment. The environment
is shown on the left, with the white region denoting the visibility
of the robot. On the right it is shown the angular position of the
discontinuities detected in the visibility region.

be the collection of � interesting objects in the envi-
ronment. It is assumed that each ��� � and each 0�� ,
is uniquely identifiable. Elements in � are obstacles
for movement and visibility, while elements in , are
considered as points that the robot recognizes when it
sees them. Also, during exploration, the robot uses a
marker. The robot has no previous knowledge of � , �
or , .

The robot is able to detect discontinuities in depth
information. Each discontinuity corresponds to a por-
tion of ' that is not visible to the robot. As an example
refer to Figure 1. Figure 1.b gives the location of dis-
continuities in depth information for the environment
shown in Figure 1.a.

Although the precise distances to the walls may be
unknown, it is assumed that the robot has a kind of
edge detector that can detect each of the discontinu-
ities, and return their direction relative to the robot’s
heading. Each discontinuity will be referred to as a
gap, as in [17]. For polygonal environments these
gaps are referred to as spurious edges of the visibility
polygon in [10]. It is assumed that the robot can
track the gaps at all times, and record any topological
change, as we will discuss later.

Given the gaps that the robot detects at a given time,
it is possible to command the robot to move toward a
given gap. This sensor-feedback movement is defined
as chasing a gap.

We make a general position assumption that no line
is tangent to more than two points of the boundary
of ' .

III. THE DYNAMIC DATA STRUCTURE

In this section we present the dynamic data structure,
the tree ��� , that will encode � , � , and , . First we

will define the visibility events, and how they are en-
coded into ��� . Next, we will introduce the navigation
algorithm, assuming that a partial construction of ���
is available. Finally, we will propose an algorithm to
construct ��� for an unknown environment.

A. Encoding visibility critical events

There are four possible ways in which the gaps
change: a new gap appears, an existing gap disappears,
two or more gaps merge into one gap, and a single gap
splits into two or more gaps. These changes are called
gap critical events.

Appearance and disappearance events occur when
the robot crosses generalized inflections of the bound-
ary ' . Merge and split events occur when the robot
crosses the rays that extend generalized free bitangents
of ' (see Figure 2). An inflection is found by extending
a ray outward from an inflection point of the boundary
of ' . A bitangent is a closed line segment whose
supporting line is tangent at two points of the boundary
of ' . It is called free if lies entirely in ' [16]. We use
the term generalized as in [14] to extend the definition
of inflections and bitangents to polygonal boundaries.

Because of the general position assumption, when a
gap splits, it yields exactly two new gaps. Also, when
gaps merge, exactly two gaps merge to yield a single
gap.

The data structure � � is a dynamic tree. The root of
� � moves along with the robot. Therefore, � � is a local
topological map, not a global one as in [2], [4], [6].
Each node in ��� encodes topological information about
the environment. A child node of the root represents
a gap that is detected in the robot’s current position.
Child nodes are maintained in circular order, as they
are detected. As the robot moves in ' , gap-critical
events are triggered and encoded into ��� as follows:

1) A gap appears. A node corresponding to the
gap is added as a child of the root of ��� , in a
location that preserves the circular ordering of
gaps.

2) A gap disappears. The corresponding node is
removed from ��� .

3) Two gaps merge. The two corresponding chil-
dren of the root become the children of a new
node, $ , and $ becomes a child of the root (see
Figure 3).

4) A gap splits. The corresponding node, child
of the root, will be replaced with two children
nodes.

