
Article

The International Journal of

Robotics Research

1–16

� The Author(s) 2021

Article reuse guidelines:

sagepub.com/journals-permissions

DOI: 10.1177/0278364921992788

journals.sagepub.com/home/ijr

A visibility-based approach to computing
non-deterministic bouncing strategies

Alexandra Q Nilles1 , Yingying Ren1, Israel Becerra2,3

and Steven M LaValle1,4

Abstract

Inspired by motion patterns of some commercially available mobile robots, we investigate the power of robots that move

forward in straight lines until colliding with an environment boundary, at which point they can rotate in place and move

forward again; we visualize this as the robot ‘‘bouncing’’ off boundaries. We define bounce rules governing how the robot

should reorient after reaching a boundary, such as reorienting relative to its heading prior to collision, or relative to the

normal of the boundary. We then generate plans as sequences of rules, using the bounce visibility graph generated from a

polygonal environment definition, while assuming we have unavoidable non-determinism in our actuation. Our planner

can be queried to determine the feasibility of tasks such as reaching goal sets and patrolling (repeatedly visiting a

sequence of goals). If the task is found feasible, the planner provides a sequence of non-deterministic interaction rules,

which also provide information on how precisely the robot must execute the plan to succeed. We also show how to com-

pute stable cyclic trajectories and use these to limit uncertainty in the robot’s position.

Keywords

Underactuated robots, dynamics, motion control, motion planning

1. Introduction

Mobile robots have rolled smoothly into our everyday

lives, and can now be spotted vacuuming our floors, clean-

ing our pools, mowing our grass, and moving goods in our

warehouses. Many useful tasks for mobile robots can be

framed geometrically. For example, a vacuuming robot’s

path should cover an entire space while not visiting any

particular area more frequently than others. A robot that is

monitoring humidity or temperature in a warehouse should

repeat its path consistently so data can be compared over

time. Strategies for controlling the robot’s path may be

decoupled from the specific implementation. We envision

building a library of useful behaviors that can be executed

on many types of robots, as long as they can move for-

ward in straight lines, recognize a boundary of their envi-

ronment, and reorient themselves relative to the boundary

in a programmable way.

Current algorithmic approaches to mobile robot tasks

generally take two flavors: (1) maximizing the information

available to the robot though high-fidelity sensors and

map-generating algorithms such as simultaneous localiza-

tion and mapping (SLAM); or (2) minimizing the informa-

tion needed by the robot, such as the largely random

navigation strategies of the early robot vacuums. The first

approach is powerful and well-suited to dynamic environ-

ments, but also resource-intensive in terms of energy,

computation, and storage space. The second approach is

easier to implement, but does not immediately provide

general-purpose strategies for high-level behaviors such as

planning and loop-closure.

We propose a combined approach. First, global geo-

metric information about the environment boundaries is

provided to the system, either a priori or calculated online

by an algorithm such as SLAM or occupancy grid meth-

ods. The global geometry is then processed to produce a

strategy that can be executed with minimal processing

1Department of Computer Science, University of Illinois at Urbana-

Champaign, Urbana, IL, USA
2Department of Computer Science, Centro de Investigacion en

Matematicas (CIMAT), Guanajuato, Mexico
3Consejo Nacional de Ciencia y Tecnologia (CONACYT), Mexico City,

Mexico
4Faculty of Information Technology and Electrical Engineering,

University of Oulu, Oulu, Finland

Corresponding author:

Alexandra Nilles, Department of Computer Science, University of

Illinois at Urbana-Champaign, Urbana, IL 61801, USA.

Email: nilles2@illinois.edu

uk.sagepub.com/en-gb/journals-permissions
https://doi.org/10.1177/0278364921992788
journals.sagepub.com/home/ijr
http://crossmark.crossref.org/dialog/?doi=10.1177%2F0278364921992788&domain=pdf&date_stamp=2021-02-14

power and only low-bandwidth local sensors, such as

bump and proximity sensors, or even purely mechanically

(especially useful for design of small-scale robotic tech-

nologies). What this paper investigates is what formal

guarantees we can make on such plans, for a specific set

of assumptions on movement strategies.

We consider simple robots with ‘‘bouncing’’ behaviors

(Figure 1): robots that travel in straight lines in the plane,

until encountering an environment boundary, at which

point they rotate in place and set off again. The change in

robot state at the boundary is modeled by what we call

bounce rules. These interactions may be mechanical (the

robot actually makes contact with a surface), or may be

simulated with virtual boundaries (such as the perimeter

wire systems used by lawn mowing robots (Sahin and

Guvenc, 2007)). Physical implementations of the bouncing

maneuver have been validated experimentally (Alam

et al., 2018; Lewis and O’Kane, 2013). Often these lines

of work consider a subset of the strategy space, such as an

iterated fixed bounce rule. In this work, we present a tract-

able approach to reasoning over all possible bounce strate-

gies, generalizing previous tools for analyzing a few given

bounce rules.

The present work is meant to serve as documentation of

the data structures we have been developing to analyze

bouncing robot systems, and a store for statements and

proofs of mathematical properties thus far proven about

the systems. The implications of our results for planning

are broad, and depend on the desired application of the

robotic system. In our case, we focus our examples on

generating minimalist strategies such as constant bounce

rules. We are interested both in the theoretical questions of

what tasks are possible with such strategies, and in appli-

cations such as manufacture of micro-scale robots that use

mechanical interactions with boundaries to execute the

bounce rules and thus cannot be programmed with high-

resolution strategies or complex on-board state estimation.

A preliminary version of a portion of this paper

appeared in Nilles et al. (2018). The main differences are

as follows.

� We provide detailed proofs of all the theoretical state-

ments presented in the preliminary version.
� New theoretical results are included that characterize

limit cycles in convex polygons and describe how they

can be used to reduce uncertainty on the robot’s

location.
� Examples are presented that illustrate the actual exe-

cution of the navigation strategies provided by our

planner.
� The experimental evaluation of the proposed planner

is further expanded through a reachability analysis,

that is, an evaluation with respect to which parts of

polygons are not reachable using the planner.

The main contributions of our work can be summarized

by the following three ideas that simplify the characteriza-

tion and generation of paths of the aforementioned mobile

robots. The first idea is that we assume the robot has some

intrinsic non-determinism. We would like our plans to

have the property that they will succeed as long as the

robot executes any action in an action set at each stage of

execution. We can then analyze the size of the bounce rule

sets at each stage to determine the minimum required

accuracy of a successful robot design. In Section 3, we

detail our assumptions on motion and formalize planning

tasks. Our second contribution is that by using the geo-

metric structure of a polygonal environment, we can create

a combinatorial representation of the environment that lets

us reason over a finite number of families of paths, instead

of the infinite collection of all possible paths. Section 4

explains our discretization scheme and Section 5 provides

some guarantees and limitations of planning with safe

roadmaps using purely combinatorial and geometric infor-

mation. Finally, in a third contribution, we provide results

on when actions can be used to reduce non-determinism in

the system. Geometrically, sometimes bounces can be

made that will shrink the set of possible positions of the

robot. In Section 6 we detail our steps toward leveraging

this property in a planner.

Technical documentation of related softwares can be

found online at: https://github.com/alexandroid000/

bounce_viz

2. Related work

We incorporate techniques from computational geometry,

specifically visibility (Ghosh, 2007). Visibility has been

considered extensively in robotics, but usually with the

goal of avoiding obstacles (Lozano-Pérez and Wesley,

1979; Siméon et al., 2000). To plan over collisions, we

use the edge visibility graph, analyzed by O’Rourke and

Streinu (1998), and shown to be strictly more powerful

than the vertex visibility graph. Our work is also related to

problems that consider what parts of a polygon will be

illuminated by a light source after multiple reflections (as

if the edges of the polygon are mirrors) (Aronov et al.,

1998), or with diffuse reflections (Prasad et al., 1998),

which are related to our non-deterministic bounces.

Our robot motion model is related to dynamical bil-

liards (Tabachnikov, 2005). Modified billiard systems

Fig. 1. Two paths produced by different sequences of bounces,

which visit different points of ∂P, yet have the same sequence of

edge collisions and high-level dynamical behavior (escape the

room on the left, travel through hallway, then patrol the room on

the right in a periodic orbit).

