
A Visibility-Based Approach to Computing
Nondeterministic Bouncing Strategies

Alexandra Q. Nilles1, Yingying Ren1, Israel Becerra1, and Steven M. LaValle2,1

1 Department of Computer Science
University of Illinois at Urbana-Champaign, Urbana, IL 61801 USA

{nilles2, yren17, israelb4, lavalle}@illinois.edu
2 Faculty of Information Technology and Electrical Engineering

University of Oulu, Oulu, Finland

Abstract. Inspired by motion patterns of some commercially available
mobile robots, we investigate the power of robots that move forward in
straight lines until colliding with an environment boundary, at which
point they can rotate in place and move forward again; we visualize this
as the robot “bouncing” off boundaries. Different boundary interaction
rules can be defined for such robots, such as one that orients the robot
relative to its heading prior to collision, or relative to the normal of
the boundary. We introduce a new data structure, the bounce visibility
graph, which is generated from a polygonal environment definition. The
bounce visibility graph can be queried to determine the feasibility of
path-based tasks such as navigation and patrolling, assuming we have
unavoidable nondeterminism in our actuation. If the task is feasible,
then this approach synthesizes a strategy (a sequence of nondeterministic
rotations). We also show how to compute stable cyclic trajectories and
use these to limit uncertainty in the robot’s position. 3

1 Introduction

Mobile robots have rolled smoothly into our everyday lives, and can now be
spotted vacuuming our floors, cleaning our pools, mowing our grass, and mov-
ing goods in our warehouses. These tasks require that the robot’s path achieve
certain properties; for example, a vacuuming robot should cover the whole space
while not visiting any particular area more frequently than others. A robot that
is monitoring humidity or temperature in a warehouse should repeat its path
consistently so data can be compared over time. In many such examples, the
strategies for controlling the robot’s path may be decoupled from the specific
application, so we envision building a library of useful high-level path controllers
based on desired dynamical system properties.

Current algorithmic approaches to these tasks take two flavors: 1) maximiz-
ing the information available to the robot though high-fidelity sensors and map-
generating algorithms such as SLAM, or 2) minimizing the information needed

3 Code and documentation available at https://github.com/alexandroid000/bounce
viz

2 A. Nilles, Y. Ren, I. Becerra, S. M. LaValle

by the robot, such as the largely random navigation strategies of the early robot
vacuums. The first approach is powerful and well-suited to dynamic environ-
ments, but also resource-intensive in terms of energy, computation, and storage
space. The second approach is more resource efficient, but does not immediately
provide general-purpose strategies for navigation and loop-closure. We propose
a combined approach: first, global geometry of environment boundaries is pro-
vided to the system, either a priori or calculated online by an algorithm such as
SLAM. The global geometry is then processed to produce a strategy providing
strong formal guarantees and which can be executed with minimal processing
power and only low bandwidth local sensors, such as bump and proximity sen-
sors, instead of high bandwidth sensors such as cameras.

We consider simple robots with “bouncing” behaviors: robots that travel
in straight lines in the plane, until encountering an environment boundary, at
which point they rotate in place and set off again. The change in robot state
at the boundary is modelled by what we call bounce rules. These interactions
may be mechanical (the robot actually makes contact with a surface), or may be
simulated with virtual boundaries (such as the perimeter wire systems used by
lawn mowing robots [26]). Physical implementations of the bouncing maneuver
have been validated experimentally [2, 14]. Often these lines of work consider a
subset of the strategy space, such as an iterated fixed bounce rule. In this work,
we present a tractable approach to reasoning over all possible bounce strategies,
generalizing previous tools for analyzing a few given bounce rules.

This paper presents three ideas for simplifying the characterization and gen-
eration of paths of such mobile robots. The first crucial aspect of our approach
is that we assume that the robot has some intrinsic nondeterminism, so we gen-
erate nondeterministic strategies such that if the robot executes any action in
a family at each stage, the strategy will succeed. We can then analyze the size
of the bounce rule sets at each stage to determine the minimum required accu-
racy of a successful robot design. Our second contribution is that by using the
geometric structure of a polygonal environment, we can create a combinatorial
representation of the environment that lets us reason over a finite number of
families of paths, instead of the infinite collection of all possible paths. Finally,
we provide results on when transitions in this robotic system are contracting :
two potential robot states under the transition move closer together. This prop-
erty can be used to control uncertainty through actuation, and we provide the
first steps toward leveraging this property.

2 Related Work

We incorporate techniques from computational geometry, specifically visibility
[11]. Visibility has been considered extensively in robotics, but usually with
the goal of avoiding obstacles [16, 27]. To plan over collisions, we use the edge
visibility graph, analyzed in [24], and shown to be strictly more powerful than the
vertex visibility graph. Our work is also related to problems that consider what
parts of a polygon will be illuminated by a light source after multiple reflections

Nondeterministic Bouncing Strategies 3

Fig. 1: Two paths produced by different sequences of bounces, which visit differ-
ent points of ∂P , yet have the same sequence of edge collisions and high-level
dynamical behavior (escape the room on the left, travel through hallway, then
patrol the room on the right in a periodic orbit).

(as if the edges of the polygon are mirrors) [3], or with diffuse reflections [25],
which are related to our nondeterministic bounces.

Our robot motion model is related to dynamical billiards [31]. Modified bil-
liard systems have attracted recent interest [7, 18, 31]. One similar work was in-
spired by the dynamics of microorganisms; in [28], the authors show that Chlamy-
domonas reinhardtii “bounce” off boundaries at a specific angle determined by
their body morphology. They characterize periodic and chaotic trajectories of
such agents in regular polygons, planar curves, and other environments.

