
Sloppy motors, flaky sensors, and virtual dirt:
Comparing imperfect ill-informed robots

Jason M. O’Kane and Steven M. LaValle

Abstract— Robots must complete their tasks in spite of
unreliable actuators and limited, noisy sensing. In this paper,
we consider theinformation requirements of such tasks. What
sensing and actuation abilities are needed to complete a given
task? Are some robot systems provably “more powerful” than
others? Can we find meaningful equivalence classes of robot
systems? This line of research is inspired by the theory of
computation, which has produced similar results for abstract
computing machines. The basic idea is a dominance relation
over robot systems that formalizes the idea that some robots
are stronger than others. We show that this definition is directly
related to the robots’ ability to complete tasks. Our prior work
in this area assumes perfect control and sensing, requires that
the robot begin with a single fixed initial condition within
a known environment, and models of time as a sequence of
variable-length discrete stages, rather than as a continuum. In
this paper, we substantially improve upon that earlier work by
addressing these problems.

I. INTRODUCTION

Suppose we want a robot to complete some task, such
as navigating to a goal, manipulating an object, or localizing
itself within its environment. Many different combinations of
sensing and motion modalities can be (and have been) used
to complete each of these tasks. Indeed, much of the robotics
literature is concerned with findingsufficient conditionson
the sensing and actuation capabilities needed to complete
such tasks. In this paper we take a different approach. For
a given task, we are interested in determining thenecessary
conditions: What sensors and actuators are needed? What
are theinformation requirementsof robotic tasks? The long
term goal of this research is to develop a theory of robots
and sensing that helps in answering such questions. Answers
to these questions are important because we expect that a
deep understanding of the difficulty of tasks in terms of
their information requirements will lead to simpler and less
expensive robot designs.

A. Robots, sensors, and the theory of computation

This work is inspired in part by the theory of computation,
which begins with precisely defined models of abstract ma-
chines, such as finite automata, pushdown automata, Turing
machines, and so on [8]. In this context, aproblemis usually
a language of strings; to solve the problem is to accept
strings in this language and reject all others. The theory of
computation gives answers several kinds of basic questions
about these machines and problems.
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1) Solvability: Can a given machine can solve a given
problem?

2) Complexity: If the machine can solve the problem, how
efficiently (in terms of time or space, for example) can
it do so?

3) Comparison: Are some machines strictly more power-
ful, in terms of the problems they can solve, than oth-
ers? It is known, for example, that pushdown automata
can accept a strictly larger set of languages than can
finite automata. Likewise, Turing machines are more
powerful than pushdown automata.

4) Equivalence: Are there apparently dissimilar machines
that can solve the same set of problems? For example,
it is a standard result that a Turing machine with
multiple tapes is functionally equivalent to an ordinary
single tape Turing machine. Less obviously, Turing
machines and recursive functions have been shown to
have equivalent computation power.

These ideas are well understood. In the sense that they
form the formal foundation of the discipline, they are part
of the core of computer science. Current robotic science
lacks a comparable foundation; the field needs a unified
theory in which meaningful statements can be made about
the complexity of robotic tasks and the robot systems we
build to complete these tasks.

Can we adapt standard models of computation to the
robotics context? Unfortunately, these models are fundamen-
tally ill suited for studying robotics problems. They assume
that all of the relevant information is supplied ahead of time
on the machine’s tape. Sensing and uncertainty are central
defining issues in robotics. This structure is destroyed by an
a priori encoding of the problem on a machine’s tape.

Research that studies the competitive ratios of online
methods [10], [14], [15] is a step in the right direction.
This work is useful for understanding how the quality of
optimal solutions is affected by sensing complexity. How-
ever, online algorithms generally are concerned only with
optimality, rather than feasibility. Moreover, research in this
area generally does not consider imperfect sensing or control.

The aim of this paper is to develop a “sensor-centered”
theory for analyzing and comparing robot systems. Our
contribution is to develop such a theory more completely than
in prior work and to illustrate its usefulness with examples.

B. Organization

Section II is a brief survey of related work. In Section III
we give a basic problem definition. Our definition of robot
dominance and its properties are in Section IV. Section V



relates the continuous-time model we introduce in this paper
to our prior work that models time as a sequence of discrete
stages. We make concluding remarks and discuss open prob-
lems in Section VI. We illustrate with examples throughout.