2 The International Journal of Robotics Research 00(0)

https://github.com/alexandroid000/bounce_viz
https://github.com/alexandroid000/bounce_viz

have attracted recent interest (Del Magno et al., 2014;

Markarian et al., 2010; Tabachnikov, 2005). One similar

work was inspired by the dynamics of microorganisms;

Spagnolie et al. (2017) showed that Chlamydomonas rein-

hardtii ‘‘bounce’’ off boundaries at a specific angle deter-

mined by their body morphology. They characterize

periodic and chaotic trajectories of such agents in regular

polygons, planar curves, and other environments. Our

model is especially interesting in this domain because

high-fidelity state estimation and control is often not pos-

sible at small scales. It becomes necessary to make differ-

ent assumptions about available motion primitives, and

our assumptions are more physically realistic as micro-

swimmers can often be constructed to have a default for-

ward swimming behavior and have predictable, mechani-

cal interactions with boundaries (Li and Ardekani, 2014).

Our motion model is a form of compliant motion, in

which task constraints are used to guide task completion,

even when the exact system state is not known. Our use of

contraction mappings and non-deterministic reasoning is

related to the idea of funnels: using the attraction regions

of a dynamical system to guide states into a goal region.

These ideas have been developed in the context of manip-

ulation and fine motion control by Whitney (1977), Mason

(1985), Erdmann (1986), Goldberg (1993), Lozano-Perez

et al. (1984), Lynch and Mason (1995), and Burridge et al.

(1999), among many others. What we term safe planning

is also related to conformant planning (Anders et al.,

2018), where given a set of possible initial configurations,

a set of non-deterministic actions, and a set of goal config-

urations, the planner should find a sequence of actions

guaranteed to bring the system into the goal.

Our intentional use of collisions with environment

boundaries is enabled by the advent of more robust, light-

weight mobile robots. Collisions as information sources

have also been recently explored for multi-robot systems

(Mayya et al., 2019). The first-class study of the dynami-

cal properties of bouncing was proposed in Erickson and

LaValle (2013) and continued in Nilles et al. (2017). Here

we extend and improve these analysis tools, and incorpo-

rate visibility properties to discretize the strategy space.

Work in contact planning for polygonal objects is very

closely related, and we use similar techniques for discre-

tizing and planning over the polygon boundary as seen in

Allen et al. (2015); this caging problem is almost an

‘‘external’’ version of our problem, albeit without the

aspect of long-term trajectory design.

Alam et al. (2017, 2018) described navigation, cover-

age, and localization algorithms for a robot that rotates a

fixed amount relative to the robot’s prior heading. Owing

to the chosen state space discretization, periodic trajec-

tories may exist that require bounce angles not allowed by

the discretization. By using a discretization induced by the

environment geometry, we are able to find all possible

limit cycles, and the controllers necessary to achieve them.

Another closely related work is Lewis and O’Kane (2013),

which considered navigation for a robot that has our same

motion model, with uncertainty given as input to the algo-

rithm. This uncertainty bound is used to create a boundary

discretization using similar visibility properties as our

approach, and the resulting discretized space is searched

for plans. In our case, instead of taking error bounds as

input, our approach considers all possible amounts of

uncertainty, and returns bounds on the required accuracy

for strategies. This group has also recently extended their

approach to the coverage problem (Lewis et al., 2018).

We are working toward a generalization and hierarchy of

robot models, in a similar spirit to Brunner et al. (2008).

Their simple combinatorial robot is able to detect all visible

vertices and any edges between them, and move straight

toward vertices. By augmenting this basic robot model with

sensors they construct a hierarchy of these robot models.

Our questions are related but different: if the robot is given

a compact, purely combinatorial environment representation,

what tasks can it accomplish with minimal sensing, and how

can we generate minimal complexity, robust plans?

3. Model and definitions

Next, we present the basic modeling of the addressed prob-

lem, describing the considered robotic system and the type

of used environments. In addition, the concept of bounce

rule is introduced, which is further used to formulate the

concept of a bounce strategy.

We consider the movement of a point robot in a simple

polygonal environment, potentially with polygonal obsta-

cles. All index arithmetic for polygons with n vertices is

mod n throughout this paper. We do not require polygons

in general position. We do not consider trajectories that

intersect polygon vertices. We define our robot to move

forward in a straight line, until encountering an environ-

ment boundary (such as when a bump or range sensor is

triggered). Once at a boundary, the robot is able to rotate

in place. More formally, the model is as follows.

� The configuration space X = ∂P× S1, where P is a

simple polygon, potentially with holes. Here P has

boundary ∂P, the union of external and obstacle

boundaries, and S1 is the robot’s orientation in the

plane. Let s refer to a point in ∂P without an associ-

ated robot orientation.
� The action space U = ½0,p�, where u 2 U is the orienta-

tion the robot takes when it reaches an environment

boundary, before moving forward again. Here u is mea-

sured counterclockwise relative to the boundary tangent.
� The state transition function f : X ×U ! X , which

describes how actions change the state of the robot.

We will often lift this function to act non-

deterministically over sets of states and actions, propa-

gating each state forward under each possible action,

and uniting the resulting set of states.
� We model time as proceeding in stages; at each stage

k, the robot is in contact with the environment

Nilles et al. 3

boundary, executes an action uk , and then moves for-

ward until the next contact with the boundary at stage

k + 1.

Definition 1. Let a 2 (0,p) be the robot’s incoming head-

ing relative to the environment boundary at the point of

contact. Let u 2 (0,p) be a control parameter. A bounce

rule b maps a and u to an action u, and determines how

the robot will reorient itself when it collides with a bound-

ary. Bounce rules are defined in the frame in which the

environment normal is aligned with the positive y axis and

the robot’s point of contact with the boundary is the origin.

Definition 2. A non-deterministic bounce rule is a bounce

rule lifted to return a set of actions. We restrict non-

deterministic bounce rules to return a convex set of actions

(a single interval in (0,p)).

For example, a specular bounce (laser beams, billiard

balls) has bounce rule b(a, u)= p � a. See Figure 2 for

more examples of bounce rules.

Definition 3. A bounce strategy is a sequence of non-

deterministic bounce rules.

Of course, robots rarely move perfectly, so our analysis

will assume the robot has some non-determinism in its

motion execution. Instead of modeling explicit distribu-

tions, we assume the robot may execute any action in a set.

Planning over such non-determinism can result in design

constraints for robots; for example, if a robot has an uncer-

tainty distribution over its actions in the range u6e, the

largest allowable e will be half the width of the smallest

convex bounce rule interval in a strategy.

4. Visibility-based boundary partitioning

In this section, the bounce visibility graph is introduced.

Such a graph is a combinatorial structure that is queried to

obtain plans in the form of sequences of bouncing rules,

namely, queried to obtain bounce strategies. To introduce

the bounce visibility graph, we start by recalling the defi-

nition of the visibility polygon, which is used to define a

partial local sequence of points on the environment bound-

ary at which the visibility polygon changes structure. The

partial local sequence, whose computation is summarized

in Algorithm 1, is then used to define the edge visibility

graph. The bounce visibility graph is defined as the

directed version of the edge visibility graph. We now pro-

ceed to provide the specifics.

Given a polygonal environment (such as the floor plan

of a warehouse or office space), we would like to synthe-

size bounce strategies that allow a robot to perform a given

task (such as navigation or patrolling). To do so, we first

discretize the continuous space of all possible transitions

between points on ∂P. We find a visibility-based partition

that encodes the idea of some points on ∂P having differ-

ent available transitions.

Definition 4. The visibility polygon of a point s in a poly-

gon P is the polygon formed by all the points in P that can

be connected to s with a line segment that lies entirely

within P.

Imagine a robot sliding along the boundary of a poly-

gon, calculating the visibility polygon as it moves. In a

convex polygon, nothing exciting happens. In a non-

convex polygon, the reflex vertices (vertices with an inter-

nal angle greater than p) cause interesting behavior. As

the robot slides, its visibility polygon mostly changes con-

tinuously. Edges shrink or grow, but the combinatorial

structure of the polygon remains the same, until it aligns

with a reflex vertex r and another vertex v (visible from r).

