
Searching and Mapping among Indistinguishable Convex Obstacles

Benjamin Tovar and Steven M. LaValle

Abstract— We present exploration and mapping strategies
for a mobile robot moving among a finite collection of convex
obstacles in the plane. The obstacles are unknown to the robot,
which does not have access to coordinates and cannot measure
distances or angles. The robot has a unique sensor, called the
gap sensor, that tracks the direction of the depth discontinuities
in the robot’s visibility region. Furthermore, the robot ca n only
move towards depth discontinuities. As the robot moves, the
depth discontinuities split and merge, and these changes are
encoded in a Gap Navigation Tree. We present a strategy for this
robot that is guaranteed to explore the whole environment, but
that cannot decide whether the exploration has been completed.
If in addition it is assumed that the robot has access to apebble,
which is an identifiable point that the robot can manipulate,
then we prove that the robot can decide (in polynomial time
in the number of obstacles) whether the environment has been
completely explored. For this, the robot is able to distinguish
every obstacle using only the gap sensor and a single pebble.
These results are a continuation of our previous work on gap
sensing for multiply connected environments [24], in whichwe
reduce the sensing requirements for the robot by constraining
the shape of the obstacles.

I. I NTRODUCTION

These paper focuses on developing systematic exploration
strategies for robots moving in unknown environments [4],
[9], [10]. This is inspired from thelost-cow problem, in
which a cow moves along a fence trying to find a gate to
access a pasture. The cow does not know where the entrance
is, or how far it could be. A solution to the lost cow problem
is a strategy for the cow that guarantees it will find the gate.
This problem is usually modeled by considering the fence
as the integer line, with the cow starting at the origin, and
the gate positioned at some numberd, unknown to the cow.
Consider the strategy in which at each stagei, the cow walks
2i stepsin one direction, comes back to the origin, walks
2i steps in the opposite direction, and finally comes back
to the origin. In the worst case, the cow takes9d steps, and
this in fact minimizes the worst case distance traveled by the
cow [1]. Note that the cow cannot determine the absence of a
gate in the fence. In such a case, no cow strategy terminates,
as the search for the gate continues forever.

In our case, the “cow” is a robot moving in the plane,
the “fence” is a finite collection of indistinguishable convex
obstacles, and the “gate” becomes atreasure, which is an
identifiable point in the environment, recognized as soon as
it enters the robot’s omnidirectional and unbounded field
of view. Here we assume that the robot has an abstract

B. Tovar is with the Department of Mechanical Engineering, North-
western University, 2145 Sheridan Road, Evanston, IL 60208, USA.
b-tovar@northwestern.edu

S. M. LaValle is with the Department of Computer Science, University
of Illinois, Urbana, IL 45435, USA.lavalle@uiuc.edu

sensor [7] that reports the order of depth discontinuities in
the robot’s visibility region. These depth discontinuities are
characterized by the obstacle they start at from the robot per-
spective, and by the side to which theyhide the environment
to the robot. Two discontinuities with the same origin and
side are considered equivalent, and the equivalence classes
are calledgaps. To characterize its environment, the robot
builds a dynamic data structure, called theGap Navigation
Tree(GNT), entirely from online sensor measurements. Once
constructed, it encodes paths from the current position of the
robot to any place in the environment [24].

Can convex obstacles be distinguished with only gap
sensing? In Section III we present a strategy that systemati-
cally explore the environment reachable by the robot, using
uniquely a gap sensor. Even though this strategy guarantees
that all of the environment is eventually explored, it does not
terminate. In Section IV, we further assume that the robot
has access to one pebble, which is a special point that can
be detected and moved by the robot. We prove that with the
pebble, the robot can decide, in polynomial time, whether
the environment has been completely explored. This is done
by distinguishing obstacles using only the gap sensor and a
single pebble.