Our motion model is a form of compliant motion, in which task constraints are
used to guide task completion, even when the exact system state is not known.
Our use of contraction mappings and nondeterministic reasoning is related to
the idea of funnelling: using the attraction regions of a dynamical system to
guide states into a goal region. These ideas have been developed in the context
of manipulation and fine motion control by Whitney [32], Mason [19], Erdmann
[9], Goldberg [12], Lozano-Pérez, Mason, and Taylor [15], Lynch and Mason [17],
and Burridge, Rizzi, and Koditschek [5], among many others.

Our intentional use of collisions with environment boundaries is enabled by
the advent of more robust, lightweight mobile robots. Collisions as information
sources have also been recently explored for multi-robot systems [20]. The first-
class study of the dynamical properties of bouncing was proposed in [10] and
continued in [23]. Here we extend and improve these analysis tools, and incor-
porate visibility properties to discretize the strategy space.

In [1] and [2], the authors describe navigation, coverage, and localization
algorithms for a robot that rotates a fixed amount relative to the robot’s prior
heading. Due to the chosen state space discretization, periodic trajectories may
exist which require bounce angles not allowed by the discretization. By using
a discretization induced by the environment geometry, we are able to find all
possible limit cycles, and the controllers necessary to achieve them. Another
closely related work is [14], which considered navigation for a robot that has our
same motion model, with uncertainty given as input to the algorithm. Instead
of taking error bounds as input, our approach considers all possible amounts of
uncertainty, and returns bounds on the required accuracy for strategies.

4 A. Nilles, Y. Ren, I. Becerra, S. M. LaValle

We are working toward a generalization and hierarchy of robot models, in a
similar spirit to [4]. Their simple combinatorial robot is able to detect all visible
vertices and any edges between them, and move straight toward vertices. By
augmenting this basic robot model with sensors they construct a hierarchy of
these robot models. Our questions are related but different: if the robot is given
a compact, purely combinatorial environment representation, what tasks can it
accomplish with minimal sensing?

3 Model and Definitions

We consider the movement of a point robot in a simple polygonal environment,
potentially with polygonal obstacles. All index arithmetic for polygons with n
vertices is mod n throughout this paper. We do not require polygons in gen-
eral position. We do not consider trajectories that intersect polygon vertices.
We define our robot to move forward in a straight line, until encountering an
environment boundary (such as when a bump or range sensor is triggered). Once
at a boundary, the robot is able to rotate in place. More formally, the model is:

– The configuration space X = ∂P×S1. P is a simple polygon, potentially with
holes. P has boundary ∂P , the union of external and obstacle boundaries. S1

is the robot’s orientation in the plane. Let s refer to a point in ∂P without
an associated robot orientation.

– The action space U = [0, π], where u ∈ U is the orientation the robot takes
when it reaches an environment boundary, before moving forward again. u
is measured counterclockwise relative to the boundary tangent.

– The state transition function f : X × U → X, which describes how actions
change the state of the robot. We will often lift this function to act nondeter-
ministically over sets of states and actions, propagating each state forward
under each possible action, and unioning the resulting set of states.

– We model time as proceeding in stages; at each stage k, the robot is in
contact with the environment boundary, executes an action uk, and then
moves forward until the next contact with the boundary at stage k + 1.

Definition 1. Let α ∈ (0, π) be the robot’s incoming heading relative to the en-
vironment boundary at the point of contact. Let θ ∈ (0, π) be a control parameter.
A bounce rule b maps α and θ to an action u, and determines how the robot
will reorient itself when it collides with a boundary. Bounce rules are defined in
the frame in which the environment normal is aligned with the positive y axis
and the robot’s point of contact with the boundary is the origin.

Definition 2. A nondeterministic bounce rule is a bounce rule lifted to
return a set of actions. We will restrict nondeterministic bounce rules to return
a convex set of actions (a single interval in (0, π)).

For example, a specular bounce (laser beams, billiard balls) has bounce rule
b(α, θ) = π − α. See Figure 2 for more examples of bounce rules.

Nondeterministic Bouncing Strategies 5

Fig. 2: Examples of different “bounce rules” that can be implemented on mobile
robots. In the first row, b(α, θ) = θ, which we refer to as a fixed bounce rule. In
the second row, we have a monotonic fixed bounce rule, in which b(α, θ) = θ
or π − θ, depending on what is necessary to preserve monotonicity of travel
direction along the x axis. In the third row, we have a relative bounce rule,
b(α, θ) = α− θ, rotating α through θ in the clockwise direction. If this rotation
causes the heading of the robot to still be facing into the boundary, the robot
performs the rotation again until its heading points into the free space.

Definition 3. A bounce strategy is a sequence of nondeterministic bounce
rules.

Of course, robots rarely move perfectly, so our analysis will assume the robot
has some nondeterminism in its motion execution. Instead of modelling explicit
distributions, we assume the robot may execute any action in a set. Planning over
such nondeterminism can result in design constraints for robots; for example, if
a robot has an uncertainty distribution over its actions in the range u ± ε, the
largest allowable ε will be half the width of the smallest convex bounce rule
interval in a strategy.

4 Visibility-Based Boundary Partitioning

Given a polygonal environment (such as the floor plan of a warehouse or office
space), we would like to synthesize bounce strategies that allow a robot to per-
form a given task (such as navigation or patrolling). To do so, we first discretize
the continuous space of all possible transitions between points on ∂P . We find
a visibility-based partition that encodes the idea of some points on ∂P having
different available transitions.

Definition 4. The visibility polygon of a point s in a polygon P is the polygon
formed by all the points in P that can be connected to s with a line segment that
lies entirely within P .