II. RELATED WORK

We partially address issues issues of robot comparison and
dominance in prior work [13], in which we establish adomi-
nancerelation over robot systems. Although it was intended
as a preliminary step toward a general theory of robots and
sensors, that work has several important shortcomings that
limit its applicability.

1) Perfect control– In [13], we assumed that the robot
can execute all of its actions with perfect precision
and complete reliability. The motions of real robots
are imprecise and unpredictable.

2) Perfect sensing– Although [13] accounts for the
importance of sensing by assuming that the robot is
uncertain of its current state and must rely on sensing,
it assumes that sensor readings are uncorrupted by
noise. A more realistic sensor model would allow
information from sensors to be subject to error.

3) Modeling of time– In [13], time is managed in discrete
stages. The robot makes a single decision at each stage.
This discretization of time may be unsatisfactory for
many kinds of systems, especially those that require
complicated control strategies. Continuous-time mod-
els have a more direct correspondence with reality.

4) Fixed, known environment– In [13], we assumed
(tacitly) that the robot operates in a fixed, known
environment. This assumption, which stems from the
formulation of the current state as the robot’s config-
uration within its environment, is unsatisfactory in all
but the most structured contexts.

5) Identical state spaces– The dominance relation in [13]
is only able to compare robots that share the same state
space. To compare robots that are truly dissimilar, the
framework must allow each robot to have a distinct
state space.

In this paper, we present substantial revisions and extensions
to the framework of [13] to remedy these shortcomings.
These extensions illuminate several issues and subtletiesnot
evident in the former paper.

Our goals are similar to those of Donald [4]. The reduc-
tions in that work are similar to our dominance relation;
Donald’s notion of calibration is related to our idea of
initial conditions. The most fundamental difference is that
our analysis is rooted in the information space. We claim
that for robotic problems for which sensing is a crucial issue,
the information space is the space in which the problem can
most naturally be posed.

A third line of related research is the work of Erdmann [6],
which is itself grounded in the preimage planning ideas due
Lozano-Perez, Mason, and Taylor [11]. In Erdmann’s work,
sensors are modeled by giving a partition of state space. The
problem of sensor design is choose a partition so that from
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Fig. 1. As the robot interacts with its environment, an artificial decision
maker nature generates disturbances.

each region in the partition, the robot knows what action to
select in order to make progress toward its goal.

Others in artificial intelligence [2] and control theory [5],
[7] have addressed related issues.

III. BASIC DEFINITIONS

This section contains basic definitions for planning with
uncertainty in the robot’s current state. In summary, the robot
lives in some state space, beginning at an unknown start
state and choosing actions that change the current state in
some possibly noisy way. The current state is hidden from
the robot, which must rely instead on observations that give
incomplete and possibly noisy “hints” about the true state.
The noise in control and sensing is generated by a fictional
external decision maker we callnature, for which we assume
some behavior model is known. See Figure 1. Details of the
formulation follow.

A. State spaces and environment spaces

The robot moves in a state spaceX, which must be suf-
ficiently expressive to encode all of the relevant information
about the condition of the world. In a simple case,X might
be defined as the configuration space [12] of the robot in a
certain environment. Time proceeds continuously startingat
t = 0 and continuing indefinitely. The robot’s state at timet
is denotedx(t).

What happens when the robot begins with limited or no
knowledge about its environment, in the sense that positions
and geometry of obstacles, map topology, navigability of
terrain, and so on are unknown? Imperfect knowledge about
the environment is a more drastic instance of the general
issue of state uncertainty. If the state is defined to include
a description of the environment in addition to the robot’s
configuration, then uncertainty in the environment can be
represented as an additional dimension of state uncertainty.

Concretely, choose anenvironment spaceE of which each
elementE ∈ E is a potential environment for the robot.
Possibilities forE (with varying degrees of realism, interest,
practicality, and amenability to analysis), include:

1) the set of bounded planar grids with occupancy maps,
2) the set of simple polygons in the plane, and
3) the set of compact regions inR2 or R

3 with connected
interiors and piecewise analytic boundaries.

