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Abstract. This paper considers a robot that moves in the plane and is only

able to sense the cyclic order of landmarks with respect to its current position.
No metric information is available regarding the robot or landmark positions;
moreover, the robot does not have a compass or odometers (e.g., coordinates).
We carefully study the information space of the robot, and establish its capa-
bilities in terms of mapping the environment and accomplishing tasks, such as
navigation and patrolling. The information space can be nicely characterized
using the notion of order type, which provides information powerful enough to

determine which points lie inside the convex hulls of subsets of landmarks. An
extension to this work using braid groups is briefly discussed at the end of the
paper.

1. Introduction

Consider walking around in a prairie in a cloudy day. We do no have a compass
available, so we do not know where the north is. As we walk around, some land-
marks (i.e., the occasional tree) cross our way. Without shadows from the sun, we
cannot calculate any distances either. In fact, the only thing we know for certain
is when a pair of landmarks align with our moving position, and then swap places
in a circular ordering around us. What can we tell about our walk in the prairie?
What can we tell if we move on the plane with very limited sensing?

We study the above scenario from a robotics perspective. Particularly, this
paper centers on the question:
What can a robot learn about its environment from an extremely limited sensor?

The answer to this question for various robot systems comes from carefully
studying the resulting information spaces. Information spaces represent the com-
plete knowledge of the robotic task, considering the histories of actions and ob-
servations [11, 12]. In this paper, we consider a robot moving in the plane with
very limited sensing: it knows only the cyclic ordering of landmarks as they ap-
pear from the robot’s current position (no distance information can be measured
and there are no other sensors). The information space is characterized using the
concept of the order type of a configuration of points in the plane [7]. Given the
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sensor limitations, we avoid estimation of the position of the robot and of land-
marks, and instead concentrate on the landmarks’ relative orderings to construct
the algorithms. Eventually, the map, or representation of the environment, is a se-
quence of landmark cyclic permutations. In Section 5, we briefly describe a natural
connection between the information gathered by the robot and braid groups.

This paper follows minimalist philosophy, which implies that we want the robot,
its sensors, and its models to be as simple as possible. Although our problem has
not been considered before, this philosophy has been successful in a number of
works (e.g., [1, 4, 13, 6]). Is it really necessary for the robot to build an explicit
representation of the environment? Is knowing the exact position of the robot
crucial for the completion of the task? After establishing what the robot can
learn from its simple sensor, we then illustrate the kinds of tasks that it can solve,
including a surveillance/patrolling behavior around the perimeter (convex hull) of
landmarks.

2. Model

The robot is modeled as a moving point in R
2. Let P be a set of n points in

R
2. Let m : R

2 → {0, . . . , n} be a mapping such that every point in P is assigned
a different integer in {1, . . . , n}, and m(p) = 0 for any p /∈ P . The mapping m is
referred to as a feature identification function, and P is referred to as the set of
points selected by m. For a point p ∈ P , a feature is defined as the pair (m(p), p).
For a set R ⊂ R

2, an environment E is defined as a pair (R,m). The space of
environments E is the set of all such pairs. Let q ∈ SE(2) be the configuration
of the robot (position in the plane and heading). The state is defined as the pair
x = (q, E), and the state space X is the set of all such pairs (SE(2) × E).

The robot is able to detect and recognize features. This is modeled as a mapping
s : R

2 → N∪{0}. Such mapping is referred to as a landmark identification function.
For a point p ∈ R

2 such that s(p) 6= 0, a landmark is defined as the pair (s(p), p),
and s(p) is called a landmark label. Let P ′ = {p ∈ R

2 | s(p) 6= 0}. The mapping s
is called sufficient with respect to m if P ⊂ P ′ and s(p) = s(r) ⇔ p = r, for any
p, r ∈ P . If furthermore, P = P ′, then s is called complete with respect to m. If P
is not a subset of P ′, or s(p) = s(r) does not imply that p = r, then s is said to
make identification errors with respect to m.