This work is a continuation of our study of minimal
robot models by sensing gaps. In [24] we presented an
exploration strategy for multiply connected environments
assuming the robot could distinguish among the obstacles.
In this paper we remove this assumption, but constrain the
obstacles to be convex. This constrain is only necessary
for deciding whether the environment has been completely
explored, since a systematic search of the environment is still
possible among non-convex obstacles. Our work is inspired
by minimal sensing for mobile robots from works such as
bug algorithms[11], [12], [13], [16], [17], in which a robot
that combines global knowledge with local information is
able to navigate among boundary components and reach
a known goal. In the case of bug algorithms, the robot
navigation capabilities are simple (movement towards bound-
ary components and wall-following), no representation of
the environment is maintained, and the global information
consists only of the position of the goal. These characteristics
allow the use of bug algorithms in robots that have very
limited sensing capabilities and unreliable motion control.
More importantly, the memory required for the algorithms
is constant. Such online exploration strategies make simple
motion models and attempt to reduce the amount of memory
or total distance traveled [3], [5], [6], [8], [9], [14], [15], [18],
[19], [23].

II. BASIC DEFINITIONS

Let O be a nonempty finite collection of pairwise-disjoint
sets in the planeR2, called theobstacles. EachO ∈ O is
compact (i.e., closed and bounded), and convex, meaning
that the closed line segment joining any two points inO

does not intersectR2\O. Furthermore, it is assumed that the
boundary∂O of eachO ∈ O is piecewise-analytic. LetF ,
the free space, be the closure ofR

2 \ O (i.e., the plane
minus the interior of the obstacles). We model the robot’s
configurations as the setX = F × S1 ⊆ SE(2). Observe
thatF includes the boundary of the obstacles, therefore, the
robot can execute compliant motions (i.e., in contact) with
the obstacles.

For q ∈ F , let V (q) be thevisibility regionof q, in which
p ∈ V (q) if and only if the closed line segment joiningp and
q does not intersectR2 \O. The visibility region consists of
three kinds of segments:

1) Curve segments completely contained in∂F .
2) Compact line segments collinear withq, and which

intersect∂F only at their endpoints, both of which
belong to∂F .

3) Half-lines collinear withq, which intersect∂F only at
their unique endpoint.

Segments of the second and third kind are calleddepth
discontinuities. If a depth discontinuityd is a half-line,
define theorigin of d, o(d), as the obstacleO ∈ O that
contains the endpoint ofd in its boundary. Otherwise, if a
depth discontinuityd has two endpoints, defineo(d) as the
obstacleO ∈ O that contains the endpoint ofd closer toq

in its boundary. Each depth discontinuityd is directed, and
starts from the point ino(d). Every depth discontinuityd
receives a labels(d) of left or right, depending on which
side ofd F \V (q) is, as seen fromq. If depth discontinuities
are reported counterclockwise from a visibility region, then
the left label corresponds to a transition fromfar to near,
and the right label corresponds to a transition fromnear to
far [24]. This label also corresponds to the side of the depth
discontinuities on which the obstacle appears, as seen fromq.

Now we define gaps in terms of depth discontinuities:
Definition 1: Two depth discontinuitiesdi anddj are said

to be equivalent ifo(di) = o(dj) and s(di) = s(dj). The
equivalence classes of depth discontinuities are calledgaps.

We cannot use Definition 1 for gaps with non-convex
obstacles. This is because with non-convex obstacles, distinct
gaps may share the same origin, and have the same side label.
Every obstacleO ∈ O is the origin of exactly two gaps, one
labeledright, and the other labeledleft. We say that these
two gaps are associated with obstacleO. Let r(O) andl(O)
be the gaps associated withO, with side labelright and left
respectively.

Sensor: We consider a robot which is not able to
computeV (q), but that instead has a gap sensor, which is
able to track the gaps inV (q) at all times, reports them in
their counterclockwise cyclic order as they appear inV (q),
and determines their side labels. Note that the gaps’s size,
angle, origin, and distance to the robot are not reported by

the gap sensor.
Motion primitive: The robot moves bychasing gaps.

To chase a gap, the robot orients its heading with the gap,
and moves towards it.

A. The Gap Navigation Tree

Here we give a brief description of the Gap Navigation
Tree data structure. For the complete description please refer
to [24]. In a Gap Navigation Tree, the root represents the gap
sensor, and each vertex represents a gap. Children of the
root represent gaps currently detected, and are maintained
in the cyclic order in which they appear in the gap sensor.
As the robot moves inF , V (q) changes combinatorially. In
particular, the number of gaps in∂V (q) may decrease or
increase through the following critical events:

• Gaps merge.For gapsgi andgj assume thatq is closer
to o(gi) than it is too(gj). If gj becomes collinear with
gi, so thatgj is no longer contained in∂V (q), then we
say thatgj merged intogi.

