
Almost-Sensorless Localization
Jason M. O’Kane and Steven M. LaValle

Department of Computer Science
University of Illinois at Urbana-Champaign

Urbana, IL 61801, USA
{jokane, lavalle}@cs.uiuc.edu

Abstract— We present a localization method for robots
equipped with only a compass, a contact sensor and a map
of the environment. In this framework, a localization strategy
can be described as a sequence of directions in which the robot
moves maximally. We show that a localizing sequence exists for
any simply connected polygonal environment and present an
algorithm for computing such a sequence. We have implemented
the algorithm, and we present several computed examples. We
also prove that the sensing model is minimal by showing that
replacement of the compass by an angular odometer precludes
the possibility of performing localization.

I. INTRODUCTION

Localization – the task of systematically eliminating un-
certainty in the pose of a robot – is a fundamental problem
for any practical autonomous robotic system. It has long
been known that robot designs with simplified sensing and
actuation models can lead to decreased costs and increased
robustness [26]. This paper applies this idea to the problem
of localization in an attempt to describe the simplest possible
robot with which localization is still possible. In particular,
we propose a robot model in which only a compass and a
contact sensor are available. Odometry, range sensing and
wall-following abilities are notably omitted.

With such a robot, the only reliable courses of action are
to select a motion direction and move in that direction as
far as possible. During any execution, the robot can never
gather any new information from sensors about its position
within the environment. It must instead rely on actions
that are conformant in the sense that they map multiple
possible current states to a single resulting state. A plan
in this model is an action sequence, rather than a decision
tree. The primary contribution of this paper is an algorithm
which, given a simply-connected polygonal environment, will
generate a sequence of motions that will localize the robot
under total uncertainty in the initial state. The correctness
of this algorithm constitutes a constructive proof that a lo-
calizing sequence exists for any simply-connected polygonal
environment.

Much attention has been given to the problem of localiza-
tion for robots with varying degrees of sensing capability.
In [16], the environment is constrained to an embedding
of an acyclic graph into R

n, and sensing is limited to the

orientations of incident edges. The static problem of finding
the set of candidate locations for a given visibility region was
solved in [13]. The problem of localization with a visibility
sensor while minimizing distance traveled was proven NP-
hard in [7]. This work also provides a greedy algorithm that
approximates the minimum distance localization strategy. In
[20], randomization is used to select motions to disambiguate
candidate locations in a visibility-based approach. Other
approaches have used visual data [8] and wireless ethernet
signal strength [17]. Also, a large family of methods use prob-
abilistic models to estimate the current state [14, 18, 21, 22].

A long line of research has investigated robotic systems
with limited sensing capability. Manipulation problems have
been solved without sensing in a variety of ways [1, 3, 4, 9,
11, 10, 25, 27]. Exploration and navigation tasks are solved
with a sensor for discontinuities in depth information in [23,
24]. Bug algorithms are used for navigation by robots capable
only of moving toward obstacles and following walls in [15,
19]. Other work has explored the more general question of
the minimal sensing requirements to complete a given task
[2, 6].

The remainder of this paper is organized as follows. Sec. II
formalizes our model, defines the localization problem and
characterizes this model as a search through an abstract
space of information states. Sec. III gives an algorithm
for computing transitions in information space. The main
algorithm is described in Sec. IV. Sec. V proves that a variant
of this problem in which the robot has no compass cannot
be solved. Sec. VI presents concluding remarks.

II. PROBLEM STATEMENT

A. Robot Model

A robot, equipped with a compass and a contact sensor,
moves in some environment. In the absence of odometry, the
only reliable actions for the robot are maximal linear motions.
That is, the robot can select a direction and use its compass
to move reliably in that direction as far as the environment
allows. Importantly, the robot cannot gather any information
about its position within the environment as a result of taking
an action; the only information available to the robot is a set
of possible initial positions and the history of selected actions.

In this paper we show that this information is sufficient for
localization.

