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Summary. This paper introduces a problem in which an agent (robot, human, or animal) travels among obstacles
and binary detection beams. The task is to determine the possible agent path based only on the binary sensor data.
This is a basic filtering problem encountered in many settings, which may arise from physical sensor beams or virtual
beams that are derived from other sensing modalities. Methods are given for three alternative representations: 1) the
possible sequences of regions visited, 2) path descriptions up to homotopy class, and 3) numbers of times winding
around obstacles. The solutions are adapted to the minimal sensing setting; therefore, precise estimation, distances,
and coordinates are replaced by topological expressions. Applications include sensor-based forensics, assisted living,
security, and environmental monitoring.

1 Introduction

Imagine installing a bunch of cheap, infrared eye beams throughout a complicated warehouse, office, or
shopping center; see Figure 1. Just like the safety beam on a motorized garage door, a single bit of information
is provided: Is the beam currently obstructed? Now suppose that there are one or more moving bodies, which
could be people, robots, animals, and so on. If the beams are distinguishable and we know the order in which
beams were crossed, what can we infer about the paths taken by the moving bodies? This may be considered
as a filtering problem, but with minimal, combinatorial information, in contrast to popular Kalman filters
and particle filters.

This paper proposes the study of inference problems that arise from bodies crossing beams among ob-
stacles. It turns out that the subject is much more general than the particular scenario just described. In
addition to binary detection beams or regions placed around an environment, the mathematical model arises
in other contexts. For example, if a robot carries a camera and certain image features critically change, then
the event may be equivalent to crossing a “virtual” beam in the environment (see Section 3).
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Fig. 1. What can be determined about the path using only the word cbabdeeefe, which indicates the sequence of
sensor beams crossed?



Our questions are inspired by many problems that society currently faces. There is widespread interest
in developing assisted living systems that use sensors to monitor the movements of people in their homes
or hospitals. How much can be accomplished with simple detection beams, which are affordable, robust,
and respect privacy? Alternatively, imagine the field of sensor-based forensics, in which police investigators
or lawyers would like to corroborate or refute a testimony about how people moved at a crime scene. A
simple verification test might based on the sequence of beam crossings might establish that someone is lying.
Other problems include tracking wildlife movement for conservation purposes, landmark-based navigation
with outdoor vehicles, sensor-assisted safe child care, and security.

Suppose there is one moving body, called an agent, and we have the information that a sequence of beams
was crossed. We focus on three kinds of questions: 1) Supposing regions are delineated by the arrangement
of beams, what possible sequences of regions did the agent visit? 2) What path did the agent take up to
homotopy? 3) How many times did the agent wind around each obstacle? These questions form the basis
of Sections 4 to 6. Multiple agents are briefly considered in Section 7. The last two questions are familiar
problems in topology and group theory, and are motivated by homotopy and homology, respectively. In
particular, the topic is close to word problems in group theory, in which it must be determined whether two
words (e.g., abac−1b and cab−1) are the same group element. In the general group-theoretic setting, such
questions go back to 1910 with Dehn’s fundamental problems [4]; decidability and complexity results can be
reviewed in [9].

The most closely related works are algorithms to decide whether two paths in a punctured plane are
homotopic [1, 8]. These algorithms are based on extending vertical lines from each of the punctures. The
vertical lines serve two purposes: First, any given path is represented with the sequence of vertical rays
it intersects. Second, they connect the different fibers of a covering space of the punctured plane. In this
context, two paths are homotopic if and only if they have the same endpoints when they are lifted to the
universal covering space. The novelty in our work is that we start with sensor words and must first convert
them into path descriptions. This represents an inverse problem that is constrained by the geometry and
topology of the sensors and obstacles.