• Gaps split.Let gi andgj be two gaps, so thatgj became
part of ∂V (q) by first being collinear withgi. We say
that gi split, or thatgj split from gi.

Note that since everyO ∈ O is compact and convex, gaps
may only split or merge, but they cannot appear or disappear.
If a gap splits, then the corresponding child of the root is
replaced with two children. When two gaps merge, the two
corresponding children of the root become the children of
a new vertex, and this new vertex becomes a child of the
root. A sequence of vertices from the root to a leaf define
a sequence of gaps, that if chased, follows a path in the
shortest-path graph ofF .

III. SYSTEMATICALLY EXPLORING THE ENVIRONMENT

Now we develop a strategy with the guarantee that every
point in F appears eventually in the visibility region of the
robot. To present the strategy, we define a special point
in F , called thetreasure, and show that independently of
which point ofF is defined to be the treasure, the robot will
eventually see it.

Strategy 1:Looking for a treasure among indistinguish-
able convex obstacles with a gap sensor
Description: We construct a GNT according to the updates
in Section II-A. Additionally, the leaves of the tree are
labeled according to a counter,i. We call this label the
exploration labelof the vertex. The exploration labels of
the m vertices corresponding to the initialm gaps observed
are set 1 troughm, and i is set to m + 1. The search
for the treasure proceeds by systematically chasing the gap
g corresponding to the leaf with the minimum exploration
label. Gapg is chased until its descendants are not known
(that is, until the corresponding leaf in the tree splits). In this
case, two new vertices are added to the root of the GNT, one
corresponding tog, and the other to the gap,g′, that split
from g. These two new vertices are labeledi and i + 1,
respectively, andi is set toi + 2 (see Figure 1). Note that
when two gaps merge, the internal vertex created is never

labeled for future exploration. If at any point the treasure
becomes visible, then the strategy successfully terminates.

Theorem 1:If there is a treasure, Strategy 1 is guaranteed
to find it.

Proof: Assume that from the initial position of the
robot, the treasure is found by following the shortest se-
quence of gaps[g1, g2, . . . , gk]. Initially, for j = 1, gj is
visible, and therefore its vertex is labeled for exploration.
Recursively, whengj is chased,gj+1 will split from it, and
the corresponding vertices are labeled for future exploration.
Eventually,gk is chased and the treasure is found.

Note that Strategy 1 is easily extended to non-convex
obstacles. In such a case, gaps are chased until they split or
disappear, and the leaves corresponding to gap appearances
do not need to be labeled according to the counter.

Strategy 1 is terribly inefficient. Gaps are chased over
and over again, as exemplified in Figure 1. Suppose that
from the initial position of the robot, the shortest sequence
of chase(·) motion primitives that finds the treasure has
lengthk. Strategy 1 is a breadth-first search, in which each
node has a branching factor of 2 (when a gap splits, two more
nodes are added to the search queue, which is implemented
through the exploration labels). Therefore, if it performsk

chase(·) motion primitives in the optimal case, Strategy 1
performsO(2k). Each vertex in the GNT corresponds to a
bitangent complement [24] ofF . Two vertices in the tree are
said to be redundant if they correspond to the same bitangent
complement. The issue here is that when a gap without
known descendants splits, the newly created descendants
may already be in some other branch of the tree. How can
the robot detect redundant vertices?

IV. D ISTINGUISHING OBSTACLES

We define aleft loop over obstacleO as the process of
the robot reaching some point of∂O, and chasingl(O)
until ∂O is transversed exactly once. Similarly, aright
loop over obstacleO is defined by chasingr(O). Consider
the sequence of gap critical events as the robot performs
a left loop on some obstacleO, and compare it to the
sequence of gap critical events should the robot perform a
right loop on that same obstacle. We should expect these
sequences to be similar. To make this apparent, we define
four stacks of gaps, merge(l(O)), merge(r(O)), split(l(O)),
and split(r(O)), which are initially empty. When the robot
performs a left loop overO, gaps merging withr(O) are
pushed into merge(r(O)), and gaps splitting froml(O)
are pushed into split(l(O)). The stacks merge(l(O)) and
split(r(O)) are used similarly for a right loop overO.

