
On Comparing the Power of Robots

Jason M. O’Kane and Steven M. LaValle
∗

Abstract

Robots must complete their tasks in spite of unreliable actuators and limited, noisy sensing. In this
paper, we consider the information requirements of such tasks. What sensing and actuation abilities are
needed to complete a given task? Are some robot systems provably “more powerful,” in terms of the
tasks they can complete, than others? Can we find meaningful equivalence classes of robot systems? This
line of research is inspired by the theory of computation, which has produced similar results for abstract
computing machines. Our basic contribution is a dominance relation over robot systems that formalizes
the idea that some robots are stronger than others. This comparison, which is based on the how the
robots progress through their information spaces, induces a partial order over the set of robot systems.
We prove some basic properties of this partial order and show that it is directly related to the robots’
ability to complete tasks. We give examples to demonstrate the theory, including a detailed analysis of
a limited-sensing global localization problem.

1 Introduction

Suppose we want a robot to complete some task, such as navigating to a goal, manipulating an object, or
localizing itself within its environment. Many different combinations of sensing and motion modalities have
been used to complete each of these tasks. Indeed, much of the robotics literature is concerned with finding
sufficient conditions on the sensing and actuation capabilities needed to complete such tasks. In this paper
we take a different approach. For a given task, we are interested in determining the necessary conditions:
What sensors and actuators are needed? What are the information requirements of robotic tasks? The
long-term goal of this research is to develop a theory of robots and sensing that helps in answering such
questions. Answers to these questions are important because we expect that a deep understanding of the
difficulty of tasks in terms of their information requirements will lead to simpler and less expensive robot
designs.

This work is inspired in part by the theory of computation, which begins with precisely defined models of
abstract machines, such as finite automata, Turing machines, and so on [Hopcroft et al., 2000, Sipser, 1997].
In this context, a problem is usually a language of strings; to solve the problem is to accept strings in this
language and reject all others. The theory of computation gives answers to several kinds of basic questions
about these machines and problems.

1. Solvability : Can a given machine solve a given problem?

2. Complexity : If the machine can solve the problem, how efficiently (in terms of time or space, for
example) can it do so?

3. Comparison: Are some machines strictly more powerful, in terms of the problems they can solve, than
others? It is known, for example, that pushdown automata can accept a strictly larger set of languages
than can finite automata. Likewise, Turing machines are more powerful than pushdown automata.

∗This work is supported by ONR Grant N00014-02-1-0488 and DARPA grants #HR0011-05-1-0008 and #HR0011-07-1-
0002. J. M. O’Kane (corresponding author) and S. M. LaValle are with the Department of Computer Science, University of
Illinois at Urbana-Champaign, 201 North Goodwin Avenue, Urbana, IL 61801, USA. Email: {jokane, lavalle}@cs.uiuc.edu. Fax:
+1-217-265-6591

1



4. Equivalence: Are there apparently dissimilar machines that can solve the same set of problems? For
example, it is a standard result that a Turing machine with multiple tapes is functionally equivalent
to an ordinary single-tape Turing machine. Less obviously, Turing machines and recursive functions
have been shown to have equivalent computation power.

These ideas are well understood. In the sense that they form the formal foundation of the discipline, they
are part of the core of computer science. Current robotic science lacks a comparable foundation; the field
needs a unified theory in which meaningful statements can be made about the complexity of robotic tasks
and the robot systems we build to complete these tasks.

Can we adapt standard models of computation to the robotics context? Unfortunately, these models
are fundamentally ill-suited for studying robotics problems, because they assume that all of the relevant
information is supplied ahead of time on the machine’s tape. Sensing and uncertainty are central, defining
issues in robotics; this structure is destroyed by an a priori encoding of the problem on a machine’s tape.
Traditional models of online computation [Sleator and Tarjan, 1985, Karp, 1992, Borodin and El-Yaniv, 1998]
are also inadequate, because they assume that some fixed encoding of the problem is revealed incrementally.
In contrast, robotics problems are generally interactive, in the sense that the robot’s decisions influence
the information that becomes available in the future. Others study robotics problems using similar tools
[Gabriely and Rimon, 2004, Papadimitriou and Yannakakis, 1991], but do not explicitly consider the effects
of varying sensing and motion capabilities.

The aim of this paper is to develop a “sensor-centered” theory for analyzing and comparing robot systems.
The central idea we present is a notion of dominance of one robot model over another. In informal terms:

A robot R2 dominates another robot R1 if R2 can “simulate” R1, collecting at
least as much information as R1.

We make three primary contributions in developing this idea. First, we present the idea of robotic primitives
for modeling robot systems as collections of independent components. A single robotic primitive represents
a self-contained “instruction set” for the robot that may involve sensing, motion, or both. A robot model
is defined by a set of primitives that the robot can use to complete its task. By selecting a “catalog”
of primitives from which complete robot systems are constructed, we effectively determine a set of robot
systems to consider. For clarity, we define these models in an idealized setting in which time is modeled
as a series of discrete stages and the robot has perfect knowledge of its environment, perfect control, and
perfect sensing. Second, we give a definition for dominance of one robot system over another that formalizes
the imprecise definition above. This definition is based on comparing reachability in a derived information
space [LaValle, 2006]. By mapping sensor-action histories from a variety of robots into the same derived
information space, we can compare the abilities of these robots in a concrete, formal way. We prove some
basic properties of this dominance relation and give some examples, including a detailed investigation of the
global localization problem. Third, we demonstrate the generality of our ideas by showing how to remove
several of the simplifying assumptions we make in the initial presentation.

Our approach is based on two main ideas.

1. Information spaces: Traditional planning methods focus on the robot’s progression through a space of
states. What happens when the state is hidden and sensing thereby becomes relevant? One approach
is to use state estimation, in which the robot uses the information available to it to make an “educated
guess” about its state. The robot can treat this estimated state as its true state and ignore the
uncertainty. In some extremely limited contexts this is provably optimal (see for example, Section 6.1
of Bertsekas [2001]). We, however, are interested in a broader class of tasks for which accurate state
estimation is impossible.

The relevant space for such problems is the robot’s information space. This space fully describes the
information available to the robot, including its initial condition, the history of actions it has applied,
and the history of sensor observations it has received. The robot’s “state” in this space is always fully
known. Information spaces originated in game theory [Kuhn, 1953], but have been used in robotics for
some time [Barraquand and Ferbach, 1995, LaValle and Hutchinson, 1998, Erdmann, 1993, Goldberg
and Mason, 1990, LaValle, 2006].

2



2. Tradeoffs expressed as partial orders: We present a partial order defining the dominance of one robot
system over another. The definition is based in turn on another partial order, an information prefer-
ence relation over information space, that indicates which information states are preferred to others.
Although these relations admit the possibility that no meaningful comparisons can be made, we find
this desirable: physical tasks and robot systems exhibit complex relationships and tradeoffs that can
potentially defy meaningful linear ordering.

The challenge of robotics lies in the interactions between sensing, actuation, and computation. In this
paper, we focus the effects of varying choices for the robot’s sensing and actuation capabilities. The robot’s
computational abilities (as measured, for example, by processing power or memory limitations) are also
relevant, but we do not consider them here.

The remainder of this paper is organized as follows. Section 2 reviews related research. Section 3 lays
a foundation of basic definitions for robotic planning problems. Section 4 introduces the concept of robotic
primitives and defines the set of robots induced by a catalog of primitives. In Section 5, we describe the
information preference relation. The definition of dominance and some basic properties thereof appear in
Section 6. In Section 7, we apply the results from Sections 4-6 to the global localization task. In Section 8,
we present several generalizations our basic results to account for environment uncertainty, imperfect control
and sensing, and continuous time. Section 9 discusses the limitations of this work and describes some open
problems.

Preliminary versions of this work appear in O’Kane and LaValle [2006] and O’Kane and LaValle [2007a].

2 Related work

Our approach can be viewed as minimalist in the sense that we are interested in solutions that use sensing
sparingly. The minimalist approach in robotics has a long history, dating perhaps to Whitney [1986].
Minimalist approaches have been used in manufacturing contexts for part orientation [Agarwal et al., 2001,
Akella et al., 2000, Erdmann and Mason, 1988, Goldberg, 1993, Goldberg and Mason, 1990, Moll and
Erdmann, 2002, van der Stappen et al., 2000, Wiegley et al., 1997] and in mobile robotics for navigation and
exploration [Acar and Choset, 2001a, Choset and Burdick, 1995, Kutulakos et al., 1994, Kamon et al., 1999,
Lumelsky and Tiwari, 1994, Ó. Dúnlaing and Yap, 1982, Tovar et al., 2004].

Our goals are similar to those of Donald [1995]. The reductions in that work are similar to our dominance
relation; Donald’s notion of calibration is related to our idea of initial conditions. The most fundamental
difference is that our analysis is rooted in the information space. We claim that for robotic problems in
which sensing is a crucial issue, the information space is the space in which the problem can most naturally
be posed. The work of Erdmann [1995] is grounded in the preimage planning ideas due to Lozano-Pérez,
Mason, and Taylor [1984]. In Erdmann’s work, sensors are modeled by giving a partition of state space. The
problem of sensor design is to choose a partition so that from each region in the partition, the robot knows
what action to select in order to make progress toward its goal. Others in artificial intelligence [Brafman
et al., 1998] and control theory [Abate et al., 2006, Egerstedt, 2002, Girard and Pappas, 2005] have addressed
related issues.

Although the examples in this paper use nondeterministic uncertainty, which is based on set membership,
the basic structure of our analysis is compatible with probabilistic uncertainty models like those of Thrun
et al. [2005]. Many probabilistic methods (for example, Austin and Jensfelt [2000] or Lenser and Veloso
[2000]) can be characterized as operating in an information space whose members are probability distributions
over state space. Our methods can be viewed as axiomatic because they can be applied in any situation
that satisfies the definitions of Sections 3-5. In this sense, the model of uncertainty used is orthogonal to the
questions addressed in this work.

