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Abstract— This paper presents a global localization technique
for a robot with only linear and angular odometers. The robot,
whose configuration is composed of its position and orientation,
moves in a fully-known environment by alternating rotations
and forward translations. We pose the problem as a discrete-
time planning problem in the robot’s information space, which
encapsulates the uncertainty in the robot’s configuration. Our
contribution is to show that in any simply-connected, bounded
polygonal environment, localization by odometry alone is possi-
ble, but only up to the symmetries in the environment.

I. INTRODUCTION

Localization is widely regarded as a central problem in mo-
bile robotics. Many mobile robot tasks are more manageable
for robots that know their location. A wide spectrum of sensor
systems have been proposed for the localization problem,
ranging from visibility sensors [11, 18, 31] to landmark
detectors [5, 6, 13, 34]. How complex a sensor system does
the localization problem truly demand? In this paper, we take
a minimalist approach, describing a simple robot with which
localization is still possible.

Consider a robot that has angular and linear odometers.
Can such a robot localize itself? Under the model we de-
scribe, the robot can accurately rotate and translate through
its environment, measuring each of these motions. Suppose
the robot is given an accurate map of its environment, but
has no knowledge of its configuration. This is the so-called
“kidnapped robot” or “global localization” problem. Our con-
tribution is to show that such a robot can localize itself, but
only up to symmetries in the environment. Our choice to
use an idealized geometric system is motivated by a desire
to understand basic requirements for robotic tasks such as
localization, independent of the idiosyncrasies of any hardware
implementation.

We may consider this task as discrete-time planning prob-
lem, but this approach is complicated by the fact the robot’s
state is unknown. This leads us to define the robot’s informa-
tion space [24] and give methods for computing its information
state within that space. Informally, the robot’s information
state is a set of configurations in which the true configuration
is known to lie. As the robot moves, this set is updated to
reflect the result of this motion for each candidate. As the robot
receives sensor data, this set is pruned to eliminate candidates
that are not consistent with these data. When the robot is
finally localized, the information state will contain one element
for each symmetry of the environment.

Space limitations prohibit a thorough survey of related
work, but research in localization can broadly be divided into
two groups. Passive localization [5, 6, 11, 12, 13, 18, 20,
25, 32, 34, 35, 36, 38] does not prescribe motions for the

Fig. 1. [left] Two boundary-to-boundary motions in a square-shaped
environment. [right] The 16 possibilities for motions of these lengths between
boundary points in this environment.

robot, but only provides methods for using sensor readings and
externally-selected commands to estimate the robot’s state. In
contrast, active localization [14, 22, 27, 29, 30, 33] involves
the selection of actions that eliminate position ambiguity.
The problem we consider is an active localization problem.
The minimalist approach has a long history in robotics,
including many works in limited-sensing part orientation
[3, 4, 7, 8, 15, 16] and simultaneous exploration and navigation
[1, 2, 10, 21, 23, 28, 26, 37].

The remainder of this paper is organized as follows. Sec-
tion II formally defines our robot model and problem defini-
tion. Section III describes our algorithm to solve this problem.
We present an implementation of this algorithm in Section IV
and discuss our results in Section V.

II. PROBLEM DEFINITION

We consider a point robot with orientation that can move in
the plane by rotation and by forward translation. The robot
is equipped with an accurate map of its environment, W ,
which we assume to be simply-connected, closed, bounded,
and polygonal. Since the orientation is relevant, the robot’s
configuration space is C = W × S1.

At each time step, the robot may issue either of two
types of commands. First, the robot may rotate by a certain
amount. Since the robot has an angular odometer, we assume
that rotation commands are executed precisely. Second, a
translation command may be issued, instructing the robot to
advance forward by a given distance. The actual distance
traveled may be less than the commanded distance, if the robot
reaches the boundary of the environment first. For simplicity,
we do not allow simultaneous rotation and translation.