At this point, either v will become visible to the robot, add-

ing an edge to the visibility polygon, or v will disappear

behind r, removing an edge from the visibility polygon.

To compute all such points at which the visibility poly-

gon changes structure, we compute the partial local

sequence, defined in O’Rourke and Streinu (1998). These

are, equivalently, the points where the combinatorial visi-

bility vector changes, as defined in Suri et al. (2008). Each

point in the partial local sequence marks the point at

Fig. 2. Examples of different ‘‘bounce rules’’ that can be

implemented on mobile robots. In the first row, b(a, u)= uf ,

which we refer to as a fixed bounce rule. In the second row, we

have a monotonic fixed bounce rule, in which b(a, u)= um or

p � um, depending on what is necessary to preserve monotonicity

of travel direction along the x axis. In the third row, we have a

relative bounce rule, b(a, u)= a� ur, rotating a through ur in

the clockwise direction. If this rotation causes the heading of the

robot to still be facing into the boundary, the robot performs the

rotation again until its heading points into the free space.

Algorithm 1. PARTITIONPOLY(P)

Input: A polygon P as a list of vertices in counterclockwise
order.
Output: P0: P with all partial local sequence points added as
new vertices.

1: vnew fg
2: reflex verts GETREFLEXVERTS(P)
3: for vr in reflex verts do
4: for vvis in VISIBLEVERTS(P, vr) do
5: vnew vnew [SHOOTRAY(vvis, vr)
6: end for
7: end for
8: P0 INSERTVERTS(vnew,P)
9: return P0

4 The International Journal of Robotics Research 00(0)

which a visible vertex appears or disappears behind a

reflex vertex. The sequence is constructed by shooting a

ray through each reflex vertex r from every visible vertex

and keeping the resulting sequence of intersections with

∂P. See Figure 3 for an example of the vertices in the par-

tial local sequence of v0.

Once all the partial local sequences have been inserted

into the original polygon, the resulting segments have the

property that any two points in the segment can see the

same edge set of the original polygon (though they may

see different portions of those edges). See Algorithm 1 for

a pseudocode description of this partitioning process.

Algorithm 1 applies to polygons with or without holes;

holes require more bookkeeping to correctly find visible

vertices and shoot rays. See Figure 4 for an example parti-

tion of a polygon with holes. Let P0 be the polygon P after

application of Algorithm 1.

The SHOOTRAY function takes two visible vertices v1

and v2 and compute the first intersection of ∂P and ray

v1v2. This operation will take O(log n) time after prepro-

cessing the polygon P in O(n) (Szirmay-Kalos and

Márton, 1998). The VISIBLEVERTS function computes all

visible vertices in the polygon given an input query vertex,

and takes O(n) (El Gindy and Avis, 1981). Thus, the total

runtime of Algorithm 1 is O(n2 log n).

Definition 5. The edge visibility graph of a polygon P has

a node for each edge of P, and has an arc between two

nodes (ei, ej) if and only if there is a point si in the open

edge ei and a point sj on the open edge ej such that si and

sj can be connected with a line segment which is entirely

within the interior of P.

Let the bounce visibility graph be the directed edge visi-

bility graph of P0. Although visibility is a symmetric prop-

erty, we use directed edges in the bounce visibility graph

so that we can model the geometric constraints on the visi-

bility from one edge to another, which are not symmetric

and govern what actions allow the robot to accomplish that

transition. See Section 5 for further exploration of this

idea.

Proposition 1. The bounce visibility graph for a polygon

with n vertices has O(n2) vertices and O(n4) edges.

Proof. Consider a polygon P with n vertices operated on

by Algorithm 1 to form P0. Each convex vertex will not

add any new vertices; however, a reflex vertex can add

O(n) new vertices. Up to half of the vertices in the poly-

gon can be reflex, so the number of vertices in P0 is

O(n2). Each vertex indexes a node in the edge visibility

graph of P0. A vertex in P0 may be visible to all other ver-

tices, so in the worst case, the bounce visibility graph will

have O(n4) edges. h

Fig. 3. On the left, the partial local sequence for v0. On the right, an example polygon for which the bounce visibility graph has

O(n4) edges.

Fig. 4. An example partition for a polygon with holes; our discretization scheme extends naturally to handle visibility events caused

by static obstacles.

Nilles et al. 5

4.0.1. Worst-case example for Algorithm 1. We might

hope that if r is large, then not all of the reflex vertices

will produce a large number of new vertices, and we may

bound the size of the edge set in the visibility graph.

Unfortunately, the number of reflex vertices, the new

vertices produced in their partial local sequence, and the

new vertices’ visibility can be large at the same time. We

present a family of input polygons with bounce visibility

graph edge-set size of O(n4).
Let n = 4t + 2, in which t is a positive integer. We

design a polygon with r = 2t reflex vertices. The polygon

is symmetric with respect to its medium horizontal line. In

the top half, the reflex vertices are uniformly located on a

circle and thus they are visible to each other; the convex

vertices are chosen so that they are outside the circle and

the line through an edge will not intersect other edges.

Each reflex vertex will have at least t � 1 new vertices in

its partial local sequence. There will be 2t(t � 1)+ n ver-

tices in the polygon after we insert all new vertices in the

partial local sequence for all reflex vertices. Each of them

can see at least t(t � 1)+ n=2 other vertices. Thus, the

number of edges in the transition graph for the polygon

with inserted vertices is O((2t(t � 1)+ n)(t(t � 1)+ n=2))
= O(t4)= O(n4). Figure 3 shows the polygon for t = 4

with all the vertices in the partial local sequences.

5. Safe actions

To characterize some families of paths, we use the bound-

ary partition technique defined in Section 4, then define

safe actions between segments in the partition that are

guaranteed to transition to the same edge from anywhere

in the originating edge. Such actions define transitions

which keep the robot state in one partition under non-

deterministic actions.

Definition 6 establishes a notion of visibility between

two edges in a polygon. Later, Definition 7 formally intro-

duces the safe actions. Through Definitions 6 and 7,

Proposition 2 provides bounce angle intervals that describe

safe actions. Lemma 1 and Corollary 1 exhibit scenarios

for which safe actions exists between two edges of a poly-

gon. Finally, Proposition 3 establishes a result on the exis-

tence of at least two safe actions for every edge in a

polygon that was partitioned utilizing Algorithm 1 (see

Section 4). The proof of Proposition 3 makes use of some

auxiliary definitions presented in Definition 8.

Definition 6. Two edges ei, ej of a polygon are entirely

visible to each other if and only if every pair of points

si 2 ei and sj 2 ej are visible (the shortest path between si

and sj lies entirely within P).

Definition 7. A safe action from edge ei to edge ej in a

polygon is an action u such that f (s, u) 2 ej for any s 2 ei

and u in some interval of actions ~u � (0,p).

Proposition 2. Given two entirely visible line segments

ei = (vi, vi + 1) and ej = (vj, vj + 1) in ∂P0, if a safe action

exists from ei to ej, the maximum interval of safe actions

is ~u = ½ur, ul� such that ur = p � \vjvi + 1vi and

ul =\vj + 1vivi + 1.

Proof. Let edge ei = (vi, vi + 1) be aligned with the positive

x axis with the clockwise endpoint at the origin, without

loss of generality. Owing to the edges being entirely visi-

ble, ej = (vj, vj + 1) must be in the top half of the plane,

above ei.

Take the quadrilateral formed by the convex hull of the

edge endpoints. Let the edges between ei and ej be

el = (vi, vj + 1) and the right-hand edge er = (vi + 1, vj). Let

ul be the angle between el and the positive x axis

(0\ul\p); similarly for er and ur. See Figure 5 for an

illustration of the setup.

There are three cases to consider: if el and er are

extended to infinity, they cross either above or below edge

ei, or they are parallel.

Case 1: el and er meet below edge ei. In this case, ul.ur

and if a ray is cast from any point on ei at angle u 2 ½ur, ul�,
the ray is guaranteed to intersect ej in its interior.