3



Figure 1: A robot in a planar environment E. Its state space is X = E × S1.

3 Basic definitions

This section presents basic definitions for robotic planning problems. To keep the presentation as clear as
possible, we make several simplifying assumptions here and show in Section 8 how to relax them.

3.1 States, actions, and observations

We allow a robot to move in a state space X. Many of the examples in this paper are for a point robot
with orientation in the plane. In these examples, we use X = E × S1, in which E ⊂ R

2 is the robot’s
environment and S1 = [0, 2π]/∼, where ∼ is an equivalence relation identifying 0 and 2π, represents the
robot’s orientation. Note that this formulation encodes the geometry of the robot’s environment into its
state space. Situations in which the environment is unknown can be modeled using a richer state space, as
described in Section 8.1. In general, however, we allow arbitrary state spaces, including configuration spaces
and phase spaces of physical systems.

Time proceeds in variable-length stages, indexed by consecutive integers starting with 1. In each stage,
the robot selects an action u from its action space U and moves to a new state according a state transition
function f : X ×U → X. At the conclusion of each stage, the robot’s sensors provide an observation y from
an observation space Y , according to h : X × U → Y . Call h the robot’s observation function. Let xk, uk,
and yk denote respectively the state, action, and observation at stage k. These sequences are related to each
other by f and h:

xk+1 = f(xk, uk) (1)

yk = h(xk, uk). (2)

Although we are assuming in this section that both state transitions and observations are deterministic, we
acknowledge that in realistic contexts, managing unpredictability in motion and sensing is a crucial issue.
We omit such uncertainty here because of the additional complications it would introduce. The extensions
needed to relax this assumption are introduced in Section 8.

For convenience, we also define an iterated version of f that applies k actions in succession:

f(x, u1, . . . , uk) = f(· · · f(f(x, u1), u2) · · · , uk−1), uk). (3)

The robot’s capabilities are modeled in the action and observation sets U and Y and in the maps f and h
that interpret these sets. See Figure 2. A robot model is a 5-tuple (X,U, Y, f, h) giving values to each of
these elements.

3.2 Information spaces

Although the robot does not know its state, it does have access to the history of actions it has selected
and observations it has made. The space of such histories is the robot’s history information space (history

4



Observations

Actions

u

y

EnvironmentRobot

Figure 2: The robot interacts with its environment by executing actions and receiving observations.

I-space), denoted Ihist:

Ihist =
∞⋃

i=0

(U × Y )i. (4)

After k stages, the robot’s history information state (history I-state) is a sequence of length 2k:

ηk = (u1, y1, . . . , uk, yk). (5)

We occasionally abuse notation by writing (ηk, uk+1, yk+1) for the history I-state formed by appending uk+1

and yk+1 to ηk. How is the state space related to the robot’s history I-space? One connection is by way of
the notion of states consistent with an I-state:

Definition 1 A state x ∈ X is consistent with a history I-state ηk = (u1, y1, . . . , uk, yk) if there exists
some x1 ∈ X such that x = f(x1, u1, . . . , uk) and yj = h(f(x1, u1, . . . , uj−1), uj) for each j = 1, . . . , k. ◦

The intuition is that a state x is consistent with an I-state ηk if a robot having I-state ηk might possibly be
at state x.

We may define a policy π : Ihist → U over history I-space. Note that, given a state xk and a history
I-state ηk, the history I-states reached by repeatedly executing π are fully determined. As a shorthand, we
define a function F that applies a policy several times in succession, so that m applications of a policy π,
starting at state xk and information state ηk, lead to a new history I-state given by

ηm+k = Fm(ηk, π, xk). (6)

Note that Fm(ηk, π, xk) depends on the true state xk (which is unknown to the robot) because xk influences
the observation sequence the robot receives.

The history I-space is not particularly useful by itself. For pairs of robots whose action or observation
spaces differ, the history I-spaces also differ, making the history I-space unhelpful for comparing robots.
Therefore, we select a derived information space (derived I-space) I and an information mapping (I-map)
κ : Ihist → I. Informally, an I-map computes a “compression” or “interpretation” of the history I-state. If
the history I-spaces of several robot models are mapped to the same derived I-space I, then the robots can
be compared by examining their progression through I. In principle, we may select I and κ arbitrarily. The
usefulness of a derived I-space lies in its ability to capture the information relevant to the task of interest.

Example 1 We define the nondeterministic I-space Indet, in which derived I-states are nonempty subsets
of X. The interpretation is that the robot’s derived I-state is the minimal set guaranteed to contain the true
state. For any history I-state η, the nondeterministic derived I-state κndet(η) is the set of states consistent
with η. Equivalently, the I-map κndet : Ihist → Indet can be defined recursively:

κndet( ) = X (7)

κndet(η, u, y) = {f(x, u) | x ∈ κndet(η), y = h(x, u)} (8)

Note that in Equation 7, we assume the robot initially has no information about its state. ⋄

5



An important special case is the value of κ for an empty history, that is, κ( ). This value gives an initial
condition for the robot, reflecting any knowledge the robot may have before its execution begins.

A task for the robot is a goal region IG ⊆ I in derived I-space that the robot must reach. This notion is
a generalization of the traditional idea of a goal state or goal region in state space. A solution is a policy π
under which, for any x ∈ X, there exists some l such that F l(η1, π, x) ∈ IG.

4 Defining a set of robot systems

In this section we discuss how a set of robots can be defined in terms of a set of independent components.

4.1 Robotic primitives

At the most concrete level, a robot is a collection of motors and sensors connected to some sort of computer.
Between these components there may be interactions via open- or closed-loop controls. We abstract this
complexity by defining the notion of a robotic primitive. Each robotic primitive defines a “mode of operation”
for the robot. When primitives are implemented, they may draw on one or more of the robot’s physical
sensors or actuators. Every kind of motion or sensing available to the robot must be modeled as a robotic
primitive. Robotic primitives correspond roughly to the oracles that appear in the theory of computation
[Sipser, 1997, Soare, 1987], in the sense that they provide the ability to make certain transitions and collect
certain observations, without specifying how these abilities are implemented.

Formally, we define robotic primitives in terms of the action and observation abilities they provide.

Definition 2 A robotic primitive (or simply a primitive) Pi is a 4-tuple

Pi = (Ui, Yi, fi, hi) (9)

giving an action set Ui, an observation set Yi, a state transition function fi : X×Ui → X, and an observation
function hi : X × Ui → Yi. ◦

Let RP = {P1, . . . , PN} denote a catalog of primitives. We may form a robot model by selecting
nonempty subset of RP. A robot defined by the primitive set R = {Pi1 , . . . , Pim} ⊆ RP has action set
UR = Ui1 ⊔ · · · ⊔ Uim and observation set YR = Yi1 ⊔ · · · ⊔ Yim . The ⊔ notation indicates a disjoint union
operation, under which identical elements from different source sets remain distinct. The state transition
function fR : X ×UR → X, and observation function hR : X ×UR → YR, are formed by unioning the f and
h maps from the relevant primitives. When it can be done without ambiguity, we use the phrase robot model
to refer directly to the set of primitives, rather than to the 5-tuple (X,U, Y, f, h) formed by these primitives.
With this usage, it is meaningful to apply set operations such as union or intersection directly to robots.

Note that, given a catalog of primitives RP, we can form a “master” robot model R̂ that includes every
primitive in RP. The history I-space of R̂ contains as a subset the history I-space of every other robot model
that can be formed from RP. As a result, any I-map for R̂ can also be used as an I-map for any robot model
formed from RP.

We now give several examples to illustrate the intuition of Definition 2. Examples 3-7 apply to a point
robot with orientation in a bounded planar environment E, so X = E×S1. Illustrations of these primitives
appear in Figures 3-5. We revisit these examples in Sections 6 and 7.

Example 2 Let PA = (S1, {0}, fA, hA). Let fA compute relative rotations, so that from a state x =
(x1, x2, θ), we have fA(x, u) = (x1, x2, θ + u). Since YA = {0} contains only a dummy element, hA is
a trivial function always returning 0. This primitive can be implemented with an angular odometer on a
mobile robot capable of rotating in place. ⋄

6



PC

PA

u = π

2

u = π

2

y = π

2

y = 0

Figure 3: Sample executions of the primitives of Examples 2 and 3. [top] PA allows the robot rotate relative
to its current orientation. [bottom] PC allows the robot to rotate relative to a globally defined “north”
direction.

Example 3 Let PC = (S1⊔{0}, S1, fC , hC). Define fC(x, u) to set the rotation coordinate of x to equal u if
u ∈ S1 or to leave x unchanged if u ∈ {0}. The observation function hC returns the robot’s final orientation.
This primitive amounts to allowing the robot to orient itself with respect to a global reference frame, or to
sense its current orientation without rotating. One might implement this primitive using a compass on a
robot that can rotate in place. ⋄

Example 4 Let PT = ({0}, {0}, fT , hT ). Define fT to compute a forward translation to the obstacle bound-
ary. This primitive can be implemented with a contact sensor on a mobile robot that can reliably move
forward. ⋄

Example 5 Let PL = ([0,∞), [0,∞), fL, hL). For x ∈ X and u ∈ U , define fL(x, u) to compute a forward
translation of distance at most u, stopping short only if the robot reaches an obstacle first. The observation
hL(x, u) is the actual distance traveled. This primitive can be implemented with a linear odometer on a robot
that can move forward reliably. Depending on implementation issues, a contact sensor may also be needed.
⋄

Example 6 Let PR = ({0}, [0,∞), fR, hR). For all x ∈ X, fR(x, 0) = x, so that this primitive never
changes the robot’s state. The observation hR(x, u) is the distance to the nearest obstacle directly in front of
the robot. This primitive models the capabilities of a forward-facing unidirectional range sensor. ⋄

Example 7 Let PG = ({0},R2, fG, hG). Again, fG(x, u) = x for all x and u. For a state x = (x1, x2, θ), let
hG(x, 0) = (x1, x2). This primitive roughly corresponds to a GPS device that the robot can periodically poll
to determine its location in the plane. ⋄

Other possibilities for primitives include landmark detectors, wall followers, visibility sensors, and so on.
A more complete listing of sensors suitable for adaptation into robotic primitives appears in Section 11.5.1
of LaValle’s book [2006].