Following a minimal sensing perspective in the context of sensor networks, works such as [18, 25, 26]
detect and count targets using binary proximity sensors. The binary proximity sensors can be considered
as overlapping beams that go off when an agent is in range. Tracking targets is done with a particle filter,
in which each particle is a candidate trajectory of a target. In robotics, the use of particle filters has been
very successful in solving tasks such as simultaneous localization and mapping (SLAM) [2, 3, 5, 22, 24, 28].
Traditionally, the focus of SLAM approaches is the production of an environment representation based on
metric information. From a sensing perspective, algorithms such as the ones used in SLAM, are concerned
with the problem of sensor fusion, in which several sensors are added to increase the accuracy of a solution.
In contrast, others have studied the minimal sensing requirements to solve a particular task [10, 12, 23, 30].
This typically involves a characterization and simplification of the information space associated with the
task [20], which considers the whole histories of commands given to the actuators and sensing observations.
From an information space perspective, in [31] the location of moving agents is inferred from combinatorial
changes in sensing observations. Such combinatorial changes may correspond to visual events [7], which can
be abstracted in our work as sensor beams. An example of this is presented in this paper in Section 3,
in which the combinatorial changes correspond to crossing of landmarks [29]. The careful consideration of
visual events is the basis for solutions to problems such as localization [6, 14] and visibility-based pursuit-
evasion [11, 13, 17, 21, 27].

2 Problem Formulation

Let W ⊆ R
2 be the closure of a contractible open set. A common case is W = R

2. Let O be a set of n

pairwise-disjoint obstacles, which are each the closure of a contractible open set. Let X be the free space,
which is the open subset of W that has all o ∈ O removed. Let B be a set of m beams, each of which is an
open linear subset of X. If W is bounded, then every beam is a line segment with both endpoints on the
boundary of X. (Note that beams may connect an obstacle boundary to itself, another obstacle’s boundary,
or the boundary of W ; also, a beam may connect the boundary of W to itself.) If W is unbounded, then some
beams may be open rays that emanate from the boundary of an obstacle or even lines that are contained in
the interior of W .
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Regions

The collection of obstacles and beams induces a decomposition of X into connected cells. If the beams in B
are pairwise disjoint, then each B ∈ B is a 1-cell and the 2-cells are maximal regions bounded by 1-cells and
portions of the boundary of X. If beams intersect, then the 1-cells are maximal segments between any beam
intersection points or boundary elements of X; the 2-cells follow accordingly. Every 2-cell will be called a
region.

Agent path

Suppose that an agent moves along a state trajectory (or path) x̃ : [0, 1] → X, in which [0, 1] is imagined as
a time interval. (Alternatively, [0, tf ] could be allowed for any tf > 0; however, this flexibility is unnecessary
because speed and time scaling are irrelevant to our questions.)

Sensor model

If the agent crosses a beam, what exactly is observed? Assume that the set of possible x̃ is restricted so that:
1) every beam crossing is transverse (the agent cannot “touch” a beam without crossing it and the agent
cannot move along a beam) and 2) the agent never crosses an intersection point between two or more beams
(if any such intersections exist).

Let L be a finite set of labels. Suppose each beam is assigned a unique label by some bijection α : B → L.
The sensor model depicted in Figure 1 can be obtained by a sensor mapping h : X → Y , in which Y = L∪{ε}
is the observation set. If x̃(t) ∈ B for some B ∈ B, then h(x̃(t)) = α(B); otherwise, h(x̃(t)) = ε, which is a
special symbol to denote “no beam”. This is referred to as the undirected beam model because it indicates
that the beam was crossed, but we do not know the direction.

To obtain a directed beam model, let D = {−1, 1} be a set of directions. In this case, the observation set
is Y = (L × D) ∪ {ε}, and the sensor mapping yields the orientation of each beam crossing (note that in
addition to x̃(t), the sensor mapping must now know what side of the beam the agent was on at time t−).

So far, the beams have been fully distinguishable because α is a bijection. It is possible to make |L| < m

(the number of beams) and obtain some indistinguishable beams, in which case α : B → L is not bijective.
If a collection of beams is disjoint, distinguishable, and directed, the case will be referred to as ddd-beams,

which is the most ideal situation.