Imagine a robot sliding along the boundary of a polygon, calculating the
visibility polygon as it moves. In a convex polygon, nothing exciting happens. In
a nonconvex polygon, the reflex vertices (vertices with an internal angle greater
than π) cause interesting behavior. As the robot slides, its visibility polygon

6 A. Nilles, Y. Ren, I. Becerra, S. M. LaValle

mostly changes continuously. Edges shrink or grow, but the combinatorial struc-
ture of the polygon remains the same, until it aligns with a reflex vertex r and
another vertex v (visible from r). At this point, either v will become visible to
the robot, adding an edge to the visibility polygon, or v will disappear behind
r, removing an edge from the visibility polygon.

To compute all such points at which the visibility polygon changes struc-
ture, we compute the partial local sequence, defined in [24]. Each point in
the partial local sequence marks the point at which a visible vertex appears or
disappears behind a reflex vertex. The sequence is constructed by shooting a ray
through each reflex vertex r from every visible vertex and keeping the resulting
sequence of intersections with ∂P . See Figure 3 for an example of the vertices in
the partial local sequence of v0.

Once all the partial local sequences have been inserted into the original poly-
gon, the resulting segments have the property that any two points in the segment
can see the same edge set of the original polygon (though they may see differ-
ent portions of those edges). See Algorithm 1 for a pseudocode description of
this partitioning process. Algorithm 1 applies to polygons with or without holes;
holes require more bookkeeping to correctly find visible vertices and shoot rays.
See Figure 5 for an example partition of a polygon with holes. Let P ′ be the
polygon P after application of Algorithm 1.

Algorithm 1 PartitionPoly(P)

Input: A polygon P as a list of vertices in counterclockwise order.
Output: P ′: P with all partial local sequence points added as new vertices.

1: vnew ← {}
2: reflex verts← GetReflexVerts(P)
3: for vr in reflex verts do
4: for vvis in VisibleVerts(P, vr) do
5: vnew ← vnew∪ ShootRay(vvis, vr)
6: end for
7: end for
8: P ′ ← InsertVerts(vnew, P)
9: return P ′

The ShootRay function takes two visible vertices v1 and v2 and compute
the first intersection of ∂P and ray v1v2. This operation will take O(log n) time
after preprocessing the polygon P in O(n) [30]. The VisibleVerts function
computes all visible vertices in the polygon given an input query vertex, and
takes O(n) [8]. So the total runtime of Algorithm 1 is O(n2 log n).

Definition 5. The edge visibility graph of a polygon P has a node for each
edge of P , and has an arc between two nodes (ei, ej) if and only if there is a
point si in the open edge ei and a point sj on the open edge ej such that si and
sj can be connected with a line segment which is entirely within the interior of
P .

Definition 6. Let the bounce visibility graph be the directed edge visibility
graph of P ′.

Nondeterministic Bouncing Strategies 7

v2

v3

v4

v5
v6

v7

v8

v9

v10v11

v12

v13

v0

v1

v
′
2

v
′
3

v
′
4

v
′
5

v
′
7

v
′
8

v
′
10

v
′
11 v

′
12

v
′
13

v
′
1

Fig. 3: On the left, the partial local sequence for v0. On the right, an example
polygon for which the bounce visibility graph has O(n4) edges.

Although visibility is a symmetric property, we use directed edges in the
bounce visibility graph so that we can model the geometric constraints on the
visibility from one edge to another, which are not symmetric and govern what
actions allow the robot to accomplish that transition. See Section 5 for further
exploration of this idea.

We now introduce the bounce visibility diagram, a helpful representation
of the vertex-edge visibility structure of a partitioned polygon P ′. If |∂P ′| is the
perimeter length of ∂P ′, let the x axis of the bounce visibility diagram be the
interval [0, |∂P ′|), in which the endpoints of the interval are identified. Let the
y axis of the diagram be a parameter θ, which is an angle between 0 and π. For
a point s ∈ ∂P ′, we can compute all the visible vertices and the angle at which
they are visible. The graph of all angles at which vertices are visible from points
in ∂P ′ is the bounce visibility diagram.

Fig. 4: A partitioned polygon and its corresponding bounce visibility diagram.
The bounce visibility diagram gives us some visual insight into the structure

of the problem. First, it shows our motivation for the specific partitioning we
have chosen: at each inserted vertex, another vertex appears or disappears from

8 A. Nilles, Y. Ren, I. Becerra, S. M. LaValle

view. Of course, such transitions also occur at the original vertices of P . Thus,
the partition induced by the vertices of P and our inserted partial local sequences
captures all combinatorial changes in the visible vertices.

Additionally, this diagram gives us some insight into types of possible segment-
to-segment transitions under ranges of departure angles. For example, slicing the
diagram vertically at a specific s ∈ ∂P ′ produces a list of vertices visible from
that point on the boundary (the combinatorial visibility vector) [29]. The verti-
cal dotted lines, vertices of P ′, are the exact points at which the combinatorial
visibility vector (cvv) changes. Within a segment (vi, vi+1), if two successive ele-
ments of the cvv are adjacent vertices, then some transition exists from (vi, vi+1)
to a point on the edge between those vertices.

If for a segment (vi, vi+1), if there is an interval of θ such that no vertex
lines are crossed from left to right, this corresponds to our notion of safe ac-
tions; the robot can transition from segment to segment under some amount of
nondeterministic error in position and action. For example, in Figure 4, we see
that a band of intervals exists at the top and bottom of the diagram with no
“crossings” as you move from left to right (moving the robot around ∂P). These
bands correspond to the safe actions to be formally described in Proposition 3.

Proposition 1. The bounce visibility graph for a polygon with n vertices has
O(n2) vertices and O(n4) edges.

The proof of Proposition 1 is left to the appendix.

Fig. 5: An example partition for a polygon with holes; our discretization scheme
extends naturally to handle static obstacles.