Lemma 2:For initially empty stacks merge(l(O)),
merge(r(O)), split(r(O)), split(l(O)), after left and right
loops, the sequence of gaps in merge(l(O) is the reversal
up to a cyclic shift of the elements in merge(r(O)), and
split(l(O)) is the reversal up to a cyclic shift of the elements
in split(r(O)).

Proof: Let p ∈ ∂O be the point at which the left loop
over O starts, and letG(p) = [r(O), g1, g2, g3, . . . , l(O)]

be the reading from the gap sensor atp. As the robot
chasesl(O), gaps that were not visible fromp, g′1, g′2, g′3,
etc., split froml(O); the same will eventually happen with
g1, g2, g3, etc. When the robot reachesp, split(l(O)) =
[. . . , g3, g2, g1, . . . , g

′

3, g
′

2, g
′

1]. Similarly, while chasingl(O),
gaps g1, g2, g3, etc. merge (in that order) intor(O),
as do the gaps not initially visible fromp, g′1, g′2, g′3,
etc. At the end of the left loop overO, merge(r(O)) =
[. . . , g′3, g

′

2, g
′

1, . . . , g3, g2, g1]. Observe that split(l(O)) and
merge(r(O)) are the same sequence up to a cyclic shift.
Since split(r(O)) is the reversal of merge(r(O)), and
merge(l(O)) is the reversal of split(l(O)), the result follows.

Lemma 2 has important consequences for the structure of
branches in a Gap Navigation Tree:

Corollary 3: For O ∈ O, in a GNT without redundant
vertices, after left and right loops overO, the first descendant
of l(O) is the last descendant ofr(O), and vice-versa.

Proof: This is just an alternative wording of Lemma 2
in terms of the GNT structure. After a left loop over
some obstacle, the length of merge(r(O)) determines the
maximum number of merges ofl(O) and r(O) without
creating redundancies in the Gap Navigation Tree.

After a left loop overO ∈ O, consider the branch starting
at the root’s child associated withr(O). Observe that there
is a sequence ofm consecutive vertices which correspond to
gaps merging intor(O). By Corollary 3, if more thanm gaps
merged intor(O), then the tree contains redundant vertices,
and the branch can be pruned to the firstm merges ofr(O).
Another consequence of Corollary 3 is that the branch for the
root’s children associated withl(O) can be constructed from
the branch ofr(O), and vice-versa. Note that in addition to
reversing the order of the merges, if a gapg merges to the left
(resp. right) ofr(O), then it merges to the right (resp. left)
of l(O). Therefore, the branches corresponding tol(O) and
r(O) can be compared, and completed or pruned accordingly.

During the left and right loops overO, l(O) and r(O)
appear consecutively in the sensor reading. With this obser-
vation, we can identify when two gaps have the same origin:

Lemma 4:Let G(p) = [g1, g2, . . . , gn] be the reading
from the gap sensor from pointp ∈ F . If s(gi) = left

ands(g1+(i mod n)) = right, theno(gi) = o(g1+(i mod n)).
Proof: Remember that the gap sensor detects gaps in

a counterclockwise order. By assumption, there are no gaps
betweengi and g1+(i mod n), which means either that the
reading of the depth discontinuity sensor goes to infinity, or
that the portion of∂F detected does not have any discontinu-
ities from the current point of view. The first case contradicts
that the obstacleo(gi) lies to the left ofgi, and that obstacle
o(g1+(i mod n)) lies to the right ofg1+(i mod n). The second
case implies that there is a connected portion of∂F between
gi andg1+(i mod n). Therefore,o(gi) = o(g1+(i mod n)).

Corollary 3 describes the structure of two branches when
the robot is at the boundary of some obstacle. To use
this result, the robot needs to perform left loops over the
obstacles. However, this is not possible in general, since the
robot cannot determine when it performed a complete loop

(a) (b) (c) (d) (e) (f)

Fig. 1. Search for a treasure with Strategy 1. (a) The two vertices corresponding to the initially visible gaps are labeled for exploration, and the robot
chases the gap associated with the minimum exploration label (label 1). (b) The gap being chased splits, and the new children are label consecutively
for exploration, labels 3 and 4. The next gap chased corresponds to the vertex labeled 2. (c) Two leaves merge, and the resulting vertex is not labeled
for exploration. (d) The gap being chased splits, with the children labeled for exploration with 5 and 6. (e) The gap associated with the vertex labeled 3
is chased, and the events are updated in the tree accordingly. (f) The gap being chased splits, with the children labeled 7and 8. Note that the vertices
labeled 5 and 8 are associated with the same gap, but such correspondence is not made by Strategy 1. The search continues bychasing the gap associated
with the minimum exploration label.

around an obstacle. If we extend the robot model with a
single pebble, which extra information can the robot deter-
mine? Can the robot distinguish the origin of all gaps using
only the gap sensor and the pebble? Since the robot does
not have a sensor that immediately identifies the obstacles,
distinguishing obstacles means here that they are assigned
arbitrary but consistent labels.