Sensor words

What observations are accumulated after x̃ is traversed? We assume that all ε observations are ignored,
resulting in a sequence ỹ, called the sensor word, of the remaining observations (ỹ is a kind of observation

history [20]). For the example in Figure 1, suppose L = {a, b, c, d, e, f}. In the case of a undirected beams,
the sensor word is cbabdeeefe. If the beams were directed so that left-to-right and bottom-to-top are the
“forward” direction, then the sensor word could be encoded as c−1ba−1b−1dee−1efe−1. For each l ∈ L, l

denotes the forward direction and l−1 denotes the backward direction.

Inference

Let Ỹ be the set of all possible sensor words and let X̃ be the set of all possible state trajectories. Let
φ : X̃ → Ỹ denote the mapping that produces the sensor word ỹ = φ(x̃).

Suppose that ỹ has been obtained with no additional information. What can be inferred about x̃? Let
φ−1(ỹ) denote the preimage of ỹ:

φ−1(ỹ) = {x̃ ∈ X̃ | ỹ = φ(x̃)}. (1)

The inference problem amounts to: Under what conditions can we compute a useful description of the
preimages?

The following are three ways to partially characterize these preimages, forming the basis of Sections 4,
5, and 6, respectively:

1. Using ỹ, compute the set of possible sequences of regions visited by x̃. This characterizes φ−1(ỹ) in a
stage-by-stage manner.

2. If there are n obstacles, the fundamental group π1(X) [15] is the free group Fn on n letters. Using
some combinations of initial conditions, and assuming fixed starting and stopping paths, compute a
representation of the possible paths as an element of Fn. This clearly throws away some information by
considering only the homotopy equivalence class of paths. Hence, it is an over-approximation of φ−1(ỹ).
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3. Compute the signed number of windings around each obstacle, in which the order that windings are made
is dropped. This throws away even more information than the homotopy equivalence class; therefore, it
yields an even larger over-approximation of φ−1(ỹ).

Using these representations, we can answer questions such as: Do two sensor words correspond to homotopic
paths? Do they correspond to homologous paths? Is it possible for them to visit the same regions in the
same order?

Combinatorial filters

Whenever possible, we try to design a filter, which computes statistics incrementally as new data are obtained.
The most common example is the Kalman filter, which computes the next mean and covariance based on the
new sensor reading and the previous mean and covariance [16, 19]. In this paper, we design combinatorial

filters, which are minimalist non-probabilistic analogs to Bayesian filters. For a sensor word ỹk of length k,
let κ(ỹk) denote a statistic, which could, for example, be the set of possible current regions. A combinatorial
filter efficiently computes κ(ỹk+1) using only κ(ỹk) and yk+1, in which yk+1 is the last (most recent) letter
in ỹk+1. This implies that ỹk does not need to be stored in memory; only κ(ỹk) is needed.

3 Concrete Scenarios

This section motivates the general formulation of Section 2 to illustrate the wide range of settings to which
it applies.

Physical sensor beams

The most common set of examples corresponds to actually engineering a physical environment with the
placement of cheap beam sensors among with nonconvex obstacles. Recall Figure 1. In this case, virtually
any model from Section 2 can be realized in practice. In the remainder of this section, we obtain beams
virtually via other sensing modalities.

Crossings of landmarks

(a) (b)

Fig. 2. a) Virtual beams based on pairwise crossings in an image, b) virtual beams based on passing directly north
of an obstacle.

Imagine that a robot moves in a large field, in which several landmarks (e.g., radio towers) are visible
using an omni-directional camera. This can be modeled by W = R

2 and O as a set of point obstacles.
Suppose that the landmarks are fully distinguishable and some simple vision software indicates when a pair
of landmarks are “on top of each other” in the image. In other words, the robot and two landmarks are
collinear, with one of the two landmarks in the middle. The result is mathematically equivalent to placing
n(n − 1) beams as shown in Figure 2.a, in which rays extend outward along lines passing through each pair
of landmarks.
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Several interesting variations are possible based on precisely what is detected in the image. If the only
information is that oi and oj crossed each other in the image, then all beams are undirected and the two
beams associated with oi and oj are indistinguishable. If we know whether oi passes in front of or behind
oj , then the beams become fully distinguishable. If we know whether oi passes to the left or right of oj in
the image, then the beams even become directed.