There are several benefits to modeling robot systems as collections of primitives. First, we claim that
robotic primitives represent the right level of abstraction at which planning problems are interesting but
manageable. If we consider sensors at too fine a level of detail, the problem takes on the character of a
closed-loop control system. If the primitives are too sophisticated, we risk trivializing the planning problem
while creating an unbearable modeling burden. Second, by dividing time into discrete stages, we avoid the
technical difficulties of describing the robot’s progression through I in continuous time. This consideration is
increasingly important if we allow noise to affect state transitions or observations. We address issues related
to the modeling of time more completely in Section 8.3.

7



PT

PL

PR
d2

y = d2

y = 0

y = d1

u = 0

u = d1

u = 0

d1

Figure 4: Sample executions of the primitives of Examples 4-6. [top] PT allows the robot to translate forward
until it reaches an obstacle. [middle] PL allows a robot to specify a distance to translate. [bottom] PR allows
the robot to measure the distance forward to the nearest obstacle, but does not change the robot’s state.

(x, y)PG

y = (x, y)u = 0

Figure 5: A sample execution of the primitive of Example 7. The robot senses its position, but its state does
not change.

8



5 The information preference relation

Our goal is a dominance relation under which we can declare one robot “better than” another. To do so, we
need a formal notion of one I-state being superior, in the sense of encoding better information, than another.
To that end, choose a derived I-space I and an I-map κ into I. Equip I with a partial order, which we
call an information preference relation. Write κ(η1) � κ(η2) to indicate that κ(η2) is preferred to κ(η1). We
require that for any η1, η2 ∈ Ihist, and for any u ∈ U and y ∈ Y ,

κ(η1) � κ(η2) =⇒ κ(η1, u, y) � κ(η2, u, y). (10)

This is a consistency property requiring preference for one I-state over another to be preserved across tran-
sitions in I-space.

Example 8 Regardless of I or κ, it is well-defined (but perhaps unhelpful) to use a trivial relation under
which κ(η1) � κ(η2) if and only if κ(η1) = κ(η2). ⋄

Example 9 Under nondeterministic uncertainty, we can define κndet(η1) � κndet(η2) if and only if κndet(η2) ⊆
κndet(η1). To show that (10) is satisfied, suppose κndet(η1) � κndet(η2). Let x ∈ κndet(η2, u, y). The defini-
tion of κndet ensures that there exists some x′ ∈ κndet(η2) such that f(x′, u) = x and h(x′, u) = y. However,
because κndet(η2) ⊆ κndet(η1), we have x′ ∈ κndet(η1). It follows that x ∈ κndet(η1, u, y). ⋄

The information preference relation we choose affects the goal regions that are sensible to consider. We
should select a region in which, for every I-state in the region, we also include any I-states preferable to
it. This formalizes the intuition that a robot in the goal region should not prefer to be outside the goal.
Definition 3 codifies this idea of a sensible goal region.

Definition 3 Consider a set I ⊂ I of derived I-states. If, for any κ(η1) ∈ I and κ(η2) ∈ I with κ(η1) �
κ(η2), we have κ(η2) ∈ I, then I is preference closed. ◦

Alternatively, one can view preference closure as a constraint on �. Fixing a space G of potential goal
regions, we admit a partial order � only if every region in G is preference closed under �. Note that the
trivial definition of � in Example 8 always passes this test, regardless of G.

6 A dominance relation over robot systems

Now we turn our attention to a definition of dominance of one robot system over another. This dominance
relation induces a partial order over robot systems, according to their sensing and actuation abilities. The
intuition is that dominance is based on one robot’s ability to “simulate” another.

Definition 4 [Robot dominance] Consider two robots R1 = (X(1), U (1), Y (1), f (1), h(1)) and

R2 = (X(2), U (2), Y (2), f (2), h(2)). Choose a derived I-space I and I-maps κ(1) : I
(1)
hist → I and κ(2) : I

(2)
hist →

I. If, for all

• η1 ∈ I
(1)
hist,

• η2 ∈ I
(2)
hist for which κ(1)(η1) � κ(2)(η2), and all

• u1 ∈ U (1),

there exists a policy π2 : I
(2)
hist → U (2) such that for all x1 ∈ X(1) consistent with η1 and all x2 ∈ X(2)

consistent with η2, there exists a positive integer l such that

κ(1)(η1, u1, h
(1)(x1, u1)) � κ(2)(F l(η2, π2, x2)), (11)

9



u1

R1 R2

κ(1)(η1) � κ(2)(η2)

π2

κ(1)(η1, u1, h
(1)(x1, u1)) � κ(2)(F l(η2, π2))

Figure 6: An illustration of Definition 4. If R2 can always reach an I-state better than the one reached by
R1, then R1 ER2.

then R2 dominates R1 under κ(1) and κ(2), denoted R1 ER2. If R1 ER2 and R2 ER1, then R1 and R2 are
equivalent, denoted R1 ≡ R2. If R1 6E R2 and R2 6E R1 then R1 and R2 are incomparable, denoted R1 EDR2.
◦

Informally, Definition 4 means that, for any transition made by R1, there exists some strategy for R2 to
reach an information state at least as good, in the sense of information preference, as that reached by R1.
This is what we mean when we describe the statement R1 E R2 as meaning that R2 can simulate R1. See
Figure 6.

6.1 Dominance examples

Several examples will clarify the definition.

Example 10 Let R1 = {PR} and R2 = {PA, PL}. Recall the definitions of these primitives from Examples 3,
5, and 6. We argue under nondeterministic uncertainty that R1 ER2 by showing that R2 can simulate R1 in

the precise sense of Definition 4. Let η1 ∈ I
(1)
hist and η2 ∈ I

(2)
hist with κndet(η1) � κndet(η2). Since U (1) = {0},

there is only one choice for u1. Let l = 4 and define π2 so that R2, starting from η2, executes these actions
in succession:

(1) Use PL with a very large input to move forward to the nearest obstacle. Let d = h(x, u) denote the
distance moved.

(2) Use PA with u = 180° to perform a half turn.

(3) Use PL with u = d to return the robot to its initial position.

(4) Use PA with u = 180° to perform a half turn, returning the robot to its original orientation.

This policy is illustrated in Figure 7. It is easy to verify that from any x ∈ X, we have

κndet(η1, u1, h(x, u1)) � κndet(F
4(η2, π2, x)),

and therefore R1 ER2. Since R1, which is completely immobile, cannot simulate the translations or rotations
of R2, we have R2 6E R1.

Note that these relationships are based on the robots’ ability to move through Indet, and do not consider
any notion of the cost of motion or sensing. The introduction of such a cost function would likely lead to
Pareto optima that express tradeoffs between the complexity of sensing built into the robot and the execution
costs of particular plans executed by the robot. We do not consider such tradeoffs here. ⋄

10



d d

R2 = {PA, PL}R1 = {PR}

Figure 7: An illustration of Example 10. The robot R2 = {PA, PL} dominates the robot R1 = {PR} because
the former can simulate the latter. [left] A distance measurement made directly by R1. [right] Distance is
measured indirectly by R2 using its linear odometer.

Example 11 Let R1 = {PT } and R2 = {PL}. We show under nondeterministic uncertainty that R1 ER2.

Let η1 ∈ I
(1)
hist and η2 ∈ I

(2)
hist with κ(η1) � κ(η2). There is only one choice for u1. Choose l = 1 and define

π2 to choose an input for PL larger than the diameter of the environment. This causes the motions of R1

and R2 to be identical. The resulting derived I-states κ(η′1) and κ(η′2) for R1 and R2 are the same, except
that R2 receives a meaningful sensor reading that may reduce the resulting nondeterministic I-state. This
sensor information only makes κ(η′2) smaller, so the preference κ(η′1) � κ(η′2) is maintained. Conclude that
R1 ER2. ⋄

It bears emphasis that the relation induced by Definition 4 depends on the I-maps used. The next two
examples illustrate this.

Example 12 Let R1 = {PA} and R2 = {PC}. We argue that R1 E R2 under the usual nondeterministic

I-map with the initial condition of total uncertainty. Let η1 ∈ I
(1)
hist and η2 ∈ I

(2)
hist with κndet(η1) � κndet(η2).

Let u1 ∈ U1 = S1. Choose l = 2 and define π2 to select the following two actions:

(1) Use PC with u = 0 to sense the robot’s orientation without changing the state. Let θ denote this
orientation.

(2) Use PC to rotate the robot to orientation θ + u in the global frame.

As in Example 11, the resulting states for R1 and R2 are identical but, since R2 knows its orientation, it
may be able to eliminate some candidate states that R1 cannot. This establishes that R1 ER2. Are R1 and
R2 equivalent under this I-map? No, because R2 can, with a single action, sense its orientation, but this
information can never be gathered by R1. Therefore R2 6E R1 and R1 6≡ R2. ⋄

Example 13 Consider a situation identical to that of Example 12, but modify κndet for a different initial
condition κndet( ) = R

2 × {π/2}. That is, the robot begins its execution knowing its initial orientation. At
every step, R1 knows its orientation in the global frame, and can simulate R2 using angle addition. Therefore
we have R2 E R1. But using the same reasoning as in Example 12, we know R1 E R2. Therefore, for this
I-map, we have R1 ≡ R2. ⋄

6.2 Properties of the dominance relation

We conclude this section with some basic properties that follow from Definition 4.