Assume that the gaps are detected in counterclock-
wise order. A label of left or right can be assigned
to each gap. Each label corresponds a transition in
a discontinuity from “far to near” or “near to far”,
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Fig. 2. Generalized inflections and bitangents of the boundary of�
. Visibility critical events are triggered when the robot crosses

inflections (a) and the rays that extend bitangents (b and d) of
�
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Fig. 3. Merge critical event. When the robot crosses one ray
extending the bitangent, gaps � and � merge into gap � . In ��� ,
nodes encoding � and � become children of the node encoding � .
The root of ��� is labeled with � , and the robot position is indicated
with the black disk.

respectively, and indicates the side to which the region
of ' is hidden behind the gap. These transitions,
together with the assumption that every obstacle � � �
is uniquely identifiable, make it possible to associate
gaps with obstacles. The “beginning” of the gap is
the nearest obstacle (or � ) in the transition, and the
“end” is the farthest one (see Figure 4). For nonconvex
obstacles these may be the same. When an obstacle �
is visible, it is (partially) blocking the visibility of the
robot of other obstacles or a portion of � . From the
robot’s perspective, � will be the beginning of some
gaps. Thus, every obstacle is associated with at least
one gap:

Observation 1: For every obstacle � � � , there will
be a gap beginning at � for some position of the robot.
Also, if � is nonconvex, for some robot position there
will be at least one gap beginning at � .

If an object 0 � , , is in the visibility region of
the robot, and its angular position is close to a gap 	 ,
then we say that 	 encodes a path to 0 . Following a
path that takes the robot to 	 will make 0 visible. This
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Fig. 4. Beginning and end of a gap. From the robot’s perspective
the obstacles 
 and � are the beginning and end of the gap � ,
respectively.

idea will become clear in Section III-B. We also have
a guarantee in the number of gaps associated with an
object:

Observation 2: If the robot has seen the whole free
space ' , for each object 0 � , , if there are no nodes
in ��� associated with a gap that encodes a path to 0 ,
then 0 is visible from the current position of the robot.

This observation is true because at the instant when
an object is not longer visible, a gap 	 refers to the
invisible region containing the object. The object is
associated with 	 .

Note that only the angular order, not the precise an-
gular position of the gaps, is recorded in the encoding
of � � .

A similar data structure was presented in [1], in
which a shortest path tree is updated when a point
crosses constraint lines. However, in that work it is
assumed that a simple polygon is given a priori, which
represents a perfect map.

B. The navigation algorithm

The central idea of the navigation algorithm is
to chase the gap associated with a given goal. For
example, chasing a gap that begins in an obstacle will
take the robot to the boundary of that obstacle, or will
make a certain object visible at some point. As the
robot moves, the node � encoding this information
may not be a child of the root. Because of merging
events, it may be in a lower depth in the tree. The robot
must chase the child of the root that is an ancestor of
� . When the corresponding child of the root splits, �
will be one level closer to the root. This procedure is
repeated until � is a child of the root, in which case
following � will reach the goal.

Assume that a partial construction of � � is available,
and that a goal  is associated with some node of � � .
The goal  may be a gap, an object in , or an obstacle
in � . The navigation algorithm to reach  is shown in
Figure 5. A sequence of gaps, � , encoding a path to
 is extracted from ��� . One by one the robot chases



NAVIGATION( ��� ,  )
��� FIND SEQ( ��� ,  )
while � ���� do� � pop ( � )
until disappears(h) or splits(h) or in goal(s) do

CHASE(h)

Fig. 5. Navigation algorithm. A sequence of gaps that encode a
path to the goal � is generated from � � . The robot follows this
sequence until reaching the goal.

the gaps in � , until the goal is reached. If  is a gap,
the goal is reached when  splits or disappears (  will
be the last gap in � ). If  is an obstacle, the task ends
when the robot touches  , and if  is an object, the task
is completed when  is visible. The predicate in goal
handles these last two cases.

C. The exploration algorithm

For the exploration, the nodes of � � are classified
into four types:
� Primitive. Primitive nodes encode gaps that ap-

pear as the robot moves. A primitive node refers
to some part of ' which the robot has already
seen (this part of ' was visible before the corre-
sponding gap appeared).

� Branch. Branch nodes are the parents of nodes
corresponding to gaps which merge.

� Non-primitive. These correspond to nodes as-
sociated with gaps that the robot has not yet
explored, or to gaps that did not disappear but are
associated with some feature of the environment.

� Block. A block node encodes a gap that does not
increase the robot’s knowledge of the environ-
ment. The notion of the block nodes and why they
are needed will be described later in this section.