Passing over a windshield mark

Keeping the landmark-based example, consider changing the sensing so that instead of detecting pairwise
landmark crossings, the robot simply knows when some landmark is directly south. This could be achieved
by using a compass to align the vehicle and noting when a landmark crosses a fixed spot on the image plane
or windshield. Figure 2.b shows virtual beams that are obtained in this way. Directed and undirected beam
models are possible, based on whether the sensor indicates the left-right direction that the landmark moves as
it crosses the fixed spot. An important property of this model is that the beams do not intersect (assuming the
points are not collinear). Section 5 utilizes this property to reconstruct the path up to homotopy equivalence.

4 Region Filters

In this section, we present a simple method to keep track of the possible regions in which the agent might be
after obtaining the sensor word. Suppose that n obstacles O and m beams B are given, which leads to the
cell decomposition of X, discussed in Section 2. The beams may intersect and may or may not be directed.

Let R0 denote the set of possible regions that initially contain the agent, before any sensor data is
observed. Let Rk denote the set of possible regions after a sensor word ỹk, of length k, has been obtained.
The task is to design a filter that computes Rk+1, given Rk and yk+1, which is the most recent observation
in ỹk+1.

r1

r2

b a

br1

r2

a

a b

(a) (b)

Fig. 3. a) Two intersecting directed beams and four region sequences (and possible paths) that can be inferred from
the sensor word ab; b) the corresponding graph G.

Let G denote a directed (multi)graph that possibly contains self-loops. Each vertex of G is a region, and
a directed edge is made from region r1 to region r2 if either: 1) they share an interval of an undirected beam
along their boundary, or 2) they share an interval of a directed beam that is directed from r1 to r2. The
edge is labeled with the beam label. A self-loop in G is made if it is possible to cross a beam and remain in
the same region, which is illustrated in Figure 3.a; a or b may be crossed while remaining in r1 the whole
time. Also, note that if the initial region is unknown and ỹ = ab is the sensor word, there are four possible
interpretations in terms of the possible regions traversed. The corresponding graph G is shown in Figure 3.b.
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Simulation as a Nondeterministic Machine

The region filter is implemented on G in a way similar to the simulated operation of a nondeterministic finite
automaton. The method keeps track possible states by marking the corresponding vertices of G. Initially,
mark every vertex in R0. The filter proceeds inductively. At stage k, the marked vertices are precisely those
corresponding Rk. Suppose that yk+1 is observed, which extends the sensor word by one observation. For
each marked vertex, look for any outgoing edge labeled with yk+1. In each case, the destination vertex is
marked. If yk+1 = l−1 for some l ∈ L and an ingoing edge is labeled with l, then the edge’s source vertex is
marked. Any vertex that was marked at stage k but did not get marked in stage k +1 becomes cleared. Note
that the total number of marked vertices may increase because from a single vertex there may be multiple
edges that match yk+1. Also, this approach works for the case of partially distinguishable beams because the
match is based on the observation yk+1, rather than the particular beam. The set of marked vertices yields
Rk+1.

Suppose that after computing Rk, we would like to know the possible sequence of regions traversed by
the agent. The graph G can be used for this computation as well by taking each region in Rk and working
backwards using the sensor word to construct possible regions at earlier stages. Note that once Rk is given,
the set of possible regions Ri, which was computed at some earlier stage i < k, might contain regions that
are known at stage k to have been impossible. In other words, information gained at later stages can refine
our belief about what might have occurred several stages earlier.

Algorithm complexity

The region filter based on marking vertices in G runs in time O(|V | + |E|) for each update from k to k + 1,
in which |V | and |E| are the numbers of vertices and edges in G, respectively. Note that the number of
computations grows with the number of marked vertices, which reflects the amount of uncertainty about the
current region. In some cases the number of marked vertices cannot increase, as in the case of ddd-beams.
Using exponential space (undesirable), each update can be performed in constant time, similar to the classical
NFA to DFA transformation.