4) the set of terrain maps fromR2 to R, giving the
elevation or navigability at each point in the plane.

The state space is formed by combining the robot’s configu-
ration spaceC with E , so thatX = C×E . In our models, the
true environmentE ∈ E affects the robot by influencing the
state transitions that the robot makes and the observations
that the robot receives.



Fig. 2. When the environment is uncertain, the identity of the environment
becomes part of the state of the system. Above are three states for an
example system containing a mobile robot in the plane with environment
uncertainty.

B. Actions and transitions

The robot influences its current state by choosing actions
from some action spaceU . At each instantt, the robot
chooses someu(t) ∈ U . Let Ũt denote the space of all
functions from[0, t) into U , and letŨ =

⋃
t∈[0,∞) Ũt. For

simplicity of notation, adopt the convention that[0, 0) = ∅.
Defineũ : [0,∞) → U as the robot’s complete action history,
and let ũt ∈ Ũ denote the robot’s action history up to (but
exclusive of) timet.

We include a specialtermination actionuT ∈ U . The
robot selectsuT to indicate that it has finished its task and
intends to terminate execution. We require that ifu(t) = uT ,
thenu(t′) = uT for all t′ > t.

How do these actions influence the state? Recall that
we intend to model disturbances and unexpected events as
interference from nature. Choices made by both the robot
and by nature affect changes in the state. LetΘ denote a
nature action space. Let Θ̃t denote the space of all functions
mapping [0, t) into Θ, and let Θ̃ =

⋃
t∈[0,∞) Θ̃t. Let θ̃ :

[0,∞) → Θ denote the complete history of nature actions
and θ̃t ∈ Θ̃t the nature action history up to (and including)
t.

We describe changes in the state with astate transition
function

Φ : X ×
⋃

t∈[0,∞)

(Ũt × Θ̃t) → X. (1)

The intuition is that, given a starting statex(0), and action
histories ũt and θ̃t of equal duration for the robot and
nature respectively, the state transition function computes the
resulting state

x(t) = Φ(x(0), ũt, θ̃t). (2)

This notation of a “black box” state transition function
follows notation employed in control theory, for example by
Chen [3].

Example 1:A familiar special case of (2) occurs if̃u and
θ̃ are smooth functions and there exists a functionf such
that

Φ(x(0), ũt, θ̃t) = x(0) +

∫ t

0

f(x(s), u(s), θ(s))ds. (3)

In this case, the system dynamics can be described by the
differential equationẋ = f(x, u, θ). �

Example 2:Consider a point in the plane with velocity
input, for which the motion is subject to noise. Letumax

Fig. 3. [left] The robot in Example 2 gives velocity inputs that determine
a nominal trajectory. [right] Nature interferes with this trajectory, but error
bounds ensure that the final state is contained in a circle of radiustθmax.

denote a bound on the magnitude of the commanded velocity,
and letθmax denote a bound on magnitude of the error in
the velocity. LetX = R

2, U = {u ∈ R
2 | ||u|| ≤ umax},

Θ = {θ ∈ R
2 | ||θ|| ≤ θmax}, and

Φ(x(0), ũt, θt) = x(0) +

∫ t

0

(u(s) + θ(s))ds. (4)

At every time t, the robot can be certain that its state lies
within a closed ball of radiustθmax, centered at the nominal
(error free, i.e.̃θ ≡ (0, 0)) final point. See Figure 3.

�

C. Observations

As time passes, the robot’s sensors provide feedback in
the form of observationsdrawn from an observation space
Y . Let Ỹt denote the space of functions mapping[0, t] into Y
and let Ỹ =

⋃
t∈[0,∞) Ỹt. The robot’s complete observation

history is ỹ : [0,∞) → Y . The observation history up tot
(inclusive) isỹt ∈ Ỹt.

Nature interferes with the observations by choosing a
nature observation actionfrom a spaceΨ. Let Ψ̃t denote
the space of functions mapping[0, t) into Ψ and let Ψ̃ =⋃

t∈[0,∞) Ψ̃t. The robot’s complete nature observation action

history is ψ̃ : [0,∞) → Ψ; the nature observation action
history up to time (but not including)t is ψ̃t ∈ Ψ̃t. The
observations received by the robot are governed by the
observation functionh : X × Ψ → Y .