With the addition of the pebble, the robot is provided with
a new motion primitive, surround(O), which commands the
robot to transverse completely the boundary ofO ∈ O once.
Consider the following strategy:

Strategy 2:Looking for a treasure among indistinguish-
able obstacles with a gap sensor and a pebble
Description: We keep two counters: counteri for the ex-
ploration labels, and counterj for naming obstacles. Both
counters are initially set to 1. Observe that there are three
cases for the information available regarding the origin ofa
gapg recorded in a vertex of the tree:

1) The origin of gapg is unknown.
2) The origin of gapg is unknown, but it can be deter-

mined it is the same origin as some other gapg′.
3) The origin of gapg is some obstacleOk, for 1 ≤ k <

j.

The robot may not determine immediately that some
gaps are associated with the same obstacle. Therefore, some
obstacle may be labeled more than once. To handle this, the
label for the origin of a gap is kept in the corresponding
vertex of the tree.

For exploration, them gaps from the first observation are
labeled 1 tom, and i is set to m + 1. Next, a GNT is
constructed following the events in Section II-A, according
to the following iteration:

1) Moving to an obstacle.Let g be the gap corresponding
to the vertex in the GNT with minimum label for
exploration. If no such gap exists, then the exploration
is complete sinceF contains no treasure. Otherwise,
the gapg is chased until the robot is in contact with

some obstacleO.
2) Labeling an obstacle.SinceO was reached by chasing

g, O is the origin ofg, andg is one ofl(O) or r(O).
First, the exploration labels for the vertices ofl(O) and
r(O) are removed. Second, the origin in both vertices
is set toOj , andj is incremented.

3) Left loop over the obstacle. The robot drops the
pebble, and performs a left loop over obstacleO.
Every timel(O) splits without known descendants, the
vertex corresponding to the gap splitting froml(O) is
labeledi, andi is incremented. If a gap besidesl(O)
splits without known descendants, then the events of
these descendants are ignored. They will eventually be
labeled in a future iteration.

4) Modifying branches. The branches of the root’s chil-
dren corresponding tol(O) andr(O) are compared and
modified according to Corollary 3. The next iteration
proceeds with step 1.

If the treasure becomes visible at any point of the iteration,
then the strategy terminates with success. An example of this
strategy is shown in Figures 2 and 3.

We discuss the correctness of Strategy 2:
Theorem 5:If there is a treasure, strategy 2 is guaranteed

to find it.
Proof: Observe that the obstacles labels are a by-

product of Strategy 2, and do not determine the order in
which gaps are explored. Suppose that Strategy 1 finds the
treasure by chasing the sequence of gaps[g1, g2, . . . , gn]. The
vertex corresponding tog1 receives an exploration label in
the initial step before the iteration. Recursively, starting with
i = 1, a left loop is performed overo(gi), from which gi+1

splits (Lemma 2), and its vertex is labeled for exploration.
Eventually, a left loop is performed overo(gn), which makes
the treasure visible.

We conjecture that the breadth-first search implemented
by Strategy 2 labels each obstacle exactly once. Therefore,
it would take at mostO(|O|) iterations to find the treasure.

(a) (b) (c) (d) (e) (f)

Fig. 2. Search for a treasure with Strategy 2 (I). For convenience, we will refer tol(Oj) andr(Oj), with l(j) andr(j), respectively. (a) The obstacle
corresponding to the first boundary reached is labeled 1. Theleft and right gap of obstacle 1 are identified accordingly. Aleft loop over obstacle 1 is
performed from (b) to (d). Asl(1) splits, the vertices of the gaps that split froml(1) are labeled for exploration. (e) The left loop over obstacle1 is
completed, and the branch ofl(1) is constructed according to Corollary 3. (f) The exploration continues chasing the gap associated with the vertex labeled 2
(continuation in Figure 3).