Computed example

To illustrate the region filters, we present simulation for the concrete scenario of beams coming from crossings
of landmarks. We computed two cases. In the first one, all beams are distinguishable and directed (see
Figure 4). In the second, the only information available at a crossing is the corresponding pair of landmarks.
Therefore, the beams are not directed, and each beam label can be reported by exactly two beams (see
Figure 5). In these examples, a beam is identified with the pair of landmarks that produce it.

5 Reconstruction Up to Homotopy

In this section, the task is to use the sensor word ỹ to reconstruct a description of possible paths x̃ ∈ X̃

up an equivalence class of homotopic paths. Assume that all paths start and stop at some fixed basepoint

x0 ∈ X which lies in the interior of some region; this assumption is lifted at the end of the section. Paths
can be described up to homotopy using the fundamental group π(X), which is known to be Fn for a planar
region with n holes (caused by the obstacles). Each element of Fn is an equivalence class of homotopic loop
paths with endpoints fixed at x0. The set Fn is called the free group on n letters, and its elements can be
considered as the set of all finite strings that can be formed using any l ∈ L and their inverse forms l−1. Since
Fn is a group, it also contains an identity element ε. Furthermore, the relations εl = lε = l and l l−1 = ε

must be applied to shorten strings by applying cancellations and deleting identity elements. The result is
referred to in group theory as a reduced word.

An important issue with Fn is its choice of basis. Recall from linear algebra that there are many ways
to define and transform bases for a vector space. A similar but more complicated situation exists for Fn.
For any fixed ordered basis (called letters above), a1, . . ., an, every other possible ordered basis is given by
g(a1), . . ., g(an). The elements g run over every element in the automorphism group of Fn, which is denoted
by Aut(Fn). In other words, there is a natural one-to-one correspondence between every ordered basis of Fn

and Aut(Fn). This structure is currently under active investigation in pure mathematics. In this paper, a
basis of Fn will be chosen in the most straightforward way and other bases will be directly transformed to
it. The full structure of Aut(Fn) will thus be avoided.
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Fig. 4. Region filter simulation. Crossings of landmarks for directed and distinguishable beams.

5.1 Perfect beams

Let a beam be called outer if it is either an infinite ray (possible only if X is unbounded) or it is a finite
segment that connects an obstacle to the boundary of W . For a set of n obstacles, let a perfect collection of
beams mean that there are exactly m = n ddd-beams (recall that this means disjoint, distinguishable, and

directed beams), with exactly one outer beam attached to each obstacle. For convenience, further assume
that all beams in a perfect collection are oriented so that a counterclockwise traversal corresponds to the
“forward” direction, as shown in Figure 6.

Proposition 1. For a perfect collection of beams, the sensor word ỹ maps directly to an element of Fn by

simply renaming each letter.

Proof: While preserving homotopy equivalences, the obstacles and basepoint can be moved into a canon-
ical form as shown in Figure 7. This corresponds to choosing a particular basis of Fn in which each generator
ai is exactly a counterclockwise loop around one obstacle. Each bi corresponds to a beam and letter in L.
Using the given sensor word ỹ, a word f(ỹ) ∈ Fn is formed by mapping each ai in ỹ to bi in f(ỹ). Each beam
crossing then corresponds directly to a generator of Fn under the chosen basis. This converts every ỹ into
an element of Fn that represents the loop path that was traversed using basepoint x0. ⊓⊔

Note that reductions of the form εl = lε = l and l l−1 = ε may be performed in ỹ or f(ỹ), either before
or after the mapping f is applied.

5.2 Sufficient ddd-beams

What if the collection of beams is not perfect? For some arrangements of obstacles, it might not even be
possible to design a perfect collection (unless beams are allowed to be nonlinear). Suppose that a collection
B of m ≥ n ddd-beams is given. It is called sufficient if all of the resulting regions are simply connected;
see Figure 8.a. Note that any sufficient collection must contain at least one outer beam. Also, any perfect
collection is also sufficient.
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Fig. 5. Region filter simulation. Crossings of landmarks for undirected beams and partially distinguishable beams.
Each beam label can be reported by exactly two beams.
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Fig. 6. A perfect collection of beams.
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Fig. 7. A construction that converts the sensor word ỹ into an element of the fundamental group Fn.
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Fig. 8. a) A sufficient collection of ddd-beams; b) a minimally sufficient collection of ddd-beams forms trees that
each contain one outer beam. This example is obtained by removing beams from the the figure on the left.