B. Problem Formalization

This section formalizes the abstract robot model we have
described. We allow a point robot to move in a compact
simply-connected polygonal state space X . Let ∂X denote
the boundary of X . Observe that ∂X ⊂ X because X is
closed. The robot is consequently allowed to come in contact
with the walls of the environment. The robot has access to
an accurate map of X , including its orientation in the plane.
The robot’s action space U = S1 is the unit circle, denoting
the set of directions in the plane. We will represent elements
of U as unit vectors in R

2. Given a state x ∈ X and an
action u, the resulting state is governed by the state transition
equation f : X × U → X , in which (x, u) maps to the
opposite endpoint of the maximal segment in X starting at
x and having direction u. We also define an iterated version
of f to denote the result of a sequence of actions:

fk(x, u1, . . . , uk) = f(· · · f(f(x, u1), u2) · · ·), uk). (1)

Now we can define the notion of a solution.

Definition 1 A localizing sequence for X is a sequence of
actions u1, u2, . . . , uK such that there exists xf ∈ X with
fK(x, u1, . . . , uK) = xf for all x ∈ ∂X .

The intuition is that regardless of the robot’s initial loca-
tion within ∂X , after executing a localizing sequence, the
robot’s final position, xf , is certain. The localizing sequence
eliminates the uncertainty in the robot’s state. Fig. 1 shows a
sample polygon and a localizing sequence for it. Localizing
sequences are distinguished from the decision trees that arise
in some forms of sensor-based localization in that every
x ∈ X must map to the same xf , rather than allowing
different initial states to reach distinct but known final states.
This change is a direct result of the lack of feedback in our
localization strategies.

Note that although this definition only considers points
on the boundary of X as possible initial states, a localizing
sequence that works for any initial state in the interior of
X can be created by prepending an arbitrary initial action
(which necessarily will reach ∂X) to a localizing sequence
as according to this definition.

C. Localization as a Search in Information Space

The problem of finding a localizing sequence for a given
environment can be seen as a planning problem in which the
initial state is unknown and the current state is unobservable.
To manage this uncertainty, we transform the problem from
an unobservable planning problem in state space to an ob-
servable problem in a more complex space called the robot’s
information space, which we now define.

i ui ηi

0

1

2

3

Fig. 1. A localizing sequence for a simple non-convex polygon. Possible
states at each step are shaded.

At each step, the next action selected by the robot must be
based solely on its map of the environment and the history
of actions it has taken so far. This action sequence can be
used to rule out certain elements of ∂X as possible positions
for the robot. The set of positions consistent with this action
sequence is called the robot’s information state. The next
definition makes this idea more precise.

Definition 2 Suppose the robot has executed some sequence
of actions u1, . . . , uk−1. The information state ηk of the
robot is

ηk = {x ∈ ∂X | ∃xI ∈ ∂X, x = fk−1(xI , u1, . . . , uk−1)}.
(2)

The information space I is defined as the set 2∂X of all
information states, in which 2S denotes the power set of S.

We can view the problem of computing a localizing sequence
for X as a planning problem in I with initial state ∂X and
goal region

IG = {η ∈ I | |η| = 1}, (3)

in which | · | denotes the (possibly infinite) cardinality of a
set.

It is possible to define a transition function for information
states in a very natural way. Let F : I × U → I according

Algorithm 1 INFOTRANS(X, s1, . . . , sl, p1, . . . , pm, u)

η′ ← ∅
for i← 1 . . . l do
{a, b} ← endpoints of si

E ← vertices of X
E ← E − {v ∈ E|CCW(a, a + u, x) = CCW(b, b + u, x)}.
E ← SORT(E) by perpendicular distance from