5 Safe Actions

To characterize some families of paths, we will use the boundary partition tech-
nique defined in Section 4, then define safe actions between segments in the
partition that are guaranteed to transition to the same edge from anywhere in
the originating edge. Such actions define transitions which keep the robot state
in one partition under nondeterministic actions.

Definition 7. Two edges ei, ej of a polygon are entirely visible to each other
if and only if every pair of points si ∈ ei and sj ∈ ej are visible (the shortest
path between si and sj lies entirely within P).

Nondeterministic Bouncing Strategies 9

Definition 8. A safe action from edge ei to edge ej in a polygon is an action u

such that f(s, u) ∈ ej for any s ∈ ei and u in some interval of actions θ̃ ⊆ (0, π).

Proposition 2. Given two entirely visible line segments ei = (vi, vi+1) and
ej = (vj , vj+1) in ∂P ′, if a safe action exists from ei to ej, the maximum interval

of safe actions is θ̃ = [θr, θl] such that θr = π−∠vjvi+1vi and θl = ∠vj+1vivi+1.

For full proof, see the appendix. The sketch of the proof is that if θr is smaller
than θl, every ray shot from ei at θ ∈ [θr, θl] must intersect with ej .

Note that this definition of a safe action is similar to the definition of an
interval of safe actions from [14]; the main differences in approach are the gener-
ation of boundary segments, methods of searching the resulting graph, and how
we generate constraints on robot uncertainty instead of assuming uncertainty
bounds are an input to the algorithm.

Lemma 1. If two edges in ∂P ′ are entirely visible to each other, then there will
be at least one safe action between them.

See appendix for proof.

Corollary 1. If two edges in ∂P ′ share a vertex that is not reflex, and the two
edges are not collinear, then there exist safe actions from one to the other in
both directions.

Proof. See Figure 6a.

Definition 9. Given two entirely visible segments ei and ej, rotate frame such
that ei is aligned with the x−axis with its normal pointing along the positive
y−axis, such that segment ej is above segment ei. If the intersection of segment
ei and ej would be on the left of segment ei, then call the transition from ei to ej
a left transition; if the intersection would be on the right of segment ei, then
call the transition a right transition.

Proposition 3. For every polygon P and the resulting partitioned polygon P ′

under Algorithm 1, each edge e ∈ P ′ has at least two safe actions which allow
transitions away from e.

Proof. Let ei = (vi, vi+1). Consider right transitions from ei to some ek, where
the safe action interval θ̃ = (0, θl) for some nonzero θl. We will show that such
a transition must exist.

By Corollary 1, if an edge ei has an adjacent edge ei+1 which is not collinear
or separated by a reflex angle, ek = ei+1 and a safe transition exists between ei
and ei+1 with θl = ∠vi+2vivi+1. See Figure 6a.

If the adjacent edge is at a reflex angle, Algorithm 1 will insert a vertex in
line with ei on the closest visible edge, forming edge ek. If vi is an original vertex
of P , ek will be entirely visible from ei, since Algorithm 1 will otherwise insert
a point in vi’s partial local sequence.

If vi is itself inserted by Algorithm 1, ek will still be entirely visible. There
must be some original vertex of P clockwise from vi and collinear with ei, which

10 A. Nilles, Y. Ren, I. Becerra, S. M. LaValle

would insert a vertex visible to ei through Algorithm 1 if there were any reflex
vertices blocking transitions to ek. See Figure 6b for an example of the geometry.

If the adjacent edge ei+1 is collinear with ei, take the first non-collinear
edge and apply the above reasoning to find ek. All the same arguments extend
symmetrically to left transitions, which will have safe actions of the form θ̃ =
[θr, π). Thus, each edge will have two guaranteed safe actions leading away from
it. ut

vi vi+1ei

θ̃

(a)

vi vi+1ei
θ̃

(b)

Fig. 6: Examples of geometrical setup for some guaranteed safe actions.

6 Dynamical Properties of Paths

Many tasks required of mobile robots can be specified in terms of dynamical
properties of the path the robot takes through space: stability, ergodicity, etc.
Our motion strategy allows us to disregard the robot’s motion in the interior
of P . Instead, the robot’s state is an interval along the boundary ∂P , and we
can formulate transitions as a discrete dynamical system under the transition
function f . The properties of this dynamical system can be used to engineer
paths corresponding to different robot task requirements.

One generally useful property of mapping functions is contraction: when
two points under the function always become closer together. We can use this
property to control uncertainty in the robot’s position by entering stable limit
cycles.

Definition 10. Let φi,j be the interior angle between two edges ei, ej ∈ ∂P .

Definition 11. A function g that maps a metric space M to itself is a con-
traction mapping if for all x, y ∈M , |g(x)− g(y)| ≤ c|x− y|, and 0 ≤ c < 1.

Lemma 2. If the transition from segment ei to segment ej is a left transition,
then the transition function f(x, θ) between segments ei and ej is a contraction

mapping if and only if θ > π
2 +

φi,j

2 ; if a right transition, the transition function

f(x, θ) is a contraction mapping if and only if θ < π
2 −

φi,j

2 .

In our case, we will always take M to be an interval in R and we will use the
L1 norm. The proof is a straightforward application of the law of sines, and is
included in the appendix.

Nondeterministic Bouncing Strategies 11

Corollary 2. For all pairs of adjacent segments with internal angle less than π,
there exists a range of actions for which f is a contraction mapping.

Definition 12. The contraction coefficient of a mapping is the ratio of the
distance between points before and after the mapping is applied. Let C(θ, φi,j) be
the contraction coefficient of a transition from ei to ej in ∂P For a left transition,

C(θ, φi,j) = | sin(θ)
sin(θ−φi,j)

|; for a right transition, C(θ, φi,j) = | sin(θ)
sin(θ+φi,j)

|.