Suppose that a sensor word ỹ is obtained for a sufficient collection B of beams. The first step in describing
the path as an element of Fn is to disregard redundant beams. To achieve this, let B′ ⊆ B be a minimal
subset of B that is still sufficient. Such a collection is called minimally sufficient and can be computed using
spanning tree algorithms such as depth-first or breadth-first search. An example is shown in Figure 8.b.

Proposition 2. For a minimally sufficient collection B of ddd-beams, the sensor word ỹ maps directly to an

element of Fn by simply renaming each letter; however, a different basis is obtained for Fn in comparison to

Proposition 1.

Proof: A basis for the fundamental group is defined as follows. For each tree of beams in B, a collection
of loop paths can be formed as shown in Figure 9. Each loop must cross transversely the interior of exactly
one beam and enclose a unique nonempty set of obstacles. Such loops always exist and can be constructed
inductively by first enclosing the leaves of the tree and then progressing through parents until a loop is
obtained that traverses the outer beam. Since there is only one region, it is possible to inductively construct
such a collection of loops for every tree of beams in B. The total collection of loops forms a basis of Fn,
which can be related to the basis in Proposition 1 via classical Tietze transformations. The mapping f from
ỹ to f(ỹ) ∈ Fn is once again obtained by mapping each letter in ỹ to its corresponding unique loop that
traverses the beam. ⊓⊔

Using Proposition 2, a simple algorithm is obtained. Suppose that any sufficient collection B of ddd-
beams is given and a sensor word ỹ is obtained. A spanning tree B′ ⊆ B of beams is computed, which is
minimally sufficient. Let L′ ⊆ L denote the corresponding set of beam labels. To compute the element of
Fn, the first step is to delete from ỹ any letters in L \L′. This yields a reduced word ỹ′ for which each letter
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Fig. 9. Forming a basis using a sufficient tree of beams.

can be mapped directly to a loop using Proposition 2 to obtain a representation of the corresponding path
in Fn. Once again, reductions based on the identity and inverses in Fn can be performed before or after the
mapping is applied.

5.3 The general case

Consider a collection B of beams in which some may intersect, some may be undirected, and some may
even be indistinguishable. The collection is nevertheless assumed to be sufficient, which means that all of
the corresponding regions are simply connected. Rather than worry about making a minimal subset of B,
the method for the general case works by inventing a collection of imaginary beams that happens to be
minimally sufficient. Since the ambiguity may be high enough to yield a set of possible paths, the region
filter from Section 4 is used.

Before any sensor words are processed, the following preprocessing steps are performed based on W , O,
B, L, and α:

1. Compute the arrangement of regions and multigraph G from Section 4.
2. For each vertex in G choose a sample point in its corresponding region.
3. For each directed edge e in G, compute a piecewise-linear sample path that: i) starts at the sample point

of the source vertex of e, ii) ends at the sample point of the destination vertex of e, and iii) crosses
the beam associated with e in a manner consistent with its label. The sample path cannot intersect any
other beams.

4. Construct any minimally sufficient collection BI of imaginary ddd-beams. A convenient choice is to make
all imaginary beams vertical.

5. For all computed sample paths from Step 3, compute their intersections with the imaginary beams of
Step 4 and record the order in which they occur.

Now suppose that a sensor word ỹ is given. The region filter of Section 4 is used to determine the set
of possible region sequences. For each region sequence, a path x̃′ is obtained from the corresponding sample
points and paths in G. An imaginary sensor word ỹ′ is obtained by the sequence of beams in BI that are
crossed by x̃′. Relying on Proposition 2, ỹ′ can be mapped directly to an element of Fn. As usual, reductions
can be applied to ỹ′ or its image in Fn. Once elements of Fn are computed and reduced for each possible
region sequence, duplicates are removed to obtain the complete set of possible homotopically distinct paths
based on the sensor word ỹ. Note that BI essentially allows the user to define whatever basis of Fn is desired
to express the result.