Lemma 1 The dominance relation E is a partial order. Likewise ≡ is indeed an equivalence relation.

Lemma 2 Consider three robots R1, R2, and R3 formed from primitives in RP and an I-map κ for the
master robot model R̂ of RP. If R1 ER2 under κ, we have:

11



(a) R1 ER1 ∪R3 (Adding primitives never hurts)

(b) R2 ≡ R2 ∪R1 (Redundancy doesn’t help)

(c) R1 ∪R3 ER2 ∪R3 (No unexpected interactions)

Proof:
(a) Let η1 ∈ I

(1)
hist, η13 ∈ I

(13)
hist , and u1 ∈ U1. Assume κ(η1) � κ(η13). Choose l = 1 and π13(η) = u1 for

all η. For all x, we have κ(η1, u1, h(x, u1)) � κ(η13, u1, h(x, u1)) = κ(F l(η13, π13, x)), completing the proof.

(b) It follows from part (a) that R2 ER1 ∪R2. It remains to show that R1 ∪R2 ER2. Let η12 ∈ I
(12)
hist ,

η2 ∈ I
(2)
hist, and u12 ∈ U2 ∪ U1. Assume κ(η12) � κ(η2). Either u12 ∈ U1 or u12 ∈ U2. If u12 ∈ U1, then

because R1 E R2 there exist π2 and l satisfying the definition for R1 ∪ R2 E R2. If u12 ∈ U2, choose l = 1
and π2(η) = u12 for all η. For all x, we have κ(η12, u12, h(x, u12)) � κ(η2, u12, h(x, u12)) = κ(F l(η2, π2, x)),
completing the proof.

(c) Let η13 ∈ I
(13)
hist , η23 ∈ I

(23)
hist , and u13 ∈ U1⊔U3. Assume κ(η13) � κ(η23). Either u13 ∈ U1 or u13 ∈ U3.

If u13 ∈ U1, then because R1 E R2 there exist π23 and l satisfying the definition for R1 ∪ R3 E R2 ∪ R3.
If u13 ∈ U3, then choose l = 1 and π23(η) = u13 for all η. For all x, we have κ(η13, u13, h(x, u13)) �
κ(η23, u13, h(x, u13)) = κ(F l(η23, π23, x)), completing the proof. �

Corollary 3 If R1 ≡ R2, then R1 ∪R3 ≡ R2 ∪R3.

Proof: Apply Lemma 2c twice. �

Lemma 2c might be misleading. Certainly, hardware components can be made to interact in interesting
ways. For example, a control system might combine information from linear and angular odometers to
execute circular arc motions. This apparent contradiction results from the definition of robotic primitives,
which execute serially, rather than in parallel. In this sense, robotic primitives model sensing and actuation
strategies as complete “packages,” rather than the individual sensors or motors themselves.

Lastly, we connect the idea of dominance to the ability of robots to complete tasks.

Lemma 4 (Solution by imitation) Consider two robots R1 and R2 with R1 ER2 and a preference-closed
goal region IG. If R1 can reach IG then R2 can reach IG.

Proof: Use the policy π2 implied by Definition 4 to complete the task with R2. �

This tight connection between dominance and task-completing ability provides some motivation for the
form of dominance we propose.

7 Extended example: Global localization

In this section we present a detailed example using the definitions of Sections 5 and 6. We consider a global
localization task, in which the robot has an accurate map of its environment but has no knowledge of its
position within that environment. Many forms of the localization problem with varying sensing modalities
have been studied in great detail. Some methods [Avis and Imai, 1990, Basye and Dean, 1990, Cox, 1991,
Dellaert et al., 1999, Demaine et al., 2002, Guibas et al., 1995, Sugihara, 1988, Ladd et al., 2004, Weiss
et al., 1994] passively observe the motions of the robot in order to draw conclusions about the robot’s state.
Others [Dudek et al., 1998, Kleinberg, 1994, Koenig et al., 2006, O’Kane and LaValle, 2007b, Rao et al.,
2004, Romanik and Schuierer, 1996] actively drive the robot to reduce uncertainty. The purpose of this
example is to show how the results of Section 6 can be used to discover the information requirements of this
particular problem in robotics. An analogy can be made to the classification of languages in the theory of
computation. It has been shown, for example, that to accept the language of palindromes requires a machine
with computation abilities at least as powerful as a pushdown automaton. In this section, we derive similar
results regarding the sensing and motion abilities needed to complete the active global localization task.

12



L

CAC CTA CT A

ALTAL T

CLCTAL

TL

CTLCAL TA

Figure 8: Fifteen robot models grouped into their eight equivalence classes.

7.1 Task definition

Let E ⊆ R
2 denote a planar environment in which a point robot moves. Assume that E is polygonal,

bounded, closed, and simply-connected and that the rotational symmetry group of E is trivial. As in
previous examples, the robot’s state space is X = E ×S1. We consider a catalog RP = {PA, PC , PT , PL} of
four primitives from Examples 2-4. From these primitives we can form 15 distinct robots. For brevity, we
use concatenation to indicate the primitives with which a robot is equipped, so that CT refers to a robot
with primitive set {PC , PT }; similar names apply to the other 14 robot models.

Select I = pow(X)−∅. For κ, use the nondeterministic map defined in Example 1. The initial condition
is total uncertainty, so κ( ) = X. For the information preference relation, use the definition from Example 9,
in which information preference is defined by subset containment. The goal region for the localization task
is

IG = {η ∈ I | |η| = 1}. (12)

That is, we want to command the robot so that only a single final state is consistent with its history I-state.
If the robot can complete the task for any E consistent with the assumptions above, we say that the robot
can localize itself.

7.2 Equivalences and dominances

Although RP generates 15 robot models, we can use the results of Section 6 to group them into equivalence
classes.

Lemma 5 The following equivalences hold:

(a) CA ≡ C

(b) CTA ≡ CT

(c) TL ≡ L

(d) TAL ≡ AL

(e) CAL ≡ CTL ≡ CTAL ≡ CL

The three remaining robot models, A, T, and AT, are in singleton equivalence classes.

Proof: (a) Combine Example 12 and Lemma 2b. (b) Combine Example 12, Lemma 2b, and Corollary 3. (c)
Combine Example 11 and Lemma 2b. (d) Combine Example 11, Lemma 2b, and Corollary 3. (e) Combine
Examples 11 and 12, Lemma 2b, and Corollary 3. �

These equivalences are illustrated in Figure 8. From each, select the unique robot with the fewest
primitives and discard the remaining 7 robots. We can state several dominances between these classes.

Lemma 6 Between representatives of the equivalence classes from Lemma 5, the following dominances
hold:

(a) C E CT E CL

13



CL

CTATAL

L T A C

Figure 9: Classification of robot models under which the localization task can be completed. Shaded models
do not admit a solution. Arrows indicate dominances.

(b) A E AT E AL E CL

(c) L E AL E CL

(d) T E AT E CT E CL

Proof: Combine Examples 11 and 12 with Lemma 2a. �

7.3 Completing the localization task

Which equivalence classes contain robots that can complete the localization task? First, notice that some
robot models are so simple that we can rule them out immediately.

Lemma 7 None of C, A, L, and T can localize themselves.

Proof: For C and A, notice that no action changes the robot’s position and no observation is influenced
by position. Therefore neither robot can ever gather information about its position. For L and T, notice
that the robot can never change its orientation. Information available to the robot is limited to the ray
extending from its initial state to the nearest obstacle forward. Since E may contain continua of starting
states consistent with this information, neither robot can localize itself. �

Prior results are helpful for the remaining cases.

Lemma 8 (O’Kane and LaValle [2007b]) AL and CT can localize themselves but AT cannot.

Finally, we can finish the classification. The results of Lemmas 7-9 are summarized in Figure 9.

Lemma 9 CL can localize itself.

Proof: Combine Lemma 4 with Lemma 8. �

The result is a complete classification of the solvability of the localization problem over this hierarchy.

8 Extensions and generalizations

This section contains a series of extensions and generalizations to the techniques presented in Sections 3-6.
The intention is to illustrate that, although the preceding results are for a class of highly idealized systems,
the general structure of our analysis is useful for a wider variety of problems with greater degrees of realism
and generality. We propose methods for dealing with unknown environments (Section 8.1), with sensing and
control uncertainty (Section 8.2), and with continuous time (Section 8.3). Although we present each method
separately, the extensions are orthogonal in the sense that it is straightforward to apply all of them at once.

14



Figure 10: Three states for an example system containing a mobile robot in the plane with environment
uncertainty. When the environment is uncertain, the identity of the environment becomes part of the state
of the system.

8.1 Unknown environments

In the preceding analysis, we assumed that the robot moves in a fixed, known environment. What happens
when the robot begins with limited or no knowledge about its environment, in the sense that positions and
geometry of obstacles, map topology, navigability of terrain, and so on are unknown? Imperfect knowledge
about the environment is a more drastic instance of the general issue of state uncertainty. If the state is
defined to include a description of the environment in addition to the robot’s configuration, then uncertainty
in the environment can be represented as an additional dimension of state uncertainty.

Concretely, choose an environment space E of which each element E ∈ E is a potential environment
for the robot. Possibilities for E with varying degrees of realism, interest, practicality, and amenability to
analysis, include:

1. the set of bounded planar grids with occupancy maps,

2. the set of simple polygons in the plane, and

3. the set of compact regions in R
2 or R

3 with connected interiors and piecewise analytic boundaries.