See the proof of Lemma 2 in the appendix for derivation of C. For a sequence
of transitions f0, . . . , fk, we can construct the overall mapping from the domain
of f0 to the range of fk through function composition. Since f is a linear map-
ping, the contraction coefficient of a composition of multiple bounces can be
determined by multiplying the contraction coefficients of each bounce.

Definition 13. Given a sequence of m feasible transitions F = {f0, f1, . . . , fm−1},
at stage k the robot will be located on edge e(k) and will depart the edge with
action θk; the contraction coefficient of the overall robot trajectory fm−1 ◦ . . .◦f0
is C(F) =

∏m−1
k=0 C(θk, φe(k),e(k+1)).

If C(F) < 1, the composition of F is a contraction mapping. This is true
even if some transition along the way is not a contraction mapping, since C(F)
is simply the ratio of distances between points before and after the mapping is
applied. Furthermore, the value of C(F) tells us the exact ratio by which the
size of the set of possible robot states has changed.

Limit Cycles: A contraction mapping that takes an interval back to itself
has a unique fixed point, by the Banach fixed point theorem [13]. By composing
individual transition functions, we can create a self-mapping by finding transi-
tions which take the robot back to its originating edge. A fixed point of this
mapping corresponds to a stable limit cycle. Such trajectories in regular poly-
gons were characterized in [23]. Here, we present a more general proof for the
existence of limit cycles in all convex polygons.

Definition 14. φP,min is the smallest interior angle in a polygon P .

Theorem 1. For all convex polygons with n edges, there exist constant fixed-
angle bouncing strategies which result in a period n limit cycle regardless of the
robot’s start position.

Proof. See Figure 10 in the appendix for the geometric setup.
Without loss of generality, assume θ ∈ (0, π2]. The robot will always bounce

to the next adjacent edge if and only if θ ∈ (0,mini(∠vi+2vivi+1)).
Suppose we have two start positions s1 and s2 on edge e0 and a constant

fixed bounce rule b(α, θ) = θ. At stage k, s1 and s2 will be located at fk(s1, θ)
and fk(s2, θ).

By Definition 13, the distance between s1 and s2 changes after one orbit of

the polygon by the ratio |f
n(s1,θ)−fn(s2,θ)|
|s1−s2| =

∏n−1
i=0 C(θ, φi,i+1). If this ratio is

less than one, then fn(s, θ) has a unique fixed point by the Banach fixed-point

12 A. Nilles, Y. Ren, I. Becerra, S. M. LaValle

theorem [13]. By Lemma 2, this constraint is satisfied if θ < π
2 −

φi,i+1

2 for all i.
We can guarantee that this condition holds for the orbit by requiring

θ ∈ (0,min(min
i=0,1,...,n−1

(∠vi+2vivi+1), min
i=0,1,...,n−1

(
π

2
− φi−1,i

2
))),

in which case the fixed-angle bouncing strategy with b(α, θ) = θ leads to a
convex cycle which visits each edge of P sequentially, regardless of the robot’s
start position. Symmetry applies for orbits in the opposite direction. ut

Proposition 4. For all points s on the boundary of all polygons, a constant
fixed-angle controller exists which will cause the robot’s trajectory to enter a
stable limit cycle.

Proof. First we observe that by Proposition 3, for every segment e ∈ ∂P ′, safe
actions always exist for two action intervals. These intervals are the ones bor-
dering the segment itself: by staying close enough to the boundary, the robot
may guarantee a safe transition. By Lemma 2, these safe actions will also admit
contraction mappings. Thus, we may choose a constant fixed-angle controller
such that it results in safe, contracting transitions from all segments in P ′. Since
there are a finite number of segments in P ′, this controller must result in limit
cycle from every point in P . If s is on a hole of the polygon, this procedure will
cause the robot to leave the hole and enter a cycle on the exterior boundary. ut

7 Applications

7.1 Navigation

Here, we define the navigation task, assuming that the robot has unavoidable
uncertainty in its actuation. A navigation strategy should take a robot from any
point in a starting set to some point in a goal set, as long as some action in the
bounce rule set is successfully executed at each stage.

Definition 15. Navigation: Given a polygonal environment P , a convex start-
ing set S ⊂ ∂P of possible robot positions along the environment boundary, and
a convex goal set G ⊂ ∂P , determine a strategy π which will be guaranteed to
take the robot from any point in S to a point in G, or determine that no such
strategy exists.

Using the formalisms built up so far, we can perform the navigation task
as a search over a discrete bounce visibility graph. Shortest paths in the graph
will correspond to paths with the fewest number of bounces. It is important to
note that an arc ei → ek in the bounce visibility graph only implies that for
each point x ∈ ei there exists an action taking x to some point in ek. For our
navigation task, we require a range of angles which can take any point in ei to
a point on ek, so we restrict the arcs of the bounce visibility graph to those
corresponding to safe actions only. As may be expected, not all edges of ∂P ′ are
reachable using safe actions.

Nondeterministic Bouncing Strategies 13

Proposition 5. There exist simple polygons such that under Algorithm 1, there
exist edges in the partitioned polygon P ′ that are not reachable by a safe action
from any other edge in P ′.

Proof. See Figure 7 for an example in which the edge counterclockwise from
vertex 10 is not reachable via safe actions. Equivalently, node 10 in Gsafe has
no incoming arcs.

The only such segments will be segments for which both endpoints are reflex
vertices or vertices inserted by Algorithm 1, since by Corollary 1, segments ad-
jacent to other vertices of P will be reachable by a safe action. Thus, navigation
using paths in Gsafe is not complete: we cannot get everywhere safely, at least
under this partitioning of ∂P .