Now remove the assumption that only loop paths are executed using a basepoint x0. If all paths start at
some x0 and terminate at some x1, then a fixed path segment that connects x1 back to x0 can be chosen.
This path may intersect some beams, which is false information; however, actual possible paths executed by
the agent can at least be compared up to homotopy. If either of the endpoints is not fixed, then all paths
become trivially homotopic by continuously shrinking each path to the other basepoint. One possibility is to
assume that there are several possible fixed points based on the starting and final regions produced in each
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sequence from the region filter. In this way, possible paths can at least be compared if their starting and
terminating regions match.

6 Path Winding Numbers

Rather than characterizing paths up to homotopy, this section considers the number of times the path
“winds” around each obstacle. Suppose that the agent travels along a loop path. There is an integer winding

number vi ∈ Z for each oi ∈ O, in which mi is defined as the number of times the path wraps counterclockwise
around oi after deleting all other obstacles and pulling the path tight around oi using homotopy. If there are
n obstacles, then a vector of n winding numbers is obtained. Two paths are called homologous if and only if
their vector of winding numbers are identical.

6.1 Perfect beams

In the case of perfect beams, the winding numbers are obtained by directly “abelianizing” the sensor word
ỹ. Due to Proposition 1, the sensor word maps directly to the free group element f(ỹ) ∈ Fn. The winding
numbers are then obtained by applying the commutativity relation to f(ỹ) (or conveniently, directly to ỹ)
and sorting the terms. For example, ỹ = aba−1bbab−1b−1ab−1b−1b−1 is abelianized to:

ỹ =aba−1bab−1b−1ab−1b−1b−1

=aaaa−1bbb−1b−1b−1b−1b−1

=a2b−3.

(2)

The first step sorts the terms, and the second step performs cancellations. This result is expressed as a
monomial in which lk is a sequence of k l’s and l−k is a sequence of k l−1’s for each l ∈ L. The winding
numbers are simply the exponents; for (2) we obtain w = (2,−3). Note that the winding numbers can
computed in time O(|ỹ|) without actually sorting by simply maintaining n counters, one for each letter in
l ∈ L. Scan across ỹ and increment or decrement each counter, based on whether l or l−1, is encountered,
respectively. Note that this makes a constant-time combinatorial filter, as defined in Section 2, by computing
the winding numbers wk+1 at step k + 1 from the winding number vector wk and the last observation yk+1,
which is the last letter of ỹk+1.

6.2 Sufficient ddd-beams

Once a minimally sufficient collection is determined, the computation for this case then proceeds in the same
way as for perfect beams. This yields winding information, but it needs to be transformed to obtain the
correct result. Recall the basis from Figure 9 and suppose that for a path, the abelianized word obtained is
a5b−3c4d. Each exponent may contain information about multiple winding numbers. For example, a5 implies
that the agent wrapped 5 times around o3, but it also wrapped 5 times around o1, o2, and o4. Likewise, b−3

wraps −3 times around o1 and o2. A counter is made for each obstacle and each computed exponent raises
or lowers some counters. After being performed for each exponent, the result is obtained. For the example
a5b−3c4d based on Figure 9, the winding numbers are (3, 2, 5, 9). Note that if the positive direction of a beam
is in the clockwise direction, then the computed winding number needs to be multipled by −1.

6.3 The general case

Now suppose that a sufficient collection of general beams has been given, which is the model used in Section
5.3. A straightforward approach is to first run the algorithm of Section 5.3. After the sufficient collection of
imaginary beams has been placed and the free group elements have been computed, they can be abelianized
to obtain the exponents in the method just described. This yields a set of vectors of winding numbers.

This approach, however, computes more information than is needed to simply obtain the winding num-
bers. Suppose that a sufficient collection of beams is given that is not necessarily disjoint, but all beams are
directed and distinguishable. Since the winding number essentially ignores all other beams, an approach can
be developed by picking a minimally sufficient collection of beams that is not necessarily disjoint. The beam
intersections do not interfere with the calculation of winding numbers. For a given sensor word, any letters
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ba

Fig. 10. A simple commutator example that yields sensor word aba−1b−1 and winding numbers (0, 0), but corre-
sponds to a non-trivial path.

that do not appear in the minimally sufficient collection can simply be deleted. The method then proceeds
as in the case of ddd-beams.