We can model this system as a discrete-time planning
problem. The robot begins at some unknown configuration
x1 ∈ C. Let U = R

+ t S1 denote the robot’s action space,
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in which elements in R
+ denote translation commands and

elements of S1 denote rotation commands. Let f : C×U → C
denote the state transition function. If u ∈ S1, then f(x, u)
is the appropriate change of orientation of x. If u ∈ R

+,
then f(x, u) computes the appropriate forward translation of
x within W , stopping short of the commanded distance only if
the robot reaches the boundary of W first. An iterated version
of this function that applies several actions in succession will
also be useful:

fk(x, u1, . . . , uk) = f(· · · f(f(x, u1), u2) · · · ), uk). (1)

Consider a sequence of commands u1, . . . , uK . This defines
a sequence of configurations x1, . . . , xK+1, governed by
xk+1 = f(xk, uk).

After each action, the robot receives an observation from its
linear odometer. We may regard this observation as a “hint”
regarding the true configuration of the robot. Let Y = [0,∞)
denote the space of such observations, in which an observation
y ∈ Y indicates that in executing the previous action, the
robot’s translation had magnitude y. Since rotations always
succeed without providing useful feedback, the robot receives
the observation y = 0 after each rotation action. Let h : C ×
U → Y denote an observation function that gives the sensor
reading that would result from choosing a particular action
from a particular configuration. In this way we can define a
sequence of observations y1, . . . , yK such that yk = h(xk, uk).

A. The information space

Since the robot’s initial configuration is unknown, it can
use only the actions it has selected and the observations it has
received to draw conclusions about its configuration. To handle
this complexity in a concrete way, we consider the problem
as a search through a space we call the robot’s information
space. To begin, consider what information is available from
the robot’s action and observation sequences.

Definition 1: A configuration xk ∈ C is consistent with an
action sequence u1, . . . , uk−1 and an observation sequence
y1, . . . , yk−1 if there exists some configuration x1 ∈ C such
that

xk = fk(x1, u1, . . . , uk−1) (2)

and
yj = h(f j−1(x1, u1, . . . , uj−1), uj) (3)

for each j = 0, . . . , k.
The intuition is that consistent configurations xk are those

for which there is some starting configuration from which
executing the given action sequence would produce the given
observation sequence and leave the robot at xk. We may
use the set of consistent configurations as a concise way of
describing the information available to the robot.

Definition 2: Suppose the robot has chosen actions
u1, . . . , uk and received sensor readings y1, . . . , yk. The in-
formation state ηk is the set of all configurations consistent
with these actions and observations. The information space I
is the set of all information states, in this case the power set
of C.

Fig. 2. Sample environments with, from left to right, 6, 2, and 1 rotational
symmetries.

The information space is a sufficiently expressive structure
that it can encode all of the robot’s uncertainty about its
configuration. As the robot moves, it can update its current
information state, even in ignorance of its true configuration.
Transitions in information space are determined by the current
information state, the selected action, and the observation from
the sensors. The information transition function has the form
F : I × U × Y → I, and can be defined in terms f and h:

F (ηk, uk, yk) = {x ∈ C | yk = h(x, uk)} ∩
⋃

x∈ηk

{f(x, uk)}.

(4)
Thus, we have a sequence of information states η1, . . . , ηK

governed by η1 = C and ηk+1 = F (ηk, uk, yk).

B. Symmetries in the environment

Since the robot’s movement and sensing are expressed in a
frame local to the robot’s (initially unknown) configuration, the
notion of rotational symmetry in the environment is important.

Definition 3: A symmetry is function composed of rigid
translations and rotations mapping C onto itself. Two config-
urations x1, x2 ∈W are symmetric if there exists a symmetry
C → C under which x1 7→ x2.

Figure 2 shows several environments with varying numbers
of symmetries. The following lemma will be useful for show-
ing the relevance of these symmetries to localization.