When the robot is placed in a new environment, all
of the leaves of ��� are marked non-primitive. This is
because the robot has not yet seen what is behind the
corresponding gaps. If � ��� , when the robot chases a
gap, the gap is guaranteed to split or to disappear. An
appropriate exploration strategy commands the robot
to chase every non-primitive gap, until all the leaves
of the tree are primitive. Such a strategy is presented
in [20].

In the general case, when � ���� , one complication
is presented because there are gaps that never disap-
pear. As shown in Figure 6.a, chasing a gap until it
disappears may result in the robot going around an ob-
stacle forever. Compare this situation with Figure 6.b,
in which a gap disappears.

Another strategy must be defined to construct � � ,
which guarantees that the robot will see the whole
environment. In our solution, the robot follows the

(a) (b)

Fig. 6. Not all gaps disappear when chased. If the obstacles
in which the gap begins and ends are different, the gap does not
disappear (a). The gaps disappears if the gap begins and ends in the
same obstacle (b).

boundary of � and of every obstacle � � � . From
Observation 1, there will be gaps beginning at each
obstacle. Using the information in ��� , the robot can
determine how to reach some of the obstacles in
the environment, as described in Section III-B. The
robot chooses arbitrarily to follow the boundary of an
obstacle that has not been transversed before. When
this boundary has been completely traversed, a new
obstacle is selected. Incrementally, the robot will de-
termine how to reach every obstacle.

To follow the border of an obstacle, or the border of
� , the robot drops a marker when it first touches the
obstacle, or when it first touches the border of � . The
robot executes wall-following motions until it detects
the marker. At this time the robot has completely
followed the border, and it picks up the marker. Note
that it would be very difficult, if not impossible, for
the robot to detect when it had finished following a
border, using only gap-sensing capabilities.

The exploration strategy is summarized in Figure 7.
The tree is initialized with the non-primitive nodes
corresponding to the gaps detected initially. During
execution, a list 	 is computed, consisting of all of
the boundaries the robot knows how to reach, but has
not explored. The exploration ends when 	 is empty.

There is an interesting complication when building
��� . Since the free space may be multiple connected,
the homotopy class of paths between two locations
may not be unique. As proved in [20], in absence of
the obstacles the paths generated by ��� are optimal.
With obstacles this is no longer true. From the robot’s
perspective, all paths through � � are equivalent, since
the robot lacks distance information. Therefore, paths
through � � that use the minimum sequence of gaps are
selected. Suppose that the sequence of nodes 
 � �" �  ���
 5
is selected to reach goal  . The association of  with
any node � � ��� is removed if � ��
35 . If an object
is visible, then the association of the object with all



EXPLORATION()
��� � INITIALIZE TREE
	 � REMAINING BNDR( � � )
while 	 �� � do

� � pop ( 	 )
NAVIGATION( � � , � )
DROP MARKER
FOLLOW BOUNDARY( � )
RECOVER MARKER
	 � REMAINING BNDR( ��� )

Fig. 7. Exploration algorithm. The robot follows the boundary of
each element of the environment. When the last obstacle boundary
has been traversed, the robot has seen the whole environment and
the construction of ��� is completed.

the nodes is removed. If a leaf of ��� is not associated
with a goal, it is marked as block. If a branch node
is not associated with a goal, and all its children are
marked as block, the branch node is marked as block,
and all the children are eliminated. Two block nodes
cannot merge (only one is kept). A block node splitting
yields two block nodes. A block node returns to a non-
primitive status if is associated with a new goal. We
now show that this algorithm is complete:

Proposition 3: The tree � � will provide a path from
the current position of the robot to each obstacle � � �
and to each object 0 � , .

Proof: By Observations 1 and 2 it is known that if
an object or obstacle is visible in the environment, it
will be associated with a gap and the corresponding
node in � � . When the robot moves and the object
or obstacle is no longer visible, the path information
is preserved by nodes merging in � � . Even when
some nodes are eliminated or marked as block, path
information is preserved. Elimination of nodes occurs
unless ��� encodes more than one path to the same
goal. The data structure ��� will provide a path from
the current position of the robot to all the objects and
obstacles in the environment.