In the most general setting of a sufficient collection of beams, the region filter of Section 4 can be applied
to yield possible region sequences. For each computed region sequence, the particular beam and its direction
crossed can be inferred. Based on this information, the method described for distinguishable, directed beams
can be applied.

6.4 Higher-order winding numbers

Winding numbers give some crude data concerning free groups and an agent path. These give a measure
of how many times an agent circles a given obstacle without counting how the agent weaves in between
obstacles. However, winding numbers are insensitive to paths such as a commutator around obstacles, as
shown in Figure 10.

There are “higher order winding numbers” which keep track of how a agent does in fact interweave
through different obstacles. These “higher order winding numbers” in the case above arise in two classical
ways reflecting the interplay between geometry and a free group. These are the Lie algebras which arise
from either (i) the descending central series of a free group, or (ii) principal congruence subgroups of level
pr in the group of SL(2, Z). These Lie algebras provide measures of complexity in addition to “higher order
winding numbers” and it remains an open problem to develop computation methods that characterize them
for a given sensor word.

7 Multiple Agents

The formulation in Section 2 can be naturally extended by allowing more than one agent to move in W . In
this case, suppose that the sensor beams cannot distinguish between agents. They simply indicate the beam
label whenever crossed. For simplicity, assume that agents never cross beams simultaneously. The task is to
reconstruct as much information as possible about what path they might have taken. We could proceed as
in Sections 4 - 6 and determine region sequences, path homotopy class, and winding numbers. The high level
of ambiguity, however, may require further simplifications.

Figure 11.a shows a simple example of this, in which there is one obstacle, two agents, and three undirected
beams. Question: If the agents start together in a room, are they together some room after some sensor word
was observed? Consider designing the simplest algorithm that answers this question. Figure 11.b shows a
surprisingly simple four-state automaton that answers the question for any sensor word. The T state means
they are together in some room. Each Dx state means they are in different rooms, with beam x separating
them. With only two bits of memory, arbitrarily long sensor words can be digested to produce the answer
to the question.
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Fig. 11. a) A three-region problem with two agents; b) a tiny automaton (combinatorial filter) that determines
whether the agents are together in a room.

Many open questions remain, especially for substantially more complicated environments, such as the
one in Figure 2.a with several agents. For which questions can small automata be designed? For a given
question, what is the complexity in terms of numbers of agents, obstacles, and beams? What other ways
exist for reconstructing and describing and possible paths taken by multiple agents?

8 Conclusions and Open Questions

In this paper we identified a basic inference problem based on agents moving among obstacles and detection
beams. Recall from Section 3 that the beams may directly model physical sensors or they may arise virtually
from a variety of other sensing models. Therefore, the region filter, homotopic reconstruction, and winding-
number computations provide basic information that arises in numerous settings such as robotics, security,
forensics, environmental monitoring, and assisted living.

The results presented here represent a first step in understanding this broad class of problems. Many open
issues remain for future research, several of which are suggested here: 1) It is assumed that the geometric
arrangement of obstacles and beams is known. What happens when this is uncertain? For example, we might
not even know which beams intersect. The sensor words can be used to make simultaneous inferences about
the agent path and the beam arrangement. 2) Without the assumption of transverse beam crossings and
crossings are intersection points, significantly more ambiguity arises. How do these affect the computations?
3) What are the limits of path reconstruction when there are two or more agents? How efficient can filters be
made for such problems when there are many obstacles and beams? 4) What other specific path statistics can
be computed efficiently from beam data? Can Lie algebra constructions be applied to efficiently compute
higher-order winding numbers (based on commutators) for the paths? Can the sensor data be used to
compare paths as elements of the braid group? 5) Since the methods so far provide only inference, how can
their output be used to design motion plans? In other words, how can the output be used as a filter that
provides feedback for controlling how the agents move to achieve some task?
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