A landmark sensor is defined in terms of a landmark identification function s.
Such sensor is called a landmark order detector, and it is denoted with lods(x), for
x ∈ X. The landmark order detector gives the counterclockwise cyclic permutations
of landmark labels as seen from the current state (see Figure 1). Note that no metric
information is available to the robot. The robot does not have any coordinate
estimate of its position, and the position of the landmarks. Moreover, we assume
that the landmark order detector does respect the cyclic order of landmarks, but
does not measure the angle between them. In other words, lods(x) does not provide
by itself any notion of front, back, left or right with respect to the robot. It is
assumed, though, that the robot can choose a particular landmark label s(p) and
move towards the landmark position p. This landmark tracking motion is denoted
by track(s(p)). For simplicity, we assume that track(s(p)) ends when the robot
arrives at p, which means that lods(x) no longer detects the landmark just tracked
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Figure 1. The landmark order detector gives the cyclic order of
the landmarks around the robot. Note that only the cyclic order is
preserved, and that the sensed angular position of each landmark
may be quite different from the real one. Thus, the robot only
knows reliably, up to a cyclic permutation, that the sequence of
landmarks detected is [7,2,8,5,3,6,1,4].

1. Although we do not discuss here the real implementation of the landmark order
detector, it can be constructed, for example, with an omnidirectional camera with
standard feature tracking software (i.e., filter-based tracking [15, 18, 19]).

We assume that landmarks obstruct the visibility of the robot. In this case,
only the landmark closest to the robot is detected. In this paper we assume that the
environment is of the form E = (R2,m), and that the landmarks are in general posi-
tion (no three landmarks are collinear). Furthermore, we assume that the landmark
identification functions are complete in their respective environments, and that the
landmark order detector has infinite range. We propose these assumptions for the
sake of presentation, and we remove them in an upcoming paper (see Section 5).

3. Order Types and Landmarks

Given the model described in the last section, consider the robot as it moves
in the environment. The only information the robot receives is the changes in the
cyclic permutations. For example, for three landmarks, only two sensing readings
are possible. Purely by sensing, the robot cannot even know if it is inside the
convex hull defined by the three landmarks (see Figure 2). Nevertheless, consider
the robot traveling from the landmark labeled with 1 to the landmark labeled with
2. Since the reading from the landmark order detector follows a counterclockwise
order, the robot can determine whether the landmark labeled with 3 is to the left
or right of the directed segment that connects landmark 1 to landmark 2. Thus,
the robot can combine sensing with action histories to recover some structure of
the configuration of landmarks.

We generalize the previous idea to encode information states with the concept
of order type. Two ordered sets A and B are said to have the same order type if there
is a bijection f : A → B such that for all a1, a2 ∈ A, a1 ≤A a2 ⇔ f(a1) ≤B f(a2),
in which ≤A and ≤B are the relations defining the orders of A and B, respectively.

1We might as well define track(s(p)) to stop just before p is reached, but the essence of
further developments does not change, and it clutters some descriptions. Moreover, it already
models some robotic systems, as a robotic agent flying over a terrain.
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Figure 2. Cyclic permutations of three landmarks. Purely by
sensing, the robot cannot even know if it is inside the convex hull
defined by the three landmarks. Nevertheless, the orientation of
the triangle (the counterclockwise cyclic order of the landmarks as
sensed from inside their convex hull) can be determined with an
information state.

An intuition behind this definition is that A and B have the same order type
if they have the same number of smallest elements, the same number of second-to-
smallest elements, etc. For a configuration of labeled points, the order relation ≤
can be defined through the relative orientation of three points, which is computed
as follows [7]. The ordered triplet of points p1, p2, p3, with pi = (xi, yi), is said to
have positive orientation if the determinant
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is strictly bigger than 0, and this is denoted by p1p2p
+
3 . Negative orientation is

defined in a similar manner, and denoted by p1p2p
−

3 . Given our general position
assumption, this determinant cannot be zero. The order type of a labeled configu-
ration of points P is determined by the relative orientation of each triplet of points
in P . The order type of the configuration of points can be encoded by a function
defined as follows:

(2) Λ(i, j) = {k | pipjp
+
k , for pi, pj , pk ∈ P}.