Example 3:Suppose the mobile robot has a sensor that
detects the distance to some landmark. LetX = R

2 and
Y = R. Without loss of generality, position the landmark
at the origin. Assume that the sensor has bounded additive
disturbance, so thatΨ = [−ψmax, ψmax] and h(x, ψ) =
||x|| + ψ. See Figure 4. At each instant, the robot knows
with certainty that its state is within an annulus of width
2ψmax centered at the origin. �

D. Information spaces and information mappings

To inform its decisions, the robot has access only to
the histories of actions it has selected and observations it
has received so far. That is, to selectu(t), the robot can
use ũt and ỹt. This motivates our definition of thehistory
information space:

Ihist =
⋃

t∈[0,∞)

Ũt × Ỹt (5)

The tuple η(t) = (ũt, ỹt) ∈ Ihist containing the robot’s
action and sensing histories is the robot’shistory information
state.
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Fig. 4. [left] The robot in Example 3 has a sensor that reports anoisy
estimate of the distance to the origin. [right] Accounting for noise bounded
by ψmax, the observation confines the robot’s state to an annulus of width
2ψmax.

The history information state, since it is composed of
functions of time, is unwieldy in isolation. As a result, we
select aderived information spaceI and an information
mappingκ : Ihist → I. Informally, a derived information
space represents “compression” or “interpretation” of the
histories.

We say that a statex is consistentwith an information state
η(t) = (ũt, ỹt) if and only if there exists some starting state
x(0) and nature histories̃θ andψ̃ such thatΦ(x(0), ũt, θ̃t) =
x andh(x(t′), ψ̃(t′)) = y(t′) for t′ < t. The next example is
an information mapping that arises directly from the notion
of consistent states.

Example 4 (Nondeterministic information mapping):Let
Indet = pow(X) − ∅. The relevant information mapping is
κndet : Ihist → Indet, under which each history information
state maps to the minimal subset ofX consistent with it.
The intuition is thatη(t) gives a set of “possible states” for
the robot at timet. Because the robot’s true state is always
consistent with its history information state, this set is never
empty. �

E. Information feedback strategies

How does the robot decide which actions to select? We
describe the robot’s strategy as a feedback strategyπ :
Ihist → U that specifies an action for history information
state. As the robot executesπ, the actions are given by
u(t) = π(η(t)). We callπ an information feedback strategy.

Even though we defineπ as a feedback strategy over the
history information space, the next two examples illustrate
that feedback over a derived information space can some-
times be a natural way to express familiar kinds of strategies.

Example 5 (Open loop strategy):Let Itime = [0,∞) and
consider the information mapκtime(η(t)) = t. In this case,
the derived information state is simply the time elapsed.
Then if the robot has an intended open loop action trajectory
ω : [0, tf ) → U , a strategy to executeγ is π(η(t)) =
ω(κtime(η(t)) if t < tf andπ(η(t)) = uT otherwise. �

Example 6 (Memoryless strategy):Another possibility is
that it is enough to know the “most recent” observation, so
Iobs = Y andκobs(η(t)) = y(t). Given a memoryless plan
γ : Y → U , the composed functionκobs ◦ γ : Ihist → U is

a memoryless information feedback strategy.1 �

We assume that a given strategy is executed until it
selectsuT . The time when this occurs, the resulting final
state, and the observations received along the way are all
affected by the strategy itselfπ, the starting statex(0),
and the actions of naturẽθ and ψ̃. Assuming that the
robot executesπ, the termination time isT (π, x(0), θ̃, ψ̃) =
inf{t ∈ [0,∞) | π(η(t)) = uT }, and the final state
is F (π, x(0), θ̃, ψ̃) = Φ(x(0), ũtf

, θ̃tf
), in which tf =

T (π, x(0), θ̃, ψ̃).