(a) (b) (c) (d) (e) (f)

Fig. 3. Search for a treasure with Strategy 2 (II). Continuation of Figure 2. (a) When the new boundary is reached, the corresponding obstacle is labeled 2.
From (b) to (d) a left loop over obstacle 2 is completed. For convenience, we only show the visible sections of the branchesat (b). In (f), the branches
are compared, and vertices labeled 4 and 5 are found to bel(1) and r(1) respectively. Also, the branch starting withl(2) is completed by mirroring the
branch starting withr(2). At this point, no vertex remains labeled for exploration, and it is guaranteed that the environment did not contain a treasure.

More importantly, if every obstacle is labeled exactly once,
Strategy 2 always terminates, as it does for the example
presented in Figures 2 and 3. At the time of writing we
do not have a prove to support these claims. However, with
a small modification, Strategy 2 is guaranteed to label each
obstacle exactly once, deciding the presence of a treasure
in O(|O|3) time:

Strategy 3:Looking for a treasure among indistinguish-
able obstacles with a gap sensor, a pebble, and backtracking
Description: First, observe that once a left loop over some
obstacleO ∈ O has been performed, a pebble is not needed
anymore to implement the surround(O) motion primitive. By
counting the number of gap critical events along∂O, it can
be guaranteed to be transversed exactly once.

We modify Strategy 2 as follows. Assume that the label
given to O ∈ O is j. Once the left loop is completed in
step 3, the robot drops the pebble atOj . For i = j − 1
down to1, the robot chases back a gap with originOi, and
performs surround(Oi). If during surround(Oi) the pebble is
found, thenOi = Oj , the branches of the tree are matched
accordingly, the counterj is decremented, and the iteration
proceeds with step 1 of Strategy 2. Otherwise, if the pebble

is not found by surround(Oi), Strategy 2 continues normally
with step 4.

This backtrackingmay avoid some unnecessary work. The
surround(·) motion primitive should be performed only on
obstacles with the same (cyclic) sequence of gap critical
events along their boundary as the sequence for∂Oj .

Theorem 6:Strategy 3 decides inO(|O|3) time whether
there is a treasure.

Proof: An obstacle is only labeled with the current
value of the counter if it is found not to be labeled before.
Observe that forj > 1, surround(·) is performedj−1 times;
if no obstacle is reached twice, then Strategy 3 terminates
in Ω(|O|2) time. Otherwise, assume that for everyO ∈ O,
l(O) splits O(n) times. In the worst case,O(n) gaps that
split from l(O) direct the robot to obstacles labeled before.
This means that Strategy 3 terminates inO(|O|3) time.

V. CONCLUSIONS ANDFUTURE WORK

In this paper we presented exploration strategies for a mo-
bile robot with limited sensing, moving among an unknown
collection of convex obstacles. We proved that a robot with a
gap sensor can systematically search the whole environment,

but it cannot decide whether every point of the free space
has been visible. With the addition of a pebble, the robot
can decide whether the environment has been completely
explored.

Assuming that the robot can distinguish among the collec-
tion of convex obstacles, the robot can recover thevisibility
type [20] of the collection of obstacles, which encodes all
the information regarding critical changes in the visibility
region of a moving point among the obstacles. The visibility
type corresponds to cyclic sequences of bitangents along the
boundary of the obstacles. The visibility type determines
the tangent visibility graph[21], which is a generalization
of the visibility graph for obstacles whose boundaries are
not polygonal. In [20], based on the visibility type,pseudo-
triangulationsare constructed. The sides of a pseudo-triangle
are free bitangents and arcs on the boundary of the obstacles.
Based on pseudo-triangulations, which are in fact oriented
matroids of rank 3 ([2]), the visibility complex [22] can be
constructed, allowing efficient visibility queries. Construct-
ing the visibility complex from the information gathered by
the robot described here seems feasible, and we consider it
as future work.

Acknowledgments.:The authors thank Lawrence Erick-
son for insightful discussions. Our work was partially funded
by the DARPA SToMP Program.

REFERENCES

[1] R.A. Baeza-Yates, J.C. Culberson, and G.J.E. Rawlins. Searching in
the plane.Inf. Comput., 106(2):234–252, 1993.

[2] A. Björner, M. Las Vergnas, B. Sturmfels, N. White, and G. M. Ziegler.
Oriented matroids. Cambridge University Press, 1993.