Case 2: el and er meet above edge ei. In this case,

ul\ur, and there is no angle u such that a ray shot from

any point on ei will intersect ej. To see this, imagine slid-

ing a ray at angle ul across the quadrilateral: at some point

before reaching vi + 1, the ray must stop intersecting ej,

otherwise we would have ul.ur.

Case 3: el and er are parallel. This implies that ul = ur,

which is the only angle for which a transition from any point

on ei is guaranteed to intersect ej, and ~u is a singleton set.

Thus, for each case, we can either compute the maxi-

mum angle range or determine that no such angle range

exists. h

Note that this definition of a safe action is similar to the

definition of an interval of safe actions from Lewis and

O’Kane (2013); the main differences in approach are the

generation of boundary segments, methods of searching

the resulting graph, and how we generate constraints on

robot uncertainty instead of assuming uncertainty bounds

are an input to the algorithm.

Lemma 1. If two edges in ∂P0 are entirely visible to each

other, then there will be at least one safe action between

them.

Fig. 5. Angle range such that a transition exists for all points on

originating edge (left: such a range exists; right: such a range

does not exist).

6 The International Journal of Robotics Research 00(0)

Proof. From the proof of Proposition 2, we can see that if

case one holds in one direction, case two will hold in the

other direction, so a safe action must exist from one edge

to the other in one direction. If case three holds, there is a

safe action both directions but ~u is a singleton set. h

Corollary 1. If two edges in ∂P0 share a vertex that is not

reflex, and the two edges are not collinear, then there exist

safe actions from one to the other in both directions.

For a proof of Corollary 1, see Figure 6(a). Algorithm

1 guarantees that such neighboring segments are entirely

visible.

Definition 8. Given two entirely visible segments ei and ej,

rotate the frame such that ei is aligned with the x axis with

its normal pointing along the positive y axis, such that seg-

ment ej is above segment ei. If the intersection of segment

ei and ej would be on the left of segment ei, then call the

transition from ei to ej a left transition; if the intersection

would be on the right of segment ei, then call the transition

a right transition.

Proposition 3. For every polygon P and the resulting par-

titioned polygon P0 under Algorithm 1, each edge e 2 P0

has at least two safe actions that allow transitions away

from e.

Proof. Let ei = (vi, vi + 1). Consider right transitions from

ei to some ek , where the safe action interval ~u = (0, ul) for

some non-zero ul. We show that such a transition must

exist.

By Corollary 1, if an edge ei has an adjacent edge ei + 1

that is not collinear or separated by a reflex angle,

ek = ei + 1 and a safe transition exists between ei and ei + 1

with ul =\vi + 2vivi + 1. See Figure 6(a).

If the adjacent edge is at a reflex angle, Algorithm 1

will insert a vertex in line with ei on the closest visible

edge, forming edge ek . If vi is an original vertex of P, ek

will be entirely visible from ei, because Algorithm 1 will

otherwise insert a point in the partial local sequence of vi.

If vi is itself inserted by Algorithm 1, ek will still be

entirely visible. There must be some original vertex of P

clockwise from vi and collinear with ei, which would insert

a vertex visible to ei through Algorithm 1 if there were any

reflex vertices blocking transitions to ek . See Figure 6(b)

for an example of the geometry.

If the adjacent edge ei + 1 is collinear with ei, apply the

previous reasoning to the first non-collinear edge to find

ek . The arguments extend symmetrically to left transitions,

which will have safe actions of the form ~u = ½ur,p). Thus,

each edge will have two guaranteed safe actions leading

away from it. h

6. Dynamical properties of paths

Many robot tasks can be specified in terms of dynamical

properties of the path the robot takes through space, such as

stability, ergodicity, and reachability. Our motion strategy

allows us to disregard the robot’s motion in the interior of

P. Instead, the robot’s state is an interval along the bound-

ary ∂P, and we can formulate transitions as a discrete dyna-

mical system under the transition function f . The properties

of this dynamical system can be used to engineer paths cor-

responding to different robot task requirements.

One generally useful property of mapping functions is

contraction: when two points under the function always

become closer together. We can use this property to con-

trol uncertainty in the robot’s position.

We now proceed as follows. Definition 9 presents some

notation useful for the remainder of this section. Definition

10 recalls the general concept of a contraction mapping

that is useful to model the dynamical properties of paths to

be followed by the robot. Based on the already introduced

notation, Lemma 2 establishes bounce angles for which

function f , a transition function that models bounces

between edges in P, is a contraction mapping. Corollary 2

extends the results of Lemma 2 for specific types of pairs

of edges. Alternatively, a mapping can be identified as a

contraction mapping by analyzing what is known as the

contraction coefficient. Definition 11 formally introduces

such concept of a contraction coefficient, and Definition 12

expands that concept for the case of a composition of tran-

sitions between a sequence of edges. Such composition,

when it comes to a contraction mapping, is used in follow-

ing subsections to model limit cycles, namely, paths that

eventually return the robot to its start position.

Definition 9. Let fi, j be the interior angle between two

edges ei, ej 2 ∂P.

Definition 10. A function g that maps a metric space M to

itself is a contraction mapping if for all x, y 2 M ,

jg(x)� g(y)jł cjx� yj, and 0 ł c\1.

Lemma 2. If the transition from segment ei to segment ej

is a left transition, then the transition function f (x, u)
between segments ei and ej is a contraction mapping if

and only if u. p
2

+
fi, j

2
; if a right transition, the transition

function f (x, u) is a contraction mapping if and only if

u\ p
2
� fi, j

2
.

Proof. We consider the two cases of transition separately.

1. For the transition shown in the left-hand side of

Figure 7,

Fig. 6. Examples of a geometrical setup for some guaranteed

safe actions.

Nilles et al. 7

xf (x, u) k yf (y, u)) jf (x, u)�f (y, u)j
jx�yj = jf (x, u)j

jxj = sin (p�u)
sin (u�fi, j)

= sin (u)
sin (u�fi, j)

The transition will be contraction if and only if
jf (x, u)�f (y, u)j

jx�yj \1, sin (u)\ sin (u� fi, j). If u\ p
2
,

then sin (u). sin (u� fi, j). Thus, we need u. p
2
. If

u� fi, j.
p
2
, then sin (u)\ sin (u� fi, j) and we are

done; otherwise, we need p � u\u� fi, j)
u� fi, j

2
. p

2
. Combining all conditions, we have the

transition will be contraction if and only if

u. p
2

+
fi, j

2
.

2. Similarly, for a right transition shown in the right-hand

side diagram of Figure 7,

xf (x,u) k yf (y,u)

)jf (x,u)�f (y,u)j
jx�yj = jf (x,u)j

jxj = sin(p�u)
sin(p�u�fi, j)

= sin(u)
sin(u+fi, j)

The transition will be contraction if and only if
jf (x, u)�f (y, u)j

jx�yj \1, sin (u)\ sin (u + fi, j). If u. p
2
, then

sin (u). sin (u + fi, j). Thus we need u\ p
2
. If

u + fi, j\ p
2
, then sin (u)\ sin (u + fi, j) and we are

done; otherwise, we need

u\p � u� fi, j) u\ p
2
� fi, j

2
. Combining all condi-

tions, we have the transition will be contraction if and

only if u\ p
2
� fi, j

2
. h

Corollary 2. For all pairs of adjacent segments with inter-

nal angle less than p, there exists a range of actions for

which f is a contraction mapping.

Definition 11. The contraction coefficient of a mapping is

the ratio of the distance between points before and after

the mapping is applied. Let C(u,fi, j) be the contraction

coefficient of a transition from ei to ej in ∂P For a left tran-

sition, C(u,fi, j)= j sin (u)
sin (u�fi, j)

j; for a right transition,

C(u,fi, j)= j sin (u)
sin (u + fi, j)

j.

Given C from Definition 11, for a sequence of transi-

tions f0, . . . , fk , we can construct the overall mapping from

the domain of f0 to the range of fk through function compo-

sition. As f is a linear mapping, the contraction coefficient

of a composition of multiple bounces can be determined

by multiplying the contraction coefficients of each bounce.