←−−−−→
a(a + u)

p← SHOOTRAYFORSWEEP(X, a, u, b− a)
for e ∈ E do

if SAMEEDGE(p, e) then
η′ ← η′ ∪ pe
p← SHOOTRAYFORSWEEP(X, e, u, b− a)

else
p′ ← SHOOTRAYFORSWEEP(X, e, u, b− a)
η′ ← η′ ∪ pp′

p← p′

end if
end for

end for

for j ← 1 . . . m do
η′ ← η′ ∪ {SHOOTRAY(X, pj , u)}

end for

return η′

to the forward projection

F (η, u) = {x′ ∈ ∂X | ∃x ∈ η, x′ = f(x, u)}. (4)

As with f , we define

F k(η, u1, . . . , uk) = F (· · ·F (F (η, u1), u2) · · ·), uk). (5)

In this notation, an action sequence u1, . . . , uK is a localizing
sequence if and only if

∣

∣FK(∂X, u1, . . . , uK)
∣

∣ = 1. (6)

Our algorithm presentation in Section IV will take this view
of localizing sequences.

III. COMPUTING THE INFORMATION TRANSITION

FUNCTION

This section presents a simple algorithm for computing
F (η, u) given X , η and u. Computing these information
transitions will play a crucial role in the algorithm to gen-
erate localizing sequences, which appears in Section IV. We
restrict our attention to information states that can be reached
from the initial state η1 = ∂X . Alg. 1 summarizes the
algorithm, which is justified by the next two lemmas.

Consider an information state η that can be expressed as
the union of a finite collection s1, . . . , sl of open segments
and a finite set of points p1, . . . , pm on ∂X . To be precise,
each si is a linear subset of ∂X not containing its endpoints.
Each si need not be a complete edge of ∂X and since it is
linear, cannot contain any vertex of ∂X .

Lemma 3 For any action u ∈ U and any information state
η = [

⋃

i si]∪
[

⋃

j{pj}
]

, in which the si’s are open segments
and the pj’s are points in ∂X ,

F (η, u) =

[

⋃

i

F (si, u)

]

∪

⋃

j

F ({pj}, u)

 . (7)

Proof: Immediate from the definition of F (Eq. 4). �

The next lemma characterizes the set of reachable infor-
mation states.

Lemma 4 Every information state η reachable from ∂X by
an action sequence u1, . . . , uk can be expressed as a finite
union of open segments and points on ∂X .

Proof Sketch: Use induction on k. When k = 0, η = ∂X ,
which is the union of the vertices and edges bounding X . For
the inductive step, note that the image under F of a segment
is a finite set of polygonal chains. �

As a consequence of these two lemmas, we can write any
reachable information state η by listing the points p1, . . . , pm

and segments s1, . . . , sl that compose it, and to compute any
transition F (η, u), it will be sufficient to give an algorithm
for the cases where η is an open segment and a single point.

• If η is a singe point p1, then F (η, u) = f(p1, u) can
be computed by a ray-shooting query in X from p1

in direction u. In a simple polygon, data structures are
known to answer such queries in O(log n) time, with
O(n) preprocessing time and O(n) space [5].

• If η is a segment ab, where the notation ab denotes the
open segment with endpoints a and b, sweep a line l
perpendicular to ab starting at a and moving toward b.
Maintain as an invariant that the nearest point x ∈ ∂X
to ab intersected by l is known. Qualitative changes
to x will occur only when l reaches a vertex of ∂X .
At each such event, a segment is generated in F (η, u)
corresponding to the segment swept by l since the last
event. An updated value for x can be computed by a
modified ray shooting query, in which the ray stops
at boundary vertices for which both incident edges are
beyond l. Fig. 2 illustrates the sweeping algorithm.

Alg. 1 runs in time O((m + nl) log n) to compute the
transition from an information state described by m points
and l segments in a polygon X with n vertices.

IV. GENERATING LOCALIZING SEQUENCES

We now present an algorithm to compute a localizing
sequence for any simply-connected polygonal environment
X . The algorithm proceeds in two parts. First, actions are
selected which reduce the uncertainty in the robot’s position
to a finite set of possibilities. Second, actions are selected to
reduce the uncertainty from this finite set to a single point.