Fig. 7: A polygon after Algorithm 1 and its safe bounce visibility graph BV Gsafe.

However, it is still useful to explore what is possible under nondeterministic
control of such a robot. Here, we will show how to search for a constant fixed-
angle bounce controller, where at every stage the robot executes a fixed-angle
bounce in some range θ̃. This is an extension of the controllers analyzed in [23]
for regular polygons. We define a few helper functions:

– mkBVG: Uses the visibility information generated in Algorithm 1 to gener-
ate the bounce visibility graph in O(n4) time.

– mkSafeBVG: Using Definition 8 and Proposition 2, we can create a safe
roadmap, Gsafe, out of the bounce visibility graph by traversing all edges

and removing edges with an empty θ̃, and labelling the remaining edges with
the interval of safe actions.

– SearchConstantFixedStrats: performs breadth-first search from start
to goal, starting with θ̃ = (0, π) and intersecting θ̃ with the safe action
intervals along each path, terminating when all start states reach a goal
state at the same stage with overlapping θ̃ intervals. Returns the resulting
constant controller θ̃ or that no such strategy is possible.

Code implementing Algorithm 2 and many example polygons can be found
at https://github.com/alexandroid000/bounce viz.

14 A. Nilles, Y. Ren, I. Becerra, S. M. LaValle

Algorithm 2 SafeConstantFixedNavigate(P , S, G, k)

Input: A polygon P , intervals S and G in ∂P , and an integer bound k.
Output: A nondeterministic bounce rule, or None if no strategy can be found.

1: P ′ ← PartitionPoly(P)
2: BV G← mkBVG(P ′)
3: BV Gsafe ← mkSafeBVG(BV G)
4: θ̃ ← SearchConstantFixedStrats(BV Gsafe, S, G, k)
5: return θ̃

7.2 Patrolling

Note that there are exponentially many possible limit cycles, since a cycle may
contain transitions which are not contraction mappings, as long as the overall
contraction coefficient is less than one. Also, Proposition 4 shows that at least one
type of limit cycle is reachable from all points on ∂P for all polygons, under an
open interval of constant fixed controllers. As more becomes understood about
the structure and robustness of such limit cycles, we can sketch some possibly
useful robotic tasks under the umbrella of patrolling:

Definition 16. Given an environment P , a set of possible starting states S, and
a sequence of edges of the environment E = {e1, . . . , ek}, determine a strategy
which causes the robot to enter a stable cycle visiting each edge of the sequence
in order from any point in S.

This task is related to the Aquarium Keeper’s Problem in computational
geometry [6]. It may be solved by coloring nodes in the bounce visibility graph
by which edge of P they belong to, and then searching for safe cycles which visit
edges in the correct order. If a cycle is contracting, it will result in a converging
stable trajectory.

Interesting open questions remain on how to incorporate other useful prop-
erties of a patrolling cycle, such as coverage of a space with certain sensors, or
guarantees about detecting evaders while patrolling.

Leveraging Cycles to Reduce Uncertainty: Say no safe path exists
between two subsets of ∂P . We may use limit cycles to reduce the uncertainty
in the robot’s position enough to create a safe transition. By Proposition 4,
limit cycles are reachable from any point s ∈ ∂P under a constant fixed-angle
controller (and we know the range of angles from which this constant controller
may be drawn). Say the contraction coefficient of a given limit cycle is C, and
the length of edge ei is `i. After k iterations of the cycle, the distance between
the robot’s position and the fixed point of the cycle’s transition function is
less than Ck`i. Thus, we may reduce the uncertainty in the robot’s position
to less than ε after dlog(ε/`i)/ log(C)e iterations of the cycle. If instead of a
deterministic fixed-angle controller, we consider a nondeterministic controller,
we need to reason over a range of C coefficients and resulting attractor structure.
The mathematical theory of these attractors and the best way to choose such
nondeterministic controllers is still an open question.

Nondeterministic Bouncing Strategies 15

8 Open Questions and Future Work

We have presented a visibility-based approach to reasoning about paths and
strategies for a class of mobile robots. We are moving toward understanding
nondeterministic control of such robots; however, many open questions remain!

Comparing bounce rules. Our approach can be used to compare different
families of bounce strategies in a given polygon, by comparing the reachability of
the transition systems induced by each strategy family. This would require either
reducing the full bounce visibility graph given constraints on possible bounces,
or constructing a more appropriate transition system. It is not clear the best way
to analyze relative bounce rules, in which the outgoing angle of a robot after a
collision is a function of the incoming angle.

Optimal Strategies. Say we wish to find the strategy taking the robot from
region S to region G with the maximum amount of allowed uncertainty in the
bounce rules (the sum of the interval sizes of each action set along the path).
This problem can be framed as an optimization problem over the space of all
transition function compositions.

Localization. A localization strategy is a nondeterministic strategy that
produces paths which reduce uncertainty in the robot’s position to below some
desired threshold, from arbitrarily large starting sets. The use of limit cycles to
produce localizing strategies has been explored in [2], and it would be interesting
to take a similar approach with our environment discretization.

Ergodic Trajectories. We are interested in strategies that produce ergodic
motion, where the robot does not spend “too much” time in any given part of
the state space. Measures of ergodicity have recently been used in exploration
tasks [21]. Chaotic dynamical systems have also been used directly as controllers
for mobile robots [22].

Acknowledgement: This work was supported by NSF grants 1035345 and
1328018, and CONACyT post-doctoral fellowship 277028.