Example 7 (Concatenating strategies):Given two strate-
giesπ1 andπ2, a new strategy that concatenates them (that
is, executes them in sequence) is expressed byπ(η(t)) =
π1(η(t)) if π1(η(t)) 6= uT and π(η(t)) = π2(η(t)) other-
wise. By nesting this construction, arbitrarily many strategies
can be chained together. �

F. Tasks and solutions

A task(or problem) is defined by a goal regionIG ⊂ Ihist

in history information space. This notion is a generalization
of the traditional idea of a goal state or goal region in
state space. Generally, asolution is an information feedback
strategy that reachesIG. In the presence of uncertainty in
control and sensing, there are two relevant solution concepts.

1) A strategy is apossible solutionif there exists some
time tg, someθ̃tg

∈ Θ̃tg
and someψ̃tg

∈ Ψ̃tg
, such

thatη(tg) ∈ IG. The robot may reachIG, but it is also
possible that control or sensing errors will prevent it
from achieving this goal.

2) A strategy is aguaranteed solutionif there exists some
time tg such that, for anỹθtg

and anyψ̃tg
, η(tg) ∈ IG.

The robot can always reach its goal, regardless of any
interference by nature.

Other solution concepts, such as those based on performance
bounds or on probabilistic guarantees of reaching the goal,
are possible but we will not consider them here.

IV. COMPARING ROBOT SYSTEMS

In this section, we show that the basic results of [13] still
hold in our generalized framework. We define a dominance
relation between robot systems to formalize the informal
idea that some robots are “more powerful” than others, in
the sense of having richer sensing and motion abilities. This
relation has direct implications on the ability of robot systems
to complete tasks.

A. Information preference relation

The first ingredient we need is some notion of when
one derived information state is “better than” another. Fix
a derived information stateI and an information mapping
κ : Ihist → I. Equip I with a partial orderinformation

1In [13], we used a slightly different observation model, in which h :
X × U → Y . In this context, the time period over which observations
are available is the half-open interval[0, t); eyt is undefined att itself. As
a result, the closest we can come to a memoryless strategy is to use the
left-hand limit of eyt at t, κobs(η(t)) = lim

t′→t−
y(t′), provided the limit

exists. This technicality is part of the motivation for preventing y from
depending directly onu, as we have done in this paper.



preference relation�, under whichη1 � η2 means thatη2
is “more informed than”η1. The only constraint on� is that
is must be a partial order satisfying the following consistency
property for anyt ∈ [0,∞), ũt ∈ Ũt and ỹt ∈ Ỹt:

κ(η1) � κ(η2) =⇒ κ(η1, ũt, ỹt) � κ(η2, ũt, ỹt), (6)

in which the concatenation on the right side indicates that the
additional history information from̃ut andỹt is appended to
η1 andη2. The intuition is that information preference must
be preserved if the same actions are selected and the same
observations received from bothη1 andη2.

Example 8:Recall κndet from Example 4. Define� so
that η1 � η2 if and only if κndet(η2) ⊆ κndet(η1). It is easy
to verify that the consistency property holds. �

B. Definition of dominance

Our goal is a formal way to compare the power of robot
systems. Consider two robot systemsR1 andR2 defined as
in Section III:

R1 = (X(1), U (1), Y (1),Θ(1),Ψ(1),Φ(1), h(1)) (7)

R2 = (X(2), U (2), Y (2),Θ(2),Ψ(2),Φ(2), h(2)) (8)

BecauseU (1) need not have any special relationship toU (2),
and likewiseY (1) need not be related toY (2), the comparison
cannot be made directly in the history information space,
which simply records actions and observations. Instead, map
the two history information spaces to the same derived
information space. The corresponding information mappings
areκ(1) : I

(1)
hist → I andκ(2) : I

(2)
hist → I.

To compare distinct robot systems (perhaps with distinct
configuration spaces) operating in the same family of envi-
ronments, use the environment space construction described
in Section III-A with R1 andR2 in the same environment
space, so thatX(1) = C(1) × E andX(2) = C(2) × E .

Now we can state the dominance relation between robot
systems.