4. the set of terrain maps from R
2 to R, giving the elevation or navigability at each point in the plane.

The state space is formed by combining the robot’s configuration space C with E , so that X = C × E . See
Figure 10. In the complete model, the true environment E ∈ E affects the robot by influencing the state
transitions that the robot makes and the observations that the robot receives. Since the only change is to
use a more complicated state space, Definition 4 need not change, and the results of Section 6 still hold.

8.2 Imperfect sensing and control

We have assumed so far that the robot can execute all of its actions with perfect precision and complete reli-
ability. The motions of real robots are imprecise and unpredictable. Moreover, although we have accounted
for the importance of sensing by assuming that the robot is uncertain of its current state and must rely
on sensing, we have assumed that sensor readings are uncorrupted by noise. A more realistic sensor model
would allow information from sensors to be subject to error.

We propose to follow the approach used in game theory [Papadimitriou, 1985, Blackwell and Girshik,
1979] and represent this uncertainty by envisioning an abstract external decision maker called “nature.” The
current state, the action chosen by the robot, and the choices made by nature combine to determine how
the state changes; given this information, the state trajectory is fully determined. See Figure 11. Formally,
define a nature action space Θ and augment the state transition function f to depend on nature’s choice of
θ ∈ Θ at each stage, so that f : X × U × Θ → X. Nature affects the robot’s observations in a similar way.
Define a nature observation action space Ψ and redefine the observation function h : X × U × Ψ → Y . The
policy application function F must be generalized to account for nature actions, so that

ηm+k = Fm(ηk, π, xk, θk, . . . , θk+m, ψk, . . . , ψk+m). (13)

15



u

y

Observations

Actions

θ, ψ

Disturbances

NatureEnvironmentRobot

Figure 11: As the robot interacts with its environment, an artificial decision maker nature generates distur-
bances.

Figure 12: [left] The robot in Example 14 gives displacement inputs that determine a nominal trajectory.
[right] Nature interferes with this motion, but error bounds ensure that the final state is contained in a circle
of radius kθmax.

Note that, in contrast to the simpler formulation of Equation 6, the robot’s current state, history I-state,
and policy are no longer sufficient to predict future history I-states.

The next examples illustrate how nature might interfere.

Example 14 Consider a point robot that can move freely in the plane by issuing displacement commands,
but whose motion is subject to noise. Let umax denote a bound on the magnitude of the displacement in
each stage, and let θmax denote a bound on magnitude of the error in this displacement. Let X = R

2,
U = {u ∈ R

2 | ||u|| ≤ umax}, Θ = {θ ∈ R
2 | ||θ|| ≤ θmax}, and f(x, u, θ) = x+ u+ θ. At stage k, the robot

can be certain that its state lies within a closed disk of radius kθmax, centered at the nominal (error free)
final point. See Figure 12. ⋄

Example 15 Suppose a mobile robot has a sensor that reports the distance to some landmark. Let X = R
2

and Y = [0,∞). Without loss of generality, position the landmark at the origin. Assume that the sensor has
bounded additive error, so that Ψ = [−ψmax, ψmax] and h(x, ψ) = ||x|| + ψ. See Figure 13. At each stage,
the robot knows that its state is within an annulus of width 2ψmax, centered at the origin. ⋄

In the presence of interference from nature, there are at least two relevant solution concepts.

1. A strategy π : Ihist → U is a possible solution if there exists some stage k and choices of θ1, . . . , θk and
ψ1, . . . , ψk for which the robot reaches a derived I-state ηk ∈ IG. The robot may reach IG, but it is
also possible that control or sensing errors will prevent it from achieving this goal.

2. A strategy π : Ihist → U is a guaranteed solution if there exists some stage k such that for all choices
of θ1, . . . , θk and ψ1, . . . , ψk, the robot reaches a derived I-state ηk ∈ IG. The robot can always reach
its goal, regardless of any interference by nature.

Other solution concepts, such as those based on performance bounds or on probabilistic guarantees of reaching
the goal, are possible but we do not consider them here. In this context, Definition 4 must be generalized to
include universal quantifiers over nature’s actions.

16



(0, 0)

x

(0, 0)

x

Figure 13: [left] The robot in Example 15 has a sensor that reports a noisy estimate of the distance to
the origin. [right] Accounting for noise bounded by ψmax, the observation confines the robot’s state to an
annulus of width 2ψmax.

Definition 5 [Robot dominance with sensing and control error] Consider two robot systems R1 = (X(1), U (1),
Y (1),Θ(1),Ψ(1), f (1), h(1)) and R2 = (X(2), U (2), Y (2),Θ(2),Ψ(2), f (2), h(2)). Choose a derived I-space I and
I-maps κ(1) : X(1) → I and κ(2) : X(2) → I. If, for all

• η1 ∈ I
(1)
hist,

• η2 ∈ I
(2)
hist for which κ(1)(η1) � κ(2)(η2), and all

• u1 ∈ U (1),

there exists a policy π2 : I
(2)
hist → U (2) such that for all x1 ∈ X(1) consistent with η1 and all x2 ∈ X(2)

consistent with η2, there exists a positive integer l such that for all

• θ1 ∈ Θ(1),

• ψ1 ∈ Ψ(1),

• θ2,1, . . . , θ2,l ∈ Θ(2),

• ψ2,1, . . . , ψ2,l ∈ ψ(2),

we have
κ(1)(η1, u1, h

(1)(x1, u1, ψ1)) � κ(F l(η2, π2, x2, θ2,1, . . . , θ2,l, ψ2,1, . . . , ψ2,l)) (14)

then R2 dominates R1 under κ(1) and κ(2), denoted R1 ER2. ◦

The next example demonstrates that Definition 5 behaves reasonably.

Example 16 (Varying error bounds) Recall the incompletely specified models in Examples 14 and 15.
Consider two robot systems R1 and R2 with state transitions as in Example 14 and observations as in

Example 15; R1 and R2 differ only in their error bounds θ
(1)
max, ψ

(1)
max, θ

(2)
max, and ψ

(2)
max. We compare these

robots under κndet. Comparing θ
(1)
max to θ

(2)
max, and ψ

(1)
max to ψ

(2)
max, there are four cases:

1. If θ
(1)
max = θ

(2)
max and ψ

(1)
max = ψ

(2)
max, then R1 ≡ R2.

2. If θ
(1)
max ≤ θ

(2)
max and ψ

(1)
max ≤ ψ

(2)
max, then R2 ER1.

3. If θ
(2)
max ≤ θ

(1)
max and ψ

(2)
max ≤ ψ

(1)
max, then R1 ER2.

4. Otherwise, R2 EDR1.

These results follow in a straightforward manner from Definition 5. The intuition is that one robot system
dominates the other if and only if its error bounds are not larger. ⋄

17



8.3 Continuous time

The models presented to this point manage time in discrete stages, in which the robot makes a single decision
at each stage. This discretization of time may be unsatisfactory for many kinds of systems, especially those
that require complicated control strategies. Continuous-time models have a more direct correspondence with
reality. To make the appropriate generalizations, we replace the discrete sequences of states, actions, and
observations with functions of a continuous time parameter t.

The state space X, action space U , and observation space Y remain unchanged from the discrete stage
formulation. At each instant t, the robot chooses some u(t) ∈ U . Let Ũt denote the space of all functions

from [0, t) into U , and let Ũ =
⋃
t∈[0,∞) Ũt. For simplicity of notation, adopt the convention that [0, 0) = ∅.

Define ũ : [0,∞) → U as the robot’s complete action history, and let ũt ∈ Ũ denote the robot’s action history
up to (but exclusive of) time t. We include a special termination action uT ∈ U . The robot selects uT to
indicate that it has finished its task and intends to terminate execution. We require that if u(t) = uT , then
u(t′) = uT for all t′ > t. We describe changes in the state with a state transition function

Φ : X ×
⋃

t∈[0,∞)

Ũt → X. (15)

The intuition is that, given a starting state x(0), and an action history ũt, the state transition function
computes the resulting state

x(t) = Φ(x(0), ũt). (16)

This notation of a “black box” state transition function follows notation employed in control theory, for
example by Chen [1984].

Example 17 A familiar special case of (16) occurs if ũ is a smooth function and there exists a function f
such that

Φ(x(0), ũt) = x(0) +

∫ t

0

f(x(s), u(s))ds. (17)

In this case, the system dynamics can be described by the differential equation ẋ = f(x, u). ⋄

As time passes, the robot’s sensors provide feedback in the form of observations drawn from an observation
space Y . Let Ỹt denote the space of functions mapping [0, t] into Y and let Ỹ =

⋃
t∈[0,∞) Ỹt. The robot’s

complete observation history is ỹ : [0,∞) → Y . The observation history up to t (inclusive) is ỹt ∈ Ỹt. The
observations received by the robot are governed by the observation function1 h : X → Y . The history I-state
becomes

Ihist =
⋃

t∈[0,∞)

Ũt × Ỹt, (18)

and the history I-state at time t is η(t) = (ũt, ỹt) ∈ Ihist. A state x is consistent with an I-state η(t) = (ũt, ỹt)
if and only if there exists some starting state x(0) such that Φ(x(0), ũt) = x and h(x(t′)) = y(t′) for t′ < t.

We describe the robot’s strategy as a feedback policy π : Ihist → U that specifies an action for each
history I-state. We assume that a given strategy is executed until it selects uT . The time when this occurs,
the resulting final state, and the observations received along the way are all affected by the strategy π itself
and the starting state x(0). Assuming that the robot executes π, the termination time is

T (π, x(0)) = inf{t ∈ [0,∞) | π(η(t)) = uT }. (19)

1In our discrete-stage formulation, we used a slightly different observation model, in which h : X ×U → Y . In a continuous-
time adaptation, the time period over which observations are available is the half-open interval [0, t); eyt would be undefined at
t itself. As a result, the closest we could come to a memoryless strategy is to use the left-hand limit of eyt at t, κobs(η(t)) =
lim

t′→t−
y(t′), provided the limit exists. (Compare to Example 19.) This technicality is part of the motivation for preventing

y from depending directly on u, as we have done in this section. A more complete treatment of these kinds of sensor models
appears in Section 11.1.1 of [LaValle, 2006].