References

1. Alam, T., Bobadilla, L., Shell, D.A.: Minimalist robot navigation and coverage
using a dynamical system approach. In: IEEE IRC (2017)

2. Alam, T., Bobadilla, L., Shell, D.A.: Space-efficient filters for mobile robot local-
ization from discrete limit cycles. IEEE Robotics and Automation Letters (2018)

3. Aronov, B., Davis, A.R., Dey, T.K., Pal, S.P., Prasad, D.C.: Visibility with multiple
reflections. Springer Berlin Heidelberg (1996)

4. Brunner, J., Mihalák, M., Suri, S., Vicari, E., Widmayer, P.: Simple robots in
polygonal environments: A hierarchy. In: Algosensors (2008)

5. Burridge, R.R., Rizzi, A.A., Koditschek, D.E.: Sequential composition of dynami-
cally dexterous robot behaviors. International Journal of Robotics Research (1999)

6. Czyzowicz, J., et al.: The aquarium keeper’s problem. In: Proceedings of the second
annual ACM-SIAM symposium on Discrete algorithms. SIAM (1991)

7. Del Magno, G., Lopes Dias, J., Duarte, P., Gaivão, J.P., Pinheiro, D.: SRB mea-
sures for polygonal billiards with contracting reflection laws. Communications in
Mathematical Physics 329(2), 687–723 (2014)

16 A. Nilles, Y. Ren, I. Becerra, S. M. LaValle

8. ElGindy, H.A., Avis, D.: A linear algorithm for computing the visibility polygon
from a point. J. Algorithms (1981)

9. Erdmann, M.A.: Using backprojections for fine motion planning with uncertainty.
International Journal of Robotics Research 5(1), 19–45 (1986)

10. Erickson, L.H., LaValle, S.M.: Toward the design and analysis of blind, bouncing
robots. In: IEEE ICRA (2013)

11. Ghosh, S.K.: Visibility algorithms in the plane. Cambridge university press (2007)
12. Goldberg, K.Y.: Orienting polygonal parts without sensors. Algorithmica (1993)
13. Granas, A., Dugundji, J.: Elementary Fixed Point Theorems, pp. 9–84. Springer

New York, New York, NY (2003)
14. Lewis, J.S., O’Kane, J.M.: Planning for provably reliable navigation using an unre-

liable, nearly sensorless robot. International Journal of Robotics Research (2013)
15. Lozano-Pérez, T., Mason, M.T., Taylor, R.H.: Automatic synthesis of fine-motion

strategies for robots. International Journal of Robotics Research 3(1), 3–24 (1984)
16. Lozano-Pérez, T., Wesley, M.A.: An algorithm for planning collision-free paths

among polyhedral obstacles. Communications of the ACM (1979)
17. Lynch, K.M., Mason, M.T.: Pulling by pushing, slip with infinite friction, and

perfectly rough surfaces. International Journal of Robotics Research (1995)
18. Markarian, R., Pujals, E., Sambarino, M.: Pinball billiards with dominated split-

ting. Ergodic Theory and Dynamical Systems 30, 1757–1786 (2010)
19. Mason, M.T.: The mechanics of manipulation. In: Proceedings IEEE International

Conference on Robotics & Automation, pp. 544–548 (1985)
20. Mayya, S., Pierpaoli, P., Nair, G., Egerstedt, M.: Localization in densely packed

swarms using interrobot collisions as a sensing modality. IEEE Transactions on
Robotics (2018)

21. Miller, L.M., Silverman, Y., MacIver, M.A., Murphey, T.D.: Ergodic exploration
of distributed information. IEEE Transactions on Robotics 32(1), 36–52 (2016)

22. Nakamura, Y., Sekiguchi, A.: The chaotic mobile robot. IEEE Transactions on
Robotics and Automation 17(6), 898–904 (2001)

23. Nilles, A., Becerra, I., LaValle, S.M.: Periodic trajectories of mobile robots. IROS
(2017)

24. O’Rourke, J., Streinu, I.: The vertex-edge visibility graph of a polygon. Computa-
tional Geometry: Theory and Applications 10(2), 105–120 (1998)

25. Prasad, D.C., Pal, S.P., Dey, T.K.: Visibility with multiple diffuse reflections. Com-
putational Geometry 10(3), 187–196 (1998)

26. Sahin, H., Guvenc, L.: Household robotics: autonomous devices for vacuuming and
lawn mowing [applications of control]. IEEE Control Systems 27(2), 20–96 (2007)

27. Siméon, T., Laumond, J.P., Nissoux, C.: Visibility based probabilistic roadmaps
for motion planning. Advanced Robotics (2000)

28. Spagnolie, S.E., Wahl, C., Lukasik, J., Thiffeault, J.L.: Microorganism billiards.
Physica D: Nonlinear Phenomena (2017)

29. Suri, S., Vicari, E., Widmayer, P.: Simple robots with minimal sensing: From local
visibility to global geometry. IJRR (2008)

30. Szirmay-Kalos, L., Márton, G.: Worst-case versus average case complexity of ray-
shooting. Computing (1998)

31. Tabachnikov, S.: Geometry and Billiards. American Mathematical Society (2005)
32. Whitney, D.: Force feedback control of manipulator fine motions. Transactions of

the ASME, Journal of Dynamical Systems, Measurement, & Control (1977)

Nondeterministic Bouncing Strategies 17

9 Appendix

A Proof of Proposition 1

Proposition 1. The bounce visibility graph for a simple polygon with n vertices
has O(n2) vertices and O(n4) edges.

Proof. Consider a polygon P with n vertices, r of which are reflex vertices. To
construct the bounce visibility graph, we insert the vertices of the partial local
sequence for each vertex in P . For a convex vertex, its partial local sequence
will not add any new vertices to P . However, a reflex vertex can add O(n) new
vertices.