Definition 12. Given a sequence of m feasible transitions

F = ff0, f1, . . . , fm�1g, at stage k the robot will be located

on edge e(k) and will depart the edge with action uk ; the

contraction coefficient of the overall robot trajectory

fm�18 . . . 8f0 is C(F)=
Qm�1

k = 0 C(uk ,fe(k), e(k + 1)).

If C(F)\1, the composition of F is a contraction map-

ping. This is true even if some transition along the way is

not a contraction mapping, because C(F) is simply the

ratio of distances between points before and after the map-

ping is applied. Furthermore, the value of C(F) tells us the

exact ratio by which the size of the set of possible robot

states has changed.

6.1. Limit cycles

A contraction mapping that takes an interval back to itself

has a unique fixed point, by the Banach fixed point theo-

rem (Granas and Dugundji, 2003). By composing individ-

ual transition functions between edges, we can create a

self-mapping by finding transitions which take the robot

back to its originating edge. A fixed point of this mapping

corresponds to a stable limit cycle. The usefulness of the

limit cycles is that it is possible to find bounce strategies

that make the robot’s trajectory converge to a limit cycle.

Those bounce strategies can be used to delimit the possi-

ble positions the robot might be in, for example, to loca-

lize the robot, or even to make the robot move repetitively

along a trajectory, as it is desirable in a patrolling task.

Such trajectories in regular polygons were characterized in

Nilles et al. (2017). Here, we present a more general proof

for the existence of limit cycles in all convex polygons.

More precisely, Theorem 1 characterizes the limit

cycles in convex polygons, that is, it provides the exact

location of such a cycle in terms of its contact points in

∂P. For achieving that goal, Definition 13 introduces some

notation, followed by Lemma 3 that describes sufficient

conditions on the bounce angles for a limit cycle to exist

in any convex polygon. We conclude the subsection with

Proposition 4, which establishes the existence of a particu-

lar bounce strategy that makes the robot to enter a limit

cycle.

Fig. 7. The two cases for computing contraction mapping conditions.

8 The International Journal of Robotics Research 00(0)

Definition 13. The smallest interior angle in a polygon P

is fP,min.

Lemma 3. Consider u 2 (0, p
2
�, if

u 2

0, min

min

i = 0, 1, ..., n�1
(\vi + 2vivi + 1), min

i = 0, 1, ..., n�1
p

2
�

fi�1, i

2

!!!
,

then the fixed bounce rule b(a, u)= u leads to a convex

cycle that visits each edge of P sequentially, regardless of

the robot’s position. For all convex polygons with n edges,

there exist constant fixed-angle bouncing strategies which

result in a period n limit cycle regardless of the robot’s start

position.

Proof. See Figure 8 for the geometric setup.

Without loss of generality, assume u 2 (0, p
2
�. The robot

will always bounce to the next adjacent edge if and only if

u 2 (0, mini (\vi + 2vivi + 1)).
Suppose we have two start positions s1 and s2 on edge

e0 and a constant fixed bounce rule b(a, u)= u. At stage k,

s1 and s2 will be located at f k(s1, u) and f k(s2, u).
By Definition 12, the distance between s1 and s2

changes after one orbit of the polygon by the ratio
jf n(s1, u)�f n(s2, u)j

js1�s2j =
Qn�1

i = 0 C(u,fi, i + 1). If this ratio is less

than one, then f n(s, u) has a unique fixed point by the

Banach fixed-point theorem (Granas and Dugundji, 2003).

By Lemma 2, this constraint is satisfied if u\ p
2
� fi, i + 1

2

for all i. We can guarantee that this condition holds for the

orbit by requiring

u 2

0, min

min

i = 0, 1, ..., n�1
(\vi + 2vivi + 1),

min
i = 0, 1, ..., n�1

p

2
�

fi�1, i

2

!!!
,

in which case the fixed-angle bouncing strategy with

b(a, u)= u leads to a convex cycle that visits each edge of

P sequentially, regardless of the robot’s start position.

Symmetry applies for orbits in the opposite direction. h

Thus, now we know that such cycles must exist in con-

vex polygons, and we know the conditions on fixed

bounce laws that will create them, but we can also com-

pute exactly where these cycles would be located (in the

asymptotic limit).

For ease of notation, Theorem 1 will compute the loca-

tion of counterclockwise limit cycle trajectories as a fixed

point of the return map of the trajectory starting on edge

e0. The rest of the points of the limit cycle can be com-

puted from forward projection of the trajectory, or from

reindexing the vertices and computing this distance for

each edge. Clockwise limit cycles can be computed

through symmetry (flipping the polygon in the plane and

computing the cycle, then flipping back).

Theorem 1. Under a fixed bounce rule b(a, u)= u in a

convex polygon with n edges, if u satisfies the conditions

in Lemma 3 such that the trajectory will converge asympto-

tically to a limit cycle striking each sequential edge of the

polygon in counter-clockwise order, then on edge e0 the

limit cycle will be located distance

dFP =

Pn�1
j = 0 (�1)n�j�1‘j

Qn�1
k = j C(u,fk, k + 1)

1� (�1)n
Qn�1

k = 0 C(u,fk, k + 1)
, ð1Þ

from vertex v0.

Proof. Define a distance function, d, which measures the

robot’s linear distance along the polygon boundary from

the nearest clockwise vertex. If the robot bounces at angle

u between edges ei and ei + 1, the new distance d(f (x, u))
can be derived with the law of sines as

d(f (x, u))=
sin (u)

sin (u + f)
(‘0 � d(x))= C(u,f0, 1)(‘0 � d(x)):

ð2Þ

Now we define the return map, fr, corresponding to

bouncing n times around an n-sided polygon until the robot

returns to the originating edge. The new distance of the

returning robot from v0 can be computed by composing

the distance functions of each transition, of the form in

Equation (2). This return map will take the form

d(fr(x, u))= C(u,fn�1, 0)(‘n�1 � (C(u,fn�2, n�1)(‘n�2 � . . .
�C(u,f0, 1)(‘0 � d(x)) . . .))),

which can be expanded and grouped into

d(fr(x, u))=
Pn�1

j = 0

(�1)n�j�1‘j

Qn�1

k = j

C(u,fk, k + 1)

+ d(x)(� 1)n
Qn�1

k = 0

C(u,fk, k + 1):

Fig. 8. The notation setup for the proof of contracting cycle in a

convex polygon.

Nilles et al. 9

To find the fixed point of this return map (correspond-

ing to the stable limit cycle of the robot around the poly-

gon), we set d(fr(x, u))= d(x), and solve for d(x), yielding

d(x)=

Pn�1
j = 0 (�1)n�j�1‘j

Qn�1
k = j C(u,fk, k + 1)

1� (�1)n
Qn�1

k = 0 C(u,fk, k + 1)
,

which, in turn, yields the expression for the distance dFP

from vertex v0 that defines the fixed point. h

Although Equation (1) might look cumbersome, it is

easy to compute (linear in the number of sides of the poly-

gon). See Figure 9 for an example of the predicted loca-

tions of the limit cycle in a convex polygon. The trajectory

begins on the left hand side of the polygon and quickly

converges to the predicted limit cycle.

Proposition 4. For all points s on the boundary of all poly-

gons, a constant fixed-angle controller exists that will

cause the robot’s trajectory to enter a stable limit cycle.

Proof. First we observe that by Proposition 3, for every

segment e 2 ∂P0, safe actions always exist for two action

intervals. These intervals are the ones bordering the seg-

ment itself: by staying close enough to the boundary, the

robot may guarantee a safe transition. By Lemma 2, these

safe actions will also admit contraction mappings. Thus,

we may choose a constant fixed-angle controller such that

it results in safe, contracting transitions from all segments

in P0. As there are a finite number of segments in P0, this

controller must result in limit cycle from every point in P.

If s is on a hole of the polygon, this procedure will cause

the robot to leave the hole and enter a cycle on the exter-

ior boundary. h

6.2. Leveraging cycles to reduce uncertainty

Next, we detail how such cycles can be used to decrease

uncertainty in the robot’s position. More precisely, if the

robot utilizes a controller as that depicted in Proposition 4,

then its path converges to a limit cycle and, as a conse-

quence, the uncertainty on the knowledge of the robot’s

whereabouts decreases.