Lemma 4: The relation of symmetry between configurations
is an equivalence relation, which we denote ≡. Each equiva-
lence class of ≡ contains one configuration for each symmetry
of the environment.
Proof Sketch: Observe that the symmetries of a polygon form
a group under function composition. In particular the identity
is always a symmetry, and the set of symmetries is closed
under composition and inverse. The reflexivity, transitivity, and
symmetry of the ≡ relation all follow immediately. �

Lemma 5: Consider an action sequence u1, . . . , uk−1, an
observation sequence y1, . . . , yk−1 and the resulting informa-
tion state ηk. For any x ∈ ηk and x′ ∈ C with x ≡ x′, x′ ∈ ηk.
Proof Sketch: Since x ∈ ηk, there exists some initial config-
uration x1 for which executing u1, . . . , uk−1 leads to x and
generates y1, . . . , yk−1. Since x ≡ x′, there exists a symmetry
τ under which x′ = τ(x). Since f acts only locally, we know
that a robot starting from x′ and executing u1, . . . , uk−1 will
have configuration

f j(x′, u1, . . . , uj) = τ(f j(x, u1, . . . , uj)). (5)

Moreover, the observation sequences are be identical, because
the boundary edges of W are affected by τ in the same way
as x′ is. Consequently, τ(x1) is an initial configuration that



3

leads to x′, thereby demonstrating that x′ is consistent with
u1, . . . , uk−1 and y1, . . . , yk−1. Hence x′ ∈ ηk. �

The practical importance of this lemma is that the localiza-
tion task can only be accomplished modulo the symmetries
in the environment. No sequence of actions and observations
can distinguish between a pair of symmetric configurations.
Therefore, we define the task of localization up to symmetry:

Given W , select actions to reduce the robot’s
information state to a set of symmetric configu-
rations.

Symmetry plays a similar role in some methods for part
orientation [16].

More precisely, we approach the task of localization as a
planning problem in I with initial state η1 = C and goal region

IG = {η ⊂ C | ∀x1, x2 ∈ η, x1 ≡ x2}, (6)

or equivalently

IG = {η ⊂ C | |η/≡| = 1} . (7)

A plan is a feedback strategy on I: We want a function
I → U such that, regardless of the robot’s initial configuration,
repeatedly applying the action recommended by this function
will lead in finite time to an information state in IG.

Note that the limitations arising from symmetry are no
longer relevant if we are concerned only with determining the
robot’s position and are not interested in its final orientation. In
this case we can, after reaching an information state consisting
of symmetric points, issue additional commands to navigate
to a point fixed by the environment’s symmetries. We will not
revisit this variant problem.

III. AN ALGORITHM FOR LOCALIZATION VIA ODOMETRY

Now we turn to an algorithm for the task described in
Section II. An overview appears in Algorithm 1. The algorithm
is “online” in the sense that the commands it issues depend
on the observations obtained as the robot is executing. Indeed,
there is no external “plan” computed ahead of time; instead
we may regard Algorithm 1 itself as a plan in the sense that
it defines a feedback strategy on the information space.

A. Algorithm overview

The algorithm tracks the robot’s information state ηk

throughout the execution. The first step, INITIALACTIONS,
issues several commands to move from the initial condition
(η1 = C) to an information state of finite cardinality. This
process is described in Section III-B. For some degenerate but
potentially interesting environments, INITIALACTIONS will
fail to generate a finite information state, instead possibly
leaving one or more continua expressed as intervals on the
boundary of W . The function ELIMINATESEGMENTS issues
commands guaranteed to reach an information state devoid of
such segments. Section III-C candidates, the final section of
the algorithm, detailed in Section III-E, systematically reduces
ηk until only a set of mutually symmetric configurations
remain.

Algorithm 1 LOCALIZE(W )

(ηk, k)← INITIALACTIONS(W )
(ηk, k)← ELIMINATESEGMENTS(W, ηk)

while |ηk| > NUMBEROFSYMMETRIES(W ) do
repeat

(x1, x2)← SELECTTWO(ηk)
Wx1

← TRANSFORMTOLOCALFRAME(W,x1)
Wx2

← TRANSFORMTOLOCALFRAME(W,x2)
until Wx1

6= Wx2

p← FINDPOINTINONLYONE(Wx1
,Wx2

)
(uk, . . . , uk′)← PATHINPOLYGON(Wx1

, (0, 0), p)
while x1, x2 ∈ ηk do

yk ← EXECUTECOMMAND(uk)
ηk+1 ← F (ηk, uk, yk)
x1 ← f(x1, uk)
x2 ← f(x2, uk)
k ← k + 1

end while
end while

return ηk−1

B. Generating a finite set of candidates

This section describes a technique for reaching an informa-
tion state of finite cardinality. The central idea is to make two
motions between points on the boundary of the environment,
separated by a 90° turn. For each of these motions, the
linear odometer will report the distance moved. We will show
that for environments in general position, only finitely many
configurations are consistent with such a sequence of motions.
The precise general position assumption we must make is that
W has no pair of parallel boundary segments. Section III-C
addresses the more troublesome case when the environment
violates this condition.