Algorithm 2 LOCALIZINGSEQUENCE(X)

η1 ← ∂X
k ← 1
while ηk contains at least one segment do

ab← leftmost segment in ηk

if (a− b).x > 0 then
uk ← (a− b)/||a− b||

else
uk ← (b− a)/||b− a||

end if
ηk+1 ← INFOTRANS(X, ηk, uk)
k ← k + 1

end while

while ηk contains at least two points do
Select p, q from ηk.
pk ← p, qk ← q
while qk /∈ Vis(pk, X) do

tk ← first vertex of shortest path from pk to qk

uk ← (tk − pk)/||tk − pk||
ηk+1 ← INFOTRANS(X, ηk, uk)
pk+1 ← SHOOTRAY(X, pk, uk)
qk+1 ← SHOOTRAY(X, qk, uk)
k ← k + 1

end while
uk ← (qk − pk)/||qk − pk||
ηk+1 ← INFOTRANS(X, ηk, uk)
k ← k + 1

end while

return (u1, . . . , uk−1)

a

b

l

Fig. 2. Computing F (η, u) by a line sweep algorithm.

The complete localizing sequence u1, . . . , uK is divided into
two parts u1, . . . , uK1

and uK1+1, . . . , uK2
generated by the

respective parts of the algorithm. The complete algorithm is
shown in Alg. 2; the subsequent exposition will explain and
justify it.

A. From all of ∂X to a finite subset

This section presents a sweep line algorithm for computing
a sequence of actions to reduce the robot’s information state
to a finite set of points. The following lemma provides the
basis for the algorithm.

Lemma 5 For any segment s = ab ⊂ X , F (s, u) is a single
point if and only if u = (a−b)/||a−b|| or u = (b−a)/||b−a||.

u

F (s,−u)

F (s, u)

s

Fig. 3. A motion along s will collapse s to a single point.

Proof Sketch: Follows from the definitions of F and f and
the fact that ab is collision-free. �

Informally, this means any segment can be collapsed to a
point by a single motion along its length. This situation is
illustrated in Fig. 3.

Starting with η1 = ∂X , the algorithm maintains a
“current” information state ηk and a sequence of actions
u1, . . . , uk−1 mapping η1 to ηk. Computation proceeds by
sweeping a vertical line l from left to right across X ,
maintaining the invariant that ηk has no segments on the
left side of l. Each time l reaches the endpoint of a segment
ab in ηk, it selects as uk whichever of (a − b)/||a − b|| and
(b− a)/||b− a|| has nonnegative x coordinate. The resulting
ηk+1 = F (ηk, uk) maintains the sweep invariant because the
x-component of the motion of each segment in ηk is positive;
hence, no segment can cross l. When l passes the rightmost
vertex of X , it is certain that no segments remain in ηk.

Lemma 6 The above algorithm generates K1 = O(n3)
actions for an environment with n edges.

Proof Sketch: Let e1, . . . , en denote the edges of ∂X and
let v(ei) denote a unit vector in direction of ei oriented
so that its x component is positive. For a fixed i and j,
F (ei, v(ej)) is a set of polygonal chains on ∂X with total
complexity O(n). Let Rij denote the set of endpoints of
segments in F (ei, v(ej)). Let R =

⋃

i,j Rij . Observe that
|R| = O(n3). Clearly every segment s reached by l will
correspond to the initial condition or to some transition from
another edge. There are n segments in the initial condition
and R describes a the set of earliest possible points at which
an information state segment may begin on any edge. These
events are sufficient to maintain the sweep invariant, so
K1 = n + O(n3) = O(n3). �

B. From a finite subset to a single point

The previous section showed how to select actions
u1, . . . , uK1

that map ∂X to a finite set {p1, p2, . . . , pm}
of points. It remains to generate additional actions
uK1+1, . . . , uK2

mapping {p1, p2, . . . , pm} to a single point.

pk
qk pk+1 − qk+1

Fig. 4. If pk can see qk , then a motion in the direction of pkqk maps pk

and qk to the same place.