Recalling that the fixed point of a cycle’s transition

function represents the location of the respective limit

cycle in ∂P, then Corollary 3 provides a bound on the dis-

tance between the robot’s position and the cycle’s fixed

point as the robot iterates F, that is, as the robot keeps

moving according to F. Finally, Corollary 4 provides the

number of cycles that the robot needs to traverse to find

itself within a distance e from the fixed point.

Corollary 3. Choose a sequence of transitions F that

begins and ends on edge ei. Let the contraction coefficient

of this trajectory be C, and let the length of edge ei be ‘i.

After k iterations of the cycle, the distance between the

robot’s position and the fixed point of the cycle’s transition

function must be less than Ck‘i.

Proof. The initial distance between the robot’s position

and the fixed point of the cycle, jx0 � xFPj, is upper

bounded by ‘i. After F has been executed once, the con-

traction ratio C = jF(x0)�F(xFP)j
jx0�xFPj = jF(x0)�xFPj

jx0�xFPj , which implies

jF(x0)� xFPj = Cjx0 � xFPjł C‘i. When F is iterated k

times, this expression becomes jFk(x0)� xFPjł Ck‘i. h

Corollary 4. If we assume the robot’s initial location lies

in an interval on edge ei, and the robot performs a

sequence of transitions F that creates a cycle returning to

ei with contraction coefficient C, the size of the set of pos-

sible locations of the robot on edge ei will become less

than e after d log (e=2‘i)= log (C)e iterations of the cycle.

Proof. From Corollary 3, after k cycles the distance

between the robot’s position and the fixed point will be

less than Ck‘i. Thus, if we wish for the size of the interval

of possible positions to be less than e, we must have that

Ck‘i = e=2. Solving for k yields the expression above. h

7. Applications

7.1. Planning

Here, we define the planning task, assuming that the robot

has unavoidable uncertainty in its actuation. We make no

assumptions on the distribution or size of uncertainty, only

that it is bounded, so we can plan over ‘‘cones’’ (intervals

of possible actions, which cause the robot’s state uncer-

tainty to spread linearly as it moves through the interior).

A resulting strategy should take a robot from any point in

a starting set to some point in a goal set, as long as some

action in the bounce rule set is successfully executed at

each stage.

First, we address the problem of safe planning using

only geometric information, without incorporating the

dynamical properties of the system, and show the limita-

tions of this approach. Then, we show several methods

Fig. 9. Example of the predicted locations of the limit cycle in

a convex polygon. The blue arrows indicate an example

trajectory for a constant fixed bounce rule. Yellow circles

indicate the predicted collision points of the asymptotically

stable limit cycle for this bounce rule and polygon.

10 The International Journal of Robotics Research 00(0)

and heuristics for improving this situation using the dyna-

mical properties described in Section 6.

Definition 14. (Safe planning problem). Given a polygonal

environment P, a convex starting set S � ∂P of possible

robot positions along the environment boundary, and a

convex goal set G � ∂P, determine a strategy p which will

be guaranteed to take the robot from any point in S to a

point in G, or determine that no such strategy exists.

Using the formalisms built up so far, we can tackle this

problem by searching over the bounce visibility graph,

using it as a roadmap. Shortest paths in the graph will cor-

respond to paths with the fewest number of bounces. It is

important to note that an arc ei ! ek in the bounce visibi-

lity graph only implies that for each point x 2 ei there

exists an action taking x to some point in ek . For our task,

we require a range of angles which can take any point in

ei to a point on ek , so we restrict the arcs of the bounce vis-

ibility graph to those corresponding to safe actions only.

As may be expected, not all edges of ∂P0 are reachable

using safe actions.

Proposition 5. There exist simple polygons such that under

Algorithm 1, there exist edges in the partitioned polygon

P0 that are not reachable by a safe action from any other

edge in P0.

Proof. The only such edges will be edges for which both

endpoints are reflex vertices or vertices inserted by

Algorithm 1, because by Corollary 1, edges adjacent to

other vertices of P will be reachable by a safe action.

Thus, planning in Gsafe is not complete: we cannot get

everywhere safely, at least under this partitioning of ∂P.

Figure 10 is an example where the edge v10v11 is not

reachable via safe actions. Equivalently, node 10 in Gsafe

has no incoming arcs. h

7.1.1. Constant strategy search. Despite a lack of com-

plete reachability, we would like to have a tool to compute

safe non-deterministic controllers of minimal complexity,

for applications such as micro-scale robotics. Here, we

show how to search for a constant fixed-angle bounce con-

troller, where at every stage the robot executes a fixed-

angle bounce in some range ~u. This is an extension of the

controllers analyzed by Nilles et al. (2017) for regular

polygons. We define the following functions.

� MKBVG: Uses the visibility information generated in

Algorithm 1 to generate the bounce visibility graph in

O(n4) time.
� MKSAFEBVG: Using Definition 7 and Proposition 2,

we can create a safe roadmap, Gsafe, out of the bounce

visibility graph by traversing all edges and removing

edges with an empty ~u, and labelling the remaining

edges with the interval of safe actions.
� SEARCHCONSTANTFIXEDSTRATS: performs breadth-first

search from start to goal, starting with ~u = (0,p) and

intersecting ~u with the safe action intervals along each

path, terminating when the path reaches the goal state

with non-zero ~u intervals. Returns the resulting con-

stant controller ~u or that no such strategy is possible.

7.1.2. Examples. Here we provide an example of strate-

gies that can be generated with different types of search in

the safe bounce graph. We use an example environment

consisting of two convex ‘‘rooms’’ connected with a

Fig. 10. A polygon after Algorithm 1 and its safe bounce visibility graph BVGsafe.

Algorithm 2. SAFECONSTANTFIXEDNAVIGATE(P, S, G, k)

Input: A polygon P, intervals S and G in ∂P, and an integer
bound k.
Output: A non-deterministic bounce rule, or NONE if no
strategy can be found. [1]

1: P0 PARTITIONPOLY(P)
2: BVG MKBVG(P0)
3: BVGsafe MKSAFEBVG(BVG)
4: ~u SEARCHCONSTANTFIXEDSTRATS(BVGsafe, S, G, k)
5: return ~u

Nilles et al. 11

corridor. The corridor does not have parallel sides, to

make the problem more geometrically interesting.

Using the SAFECONSTANTFIXEDNAVIGATE strategy in the

environment shown in Figure 11, we can show that you

cannot reach either ‘‘room’’ from the other under a con-

stant strategy. An example feasible constant strategy was

generated from edge e5 to edge e4, with the action interval
~u = (0:0363, 0:1767). This strategy causes the robot to

bounce around the right room, and was validated by choos-

ing random angles in the interval (0:0363, 0:1767) as seen

in Figure 12.

When we search for the path using the fewest number

of transitions from a start point on segment e0 to e16, we

compute the plan

and we can see in Figure 13 that when a random start

state is chosen in edge e0, and a random action from set ~u
is chosen at each stage, that all trajectories successfully

reach the goal.

However, we notice that the action intervals at each

stage are quite small, requiring accuracy from the robot of

0:02 rad, or about 1:158. To address this and improve toler-

ance for uncertainty, there are several options. For exam-

ple, we can set a minimum uncertainty (size of action set)

and search for paths until we find one with at least that

size. We may also search for the path (of under a certain

bounded number of transitions) with the largest minimum

action set. Future work will also include using the contrac-

tion property of transitions directly in the planning process;

the goal is to construct a plan that intrinsically reduces

Fig. 11. The example environment, discretized by Algorithm 1.

Fig. 12. A trajectory from edge e5 to edge e4, generated such

that the same action set is used at each stage.

Fig. 13. A trajectory from edge e0 to edge e16 generated with

the fewest bounces.

Fig. 14. An example of how contraction properties can be used

to control robot state uncertainty enough to navigate the robot

through a narrow doorway with non-deterministic actions.