Definition 1 (Robot dominance):Consider two robotsR1

andR2. If, for all
• η(1)(t1) ∈ I

(1)
hist,

• η(2)(t2) ∈ I
(2)
hist with κ(1)(η(1)(t1)) � κ(2)(η(2)(t2)),

• t′1 ∈ [0,∞), and
• ũ

(1)
t′
1

∈ Ũ
(1)
t′
1

,

there exists an information feedback strategyπ2 : I
(2)
hist →

U (2), such that for allx(1) ∈ X(1) consistent withη(1)(t1)
and x(2) ∈ X(2) consistent withη(2)(t2), there existst′2 ∈
[0,∞) such that for all

• θ̃
(1)
t′
1

∈ Θ
(1)
t′
1

,

• θ̃
(2)
t′
2

∈ Θ
(2)
t′
2

,

• ψ̃
(1)
t′
1

∈ Ψ̃
(1)
t′
1

, and

• ψ̃
(2)
t′
2

∈ Ψ̃
(2)
t′
2

,

if R1 executes̃u(1)
t′
1

from time t1 to t′1 andR2 executesπ(2)

from time t2 to t′2, we have

κ(η(1)(t′1)) � κ(η(2)(t′2)) (9)

R2R1

κ(η(1)(t1)) � κ(η(2)(t2))

eu
(1)

t′
1

eu
(2)

t′
2

κ(η(1)(t′1)) � κ(η(2)(t′2))

Fig. 5. An illustration of Definition 1.

thenR2 dominatesR1 underI, κ, and�, denotedR1 ER2.
If R1 E R2 andR2 E R1, thenR1 andR2 are equivalent,
denotedR1 ≡ R2. If R1 6E R2 andR2 6E R1 thenR1 and
R2 are incomparable, denotedR1 EDR2. ◦

Informally, Definition 1 means that, regardless of the
transitions made byR1 (and regardless of the interference
from natureR1 receives), there exists some strategy forR2

to reach an information state at least as good, in the sense
of information preference, as that reached byR1. This is
what we mean when we describe the statementR1 ER2 as
meaning thatR2 can simulateR1. Figure 5 illustrates this
intuition.

C. Dominance and solvability

Now we can establish the relationship between dominance
and solvability. Fist, we define a class of “well-formed” tasks
based on the information preference relation.

Definition 2: Consider a setI ⊂ I of derived information
states. If, for anyη1 ∈ I andη2 ∈ I with η1 � η2, we have
η2 ∈ I, thenI is preference closed. ◦

For any preference closed goal region, we have the follow-
ing result. A similar, but weaker (because of the limitations
in robot models) result appeared in [13].

Lemma 1 (Solution by imitation):Consider two robot
systemsR1 andR2 with R1 E R2 and a preference-closed
goal regionIG. If there exists a guaranteed solution forR1

to reachIG, then also there exists a guaranteed solution for
R2 to reachIG.

Proof: Execute the strategyπ2 implied by Definition 1
with R2. BecauseR1 E R2, the final derived information
state η(2)

t′
2

reached byR2 will be preferred to the final

derived information stateη(1)
t′
1

reached byR1. BecauseIG is

preference closed andη(1)
t′
1

∈ IG, we haveη(2)
t′
2

∈ IG. �

D. Dominance examples

This section presents a few examples to illustrate the
implications of Definition 1.

Example 9 (Omniscient sensing and perfect control):
Consider a degenerate case withY = X, andh(x, ψ) = x.
Let Θ = Ψ = {0} be dummy singleton sets with no effect
on state transitions or observations. This situation gives
the robot perfect control and complete information about
its state. Chooseκ(η(t)) = y(t) = x(t). Let η1 � η2 if
and only if η1 = η2. In this context, Definition 1 becomes



Fig. 6. The lost cow of Example 11 searching for a gate.

a statement about the regions of state space reachable by
different control systems.

Suppose three such systemsR1, R2, andR3 differ only in
their action spacesU (1), U (2), andU (3). Let Z(A) denote
the subset of state space reachable by a robot with action
spaceA. SupposeR1 E R2. R3 need not be comparable to
eitherR1 or R2. Note that additional robot models can be
constructed from unions ofU (1), U (2) andU (3). We have the
following results for which we omit the easy proofs because
of space limitations:

Z(U (1)) ⊆ Z(U (2) ∪ U (3)) (10)

Z(U (1)) = Z(U (1) ∪ U (2)) (11)

Z(U (1) ∪ U (3)) ⊆ Z(U (2) ∪ U (3)) (12)

These results are somewhat analogous to Lemmas 2-4 in
[13]. Note that in combining action spaces in this way, we
allow the robot to choosesequentiallythe action set from
which to choose its action. The results fail if the robot is
somehow allowed to choose actions from each constituent
set in parallel. �

Example 10 (Varying error bounds):Recall the incom-
pletely specified models in Examples 2 and 3. Consider
two robot systemsR1 and R2 with state transitions as in
Example 2 and observations as in Example 3;R1 andR2

differ only in the error boundsθ(1)max, ψ(1)
max, θ(2)max, andψ(2)

max.
We will compare these robots underκndet.