We will derive this part of the algorithm by reduction to the
special case when m = 2. The more general problem for
m points can be solved by iterating the algorithm for two
points.

Let η = {p, q}. The ordering of the points is arbitrary but
must be fixed. Our goal is to design a sequence of actions
uK1+1, . . . , uK2

such that

fK2−K1(p, uK1+1, . . . , uK2
) = fK2−K1(q, uK1+1, . . . , uK2

).
(8)

For K1 < k ≤ K2, let pk = f(p, uK1+1, . . . , uk) and
likewise qk = f(q, uK1+1, . . . , uk). Our algorithm will select
uk using only pk and qk. We begin with the simple base case:

Lemma 7 If pkqk ⊂ X , then the action u = (qk−pk)/||qk−
pk|| is a localizing sequence for {pk, qk}.

Proof: Follows directly from Lemma 5. �

The intuition is that if pk can “see” qk in the sense that
there is an unobstructed path between them, then a motion
in the direction of this path will map both pk and qk to the
same place. Fig. 4 illustrates this situation.

Now suppose pkqk 6⊂ X . The following definition will be
useful in this case.

Definition 8 For any x ∈ X , let Vis(x,X) denote the
visibility polygon of x in X , defined as

Vis(x,X) = {x′ ∈ X | xx′ ⊂ X}. (9)

We follow [13] in characterizing visibility polygons in
terms of non-spurious edges which are parts of ∂X and
spurious edges which are not. Observe that since X is simply
connected, the spurious edges subdivide X in such a way that
every point x′ /∈ Vis(x,X) can be associated with exactly
one spurious edge such that the shortest path from x to x′

crosses this spurious edge. Further, the first segment of the
shortest path from x to x′ will be parallel to this spurious
edge. See Fig. 5. Let tkvk denote the spurious edge crossed
by the shortest path from pk to qk. Such initial shortest
path segments can be computed using a data structure with
O(log n) query time, O(n) preprocessing time and O(n)
storage [12].

x

Vis(x,X)

(a)

x

(b)

Fig. 5. (a) A visibility polygon. Spurious edges are dashed. (b) The shortest
path to any point not in the visibility polygon begins with a motion in the
direction of a spurious edge.

pk

qk

tk

vk
pk+1

qk+1

(a) (b)

Fig. 6. (a) The spurious edge tkvk hides pk from qk . (b) The point qk+1

cannot cross tkvk because its motion is parallel to tkvk .

Assume for the moment that tkvk is not a bitangent of X .
Since this case creates some complications in the analysis, we
will deal with it separately. Choose uk = (tk−pk)/||tk−pk||.
That is, select a motion in the direction of the spurious edge
that hides qk. Fig. 6 illustrates this selection (and the intuition
behind the proof of Lemma 9). This completes the definition
of our action sequence uK1+1, . . . , uK2

:

ui =

{

(qi − pi)/||qi − pi|| if qi ∈ Vis(pi, X)

(ti − pi)/||ti − pi|| otherwise
, (10)

in which K2 is the minimal i for which the first case applies.
We will show in Theorem 10 that K2 is well-defined, but we
need to following lemma to do so:

Lemma 9 Let Qk = X −
⋃

i=K1...k Vis(pi, X). Then for
K1 ≤ k < K2 if K2 is well-defined or K1 < k otherwise,
qk ∈ Qk.

Proof Sketch: Use induction on k. The statement is trivially
true by construction when k = K1. For the inductive step,
note that qk moves parallel to tkvk, so that qk+1 is still behind

pk

tk

qk

vk

pk

pk+1

qk

qk+2

pk+2

qk+1

ε

Fig. 7. The special case when tkvk is a bitangent.

this spurious edge. Use the fact that X is simply connected
and the inductive hypothesis to complete the proof. �

One informal way to understand Lemma 9 is to imagine
that p is “chasing” q. At each step p takes a step closer to q
and eliminates a portion of the environment Qk in which q
could be hiding.