Stage Start edge Next edge ~u

1 0 17 (0.3217, 0.3419)
2 17 6 (2.4668, 2.6949)
3 6 16 (1.0382, 1.3940)

12 The International Journal of Robotics Research 00(0)

uncertainty in robot state to generate more robust plans.

Figure 14 shows an example of such a sequence of transi-

tions. The initial robot state (on the bottom edge of the

polygon) is quite large, but shrinks through successive

actions. This type of transition cannot be found by the cur-

rent planner, but we are actively working on encoding this

knowledge into the planner.

7.2. Patrolling

In Section 6.1, we detailed results on the existence and

structure of convex limit cycles in convex polygons, as

well as how cycles can be used in general to reduce uncer-

tainty in robot position. However, when considering how

to plan trajectories including cycles, it is important to note

that there are exponentially many possible limit cycles (in

the size of the polygon), even if we restrict our controller

to a fixed bounce rule. The main reason for this is that a

cycle may contain transitions which are not contraction

mappings, as long as the overall contraction coefficient is

less than one.

However, it is possible to take any given sequence of

edges in a polygon and check whether the sequence admits

a stable limit cycle, by searching over the bounce rules at

each stage for rules that cause an overall contraction coef-

ficient to be less than one and satisfy the geometric con-

straints. As more becomes understood about the structure

and robustness of the limit cycles, we can begin to forma-

lize robotic patrolling tasks as a search over possible

cycles. Here, we outline the general form of the patrolling

problem.

Definition 15. Given an environment P, a set of possible

starting states S, and a sequence of edges of the environ-

ment E = fe1, . . . , ekg, determine a strategy which causes

the robot to enter a stable cycle visiting each edge of the

sequence in order from any point in S.

This task is related to the aquarium keeper’s problem in

computational geometry (Czyzowicz et al., 1991). It may

be solved by coloring nodes in the bounce visibility graph

by which edge of P they belong to, and then searching for

cycles which visit edges in the correct order. If a cycle is

contracting, it will result in a converging stable trajectory.

Interesting open questions remain on how to incorporate

other useful properties of a patrolling cycle, such as cover-

age of a space with certain sensors, or guarantees about

detecting evaders while patrolling. We are also interested

in how to use heuristics and approximate methods to more

efficiently search for such cycles, because it is equivalent

to the traveling salesman problem and is therefore NP-hard.

7.3. Reachability and environment

characterization

Proposition 5 states that there exist simple polygons con-

taining edges unreachable via safe actions from any other

edge in P0. At first glance, this appears to be a major flaw

of the proposed approach. Here, we present results of our

investigations into the scope and impact of this property of

the discretization.

First we examine irregular star polygons, generated by

a pseudorandom program (Ounsworth, 2015) that places

vertices at random distances from the origin with random

angular intervals between them. We use two heuristic para-

meters, irregularity and spikiness, to generate a range of

these polygons. A larger irregularity parameter increases

the range of random values for the angular distances

between vertices, and a larger spikiness parameter

increases the range of random values for the linear distance

between vertices and the origin.

It is important to note that this family of polygons is

‘‘easy’’ for a visibility-based discretization, for the simple

reason that there is at least one point in the polygon (the

origin) that is visible to all boundary points. Related con-

cepts such as the art gallery problem or link distance (Toth

et al., 2017) can be used to quantify the ‘‘complexity’’ of a

polygon in terms of visibility decompositions.

Figure 15 shows a heatmap of the proportion of

unreachable area along the polygon boundary, averaged

over ten random polygons for each pair of irregularity/spi-

kiness parameters. We have also included representative

examples from the extremes of the parameter space. The

measure of the unreachable segments of the polygon

boundary was found by first finding all the nodes of the

safe bounce visibility graph with no incoming edges.

These nodes correspond to segments in the discretized

polygon P0 that cannot be reached from any other seg-

ments under safe actions. The fraction of unreachable

polygon boundary was computed as the sum of the length

of these unreachable segments divided by the total peri-

meter length of the polygon.

Nearly all polygons contain at least some fraction of the

boundary that is unreachable under safe actions; however,

this fraction is often very small. In all cases, an average of

at least 95% of the polygon is reachable via safe action

Fig. 15. The fraction of the polygon that is unreachable under

safe actions from any other starting segment. The results were

computed for 10 random polygons at each pair of (spikiness,

irregularity) parameters.

Nilles et al. 13

from somewhere else in the polygon under our discretiza-

tion. As expected, the most spiky and irregular polygons

contain the highest proportion of unreachable boundary

(though still usually less than 5%).

7.4. Connectivity

Of course, this simple measure does not take into account

overall connectivity of the discretized boundary space;

however, the bounce visibility graph naturally allows for

further inquiries into the connectivity of the environment

under our discretization. The strongly connected compo-

nents of the safe bounce visibility graph represent a parti-

tion where in each subgraph, every boundary segment can

reach every other boundary segment. In addition, the num-

ber of weakly connected components in the safe bounce

visibility graph indicates the number of boundary regions

that cannot reach each other under safe actions. It is possi-

ble that for some environments, subsets of the space are

entirely unreachable from each other. The directed transi-

tions between strongly connected components indicate

which transitions are not reversible.

The number of strongly and weakly connected compo-

nents in the safe bounce visibility graph were analyzed for

the same family of randomly generated polygons described

in the previous section. Results can be seen in Figure 16.

The results indicate that irregularity and spikiness have a

strong influence on connectivity of the planning roadmap,

especially for strongly connected components. However,

the number of weakly connected components is low even

when the number of strongly connected components is high.

This indicates that while our planning method does not

result in complete reachability (cannot reach any goal from

any start), overall connectivity of the space is still good.

Indeed, these results raise the possibility that our planner

may also be well-suited as a tool to analyze and design

environments for resource-constrained robots that use boun-

cing strategies as their motion primitive. For example, it

may be desirable to build an environment that ‘‘funnels’’

micro-swimmers into a desired region. The safe bounce

visibility graph for such an environment should have

exactly one weakly connected component along with a node

or strongly connected component reachable from all possi-

ble starting states.

8. Open questions and future work

We have presented a visibility-based approach to reason-

ing about paths and strategies for a class of mobile robots.

We are moving toward understanding non-deterministic

control of such robots; however, many open questions

remain.

8.1. Further characterization of complex

environments

We have focused work here mainly on environments such

as convex or star polygons, owing to the possibility for

analytic results or the ease of parameterization. Of course,

real-world applications must deal with different types of

environments. In particular, future efforts will focus on

‘‘office’’ environments, remote environmental monitoring,

and micro-fluidic applications. Challenges will include

optimizations for scaling with respect to number of poly-

gon edges and number of obstacles, and improving perfor-

mance and guarantees for environments with challenging

features such as long, narrow hallways or extremely irre-

gular geometry.

8.2. Comparing bounce rules

Our approach can be used to compare different families of

bounce strategies in a given polygon, by comparing the

reachability of the transition systems induced by each

strategy family. This would require either reducing the full

bounce visibility graph given constraints on possible

bounces, or constructing a more appropriate transition sys-

tem. It is not clear the best way to analyze relative bounce

rules, in which the outgoing angle of a robot after a colli-

sion is a function of the incoming angle.

Fig. 16. Average number of strongly and weakly connected components in the safe bounce visibility graph for random polygons.

The results were computed for 10 random polygons at each pair of (spikiness, irregularity) parameters.

14 The International Journal of Robotics Research 00(0)

8.3. Optimal strategies

Say we wish to find the strategy taking the robot from

region S to region G with the maximum amount of allowed

uncertainty in the bounce rules (the sum of the interval

sizes of each action set along the path). We may also wish

find sequences of transitions which are optimally contract-

ing (maximally reduce uncertainty in robot position and

effect of non-determinism). These problems can be framed

as an optimization problem over the space of all transition

function compositions, or could be solved with search

algorithms such as A� with an appropriately discretized

state space. Future work will address the best approach to

finding such optimal strategies.

8.4. Localization

A localization strategy is a non-deterministic strategy that

produces paths which reduce uncertainty in the robot’s

position to below some desired threshold, from arbitrarily

large starting sets. The use of limit cycles to produce loca-

lizing strategies has been explored by Alam et al. (2018),

and it would be interesting to take a similar approach with

our environment discretization.