18



The final state, denoted F (π, x(0)), is

F (π, x(0)) = Φ(x(0), ũT (π,x(0))). (20)

The next three examples illustrate that feedback over a derived I-space can be a natural way to express
familiar kinds of strategies.

Example 18 (Open loop strategy) Let Itime = [0,∞) and consider the I-map κtime(η(t)) = t. In this
case, the derived I-state is simply the time elapsed. If the robot has an intended open loop action trajectory
ω : [0, tf ) → U , a strategy to execute γ is π(η(t)) = ω(κtime(η(t)) if t < tf and π(η(t)) = uT otherwise. ⋄

Example 19 (Memoryless strategy) Another possibility is that it is enough to know the “most recent”
observation, so Iobs = Y and κobs(η(t)) = y(t). Given a memoryless plan γ : Y → U , the composed function
κobs ◦ γ : Ihist → U is a memoryless information feedback strategy. ⋄

Example 20 (Concatenating strategies) Given two strategies π1 and π2, a new strategy that concate-
nates them (that is, executes them in sequence) is expressed by π(η(t)) = π1(η(t)) if π1(η(t)) 6= uT and
π(η(t)) = π2(η(t)) otherwise. By nesting this construction, arbitrarily many strategies can be chained to-
gether. ⋄

Definition 4 generalizes in a natural way.

Definition 6 [Robot dominance in continuous time] Consider two continuous-time robot systems R1 =
(X(1), U (1), Y (1),Φ(1), h(1)), and R2 = (X(2), U (2), Y (2),Φ(2), h(2)). If, for all

• η(1)(t1) ∈ I
(1)
hist,

• η(2)(t2) ∈ I
(2)
hist for which κ(1)(η(1)(t1)) � κ(2)(η(2)(t2)),

• t′1 ∈ [0,∞), and all

• ũ
(1)
t′
1

∈ Ũ
(1)
t′
1

,

there exists an information feedback strategy π2 : I
(2)
hist → U (2), such that for all x(1) ∈ X(1) consistent with

η(1)(t1) and x(2) ∈ X(2) consistent with η(2)(t2), there exists t′2 ∈ [0,∞) such that if R1 executes ũ
(1)
t′
1

from

time t1 to t′1 and R2 executes π(2) from time t2 to t′2, we have

κ(1)(η(1)(t′1)) � κ(2)(η(2)(t′2)) (21)

then R2 dominates R1 under κ(1) and κ(2), denoted R1 ER2. ◦

See Figure 14. The next two examples illustrate some implications of Definition 6.

Example 21 (Omniscient sensing and perfect control) Consider a degenerate case with Y = X, and
h(x) = x. This situation gives the robot complete information about its state. Choose I = X and κ(η(t)) =
y(t) = x(t). Let κ(η1) � κ(η2) if and only if κ(η1) = κ(η2), as in Example 8. In this context, Definition 4
becomes a statement about the regions of state space reachable by different control systems.

Suppose three such systems R1, R2, and R3 differ only in their action spaces U (1), U (2), and U (3). Let
Z(A) denote the subset of state space reachable by a robot with action space A. Suppose R1 E R2. R3 need

19



R2R1

eu
(1)

t′
1

eu
(2)

t′
2

κ(1)(η(1)(t′1)) � κ(2)(η(2)(t′2))

κ(1)(η(1)(t1)) � κ(2)(η(2)(t2))

Figure 14: An illustration of Definition 6. Compare to Figure 6.

Figure 15: The lost cow of Example 22 searching for a gate.

not be comparable to either R1 or R2. Note that additional robot models can be constructed from unions of
U (1), U (2), and U (3). We have the following results:

Z(U (1)) ⊆ Z(U (2) ∪ U (3)) (22)

Z(U (1)) = Z(U (1) ∪ U (2)) (23)

Z(U (1) ∪ U (3)) ⊆ Z(U (2) ∪ U (3)) (24)

These results are analogous to Lemma 2. Note that in combining action spaces in this way, we allow the
robot to choose sequentially the action set from which to choose its action. The results fail if the robot is
somehow allowed to choose actions from each constituent set in parallel. ⋄

Example 22 (A Lost Cow) A well-known problem in online algorithms is the lost cow problem [Kao
et al., 1993, Baeza-Yates et al., 1993] in which a near-sighted cow moves along a fence searching for a gate,
as illustrated in Figure 15. The difficulty under the standard sensing model is that the cow must systematically
search in both directions from its initial position without any information about the distance or direction to
the gate. The interest in this problem derives from potential applications in (or at least the potential for
better understanding of) exploration in unbounded environments.

We formulate the lost cow problem and consider how the sensing model affects the cow’s searching ability.
Let X = R, in which x(t) is the position of the gate relative to the cow at time t. Let the action space be

U = [−1, 1] with Φ(x(0), ũt) = x(0) +
∫ t
0
u(s)ds. We compare three distinct models C1, C2, and C3 under

κndet.

1. C1: Let Y (1) = R and h(1)(x) = x. Here the cow can determine both the direction and distance to the
gate.

20



2. C2: Let Y (2) = {−1, 0, 1} and h(x) = sign(x). This allows the cow to determine the direction it must
move to reach the gate, but not the distance.

3. C3: Let Y (3) = {0, 1} and h(2)(x) = 1 if x = 0 and h(2)(x) = 1 otherwise. This is the standard lost
cow sensing model, in which the cow cannot see the gate from a distance, but can detect the gate when
it arrives.

Perhaps surprisingly, these three models are equivalent in the sense of Definition 6. This is because each can
eventually determine its state (by finding the gate) and after the state is known, state uncertainty cannot
recur. To simulate C1 with C3, first execute the algorithm of Baeza-Yates et al. [1993], then move to the
state occupied by C1. ⋄

We conclude our discussion of continuous-time models by showing how a discrete stage model in the
form of Section 3 can be constructed from a continuous-time model in the form presented above. Consider a
division of time into variable length stages, in which, in each stage, the robot executes a single information
feedback strategy to completion. We require of each of these strategies the following special property:

Definition 7 [History invariance] If, for all η(t) ∈ Ihist, all x ∈ X consistent with η(t), and all y(0) ∈ Y ,
we have F (π, x, η(t)) = F (π, x, η(0)), then π is a history-invariant strategy. ◦

The intuition of the definition is that the robot executing π is free to use the observation and action history
generated during its own execution, but it cannot peer into the past before its execution began in order to
make decisions. Given a continuous-time robot system R = (X,U, Y,Φ, h) (as defined in this section) and a
set Π of history-invariant information feedback strategies, construct a discrete-stage system (as in Section 3)
R = (X,U, Y , f , h) as follows:

1. The state space X is the same.

2. The action space is U = Π.

3. The observation space is Y = Ỹ .

4. The state transition function is f : X × U → X, with f(x, π) = F (π, x, η(0)).

5. The observation function is h : X × U → Y .

The system starts at some (unknown) initial state x1 ∈ X. Let xk ∈ X, uk ∈ U , and yk ∈ Y , denote the
appropriate values at stage k. These sequences are related to each other by xk+1 = f(xk, uk) and yk =
h(xk, uk). The history I-state consists of the action and observation histories: ηk = (u1, y1, . . . , uK−1, yK−1).
This construction gives a discrete-stage system faithful to the dynamics in both state space and I-space of
the underlying continuous time system.

Lemma 10 Any action sequence u1, . . . , uK executed by R reaches the same final state x and the analogous
final history I-state as does R.

Note, however, that in making this transformation, we must choose a set Π of strategies and may therefore
restrict the space of plans that the robot can execute. If Π does not contain a sufficiently rich selection
of information feedback strategies, there may be regions of I-space that are no longer reachable under the
discretized model. In this way, Π is analogous to the catalog of robotic primitives RP introduced in Section 4.

21



Figure 16: A sample decision problem. What sensing is required to decide if a planar environment is simply
connected? What robots can distinguish the annulus environment on the left from the helix on the right?

9 Discussion

The results of this paper are intended to lay a foundation for a sensor-centered theory for comparing robotic
problems and systems. Great potential exists to build on this foundation, particularly by developing the
analogy to the theory of computation even further.

The most obvious avenue for future work is to study a broader collection of problems. Although this
paper considers an active global localization problem in detail, other fundamental robotics problems warrant
similar analysis of their information requirements. For example, results exist for limited-sensing versions of
navigation [Kamon et al., 1999, Lumelsky and Tiwari, 1994, Lumelsky and Stepanov, 1987, Papadimitriou
and Yannakakis, 1991], exploration [Acar and Choset, 2001b, Choset and Burdick, 1995, Ó. Dúnlaing and
Yap, 1982, Tovar et al., 2004], and manipulation [Akella and Mason, 1998, Erdmann and Mason, 1988,
Goldberg, 1993, Agarwal et al., 2001, Akella et al., 2000] tasks. Using the techniques we have presented, it
should be possible to unify and extend these results to develop a more complete understanding of the sensing
and motion abilities needed to solve these problems. Other problems and more complex sensing systems
could also be investigated.