Finally, we must consider the special case when tkvk

is a bitangent. This case is problematic because choosing
uk = (tk − pk)/||tk − pk|| is no longer sufficient to ensure
that Qk+1 ⊂ Qk. The algorithm as stated would alternate
between the actions tk − vk and vk − tk. This problem can
be avoided by rotating uk by a sufficiently small ε that q will
not cross tkvk. Then select uk+1 = (vk−pk+1)/||vk−pk+1||.
Fig 7 illustrates this situation. This modification adds an
additional action each time pk falls at the endpoint of a
bitangent complement, but does not substantially change the
analysis.

Now we can prove the algorithm’s correctness.

Theorem 10 The sequence uK1+1, . . . , uK2
is a localizing

sequence for {p, q}.

Proof Sketch: If K2 is well-defined, it follows from
Lemma 7 that uK1+1, . . . , uK2

is a localizing sequence for
{p, q}. To show that K2 is well-defined, note that each pk

is in a different cell of the visibility cell decomposition [13]
of X . There are only O(n2) such cells on the boundary, so
K2 = O(n2). �

Now we can finally return to the general case with m
points. If m > n, then by the pigeonhole principle, at least
two points must lie on the same edge of ∂X . This pair of
points can see each other, and one motion will collapse them
to a single point. In this way, we can reduce the information
state to a set of at most n points using only m − n actions.
Then select an arbitrary pair of points p and q from the
current information state η. We have just shown how to merge
p and q in O(n2) steps. Repeating this process at most n
times results in a plan of length O(n3) to map {p1, . . . , pm}
to a single point. Combining this with the O(n3) steps from

the first part of the algorithm (Sec. IV-A) yeilds a total plan
length of K = K1 + K2 = O(n3).

C. Computed Examples

We have implemented this algorithm in simulation. Fig. 8
shows the 5 step localizing sequence generated by our
implementation for an environment with many regularities.
In contrast, our algorithm needs 28 steps for the similar but
irregular environment in Fig. 9. In this sense, the localizing
sequence for Fig. 8 appears to localization sequence appears
to “exploit” these symmetries in the sense that uncertainty
is simultaneously reduced in each of the identical branches.
This is in sharp contrast to visibility-based localization, in
which such symmetries are precisely what make localization
problems difficult.

Fig. 10 shows a very irregular environment for which
our algorithm generates a 30 step localizing sequence. This
sequence is executed from six different initial positions. Note
that because some actions in the sequence will lead to an
immediate collision with the wall, these execution traces need
not in general contain 30 segments.

V. THE NEED FOR A COMPASS

Throughout this paper, we have worked under the assump-
tion that the robot has a compass. We consider now a weaker
robot which has angular odometry rather than a compass.
That is, we now consider actions specified relative to an
unknown initial orientation, rather than a global reference
direction. In this section, we show that localizing sequences
do not exist for the compass-free variant of our problem.

The problem of localization without a compass is identical
to the formulation in Sec. II, except that the environment
is rotated through an unknown angle θ representing the
difference between the global reference direction and the
robot’s initial orientation. A localizing sequence must map
every x ∈ X to the same xf , regardless of θ.

Definition 11 An information state – action pair (η, u) is a
collapsing transition if u is parallel to some segment in η.

Lemma 12 Every localizing sequence contains at least one
collapsing transition.

Proof Sketch: Suppose there exists some localizing sequence
u1, . . . , uK with no collapsing transitions. Arbitrarily pick a
segment s1 ∈ ∂X . At every step 1 ≤ k ≤ K, F (sk, uk)
contains at least one segment sk+1 (because of Lemma 5).
We have constructed a segment sK ⊆ ηK . Therefore |ηK | is
infinite, a contradiction. �

Theorem 13 For a robot with only angular odometry and a
contact sensor in any polygonal environment X , no localizing
sequence exists.

i ui ηi+1

0

1

2

3

4

5

Fig. 8. A localizing sequence computed by our algorithm for a highly
symmetric environment.