8.5. Ergodic trajectories

We are interested in strategies that produce ergodic

motion, where the robot’s trajectory ‘‘evenly’’ covers the

state space. Measures of ergodicity have recently been

used in exploration tasks (Miller et al., 2016). Chaotic

dynamical systems have also been used directly as con-

trollers for mobile robots (Nakamura and Sekiguchi,

2001).

Funding

The author(s) disclosed receipt of the following financial support

for the research, authorship, and/or publication of this article:

This work was supported by the NSF (grant numbers 1035345

and 1328018) and CONACyT (post-doctoral fellowship 277028).

ORCID iDs

Alexandra Q Nilles https://orcid.org/0000-0003-1474-2059

Israel Becerra https://orcid.org/0000-0002-9788-1128

References

Alam T, Bobadilla L and Shell DA (2017) Minimalist robot navi-

gation and coverage using a dynamical system approach. In:

IEEE IRC.

Alam T, Bobadilla L and Shell DA (2018) Space-efficient filters

for mobile robot localization from discrete limit cycles. IEEE

Robotics and Automation Letters 3(1): 257–264.

Allen TF, Burdick JW and Rimon E (2015) Two-finger caging of

polygonal objects using contact space search. IEEE Transac-

tions on Robotics 31(5): 1164–1179.

Anders AS, Kaelbling LP and Lozano-Perez T (2018) Reliably

arranging objects in uncertain domains. In: 2018 IEEE

International Conference on Robotics and Automation (ICRA).

IEEE, pp. 1603–1610.

Aronov B, Davis AR, Dey TK, Pal SP and Prasad DC (1998) Vis-

ibility with multiple reflections. Discrete and Computational

Geometry 20(1): 61–78.

Brunner J, Mihalák M, Suri S, Vicari E and Widmayer P (2008)

Simple robots in polygonal environments: A hierarchy. In:

Fekete SP (eds) Algorithmic Aspects of Wireless Sensor Net-

works (ALGOSENSORS 2008) (Lecture Notes in Computer

Science, Vol. 5389). Berlin: Springer, pp. 111–124.

Burridge RR, Rizzi AA and Koditschek DE (1999) Sequential

composition of dynamically dexterous robot behaviors. The

International Journal of Robotics Research 18(6): 534–555.

Czyzowicz J, et al. (1991) The aquarium keeper’s problem. In:

Proceedings of the Second Annual ACM-SIAM Symposium on

Discrete Algorithms. Philadelphia, PA: SIAM.

Del Magno G, Lopes Dias J, Duarte P, Gaivão JP and Pinheiro D

(2014) SRB measures for polygonal billiards with contracting

reflection laws. Communications in Mathematical Physics

329(2): 687–723.

El Gindy H and Avis D (1981) A linear algorithm for computing

the visibility polygon from a point. Journal of Algorithms 2:

186–197.

Erdmann M (1986) Using backprojections for fine motion plan-

ning with uncertainty. The International Journal of Robotics

Research 5(1): 19–45.

Erickson LH and LaValle SM (2013) Toward the design and

analysis of blind, bouncing robots. In: IEEE ICRA.

Ghosh SK (2007) Visibility Algorithms in the Plane. Cambridge:

Cambridge University Press.

Goldberg KY (1993) Orienting polygonal parts without sensors.

Algorithmica 10: 201–225.

Granas A and Dugundji J (2003) Elementary Fixed Point Theo-

rems. New York: Springer, pp. 9–84.

Lewis JS, Feshbach DA and O’Kane JM (2018) Guaranteed cov-

erage with a blind unreliable robot. In: 2018 IEEE/RSJ Inter-

national Conference on Intelligent Robots and Systems (IROS).

IEEE, pp. 7383–7390.

Lewis JS and O’Kane JM (2013) Planning for provably reliable

navigation using an unreliable, nearly sensorless robot. The

International Journal of Robotics Research 32(11):

1342–1357.

Li GJ and Ardekani AM (2014) Hydrodynamic interaction of

microswimmers near a wall. Physical Review E 90(1):

013010.

Lozano-Perez T, Mason MT and Taylor RH (1984) Automatic

synthesis of fine-motion strategies for robots. International

Journal of Robotics Research 3(1): 3–24.

Lozano-Pérez T and Wesley MA (1979) An algorithm for plan-

ning collision-free paths among polyhedral obstacles. Commu-

nications of the ACM 22(10): 560–570.

Lynch K and Mason MT (1995) Pulling by pushing, slip with

infinite friction, and perfectly rough surfaces. The Interna-

tional Journal of Robotics Research 14(2): 174–183.

Markarian R, Pujals E and Sambarino M (2010) Pinball billiards

with dominated splitting. Ergodic Theory and Dynamical Sys-

tems 30: 1757–1786.

Mason MT (1985) The mechanics of manipulation. In: Proceed-

ings IEEE International Conference on Robotics and Automa-

tion, pp. 544–548.

Mayya S, Pierpaoli P, Nair G and Egerstedt M (2019) Localiza-

tion in densely packed swarms using interrobot collisions as a

Nilles et al. 15

https://orcid.org/0000-0003-1474-2059
https://orcid.org/0000-0002-9788-1128

sensing modality. IEEE Transactions on Robotics 35(1):

21–34.

Miller LM, Silverman Y, MacIver MA and Murphey TD (2016)

Ergodic exploration of distributed information. IEEE Transac-

tions on Robotics 32(1): 36–52.

Nakamura Y and Sekiguchi A (2001) The chaotic mobile robot.

IEEE Transactions on Robotics and Automation 17(6):

898–904.

Nilles A, Becerra I and LaValle SM (2017) Periodic trajectories

of mobile robots. Proceedings of IROS.

Nilles A, Ren Y, Becerra I and LaValle SM (2018) A visibility-

based approach to computing nondeterministic bouncing stra-

tegies. In: Workshop on the Algorithmic Foundations of

Robotics (WAFR).

O’Rourke J and Streinu I (1998) The vertex-edge visibility graph

of a polygon. Computational Geometry: Theory and Applica-

tions 10(2): 105–120.

Ounsworth M (2015) Algorithm to generate random 2D polygon.

Mathematics Stack Overflow. Available at: https://stackover

flow.com/questions/8997099/algorithm-to-generate-random-

2d-polygon (accessed 23 January 2021).

Prasad DC, Pal SP and Dey TK (1998) Visibility with multiple

diffuse reflections. Computational Geometry 10(3): 187–196.

Sahin H and Guvenc L (2007) Household robotics: autonomous

devices for vacuuming and lawn mowing [applications of con-

trol]. IEEE Control Systems 27(2): 20–96.

Siméon T, Laumond JP and Nissoux C (2000) Visibility based

probabilistic roadmaps for motion planning. Advanced

Robotics 14(6): 477–493.

Spagnolie SE, Wahl C, Lukasik J and Thiffeault JL (2017)

Microorganism billiards. Physica D: Nonlinear Phenomena

341: 33–44.

Suri S, Vicari E and Widmayer P (2008) Simple robots with min-

imal sensing: From local visibility to global geometry. The

International Journal of Robotics Research 27(9): 1055–1067.

Szirmay-Kalos L and Márton G (1998) Worst-case versus aver-

age case complexity of ray-shooting. Computing 61: 103–131.

Tabachnikov S (2005) Geometry and Billiards. Providence, RI:

American Mathematical Society.

Toth CD, O’Rourke J and Goodman JE (2017) Handbook of dis-

crete and computational geometry. Boca Raton, FL: Chapman

and Hall/CRC.

Whitney DE (1977) Force feedback control of manipulator fine

motions. Transactions of the ASME, Journal of Dynamical

Systems, Measurement, and Control 99(2): 91–97.

16 The International Journal of Robotics Research 00(0)

https://stackoverflow.com/questions/8997099/algorithm-to-generate-random-2d-polygon
https://stackoverflow.com/questions/8997099/algorithm-to-generate-random-2d-polygon
https://stackoverflow.com/questions/8997099/algorithm-to-generate-random-2d-polygon