One of the most powerful ideas in the theory of computation that we have not explored here is the idea of
reductions, which hold promise for comparing robotic problems themselves. The resulting statements would
have the form “Problem A is at least as hard as Problem B.” To make things more concrete, we might
consider decision problems, in which the robot with a state space defined as in Section 8.1 must determine
if its environment E ∈ E has a certain property. Such problems can be expressed naturally as planning
problems in I-space. To decide if E has a property Ξ : E → {0, 1}, the robot must reach the goal region

IG,Ξ = {η ∈ Ihist | ∀(q, E) ∈ κndet(η),Ξ(E) = 1} ∪ {η ∈ Ihist | ∀(q, E) ∈ κndet(η),Ξ(E) = 0}. (25)

An example is in Figure 16.
Another direction is to study the computational requirements of robotics problems. We expect that there

exist rich tradeoffs between computation time, memory usage, sensing requirements, and solution quality.
Some research has been done for certain tasks, for example exploration [Shannon, 1952, Bender et al., 1998,
Blum and Kozen, 1978], pursuit-evasion [T. Kameda and Suzuki, 2006], and coverage [Wagner et al., 1999],
but very little is known in general. One way to deal with such issues is to study sufficient I-maps [LaValle,
2006], which are I-maps for which transitions can be computed directly in the derived I-space, allowing the
history to be discarded. For example, if a problem can be solved under a given robot model using a sufficient
I-map into a derived I-space of finite cardinality n, the memory required to solve the problem is O(log n). The
results of Blum and Kozen [1978], for example, can be characterized as showing how a discrete exploration

22



problem can be solved in a derived I-space with cardinality linear in the height of the area to be explored,
meaning that only logarithmic memory is required. These computational issues must be approached with
care, especially if those computations involve real numbers [Blum et al., 1998].

In spite of these possibilities, there are important limitations to the idealized models we presented. Of
the many issues remaining to be addressed, we mention a few here.

Probabilistic uncertainty We have focused our attention on nondeterministic uncertainty, but a large
subset of contemporary work in robotics uses probabilistic models of uncertainty [Austin and Jensfelt, 2000,
Thrun et al., 2005, Fox et al., 1998, Jensfelt and Kristensen, 2001, Shatkay and Kaelbling, 1997, Simmons and
Koenig, 1995]. Our results also apply, at least in principle, to probabilistic uncertainty. In this context, the
relevant derived I-space is a space of probability distributions over X. However, it is not immediately clear
what the “right” information preference relation over such a space would be. Depending on the models used,
it may also be necessary to relax Definition 4 to require only that R2 can simulate R1 with sufficiently high
probability. More generally, the differences between nondeterministic and probabilistic uncertainty models
warrant further exploration. For example, nondeterministic uncertainty has the property that sensing can
only help. Actions from primitives like PR (Example 6) or PG (Example 7) that do not change the state
always lead to a derived I-state at least as good as the current one. Under probabilistic uncertainty, this
property does not obviously hold, and sensing can sometimes increase uncertainty.

Selecting the catalog of primitives Although we believe that our robotic primitives provide a useful
abstraction, any results derived using our methods are meaningful only if RP is diverse enough to faithfully
represent the underlying system. It remains an open problem to systematically find small (or at least
succinctly described) sets of robotic primitives that are complete (or nearly complete) in the sense of not
eliminating any reachable regions in I-space. There is, however, active interest in related problems for control
systems [Frazzoli, 2001, Murphey, 2006, Mehta et al., 2006, Girard and Pappas, 2006].

What happens if RP is not a finite set? For example, we may extend PL (from Example 5) to a family
{PL,ǫ = (S1, {0}, fLǫ

, hLǫ
) | ǫ ≥ 0} of primitives, each using a noisy linear odometer whose error is bounded

by ǫ. If RP contains many such families of primitives, and we assume each robot has at most one primitive
from each family, then the space of robot models is a cube in R

n. The problem of identifying the region in
which a given task can be solved is correspondingly more difficult.

Efficiency and optimality Throughout this paper, we have neglected the question of the robot’s efficiency
in completing its tasks. This weakness is particularly evident, for example, in Example 10, in which the
statement of dominance does not consider the differences in execution cost, which in this case are likely to
be prohibitively large. One established technique for taking such costs into account is to use competitive
ratios [Gabriely and Rimon, 2004, Icking et al., 2002], which compare the execution costs of online algorithms
(which must gather information during their execution) to offline methods (which have complete information)
for the same tasks. It may be fruitful to generalize this notion by considering “relative competitive ratios”
that bound the additional cost accrued by replacing one robot system with another dominant robot system.

Parameterization of time In Section 8.3, we parameterized the robot’s observations by time. In doing
so, we implicitly assumed that the robot has an accurate clock. Although such an assumption is generally not
technologically impractical, it requires care in abstract models to ensure that the robot cannot acquire extra
information “for free.” A robot might, for example, use this implicit clock to parlay an accurate velocity
sensor into a perfect odometer. One solution is to express ũ and ỹ as functions of some other abstract
parameter p. To recover the original functions of time, the robot must determine a hidden mapping from R

to R under which p maps to t. Such issues are addressed in detail by LaValle and Egerstedt [2007].

Cooperation and coordination In this work we consider only a single independent robot. We might
also consider the performance of teams of cooperative robots on the same tasks. Such work would require
an investigation of the joint I-spaces that would arise from the interaction of multiple agents, each having

23



only limited information. In particular, limited and possibly noisy communication between robots must be
modeled. Many of the relevant issues are worked out in the game theory literature [Başar and Olsder, 1995,
Owen, 1982].

References

A. Abate, A. D. Ames, and S. Sastry. Error-bounds based stochastic approximations and simulations of
hybrid dynamical systems. In American Control Conference, 2006.

E. U. Acar and H. Choset. Robust sensor-based coverage of unstructured environments. In Proc. IEEE/RSJ
International Conference on Intelligent Robots and Systems, 2001a.

E. U. Acar and H. Choset. Complete sensor-based coverage with extended-range detectors: A hierarchi-
cal decomposition in terms of critical points and voronoi diagrams. In Proc. IEEE/RSJ International
Conference on Intelligent Robots and Systems, 2001b.

Pankaj K. Agarwal, A. D. Collins, and J. L. Harer. Minimal trap design. In Proc. IEEE International
Conference on Robotics and Automation, volume 3, pages 2243–2248, 2001.

S. Akella and M. Mason. Posing polygonal objects in the plane by pushing. International Journal of Robotics
Research, 17(1):70–88, January 1998.

S. Akella, W. Huang, K. M. Lynch, and M. T. Mason. Parts feeding on a conveyor with a one joint robot.
Algorithmica, 26(3):313–344, March-April 2000.

D. J. Austin and P. Jensfelt. Using multiple gaussian hypotheses to represent probability distributions for
mobile robot localization. In Proc. IEEE International Conference on Robotics and Automation, pages
1036–1041, 2000.

D. Avis and H. Imai. Locating a robot with angle measurements. Journal of Symbolic Computation, 10(3-4):
311–326, 1990. ISSN 0747-7171.

T. Başar and G. J. Olsder. Dynamic Noncooperative Game Theory. Academic, London, second edition,
1995.

R. A. Baeza-Yates, J. C. Culberson, and G. J. E. Rawlins. Searching in the plane. Information and
Computation, 106:234–252, 1993.

J. Barraquand and P. Ferbach. Motion planning with uncertainty: The information space approach. In Proc.
IEEE International Conference on Robotics and Automation, pages 1341–1348, 1995.

K. Basye and T. Dean. Map learning with indistinguishable locations. In Proc. Conference on Uncertainty
in Artificial Intelligence, pages 331–342. North-Holland, 1990. ISBN 0-444-88738-5.

M. A. Bender, A. Fernández, D. Ron, A. Sahai, and S. Vadhan. The power of a pebble: exploring and
mapping directed graphs. In Proc. IEEE Symposium on Foundations of Computer Science, pages 269–
278, 1998.

D. P. Bertsekas. Dynamic programming and optimal control, volume 1. Athena Scientic, Belmont, MA,
second edition, 2001.

D. Blackwell and M. A. Girshik. Theory of Games and Statisitical Decisions. Dover, New York, 1979.

L. Blum, F. Cucker, M. Shub, and S. Smale. Complexity and Real Computation. Springer Verlag, Berlin,
1998.

24



M. Blum and D. Kozen. On the power of the compass (or, why mazes are easier to search than graphs). In
Proc. IEEE Symposium on Foundations of Computer Science, pages 132–142, 1978.

A. Borodin and R. El-Yaniv. Online Computation and Competitive Analysis. Cambridge University Press,
Cambridge, UK, 1998.

R. I. Brafman, J. Y. Halpern, and Y. Shoham. On the knowledge requirements of tasks. Artificial Intelligence,
98(1-2):317–349, 1998.

C.-T. Chen. Linear System Theory and Design. Holt, Rinehart, and Winston, New York, 1984.

H. Choset and J. Burdick. Sensor based planning, part I: The generalized Voronoi graph. In Proc. IEEE
International Conference on Robotics and Automation, pages 1649–1655, 1995.

I. J. Cox. Blanche – an experiment in guidance and navigation of an autonomous robot vehicle. IEEE
Transations on Robotics and Automation, 7:2:193–204, 1991.

F. Dellaert, D. Fox, W. Burgard, and S. Thrun. Monte carlo localization for mobile robots. In Proc. IEEE
International Conference on Robotics and Automation, 1999.

E. D. Demaine, A. López-Ortiz, and J. I. Munro. Robot localization without depth perception. In Scandi-
navian Workshop on Algorithm Theory, 2002.

B. R. Donald. On information invariants in robotics. Artificial Intelligence, 72(1-2):217–304, 1995.

G. Dudek, K. Romanik, and S. Whitesides. Localizing a robot with minimum travel. SIAM Journal on
Computing, 27(2):583–604, 1998.