The function Λ takes the indices i, j of two points pi, pj ∈ P , and returns the
indices corresponding to the points in P \{pi, pj} positively oriented with respect to
pi and pj (in that order). For example, following Figure 1, Λ(3, 7) = {2, 5, 8}, and
Λ(7, 3) = {1, 4, 6}. Alternatively, the order type can be specified with the function
λ(i, j) = |Λ(i, j)|. It is not immediately clear that once the function λ is known,
Λ can be deduced. Surprisingly, this is not only true for the plane, but for any
dimension [7]. The order types generalize the common notion of linear sorting for
real numbers into the so called geometric sorting. Here, minimum and maximum
become extremal subsets of points in P . For example, if λ(i, j) = 0, then there are
no points to the left of the directed edge pipj , and both pi and pj belong to the
boundary of the convex hull. Note that the other direction works too, in this case
λ(j, i) will be a non-unique maximum of λ.
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3.1. Order type as an information state. The order type definition is
extended naturally to our landmark framework, using the landmark labels as the
indices for Λ. Of course, the robot cannot compute the determinants, because it
lacks any coordinates. Nevertheless, it is possible to compute Λ for any pair of
landmark labels. For this computation we establish the following lemma:

Lemma 1. Let the output of the sensor be of the form lods(x) = [X, i, Y, j, Z],
in which X,Y,Z are subsequences of lods(x) separated by the labels corresponding
to landmarks (i, pi) and (j, pj). If the robot is on the line segment pipj, and its
heading is pointing towards pj, then Λ(i, j) = X ∪ Z and Λ(j, i) = Y .

Proof. To determine Λ(i, j), we are looking for the landmarks to the left, of
the directed segment pipj . Consider any point in the interior of pipj , as a pivot of
a counterclockwise radial sweep starting at pj , and ending at pi. It is clear that all
the landmarks swept lie to the left of pipj . If the robot is placed according to the
conditions of the lemma, this sweep can be obtained from the cyclic sequence given
by lods(x), starting at j until i is found. By symmetry, Λ(j, i) is also found. �

The value of Λ(i, j) is determined as follows. The robot is commanded to track
landmark (i, pi) until (i, pi) disappears (the robot is at pi). Next, the robot is
commanded to track (j, pj), and at the moment (i, pi) is detected again, the robot
is guaranteed to be on pipj , pointing towards pj . Applying Lemma 1 to the sensor
reading, Λ(i, j) and Λ(j, i) are found.

Now we use Λ to construct the information space generated by the robot model.
Consider the state x = (q, E), which is unknown to the robot. Although is not
known in the general case, information about q and E is available to the robot. In
particular, partial knowledge of the order type of E can always be computed. Also,
using tracking commands together with readings from lods(x), the position of the
robot can be determined to be either on a landmark, in the segment between two
landmarks, or aligned with two landmarks but not on the segment joining them
(i.e., when one landmark occludes another). An information state is defined as the
pair (Q′,Λ′), in which Q′ refers to the possible positions of the robot with respect
to the landmarks, and Λ′ is the partial knowledge of Λ. The information space I
is the space of all such pairs.

Let I(E) be the information states for which Λ′ does not contradict the config-
uration of landmarks in E. Note that up to a relabeling of the landmarks, |I(E)| is
finite. This is because for n landmarks, there are b = n(n−1) index pairs, and thus
2b possibilities for Λ′. Also, the number of distinct sets Q′ of possible positions is
bounded by the number of combinatorial elements of the line arrangement drawn
from the lines passing through each pair of landmarks.

4. Solving Robotic Tasks

In this section we present some tasks that can be solved using the concepts
presented in previous sections. In the following examples, L is the set of landmarks
detected in the environment E, and n = |L|.

4.1. Landmarks inside a triangle. The task in this section is to compute
the subset of landmarks of L that are inside of the triangle defined by the landmarks
labeled with i, j and k. In other words, if k ∈ Λ(i, j), the robot should determine
Λ(i, j) ∩ Λ(j, k) ∩ Λ(k, i), or if k /∈ Λ(i, j), then Λ(j, i) ∩ Λ(i, k) ∩ Λ(k, j) should
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Figure 3. Orientation error. A small control error may find the
wrong orientation for the triangle. On the bottom, if the robot
follows the top-left arrow, the orientation is not computed cor-
rectly.

be computed. These two cases correspond to the two possible orientations of a
triangle, as defined before with the determinant. Since both the orientation of the
triangle and the needed values of Λ can be computed with Lemma 1, we use this
simple example to introduce a motion strategy that deals with control uncertainty.
Refer to Figure 3. The problem here is that the internal angle of the triangle
at landmark i is obtuse. This gives little margin of error for the control, and the
triangle orientation may not be computed correctly. As it can be seen for landmarks
j and k, with acute angles, the error in the control should be almost π before the
orientation is computed incorrectly. Given that a triangle has at most one obtuse
angle, the robot repeats the orientation procedure three times, one for each edge of
the triangle. If in this strategy an orientation is found more than once, it is taken
as the correct orientation of the triangle. This strategy allows for a control error
in the direction of the robot up to 2π/3.