Fig. 9. A modified version of the environment from Fig. 8 in which the
symmetries have been broken. Our algorithm generates a 26 step localizing
sequence for this environment.

(a)

(b)

Fig. 10. (a) An irregular environment for which the localizing sequence
computed by our algorithm requires 30 steps. (b) Execution traces of this
localization sequence for 6 different starting positions. For each starting
position, the final position is the lower right corner of the environment.

Proof Sketch: Suppose such a sequence u1, . . . , uK exists.
Let e1, . . . en denote the set of edges of ∂X , and let Rot(v, φ)
denote the rotation of v ∈ R

2 by angle φ. If there exists no
action-edge pair (ui, ej) with ui and Rot(ej , θ) parallel, then
u1, . . . , uK contains no collapsing transitions. The sequence
is required to work for all θ ∈ S1 but the subset of
S1 in which some ui coincides with some Rot(ej , θ) has
measure 0. Therefore u1, . . . , uK fails for nearly every initial
condition. �

VI. CONCLUSION

This paper presented a technique for localization for robots
equipped with only a compass, a contact sensor, and a

map of the environment. We showed the completeness of
this technique for any compact simply-connected polygonal
environment and proved that localization is impossible if the
compass is replaced by an angular odometer. However, we
have left open a number of interesting questions.

Most obviously, the problem of generating a localizing
sequence is still well-defined for multiply-connected environ-
ments, i.e. environments with “holes.” Our method depends
on X being simply connected primarily for Lemma 9. It is not
immediately clear whether a similar method can be devised
for environments that are not simply connected.

We have assumed that the robot can perfectly execute
any commanded motion. We may more generally consider
robots with bounded uncertainty in the angle of motion. This
uncertainty might arise from errors in actuation or noise in
compass readings. Under this model, points in an information
state would undergo a “dilation” during each transition with
the amount of dilation being an increasing function of the
distance traveled. Our two-stage approach clearly fails under
this generalization.

In this paper we have only considered the existence ques-
tion for localizing sequences in simple polygons. The O(n3)
bound on the number of steps can quite likely be improved.
Also, it remains an open problem to generate localizing
sequences that are optimal. Two reasonable optimality criteria
are the number of steps in the sequence and the maximum
distance traveled for any initial state in X . Finding decision
trees for minimum distance localization of a robot with a
range sensor is NP-hard [7]. In that model, a localization
strategy is a decision tree, and the difficulty comes in finding
the shallowest decision tree that can discriminate every set
of points with equivalent visibility polygons. Since our robot
model does not admit branching in the localizing sequence,
neither those hardness results nor the general methods used
to prove them are applicable.

ACKNOWLEDGMENT

This work was partially supported by ONR Grant N00014-
02-1-0488 and by NSF-CONACyT Award 0296126. The
authors are indebted to Steve Lindemann and Benjamin Tovar
for helpful discussions.

REFERENCES

[1] S. Akella, W. Huang, K. M. Lynch, and M. T. Mason. Parts feeding
on a conveyor with a one joint robot. Algorithmica, 26(3):313–344,
March-April 2000.

[2] M. Blum and D. Kozen. On the power of the compass (or, why mazes
are easier to search than graphs). In Proc. Annual Symposium on
Foundations of Computer Science, pages 132–142, 1978.

[3] G. Boothroyd, C. Poli, and L. E. Murch. Automatic Assembly. Marcel
Dekker, Inc., 1982.

[4] M. Brokowski, M. A. Peshkin, and K. Goldberg. Optimal curves fences
for part alignment on a belt. ASME Journal of Mechanical Design,
117(1), March 1995.

[5] B. Chazelle and L. G. Guibas. Visibility and intersection problems in
plane geometry. Disc. and Comp. Geom., 4:551–589, 1989.

[6] B. R. Donald. On information invariants in robotics. Artif. Intell.,
72:217–304, 1995.