The robot, starting with no knowledge of its position, makes
several motions:

1) Move forward until reaching the boundary. This posi-
tions the robot to begin the first of two boundary-to-
boundary motions.

2) Rotate 180°, then move forward until reaching the
boundary. Let d1 denote distance traveled on this motion.

3) Rotate 90°, then move forward until reaching the bound-
ary. If the robot reaches the boundary immediately, rotate
180° and try again. Let d2 denote distance traveled on
this motion.

Figure 4 illustrates these initial motions. The commands
to “move until reaching the boundary” can be realized by
selecting an translation amount larger than the diameter of
W . In order to continue in final step, the robot must make a
net rotation of either 90° or −90°, depending on its angle of
incidence with the boundary. Except when the robot reaches an
environment vertex, at least one of these rotations will allow
the robot to continue, as shown in Figure 3. If the robot knows
it has reached an environment vertex, then there are already
only finitely many candidates. The use of 90° rotations is



4

Fig. 3. [left] After reaching a wall, the robot can continue by rotating either
90° or −90°. [right] If the robot reaches a vertex, neither of these turns will
allow non-zero translation.

d1

d2

x1

Fig. 4. Three initial motions intended to move the robot to an information
state of finite cardinality.

motivated by the simplifications it affords in equation 9. In
principle, rotations of other amounts would work equally well.

The problem remains to find the set of configurations of
the robot that are consistent with these initial motions. For
simplicity, we ignore the first translation and instead consider
only the two boundary-to-boundary translation with lengths d1

and d2. A geometric interpretation of the problem is perhaps
helpful here:

Given W and the two odometer readings d1 and
d2, we want to find all ways to pack into W a 2-
link polygonal chain with edges having lengths
d1 and d2 joined at a right angle, such that
the initial and final endpoints rest on different
boundary edges from the middle vertex.

The set of final endpoints of these chains can be used directly
to compute a set of candidate configurations of the robot.
Figure 1 shows an example environment and sample values
for d1 and d2.

1) Generating candidates for three fixed edges: The robot’s
initial motions visit three environment edges. Suppose these
three edges p1p2, p3p4, and p5p6, and the order in which the
robot visits them are fixed. Let pa ∈ p1p2, pb ∈ p3p4, and
pc ∈ p5p6 denote the three boundary points visited by the
robot. See Figure 5.

First, parameterize these three points as follows:

pa = (1− a)p1 + ap2

pb = (1− b)p3 + bp4

pc = (1− c)p5 + cp6.

The first motion has length d1, therefore ||pa − pb|| = d1.
Expanding from the parameterization above gives a quadratic
constraint in a and b:

Aa2 + Bab + Cb2 + Da + Eb + F = 0 (8)

p1

pb

pc

d2

p4
p3

p2

d1

p5

p6

pa

Fig. 5. Three fixed segments p1p2, p3p4, and p5p6 and translations of
length d1 and d2 between them.

with constant coefficients

A = (x2 − x1)
2 + (y2 − y1)

2

B = −2(x2 − x1)(x4 − x3)− 2(y2 − y1)(y4 − y3)

C = (x4 − x3)
2 + (y4 − y3)

2

D = −2(x3 − x1)(x2 − x1)− 2(y3 − y1)(y2 − y1)

E = 2(x3 − x1)(x4 − x3) + 2(y3 − y1)(y4 − y3)

F = (x3 − x1)
2 + (y3 − y1)

2 − d2
1,

where we use the convention that pi = (xi, yi).
We also know that pc must be distance d2 from pb, and that

pb − pc must be perpendicular to pa − pb. These constraints
are satisfied when

pc − pb = s1

d2

d1

(pb − pa)⊥ (9)

in which s1 is either −1 or +1, depending on the “handedness”
of the robot’s motion, that is, whether its net rotation was 90°
or −90° in step 3 above.