4.2. Boundary of the Convex Hull. In this task the robot should determine
the landmarks that are on the boundary ∂hull(L) of the convex hull of the locations
of the landmarks. This task can be easily solved, if not efficiently, repeating the
previous example for each possible triplet of landmarks, until the landmarks that
do not belong to interior of any triangle are found. However, a significantly more
efficient algorithm can be constructed based on the well-known three coin algorithm
for the computation of the convex hull [9, 17]. In its normal setting, the three
coin algorithm starts by finding one landmark in the convex hull (the leftmost
for example), and sorting the remaining landmarks radially around it. Next the
landmarks are considered three by three according to this radial order. Particular
landmarks are included or removed from the boundary of the convex hull depending
if they lie to the left or right of the landmarks in the triplet. Although space
restrictions forbid us to give an exact detail of how this algorithm works, it is clear
that the information needed can be computed from the corresponding values of Λ.
It remains to be explained how to compute the first landmark in the convex hull,
and how the radial order is obtained.

The information needed is actually any landmark pair for which Λ(i, j) = 0.
These can be found as follows. First, select randomly a pair of landmark labels,
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(a) (b)

Figure 4. Retrieving the permutations that encode the configu-
ration of landmarks. In (a) the robot travels outside the convex
hull of a set of landmarks. This is naturally expressed in the dual
line arrangement on (b).

i, j, and compute both Λ(i, j) and Λ(j, i). If one of them is zero, the required pair
has been found. Otherwise, repeat this process on Λ(i, j)∪ {i, j} or Λ(j, i)∪ {i, j},
whichever has the smallest cardinality. Since at each iteration at least half of the
remaining landmarks are discarded, only O(log(n)) sensing operations are needed.
Once this pair has been found, the radial order is computed counterclockwise, from
any point on the segment joining pi and pj , with the robot pointing to either (i, pi),
or (j, pj).

4.3. Patrolling. In this example we model robotic tasks in which a robot
carefully monitors some area of the environment. As a concrete example, imagine
an unmanned flying vehicle above a terrain. The flying vehicle is given a set of way
points, which are visited sequentially. In this example, we solve a version of the
patrolling problem in which the robot performs loops around a given subset of the
landmarks. Formally, let W ⊂ L, with W ∩ ∂hull(L) = ∅. The patrolling task for
set W is defined as follows: Find M ⊂ L, such that W ⊂ M , ∂hull(M) ∩ W = ∅
and the size of M is minimal.

To solve this task, the dual of the configuration of landmarks is introduced. The
dual of a landmark l = (s(p), p), with p = (px, py), is defined as the labeled line p∗ =
(s(p), pxx + py). There are well-know properties of such dual arrangements[2, 3],
such that the intersection of two lines p∗i and p∗j , which defines a vertex in the
dual, corresponds to the line passing through pi and pj in the primal space. Also,
ordering relations are respected. Namely, if a point p is above a line m in the primal
space, then the point m∗ is above the line p∗ in the dual. Figure 4 shows the dual
arrangement for a configuration of four landmarks.

A line arrangement can be encoded with a sequence of permutations [3]. This
is done by sweeping a vertical line from left to right in the line arrangement, record-
ing the vertical order of the intersections of the vertical line with the lines of the
arrangement. Such permutations can be obtained from the primal space. As it is
shown in Figure 4, when the robot travels outside a convex hull of a set of land-
marks, a vertex of the line arrangement is read whenever two labels swap places
from one permutation to the other. Since a vertex in the dual corresponds to a line
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in the primal, only
(

n
2

)

+ 1 permutations are needed to describe the line arrange-

ment, when actually 2
(

n
2

)

could be read by the robot traveling outside the convex
hull. These permutations have other nice symmetric properties, and the reader is
referred to [3].