[3] A. Blum, P. Raghavan, and B. Schieber. Navigating in unfamiliar
geometric terrains. InProc. ACM Symp. Comp. Geom., pages 494–
504, 1991.

[4] M. Blum and D. Kozen. On the power of the compass (or, why
mazes are easier to search than graphs). InProc. Annual Symposium
on Foundations of Computer Science, pages 132–142, 1978.

[5] A. Datta, C. A. Hipke, and S. Schuierer. Competitive searching in
polygons–beyond generalized streets. In J. Staples, P. Eades, N. Katoh,
and A. Moffat, editors,Algorithms and Computation, ISAAC ’95, pages
32–41. Springer-Verlag, Berlin, 1995.

[6] X. Deng, T. Kameda, and C. Papadimitriou. How to learn an
unknown environment I: The rectilinear case. Available from
http://www.cs.berkeley.edu/∼christos/, 1997.

[7] M.A. Erdmann. Understanding action and sensing by designing action-
based sensors.International Journal of Robotics Research, 14(5):483–
509, 1995.

[8] S. P. Fekete, R. Klein, and A. Nüchter. Online searchingwith an
autonomous robot. InWorkshop on the Algorithmic Foundations of
Robotics, Zeist, The Netherlands, July 2004.

[9] Y. Gabriely and E. Rimon. Competitive complexity of mobile robot
on line motion planning problems. InWorkshop on the Algorithmic
Foundations of Robotics, pages 249–264, 2004.

[10] Y. Gabriely and E. Rimon. Cbug: A quadratically competitive
mobile robot navigation algorithm.IEEE Transactions on Robotics,
24(6):1451–1457, 2008.

[11] I. Kamon and E. Rivlin. Sensory-based motion planning with global
proofs. IEEE Transactions on Robotics & Automation, 13(6):814–822,
December 1997.

[12] I. Kamon, E. Rivlin, and E. Rimon. A new range-sensor based globally
convergent navigation algorithm for mobile robots. InIEEE Int. Conf.
Robot. & Autom., 1996.

[13] I. Kamon, E. Rivlin, and E. Rimon. Range-sensor based navigation
in three dimensions. InIEEE Int. Conf. Robot. & Autom., 1999.

[14] M.Y. Kao, J. H. Reif, and S.R. Tate. Searching in an unknown
environment: An optimal randomized algorithm for the cow-path
problem. InSODA: ACM-SIAM Symposium on Discrete Algorithms,
pages 441–447, 1993.

[15] J.M. Kleinberg. On-line algorithms for robot navigation and server
problems.IEEE Transactions on Software Engineering, 24, 1994.

[16] S.L. Laubach and J.W. Burdick. An autonomous sensor-based path-
planning for planetary microrovers. InProc. IEEE International
Conference on Robotics & Automation, 1999.

[17] V. J. Lumelsky and A.A. Stepanov. Path planning strategies for a
point mobile automaton moving amidst unknown obstacles of arbitrary
shape.Algorithmica, 2:403–430, 1987.

[18] M.S. Manasse, L. A. McGeoch, and D.D. Sleator. Competitive
algorithms for on-line problems. InACM Symp. on Theory of
Computing, pages 322–333, 1988.

[19] C. Papadimitriou and M. Yannakakis. Shortest paths without a map.
Theoretical Computer Science, 84:127–150, 1991.

[20] M. Pocchiola and G. Vegter. Order types and visibility types of
configurations of disjoint convex plane sets, 1994.

[21] M. Pocchiola and G. Vegter. Minimal tangent visibilitygraphs.
Computational Geometry: Theory and Applications, 6, 1996.

[22] M. Pocchiola and G. Vegter. The visibility complex.Int. J. Comput.
Geom. & Appl., 6(3):279–308, 1996.

[23] N. Rao, S. Kareti, W. Shi, and S. Iyenagar. Robot navigation in
unknown terrains: Introductory survey of non-heuristic algorithms.
Technical Report ORNL/TM-12410:1–58, Oak Ridge National Lab-
oratory, July 1993.

[24] B. Tovar, R Murrieta, and S.M. LaValle. Distance-optimal navigation
in an unknown environment without sensing distances.IEEE Trans-
actions on Robotics, 23(3):506–518, June 2007.