This vector equation can be separated into a pair of scalar
linear equations in a, b, and c. Eliminating c yields a single
linear equation in a and b:

Ga + Hb + I = 0 (10)

with constant coefficients

G =
d2

d1

(y2 − y1)

x5 − x6

+
d2

d1

(x2 − x1)

y5 − y6

H =
(x4 − x3)−

d2

d1

(y4 − y3)

x5 − x6

−
(y4 − y3) + d2

d1

(x4 − x3)

y5 − y6

I =
(x3 − x5)−

d2

d1

(y3 − y1)

x5 − x6

−
(y3 − y5) + d2

d1

(x3 − x1)

y5 − y6

.

Note that if either denominator is 0 (corresponding to p5p6

being horizontal or vertical), the system can be solved trivially.
Equations 8 and 10 form a linear-quadratic system in a and b.
Barring degeneracies, this system has at most two solutions,
which can be found analytically by standard methods.

The method described above gives candidate values for a, b,
and c. Candidates for which any of a, b, or c are outside the
interval [0, 1] should be discarded, because they correspond
to endpoints outside of p1p2, p3p4, or p5p6 respectively. The
final configuration (that is, position-orientation pair) of the
robot resulting from such a candidate is simply (pc, atan(yc−
yb, xc − xb)).
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Fig. 6. [left] Parallel edges of the environment admit continua of candidate
configurations. [right] A motion parallel to one of these segments leaves only
a single candidate point.

2) Generating candidates over all of W : The previous
section showed how to find candidate solutions, given d1, d2

and three fixed environment edges to be visited in sequence.
Candidate positions over the complete environment can be
computed by iterating over each ordered triple of environment
edges. Since we must admit the case where p1p2 = p5p6, there
are n(n− 1)(n− 1) such triples; the at most 2 candidates for
each can be computed in constant time.

In practice, the performance of this process may possibly
be improved by a preprocessing step which, for each pair
of environment edges, computes the minimum and maximum
distances between mutually visible points on these edges. This
information can be used to filter some edge triples as infeasible
without explicit consideration.

As a final step, the candidate list must be pruned, retaining
only those that represent motions that lie entirely within W .
For each, it is sufficient to ensure that papb and pbpc are
fully contained in W . Such queries can be answered in time
O(log n) [9].

C. If some boundary edges are parallel

Although the preceding exposition made the assumption
that the environment contains no pair of parallel edges, en-
vironments of practical interest often contain parallel edges.
In particular, note the case where the environment contains
a narrow strip bounded by two parallel edges. This situation
would arise, for example, in a indoor corridor or narrow room.
When parallel edges exist, continua of final configurations may
be consistent with the robot’s initial motions. See Figure 6.
This case can be handled while iterating over the environment
edge triples as described above.

1) Finding segments in the information state: Triples for
which p1p2 ‖ p3p4 ‖ p5p6 result a degeneracy in the system
of Equations 8 and 10. Since we may have p1p2 = p5p6,
this may occur even if only two distinct boundary edges are
parallel. These edge triples must be handled specially. Fixing
these three segments, the set of consistent configurations is a
(possibly empty) interval of p5p6, with a single constant ori-
entation across the interval. To compute this interval involves
two steps: finding feasible motion directions, then using these
directions to determine the extent of the interval.