Comparingθ(1)max to θ
(2)
max, andψ(1)

max to ψ
(2)
max, there are

three cases:

1) If θ(1)max ≤ θ
(2)
max andψ(1)

max ≤ ψ
(2)
max, thenR2 ER1.

2) If θ(2)max ≤ θ
(1)
max andψ(2)

max ≤ ψ
(1)
max, thenR1 ER2.

3) If θ(1)max ≤ θ
(2)
max andψ(2)

max ≤ ψ
(1)
max or θ(2)max ≤ θ

(1)
max

andψ(1)
max ≤ ψ

(2)
max, thenR2 EDR1.

This implies thatθ(1)max = θ
(2)
max andψ(1)

max = ψ
(2)
max if and

only if R1 ≡ R2. These results follow in a straightforward
manner from Definition 1. The intuition of this (perhaps
unsurprising) example is that one robot system dominates
the other if its error bounds are smaller. �

Example 11 (A Lost Cow):A well-known problem in on-
line algorithms is thelost cow problem[1], [9] in which
a near-sighted cow moves along a fence searching for a
gate, as illustrated in Figure 6. The difficulty under the
standard sensing model is that the cow must systematically
search in both directions from its initial position withoutany
information about the distance or direction to the gate. The
interest in this problem derives from potential applications
in (or at least the potential for better understanding of)
exploration in unbounded environments.

We formulate the lost cow problem and consider how the
sensing model affects the cow’s searching ability. LetX =

R, in which x(t) is the position of the gate relative to the
cow at time t. For simplicity, assume perfect control and
perfect sensing by settingΘ = Ψ = {0}. The action space
is U = [−1, 1], with Θ = {0} andΦ(x(0), ũt, θt) = x(0) +∫ t

0
u(s)ds. We compare three distinct modelsC1, C2, and

C3 underκndet.

1) C1: Let Y (1) = R andh(1)(x, ψ) = x. Here the cow
can determine both the direction and distance to the
gate.

2) C2: Let Y (2) = {−1, 0, 1} and h(x, ψ) = sign(x).
This allows the cow to determine the direction it must
move to reach the gate, but not the distance.

3) C3: Let Y (3) = {0, 1} and h(2)(x, ψ) = 1 if x = 0
andh(2)(x, ψ) = 1 otherwise. This is the standard lost
cow sensing model, in which the cow cannot see the
gate from a distance, but can detect the gate when it
arrives.

Perhaps surprisingly, these three models are equivalent inthe
sense of Definition 1. This comes about as a result of the fact
that each can eventually determine its state (by finding the
gate) and after the state is known, the state uncertainty cannot
recur. To simulateC1 with C3, first execute the algorithm of
[1], then move to the state occupied byC1. �

V. A DISCRETE-STAGE MODEL

This section describes how the continuous-time model
given in Section III is related to the discrete-stage formu-
lation of [13].

A. Transforming from continuous time to discrete stages

Consider a division of time into variable length stages, in
which, in each stage, the robot executes a single information
feedback strategy to completion. We require of each of these
strategies the following special property:

Definition 3 (History invariance):If, for all η(t) ∈ Ihist,
all x ∈ X consistent withη(t), all θ̃ ∈ Θ̃, all ψ̃ ∈ Ψ̃, and
all y(0) ∈ Y , we have

F (π, x, η(t), θ̃, ψ̃) = F (π, x, η(0), θ̃, ψ̃), (13)

thenπ is a history-invariantstrategy. ◦

The intuition of the definition is that the robot executing
π is free to use the observation and action history generated
during its own execution, but it cannot peer into the past
before its execution began in order to make decisions.