There some minor complications for obtaining such permutations with the robot
model described. First, the robot cannot, in general, travel outside a convex hull,
since it only knows how to track landmarks. To solve this, we need the following
lemma:

Lemma 2. Let L be a set of landmarks, let Z be a subsequence of lods(x) and
containing only the labels corresponding to the landmarks in ∂hull(L) (elements of
Z may not necessarily appear consecutively in lods(x)). Then Z is the same circular
subsequence for any position of the robot inside hull(L).

Proof. For labels s(a) and s(b) to switch places in Z, at some moment they
should map to the same position in the landmark order detector. This means that
a, b and the robot are collinear, and that either a is contained in the line segment
from the robot position to b, or b is contained in the line segment from the robot
position to a. Since no three landmarks are collinear, the robot must be outside
hull(L). �

From Lemma 2, the robot can obtain the counterclockwise order of the land-
marks on the boundary of the convex hull. Instead of traveling properly outside the
convex hull, the robot tracks sequentially each of the landmarks in the boundary,
following the order found. When the robot arrives at a landmark, the corresponding
permutations are generated in the natural manner from the reading of the land-
mark order detector at such location. Finally, the landmark order detector gives
cyclic permutations, but the arrangement description needs the extremal point in
a particular direction to come first. This is easily solved by ordering the cyclic
permutation such that the label of the landmark being tracked appears first. The
following lemma is a well-known result for dual line arrangements (expressed in our
framework):

Lemma 3. Let L∗ be the set of lines dual to the set of landmarks L. Let mv

be a vertical line, and let [l∗1, l
∗

2, . . . , l
∗

n] for l∗i ∈ L∗ be sorted according to the y-
coordinate of the intersection between mv and l∗i . Then the landmarks l1 and ln
belong to ∂hull(L).

Proof. Let mv intersect the x − axis at x. Consider all the lines intersect-
ing the convex hull of L with slope x. Since the duality transformation is order
preserving, then l1 is below and ln is above all such lines. �

Corollary 1. Let L∗ be the set of lines dual to the set of landmarks L. Let
mv be a vertical line, and let [l∗1, l

∗

2, . . . , l
∗

n−1, l
∗

n] for l∗i ∈ L∗ be sorted according to
the y-coordinate of the intersection between mv and l∗i . Let l1, l2, ln−1, and ln be
the duals of l∗1, l

∗

2, l
∗

n−1, and l∗n respectively. Then l2 is in ∂hull(L \ {l1}), and ln−1

is in ∂hull(L \ {ln}).

Proof. Consider L∗ \ {l∗1} and L∗ \ {l∗n}, and apply Lemma 3. �

The patrolling problem can be solved as follows. Assume the robot has com-
puted the permutations encoding the dual arrangement of L. The algorithm is
based in the following iteration. Set L0 = L. For i > 0, find l ∈ ∂hull(Li) such that
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Figure 5. Swap lines. Crossing a half-line swaps the order of the
respective landmarks in the reading of the landmark order detector.
Such half-lines are called swap lines.

∂hull(Li \ {l}) does not contain any landmark in W . If no such landmark exists,
set M = Li. Else, set Li+1 = Li \ {l} and repeat.

By Corollary 1, landmarks can be removed from Li, and the boundary of the
convex hull can be read directly from the permutations encoding the dual arrange-
ment. Moreover, the permutations with the landmark removed encode the dual
arrangement of Li+1. A landmark may not be removed if this will make a land-
mark in W to become the first, or last in the permutations encoding the dual
arrangement. The robot can then patrol the landmarks in W , by following the
landmarks on the boundary of M in counterclockwise order.

4.4. Navigation. The final task described in this paper is navigation. In
our framework, a navigation goal is a sequence g of landmark labels. Formally,
the navigation task is defined as follows: Move the robot such that a state x with
lods(x) = g is reached. Report if g cannot be attained given the configuration of the
landmarks in the plane.