The first step is to find a single motion of length d1 between
p1p2 and p3p4. This can be accomplished by segment-circle
intersections, centering circles with radius d1 at each of p1,

p2, p3, and p4. If none of these circles intersects the opposite
segment, then there are no feasible motions and the triple can
be safely discarded. If there is an intersection point, it can be
used to compute the direction of motion v1 between p1p2 and
p3p4 resulting in a distance of d1. The appropriate direction
of motion between p3p4 and p5p6 is v2 = s1v

⊥
1 , using the

same s1 as in Equation 9.
Knowing the two directions v1 and v2, we use the forward

projection algorithm for segments described in [29]. Given W ,
a segment on the boundary of W , and a motion direction v,
this algorithm computes the set of possible final configurations
for a robot that moves in direction v until reaching the envi-
ronment boundary. This set is itself a union of segments. This
added complexity is needed to account for other environment
edges that may interfere; it is analogous to the ray-shooting
queries used to prune point candidates in Section III-B.2. The
algorithm must be applied twice, with intermediate pruning
steps:

1) Project p1p2 forward in direction v1.
2) Discard any segments from the result that are not con-

tained in p3p4. or have distance other than d1 from p1p2.
3) Project the remaining results in direction v2.
4) Discard any segments from the result that are not con-

tained in p5p6.
Since W is simply-connected, the result will be a single

segment. The remaining segment S ⊂ ∂W represents the set
of final positions for feasible motions from p1p2 to p3p4 to
p5p6 with the appropriate distances and right-angle rotation.
Therefore we must add the continuum S×{angle(v2)} to ηk.

2) Eliminating segments: We have shown how, when W
contains parallel boundary edges, to compute an initial infor-
mation state that may contain configurations along intervals of
W . Unfortunately, the methods of Section III-E to complete
the localization process require that |ηk| be finite. How can we
command the robot in a way that eliminates these segments?

Let S × {θ} denote such a segment. Informally, we want
to issue commands so that if the robot’s true configuration is
in S × {θ}, the robot will move parallel to S. The resulting
configuration will be known regardless of the robot’s initial
position within S, thereby collapsing the continuum S × {θ}
in ηk to (at most) a single configuration in ηk+1. This
elimination can be accomplished with two actions. To align
the robot’s heading with S, command a rotation by difference
between θ and the angle formed by S with the horizontal
axis. Next, move forward until reaching a wall. These motions
are illustrated in the bottom portion of Figure 6. Since the
information state may contain multiple segments, this process
may need to be repeated several times.

D. Computing the information transition function

In Sections III-B and III-C, we described a method for
reaching an information state representable by a finite union
of single configurations and (if the environment contains some
parallel edges) boundary intervals. From this point forward, the
robot must update its information state as it issues additional
commands. Given an information state ηk, an action uk, and an
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Fig. 7. [left] Two configurations in an L-shaped environment. [right]
Two overlaid copies of the environment shown in the local frame of those
configurations. Attempting to execute the path shown (which consists of one
rotation and one translation) shown will result in different odometry readings
for these two configurations.

observation yk, how can we compute the resulting information
state ηk+1 = F (ηk, uk, yk)?

Recall the definition of F , given in Equation 4. The defini-
tion suggests the algorithm should proceed in two stages: First
to find to forward projection of ηk under action uk, then to
prune from the result any configurations for which the distance
traveled differs from yk. For rotation actions, there is nothing
to compute except to add or subtract the appropriate amount
from the orientation part of each configuration. Translation of
single configurations is easily accomplished by ray shooting
in W . To translate segments requires the algorithm of [29]. In
either case, to verify that candidates have traveled distance yk

requires a simple constant-time procedure.

E. Localization from a finite set

The previous sections showed how to select actions to
guarantee that ηk contains only finitely many configurations.
How can we select additional actions to determine the robot’s
true position from among these candidates? The approach
is to select two candidates and choose motions that are
guaranteed to disambiguate them. More precisely, we want
choose two configurations x1 and x2 from ηk and choose
actions uk, . . . , uk+j so that ηk+j+1 contains either x1 or x2

(or neither) but not both. This method is similar in spirit to
that of [14].

For a given configuration x, let Wx denote a transformation
of the environment W into the robot’s local frame, such that
the robot rests at the origin and faces the positive x-axis. Note
that (0, 0) ∈ Wx if and only if the position portion of x is
contained within W in the global frame.