D. Some comments on performance

Since the robot has no distance information, good
performance in the distance traveled may not be ex-
pected. As discussed in Section III-C, all paths with a
common goal are equivalent. As a consequence the
path length may compare poorly with the distance
traversed having a complete geometric map.

Refer to Figure 8. After going around the triangular
obstacle once in the exploration phase, the robot travels
to the circular obstacle. If the robot follows the gap on
the right, and if

�����
, the robot will follow almost the

entire triangle boundary again. A decision based only
in our gap-chasing model cannot do better. In [11], a

b

a

Fig. 8. A worst case navigation example. If �	� � , and if the
robot chooses to follow the gap on the right, practically the whole
triangle boundary will be followed to reach the circle.

Fig. 9. Paths with shortest gaps sequence are preferred. The robot
will follow the path on the right, because it offers less gaps to chase,
although is not the shortest path. With only gaps information, the
robot cannot do better.

similar problem is considered. It is solved by changing
the direction of the navigation if the robot moves in the
opposite direction to the goal. Without a measurement
of direction, this is not possible under our gap model.

Although global optimality cannot be guaranteed,
the path that the robot follows is optimal in the ho-
motopy class to which the path belongs. By following
gaps, the robot follows the tangent lines between the
obstacles, which in turn are the edges of the tangent
visibility graph.

It is worth noting that the number of gaps in a path
sequence is an indicator only of how “cluttered” a
region is, but generally is not related with the distance
to travel. Consider the example of Figure 9. The robot
will choose to follow the gap on the right to reach a
goal, instead of the path beginning on the gap of the
left. The path on the left is longer in the number of
gaps to chase, but is shorter in distance.

IV. SIMULATIONS WITH RESULTS

We have implemented the algorithms shown in
computer simulation. Figure 10 shows the changes in
� � before and after going around an obstacle. It is
interesting to see that the root’s children are the same,
but at the end one of them has encoded paths to reach
other places in the environment.

For the figures shown, the root of � � is represented
with the bigger black circle. The different shapes inside
the nodes represent the objects associated with that
node. The shapes inside the root node are the objects
visible from the current robot’s position. The color of
the circle in the top of the nodes indicates the obstacle
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Fig. 10. The robot surrounds the darker obstacle in (a). In (b) it
is shown the initial state of � � , and in (c) the paths information
gained after surrounding the obstacle completely. The robot is the
black point, and the small polygons are the interesting objects.

in which the associated gap begins. Primitive nodes
are drawn as squares. The “b” label indicates that the
node is a block node. Finally, the labels “r” and “l”
indicate that the associated gap hides the environment
to the right or to the left, respectively.

In the example shown in Figure 11, after the explo-
ration, the robot moves all objects to a single place,
previously determined. The trees shown correspond to
��� after the exploration phase and during the delivery
task.

The model we assume has been successfully demon-
strated in a real robot. The robot setup used is shown
in Figure 12. The reader is referred to [20] for a
description of the implementation and some of the
issues faced.

V. CONCLUSIONS

We have presented a dynamic data structure useful
for robot navigation in a multiply-connected environ-
ment. Algorithms for construction and exploitation of
this data structure have been described. These algo-
rithms are based on the robot’s capability of detecting
visibility critical events, more precisely, in changes of
depth information. The navigation paths generated by
the data structure are optimal, up to a homotopy class.
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Fig. 11. Environment exploration and object delivery. After
exploring the environment, the robot built the tree shown in (a).
Using this tree, square objects are moved to a designated circular
object. While moving in this task, the tree keeps updating, as shown
in (b).

Fig. 12. Setup used to validated the gaps model. A robot was
provided with two SICK lasers.

Given that the robot does not use geometric infor-
mation, it is interesting how the data structure is able
to capture paths between locations in the environment.
We believe that the assumption in which every obstacle
is uniquely identifiable is strong, and is not easily
implementable in real robots. Adding another sensing
capability, or detecting patterns of nodes in the data
structure, may lead to a relaxation of this assumption,
and we consider them as improvements in future work.
The use of a marker may also be relaxed if the robot
is provided with basic image processing capabilities.
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