Before describing the navigation algorithm, we need to describe what is achieved
by moving the robot to a place where a particular permutation is sensed. For this
purpose, consider the partition of the plane in which locations inside the same cell
generate the same reading in the landmark order detector. This can be considered
as an aspect graph [10], in which a cyclic permutation is an aspect of the configura-
tion of landmarks. The decomposition is determined by half-lines, that if crossed,
generate a change in the permutation order of a pair of landmarks in lods(x). Each
pair of landmarks generate a pair of half-lines, which are referred to as swap lines
(see Figure 5).

Given that the robot cannot travel outside hull(L), the navigation task is only
defined for cells whose intersection with hull(L) is not empty. The navigation task
is only meaningful if different cells generate different cyclic permutations for the
landmark order detector. To prove this, the following Lemma is proposed:

Lemma 4. Let C be the set of cells of the decomposition generated by the swap
lines that intersect hull(L), and let Ci, Cj ∈ C. If Ci and Cj are not the same
cell, and if they are bounded by the same swap line m, then they generate different
readings in the landmark order detector.

Proof. Let (s(a), a) and (s(a′), a′) be the landmarks that generated m. Con-
sider a motion of the robot from Ci to Cj in a straight line arbitrarily close to m.



10 BENJAMÍN TOVAR, LUIGI FREDA, AND STEVEN M. LAVALLE

This makes labels s(a) and s(a′) to appear consecutive in lods(x) for the duration
of the motion. Since Ci and Cj are different, then at least one swap line intersects
m between cells Ci and Cj . Let such swap line be generated by landmarks (s(b), b)
and (s(b′), b′). Crossing this line swaps the order of s(b) and s(b′). This swap-
ping could be reverted if the other swap line generated by (s(b), b) and (s(b′), b′) is
crossed, or if one of (s(b), b) or (s(b′), b′) swaps with all the other landmarks. The
first situation is not possible, since both swap lines lie in the same line, and m can
only intersect one of them. The other case implies that s(a) and s(a′) are at some
instant not consecutive in lods(x). This is not possible by traveling arbitrarily close
to m. Thus, the readings of lods(x) from Ci and Cj will differ in at least a pair of
landmarks. �

The next theorem states that the landmark order detector generates different
readings for cells intersecting the convex hull of the configuration of landmarks.

Theorem 1. Let C be the set of cells of the decomposition generated by the swap
lines that intersect hull(L). Then for any two different cells Ci and Cj, the cyclic
permutations generated by lods(x) when the robot is inside Ci or Cj are different.

Proof. By induction on the the number of landmarks n = |L|. When n = 3,
there is a single cell intersecting hull(L). For n > 3, assume the statement is true
for n landmarks. Then, for n+1, adding the new landmark generates 2n swap lines,
some of which stab cells in C. Cells stabbed by the same swap line will have different
cyclic permutations, by Lemma 4. Since the new landmark does not change the
relative ordering of any other three landmarks, by the induction assumption, cells
that do not share one of the new swap lines will also have different permutations. �

By Theorem 1 it is known that different “places” will have different cyclic
permutations associated. Given that the robot does not have the landmarks coor-
dinates, the exact geometrical decomposition cannot be constructed. Nevertheless,
the robot can navigate such that a particular cyclic permutation g appears in the
landmark order detector. First of all, the robot has to decide if g is attainable in
the configuration of landmarks. This can be decided using Λ as follows:

Lemma 5. Let g = [s(p1), s(p2), . . . , s(pn)], and let g(s(pi), s(pj)) be the set
whose elements are the elements of the subsequence of g starting at s(pi+1), ending
at s(pj−1). If g is attainable in the configuration of landmarks of L, then for each
landmark label s(pi) there is a landmark label s(pj) such that Λ(s(pi), s(pj)) =
g(s(pi), s(pj)). The directed line passing from pi to pj is called the polar line of
(i, pi), and (j, pj) is called a pole of (i, pi).