[7] G. Dudek, K. Romanik, and S. Whitesides. Localizing a robot
with minimum travel. In SODA: ACM-SIAM Symposium on Discrete
Algorithms (A Conference on Theoretical and Experimental Analysis
of Discrete Algorithms), 1995.

[8] G. Dudek and C. Zhang. Vision-based robot localization without
explicit object models. In IEEE Int. Conf. Robot. & Autom., pages
76–82, 1996.

[9] M. A. Erdmann and M. T. Mason. An exploration of sensorless
manipulation. IEEE Trans. Robot. & Autom., 4(4):369–379, August
1988.

[10] K. Y. Goldberg. Orienting polygonal parts without sensors. Algorith-
mica, 10:201–225, 1993.

[11] K. Y. Goldberg and M. T. Mason. Bayesian grasping. In IEEE Int.
Conf. Robot. & Autom., 1990.

[12] L. J. Guibas and J. Hershberger. Optimal shortest path queries in a
simple polygon. J. Comput. Syst. Sci., 39(2):126–152, 1989.

[13] L. J. Guibas, R. Motwani, and P. Raghavan. The robot localization
problem. In K. Goldberg, D. Halperin, J.-C. Latombe, and R. Wilson,
editors, Proc. 1st Workshop on Algorithmic Foundations of Robotics,
pages 269–282. A.K. Peters, Wellesley, MA, 1995.

[14] R. Hinkel and T. Knieriemen. Environment perception with a laser
radar in a fast moving robot. In Proceedings of Symposium on Robot
Control, 1988.

[15] I. Kamon and E. Rivlin. Sensory-based motion planning with global
proofs. IEEE Trans. Robot. & Autom., 13(6):814–822, December 1997.

[16] J. M. Kleinberg. The localization problem for mobile robots. In
IEEE Symposium on Foundations of Computer Science, pages 521–
531, 1994.

[17] A. M. Ladd, K. E. Bekris, A. P. Rudys, D. S. Wallach, and L. E.
Kavraki. On the feasibility of using wireless Ethernet for indoor local-
ization. IEEE Transactions on Robotics and Automation, 20(3):555–
559, June 2004.

[18] J. Leonard, H. Durrant-Whyte, and I. Cox. Dynamic map building for
an autonomous mobile robot. Int. J. Robot. Res., 11(4):89–96, 1992.

[19] V. J. Lumelsky and A. A. Stepanov. Path planning strategies for a
point mobile automaton moving amidst unknown obstacles of arbitrary
shape. Algorithmica, 2:403–430, 1987.

[20] M. Rao, G. Dudek, and S. Whitesides. Randomized algorithms for
minimum distance localization. In Proc. Workshop on Algorithmic
Foundations of Robotics, pages 265–280, 2004.

[21] W. Renken. Concurrent localisation and map building for mobile robots
using ultrasonic sensors. In IEEE/RSJ Int. Conf. on Intelligent Robots
& Systems, 1993.

[22] S. Thrun. Probabilisitic algorithms in robotics. AI Magazine, 21(4):93–
109.

[23] B. Tovar, L. Guilamo, and S. M. LaValle. Gap Navigation Trees:
Minimal representation for visibility-based tasks. In Proc. Workshop
on Algorithmic Foundations of Robotics, 2004.

[24] B. Tovar, S. M. LaValle, and R. Murrieta. Locally-optimal navigation
in multiply-connected environments without geometric maps. In
IEEE/RSJ Int’l Conf. on Intelligent Robots and Systems, 2003.

[25] A. F. van der Stappen, R.-P. Berretty, K. Goldberg, and M. H.
Overmars. Geometry and part feeding. In Sensor Based Intelligent
Robots, pages 259–281, 2000.

[26] D. E. Whitney. Real robots don’t need jigs. In Proceedings of the
IEEE International Conference on Robotics and Automation, 1986.

[27] J. Wiegley, K. Goldberg, M. Peshkin, and M. Brokowski. A complete
algorithm for designing passive fences to orient parts. Assembly
Automation, 17(2), August 1997.