Select x1 and x2 arbitrarily from ηk. Compute Wx1
and

Wx2
and overlay them. See Figure 7. In this overlay, rotation

and translation commands will affect both x1 and x2 in the
same way; we can choose a destination position in this frame
and command actions that to navigate both x1 and x2 to this
point in their respective local frames. There are two cases to
consider.

• If Wx1
= Wx2

, then x1 ≡ x2. These configurations
cannot be be distinguished from one another.

• If Wx1
6= Wx2

, then there must exist some position p
in Wx1

but not in Wx2
. Plan a path in Wx1

from (0, 0)

to p. Since (0, 0) ∈ Wx2
but p /∈ Wx2

, this path must
cross the boundary of Wx2

at least once. The translation
action corresponding to this crossing of the boundary of
Wx2

will necessarily distinguish between x1 and x2. If
the robot began at x1, its odometry reading at this step
will be greater than if it had begun on x2. One of the two
can be pruned after this step. A third possibility is that
both candidates are pruned before or during this step. This
could happen if the robot’s true configuration is neither
x1 nor x2, but some third configuration in ηk. In this
case, the remaining actions in the plan can be discarded,
and new choices for x1 and x2 can be made from the
reduced ηk+1.

Which path should the robot follow within Wx1
to reach p

from (0, 0)? To disambiguate x1 and x2 requires only a path
that stays within Wx1

but leaves Wx2
. Our implementation

uses the shortest path between (0, 0) and p, which can be
computed in time O(n) [17, 19]. Also of potential interest is
the minimum-link path, which minimizes the number of robot
commands. The minimum-link path can also be computed in
time O(n). In any case, a piecewise-linear path in Wx1

can
be trivially converted to a sequence of alternating translation
and rotation commands.

F. Complexity

Let n denote the number of edges in W . In INITIALAC-
TIONS, we execute fewer than O(n3) ray-shooting queries,
each taking time O(log n), so this step takes O(n3 log n)
time to generate O(n3) initial candidates. Let r denote the
number of such candidates. If W has parallel edges, each
segment returned by INITIALACTIONS takes time O(n log n)
to compute.

The outer while loop in Algorithm 1 eliminates at least
one candidate in each iteration, so there are at most r − 1
iterations. There will be fewer than r − 1 iterations if some
candidates are pruned as a side-effect of distinguishing x1 and
x2. The run time of each iteration is dominated by the time
to compute F , which is O(r log n). This computation must be
done at each of the O(n) steps of the of the path generated
at each iteration. Therefore, the total computation time for the
algorithm is O((n3 + r2n) log n).

Is is worth emphasizing that these bounds can likely be im-
proved. The question remains unanswered whether any initial
configuration in any environment achieves r = Ω(n3). The
experiments in Section IV suggest that in practical situations,
both r and the number of disambiguation iterations will often
fall far short of the upper bounds we present here. Also, in
practice it is not unreasonable to assume that the computation
time is dominated by the execution time for physical motions
of the robot.

IV. IMPLEMENTATION

In order to demonstrate its feasibility, we have implemented
Algorithm 1 in simulation, using simplified algorithms for
many of the geometric computations. The implementation is
in C++ on a GNU/Linux platform. Figure 8 shows a simple
example in which the robot makes 13 motions to localize
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Fig. 8. Sample execution of Algorithm 1 generated by our implementation.
Top row: (a) The robot in its initial configuration. (b) The motions generated
by INITIALACTIONS. (c) There are 7 configuration consistent with these initial
motions, so |η6| = 7. Bottom row: (d) One disambiguation results in |η12| =

2. (e) The robot is full localized after 13 commands, with final information
state |η14| = 1.

Fig. 9. A robot localizing itself in an environment with 5 symmetries. From
top to bottom: (a) The robot’s initial configuration. (b) Executing INITIALAC-
TIONS results in an information state η8 containing 15 configurations. (c) One
disambiguation iteration fully localizes the robot, leaving 5 configurations in
η10.

itself. In Figure 9 the environment is a regular pentagon,
so the final information state contains 5 configurations. The
environment depicted in Figure 10 is serpentine and self-
similar, but has no symmetries. This environment has 88 edges
and geodesic diameter 65 meters. To gauge the efficiency of
our implementation, we selected at random 100 configurations
an executed the localization algorithm starting at each. The
results of these runs are summarized in Figure 11. These
experiments suggest that in at least some non-pathological
situations, the algorithm’s performance is significantly better
than the upper bounds in Section III-F might indicate.