Proof. Suppose that g is attained when the robot is at point p. Consider
the line m passing through p and the landmark at pi. Now rotate m clockwise,
with pi as a pivot, until m hits another landmark, say (s(pj), pj). We have that
Λ(s(pi), s(pj)) = g(s(pi), s(pj)), otherwise, the order required for g is not attained
((i, pi) or (j, pj) would appear in the wrong place according to g). �

While the region in which g is attained is bounded by polar lines, not all polar
lines intersect such region. However, a landmark and its pole appear consecutive
in lods(x) if the corresponding polar line bounds the goal region. Thus, the search
for the goal permutation g is reduced to such polar lines. Suppose that a polar line
is determined by landmarks (s(a), a) and (s(b), b). If both of them belong to the
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(a) (b)

Figure 6. The two general cases for navigation in the polar lines.
In (a) the polar line is determined by two landmarks in the bound-
ary of the convex hull, and no further computation is required. In
(b), the intersection of the polar line with the boundary of the con-
vex hull is found by a change in the order of the landmarks which
determine the polar line. With this, the robot is able to traverse
the polar line.

boundary of the convex hull, then the robot traverses the line segment ab. This is
done, for example, by tracking (s(a), a) and then tracking (s(b), b) (see Figure 6). If
the landmarks do not belong to the boundary of the convex hull, the intersection of
the polar line with the convex hull is found by the robot traveling in the boundary
of the convex hull, until landmark labels s(a) and s(b) swap places. At this point,
the robot tracks any of the landmarks, which traverses at the same time the polar
line. Note that the robot may not need to traverse the convex hull boundary to
find this intersections, since this information may be already available from Λ. Note
also that the tracking takes place once s(a) and s(b) swap places in lods(x), thus
the robot travels arbitrarily close, but not exactly on the polar line.

5. Future Work

There is a natural description for the information space of n landmarks with
the braid group Bn on n strands. Each strand represents a unique landmark,
and a crossing between two strands represents a swap in the cyclic order of the
landmarks. The strand corresponding to the landmark closer to the robot is defined
to cross over the other strand. See Figure 7 for an example. Given that we are
dealing with circular permutations, this suggest that the strands are more naturally
described as crossing in a cylinder. This description is suitable to answer questions
in the absence of control history (i.e., when the path followed by the robot is
unknown). For example, was a group of landmarks surrounded by the robot?, did
the robot perform a non-trivial loop?, etc. Our immediate interest is focus on
the first Dehn’s fundamental problem [14], that is, to identify the words that the
identify the identity. Such words naturally represent all the robot’s paths that are
loops. We are hopeful that this description will raise other interesting questions.

Since the functions Λ and λ are equivalent, it is plausible to allow some recog-
nition error of landmarks. This idea is as follows. If the landmark order detector
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Figure 7. Encoding the sensor history with braids. There is a
natural description of the information space of n landmarks with
the braid group on n strands, Bn. Each strand represents a land-
mark, and each crossing represents a change in the circular order.
In the figure, the robot follows a path that surrounds landmark 1.
The changes in the circular order are encoded with the braids on
the right.

is not able to identify a landmark, but it is able to detect that indeed a landmark
is present, this recognition error may be corrected using the λ function. For exam-
ple, the robot may be able to detect landmarks much farther than the maximum
distance for a perfect identification. The λ function seems the appropriate tool for
such situations.

Given the information the permutations provide, one may wonder if it is pos-
sible to recover the coordinates of an equivalent set of landmarks. That is, is it
possible to construct the coordinates of a set of landmarks, such that this construc-
tion has the same order type as the original set? This turns out to be a very hard
question. Just deciding if a sequence of permutations can be realized in the plane
is NP-hard[16]. Moreover, representing such coordinates may require exponential
number of bits[8]. Nevertheless, our problem may be simpler, since the robot proves
that the permutations are realizable (by sensing them). If not for the general case,
realizations can be found for small subsets of landmarks.

Work remains to be done to remove some of the assumptions made on this
paper. One of them is the infinite range assumption for the landmark order detector,
since the concepts presented still hold for local neighborhoods of landmarks. One
solution, although not very efficient in the number of sensing operations, is to
apply directly the algorithms presented in [5], in the context of sensor networks.
Determining the relations between neighborhoods of landmarks, also allows the
introduction of environment obstacles.

Is it possible to construct the coordinates of a set of landmarks, such that this
construction has the same order type as the original set? This turns out to be
a very hard question. Deciding if a sequence of permutations can be realized in
the plane is NP-hard [16]. Moreover, representing such coordinates may require
exponential number of bits [8]. Nevertheless, our problem may be simpler, since
the robot proves that the permutations are realizable (by sensing them). If not for
the general case, realizations can be found for small subsets of landmarks.
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