Given a continuous-time robot systemR =
(X,U, Y,Θ,Ψ,Φ, h) as in Section III and a setΠ of
history-invariant information feedback strategies, construct a
discrete-stage systemR = (X,U, Y ,Θ,Ψ, f , h) as follows:

1) The state spaceX is unchanged.
2) The action space isU = Π.
3) The observation space isY = Ỹ .
4) The nature action space isΘ = Θ̃.
5) The nature observation action space isΨ = Ψ̃.
6) The state transition function isf : X × U → X, with

f(x, π) = F (π, x, θ̃, η(0)).
7) The observation function ish : X × U × Ψ → Y .



The system starts at some (unknown) initial statex1 ∈ X.
Let xk ∈ X, uk ∈ U , yk ∈ Y , θ ∈ Θ, andψk ∈ Ψ denote the
appropriate values at stagek. These sequences are related to
each other byxk+1 = f(xk, uk, θk) andyk = h(xk, uk, ψk).
The history information state consists of the action and
observation histories:ηk = (u1, y1, . . . , uK−1, yK−1). We
now argue that this discretized system faithfully represents
the underlying continuous-time system.

Lemma 2:Any action sequenceu1, . . . , uK executed by
R reaches the same final statex and the analogous final
history information state as doesR.

Proof sketch:Use induction onk and the fact that the
strategies inU are history invariant to show that for each
1 ≤ k ≤ K, there existstk with the statexk for R equal to
the statex(tk) for R. �

Note, however, that in making this transformation, we may
restrict the space of strategies that the robot can employ. If U
does not contain a sufficiently rich selection of information
feedback strategies, there may be regions of information
space that are no longer reachable under the discretized
model. It remains an open problem to find small (or at least
succinctly described) sets of strategies that are completeor
nearly complete in the sense of not eliminating any reachable
regions in information space.

B. The role of robotic primitives

In [13], a universe of robot models is generated by a
collection of robotic primitives, each of which gives partial
action and observation sets. A complete model is formed
by choosing a nonempty subset of primitives. How are
they related to the continuous time models described in
Section III? What role do these primitives play?

The robotic primitives serve two basic purposes. First, they
provide a clean way of discretizing time. In the discrete-stage
model, the physical time taken to execute each primitive
is a concern secondary to the termination conditions under
which the primitive terminates. This behavior is analogous
to the termination action used in the current paper, and
can be mimicked by concatenating motion strategies, as in
Example 7. Second, a catalog of primitives is an effective
way to generate a set of robot models to consider. Given
nonempty sets of primitives, it is easy to combine, via unions
of these sets, robots constructed from primitives, resulting in
a sort of “calculus” over robot models in which individual
components can be added or taken away. The appropriate
analog for our new continuous time systems with nature is
less clear.

VI. CONCLUSION

Although the results we present here are a substantial
improvement over those of [13], there are still important
pieces missing.

A. Computational issues

We have focused mostly on the sensing and motion
requirements of tasks. An important related question is
to determine the kinds of computation power these tasks
require. What are the tradeoffs between computation time,

memory usage, sensing requirements and solution quality?
Is there a satisfactory way to scalarize these competing
objectives into a single-valued objective function, or should
we expect a single problem will lead to many different Pareto
optimal solutions?

B. Reductions and decision problems

One of the most powerful ideas in the theory of compu-
tation that we have not explored here is the idea ofreduc-
tions, which hold promise for comparing robotic problems
themselves. The resulting statements would have the form
“Problem A is at least as hard as Problem B.” To make things
more concrete, we might considerdecision problems, in
which the robot must determine if its environmentE ∈ E has
a certain property. Such problems fit naturally as planning
problems in information space. To decide ifE has a property
Ξ : E → {0, 1}, the robot must reach the goal region

IG Ξ = {η ∈ Ihist | ∀(q, E) ∈ κndet(η),Ξ(E) = 1}

∪ {η ∈ Ihist | ∀(q, E) ∈ κndet(η),Ξ(E) = 0}. (14)

C. Cooperation and coordination

In this work we consider only a single independent robot.
We might also consider the performance of teams of coop-
erative robots on the same tasks. Such work would require
an investigation of the joint information spaces that would
arise from the interaction of multiple agents, each having
only limited information.
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