M. Egerstedt. Motion description languages for multi-modal control in robotics. In A. Bicchi, H. Cristensen,
and D. Prattichizzo, editors, Control Problems in Robotics, Springer Tracts in Advanced Robotics, pages
75–90. Springer-Verlag, 2002.

M. Erdmann. Randomization for robot tasks: Using dynamic programming in the space of knowledge states.
Algorithmica, 10:248–291, 1993.

M. Erdmann. Understanding action and sensing by designing action-based sensors. International Journal of
Robotics Research, 14(5), 1995.

M. Erdmann and M. T. Mason. An exploration of sensorless manipulation. IEEE Transations on Robotics
and Automation, 4(4):369–379, August 1988.

D. Fox, W. Burgard, and S. Thrun. Active markov localization for mobile robots. Robotics and Autonomous
Systems, 25:195–207, 1998.

E. Frazzoli. Robust Hybrid Control of Autonomous Vehicle Motion Planning. PhD thesis, Massachusetts
Institute of Technology, Cambridge, MA, June 2001.

Y. Gabriely and E. Rimon. Competitive complexity of mobile robot on line motion planning problems. In
Proc. Workshop on the Algorithmic Foundations of Robotics, 2004.

A. Girard and G. J. Pappas. Approximation metrics for discrete and continuous systems. IEEE Transactions
on Automatic Control, March 2005. To appear.

A. Girard and G. J. Pappas. Hierarchical control using approximate simulation relations. In Proc. IEEE
Conference on Decision and Control, 2006.

K. Y. Goldberg. Orienting polygonal parts without sensors. Algorithmica, 10:201–225, 1993.

25



K. Y. Goldberg and M. T. Mason. Bayesian grasping. In Proc. IEEE International Conference on Robotics
and Automation, 1990.

L. J. Guibas, R. Motwani, and P. Raghavan. The robot localization problem. In K. Goldberg, D. Halperin,
J.-C. Latombe, and R. Wilson, editors, Proc. Workshop on the Algorithmic Foundations of Robotics, pages
269–282. A.K. Peters, Wellesley, MA, 1995.

J. E. Hopcroft, J. D. Ullman, and R. Motwani. Introduction to Automata Theory, Languages, and Compu-
tation. Addison-Wesley, Reading, MA, second edition, 2000.

C. Icking, T. Kamphans, R. Klein, and E. Langetepe. On the competitive complexity of navigation tasks.
In Sensor Based Intelligent Robots, pages 245–258, 2002.

P. Jensfelt and S. Kristensen. Active global localisation for a mobile robot using multiple hypothesis tracking.
IEEE Transations on Robotics and Automation, 17(5):748–760, October 2001.

I. Kamon, E. Rivlin, and E. Rimon. Range-sensor based navigation in three dimensions. In Proc. IEEE
International Conference on Robotics and Automation, 1999.

M.-Y. Kao, J. H. Reif, and S. R. Tate. Searching in an unknown environment: An optimal randomized
algorithm for the cow-path problem. In Proc. ACM-SIAM Symposium on Discrete Algorithms, pages
441–447, 1993.

R. M. Karp. On-line algorithms versus off-line algorithms: How much is it worth to know the future? In
Proceedings World Computer Congress, 1992.

J. M. Kleinberg. The localization problem for mobile robots. In Proc. IEEE Symposium on Foundations of
Computer Science, pages 521–531, 1994.

S. Koenig, A. Mudgal, and C. Tovey. An approximation algorithm for the robot localization problem. In
Proc. ACM-SIAM Symposium on Discrete Algorithms, 2006.

H. W. Kuhn. Extensive games and the problem of information. In H. W. Kuhn and A. W. Tucker, editors,
Contributions to the Theory of Games, pages 196–216. Princeton University Press, Princeton, NJ, 1953.

K. N. Kutulakos, C. R. Dyer, and V. J. Lumelsky. Provable strategies for vision-guided exploration in three
dimensions. In Proc. IEEE International Conference on Robotics and Automation, pages 1365–1371, 1994.

A. M. Ladd, K. E. Bekris, A. P. Rudys, D. S. Wallach, and L. E. Kavraki. On the feasibility of using wireless
Ethernet for indoor localization. IEEE Transactions on Robotics and Automation, 20(3):555–559, June
2004.

S. M. LaValle. Planning Algorithms. Cambridge University Press, Cambridge, UK, 2006. Also available at
http://planning.cs.uiuc.edu/.

S. M. LaValle and M. B. Egerstedt. On time: Clocks, chronometers, and open-loop control. Technical Report
UIUCDCS-R-2007-2861, University of Illinois at Urbana-Champaign, May 2007.

S. M. LaValle and S. A. Hutchinson. An objective-based framework for motion planning under sensing and
control uncertainties. International Journal of Robotics Research, 17(1):19–42, January 1998.

S. Lenser and M. Veloso. Sensor resetting localization for poorly modelled mobile robots. In Proc. IEEE
International Conference on Robotics and Automation, 2000.

T. Lozano-Pérez, M. T. Mason, and R. H. Taylor. Automatic synthesis of fine-motion strategies for robots.
International Journal of Robotics Research, 3(1):3–24, 1984.

26



V. Lumelsky and S. Tiwari. An algorithm for maze searching with azimuth input. In Proc. IEEE International
Conference on Robotics and Automation, pages 111–116, 1994.

V. J. Lumelsky and A. A. Stepanov. Path planning strategies for a point mobile automaton moving amidst
unknown obstacles of arbitrary shape. Algorithmica, 2:403–430, 1987.

T. Mehta, F. Delmotte, and M. Egerstedt. Motion alphabet augmentation based on past experiences. In
Proc. IEEE Conference on Decision and Control, 2006.

M. Moll and M. Erdmann. Manipulation of pose distributions. International Journal of Robotics Research,
21(3):277–292, 2002.

T. Murphey. Motion planning for kinematically overconstrained vehicles using feedback primitives. In Proc.
IEEE International Conference on Robotics and Automation, 2006.

C. Ó. Dúnlaing and C. K. Yap. A retraction method for planning the motion of a disc. Journal of Algorithms,
6:104–111, 1982.

J. M. O’Kane and S. M. LaValle. On comparing the power of mobile robots. In Robotics: Science and
Systems, 2006.

J. M. O’Kane and S. M. LaValle. Sloppy motors, flaky sensors, and virtual dirt: Comparing imperfect
ill-informed robots. In Proc. IEEE International Conference on Robotics and Automation, 2007a.

Jason M. O’Kane and Steven M. LaValle. Localization with limited sensing. IEEE Transations on Robotics,
2007b. To appear.

G. Owen. Game Theory. Academic, New York, 1982.

C. H. Papadimitriou. Games against nature. Journal of Computer and System Sciences, 31:288–301, 1985.

C. H. Papadimitriou and M. Yannakakis. Shortest paths without a map. Theoretical Computer Science, 84:
127–150, 1991.

M. Rao, G. Dudek, and S. Whitesides. Randomized algorithms for minimum distance localization. In Proc.
Workshop on the Algorithmic Foundations of Robotics, pages 265–280, 2004.

K. Romanik and S. Schuierer. Optimal robot localization in trees. In Proc. Symposium on Computational
Geometry, pages 264–273, 1996.

C. E. Shannon. Presentation of a maze solving machine. In H. von Foerster, M. Mead, and H. L. Teu-
ber, editors, Cybernetics: Circular, Casual, and Feedback Mechanisms in Biological and Social Systems,
Transactions Eighth Conference, pages 169–181, New York, 1952. Josiah Macy Jr. Foundation.

H. Shatkay and L. P. Kaelbling. Learning topological maps with weak local odometric information. In Proc.
International Joint Conference on Artificial Intelligence, pages 920–927, 1997.

R. Simmons and S. Koenig. Probabilistic robot navigation in partially observable environments. In Proc.
International Joint Conference on Artificial Intelligence, pages 1080–1087, 1995.

M. Sipser. Introduction to the Theory of Computation. PWS, Boston, MA, 1997.

D. D. Sleator and R. E. Tarjan. Amortized efficiency of list update and paging rules. Communications of
the ACM, 28:202–208, 1985.

R. I. Soare. Recursively enumerable sets and degrees. Springer-Verlag, Berlin, 1987.

K. Sugihara. Some location problems for robot navigation using a simple camera. Comp. Vis., Graphics, &
Image Proc., 42(1):112–129, 1988.

27



M. Yamashita T. Kameda and I. Suzuki. Online polygon search by a seven-state boundary 1-searcher. IEEE
Transations on Robotics, 22(3), June 2006.

S. Thrun, W. Burgard, and D. Fox. Probabilistic Robotics. MIT Press, Cambridge, MA, 2005.

B. Tovar, L. Guilamo, and S. M. LaValle. Gap Navigation Trees: Minimal representation for visibility-based
tasks. In Proc. Workshop on the Algorithmic Foundations of Robotics, 2004.

A. F. van der Stappen, R.-P. Berretty, K. Goldberg, and M. H. Overmars. Geometry and part feeding. In
Sensor Based Intelligent Robots, pages 259–281, 2000.

I. A. Wagner, M. Lindenbaum, and A.M. Bruckstein. Distributed covering by ant-robots using evaporating
traces. IEEE Transations on Robotics and Automation, 15(5):918–933, October 1999.

G. Weiss, C. Wetzler, and E. von Puttkamer. Keeping track of position and orientation of moving indoor
systems by correlation of range-finder scans. In Proc. IEEE/RSJ International Conference on Intelligent
Robots and Systems, 1994.

D. E. Whitney. Real robots don’t need jigs. In Proc. IEEE International Conference on Robotics and
Automation, 1986.

J. Wiegley, K. Goldberg, M. Peshkin, and M. Brokowski. A complete algorithm for designing passive fences
to orient parts. Assembly Automation, 17(2), August 1997.

28