V. DISCUSSION AND CONCLUSIONS

A. Comparison to other models

The two most closely related lines of work are those of
Dudek et. al. [14] and O’Kane and LaValle [29]. The two-
phase approach described here – that of finding a finite set
of candidates (hypothesis generation) followed by determina-
tion of the true configuration from among these candidates
(hypothesis elimination) – echoes the approaches of both of
these methods.

The robot model used here is strictly weaker than the
visibility-based model used in [14]. The visibility polygon
available to the robot in that work can be viewed as an omnidi-
rectional measure of the distance to the environment boundary.
By ignoring all of these distances except the distance to the
boundary directly forward, their robot can accurately simulate
the one presented here. Moreover, the work of [14] is mainly

Fig. 10. A robot localizing itself in a serpentine environment. From top to
bottom: (a) The robot’s initial configuration. (b) Executing INITIALACTIONS
results in an information state η6 containing 48 configurations. (c) After 2
iterations of the disambiguation algorithm, only 6 configurations remain in
η10. (d) There are only two configurations in η20. (e) The robot is fully
localized after 25 motions.

concerned with minimum-distance localization, a problem we
have not addressed. A central result of [14] is that minimum
distance localization with a visibility sensor is NP-complete.
The hardness question remains unanswered for sensing-limited
robots such as ours, although it seems a reasonable conjecture
that similar results would hold.

The model used in this work is not directly comparable
to that of [29], which describes a robot equipped with only
a compass and a contact sensor. In exchanging the compass
for an angular odometer and the contact sensor for a linear
odometer, we have strengthened the linear (distance) sensing
while reducing the robot’s angular sensing. In this sense, we
can imagine a partial ordering on robot systems, in which a
comparison relation is defined by the ability of one robot to
simulate another. The minimalist approach can be described
as searching for minima in this partial order. The robot model
of [14] dominates those of [29] and the present work, which
are themselves incomparable.

There are also some subtle but perhaps illustrative differ-
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minimum mean maximum
Distance Traveled (m) 11.45 40.97 64.09
Initial Candidates 3 42.11 103
Actions Executed 9 21.84 45
Computation Time (s) 2.59 5.12 9.26

Fig. 11. One hundred initial configurations were randomly selected from the
configuration space of the environment depicted in Figure 10.

ences with [29]. The present results are only up to symmetry,
while symmetries are not relevant to the robot in [29]. This
difference can be directly attributed to the fact that, in the
present work, angular information is only local, rather than
global. Likewise, the algorithm of [29] can only guarantee a
known final configuration. In the present work, each motion
is precisely measured. This provides sufficient information to
determine the initial configuration and indeed the robot’s entire
path.

B. Future research

This work is based on an idealization in which the robot’s
control, sensing and internal map are all perfect. What if these
assumptions are relaxed?

If the robot’s control or sensing are noisy, we may model
this noise with Gaussian distributions with known mean and
variance. An information state is a probability distribution over
C. Such distributions would be periodic with the symmetries
of the environment. The goal is to reach a distribution having
at least 1−δ of its mass concentrated in configurations within
a ε-ball, for appropriately small choices of δ and ε.

If the robot’s map is imperfect or absent, we may consider a
space E of potential environments. The robot’s state defined by
its environment W ∈ E and its configuration x ∈W×S1. The
complete information space is the power set of E × C × S1.
If |E| is finite, we can compute candidates in each possible
environment and continue until all remaining environment-
configuration pairs are symmetric. If E is a richer set, perhaps
defined by allowing tolerances in the positions of vertices, the
extension is not as straightforward.

Finally, there remain a number of open questions regarding
the hardness of the localization problem we have proposed.
We have not attempted to optimize the distance traveled. Is
minimum distance localization using odometry NP-hard? How
large a distance must the robot travel at most? Can the bound
of O(n3) initial candidates be improved?
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