Up to half of the vertices in the polygon can be reflex, so the complexity of
r is O(n). Therefore, the number of vertices in P ′, returned by Algorithm 1 is
O(n2). Each vertex indexes an edge in P ′, and thus a node in the edge visibility
graph of P ′. At most, a given vertex in P ′ may see all other vertices, so in the
worst case, the bounce visibility graph will have O(n4) edges. See Figure 3 for
an example of such a polygon. ut

A.1 Worst Case Example for Algorithm 1

We might hope that if r is large, then not all of the reflex vertices will produce a
large number of new vertices, and we may bound the size of the edge set in the
visibility graph. Unfortunately, the number of reflex vertices, the new vertices
produced in their partial local sequence, and the new vertices’ visibility can be
large at the same time. We will present a family of input polygons with bounce
visibility graph edge-set size of O(n4).

Let n = 4t+2, in which t is a positive integer. We design a polygon with r = 2t
reflex vertices. The polygon is symmetric with respect to its medium horizontal
line. In the top half, the reflex vertices are uniformly located on a circle and thus
they are visible to each other; the convex vertices are chosen so that they are
outside the circle and the line through an edge will not intersect other edges.
Each reflex vertex will have at least t−1 new vertices in its partial local sequence.
There will be 2t(t−1)+n vertices in the polygon after we insert all new vertices
in the partial local sequence for all reflex vertices. Each of them can see at least
t(t− 1) + n/2 other vertices. Thus the number of edges in the transition graph
for the polygon with inserted vertices is O((2t(t − 1) + n)(t(t − 1) + n/2)) =
O(t4) = O(n4). Fig 3 shows the polygon for t = 4 with all the vertices in the
partial local sequences.

B Proof of Proposition 2

Proposition 2. Given two entirely visible line segments ei = (vi, vi+1) and
ej = (vj , vj+1), if a safe action exists from ei to ej, the maximum range of safe

actions is θ̃ = [θr, θl] such that θr = π − ∠vjvi+1vi and θl = ∠vj+1vivi+1.

18 A. Nilles, Y. Ren, I. Becerra, S. M. LaValle

Proof. Let edge ei = (vi, vi+1) be aligned with the positive x axis with the
clockwise endpoint at the origin, without loss of generality. Due to the edges
being entirely visible, ej = (vj , vj+1) must be in the top half of the plane, above
ei.

Take the quadrilateral formed by the convex hull of the edge endpoints. Let
the edges between ei and ej be el = (vi, vj+1) and the right-hand edge er =
(vi+1, vj). Let θl be the angle between el and the positive x axis (0 < θl < π);
similarly for er and θr. See Figure 8 for an illustration of the setup.

θl
θrθl θr

Fig. 8: Angle range such that a transition exists for all points on originating edge
(left: such a range exists, right: such a range does not exist)

There are three cases to consider: if el and er are extended to infinity, they
cross either above or below edge ei, or they are parallel.

Case 1: el and er meet below edge ei. In this case, θl > θr and if a ray is
cast from any point on ei at angle θ ∈ [θr, θl], the ray is guaranteed to intersect
ej in its interior.

Case 2: el and er meet above edge ei. In this case, θl < θr, and there is no
angle θ such that a ray shot from any point on ei will intersect ej . To see this,
imagine sliding a ray at angle θl across the quadrilateral - at some point before
reaching vi+1, the ray must stop intersecting ej , else we would have θl > θr.

Case 3: el and er are parallel. This implies that θl = θr, which is the only
angle for which a transition from any point on ei is guaranteed to intersect ej ,

and θ̃ is a singleton set.

Thus, for each case, we can either compute the maximum angle range or
determine that no such angle range exists. ut

C Proof of Lemma 1

Lemma 1. If two segments are entirely visible to each other, there will be at
least one safe action between them.

Proof. From the proof of Proposition 2, we can see that if case one holds in one
direction, case two will hold in the other direction, so a safe action must exist
from one edge to the other in one direction. If case three holds, there is a safe
action both directions but θ̃ is a singleton set.

Nondeterministic Bouncing Strategies 19

D Proof of Lemma 2

Lemma 2. If the transition from segment ei to segment ej is a left transition,
then the transition function f(x, θ) between segments ei and ej is a contraction

mapping if and only if θ > π
2 +

φi,j

2 ; otherwise, the transition function f(x, θ) is

a contraction mapping if and only if θ < π
2 −

φi,j

2 .

Fig. 9: The two cases for computing contraction mapping conditions.
Proof. We consider the two cases of transition separately:

1. For the transition shown in the left hand side of Figure 9, xf(x, θ) ‖ yf(y, θ)⇒
|f(x,θ)−f(y,θ)|

|x−y| = |f(x,θ)|
|x| = sin(π−θ)

sin(θ−φi,j)
= sin(θ)

sin(θ−φi,j)
. The transition will be

contraction if and only if |f(x,θ)−f(y,θ)||x−y| < 1 ⇐⇒ sin(θ) < sin(θ − φi,j). If

θ < π
2 , then sin(θ) > sin(θ − φi,j). Thus we need θ > π

2 . If θ − φi,j > π
2 ,

then sin(θ) < sin(θ − φi,j) and we are done; otherwise we need π − θ <

θ − φi,j ⇒ θ − φi,j

2 > π
2 . Combining all conditions, we have the transition

will be contraction if and only if θ > π
2 +

φi,j

2 .

2. Similarly, for a right transiton shown in the right diagram of figure 9, xf(x, θ) ‖
yf(y, θ) ⇒ |f(x,θ)−f(y,θ)|

|x−y| = |f(x,θ)|
|x| = sin(π−θ)

sin(π−θ−φi,j)
= sin(θ)

sin(θ+φi,j)
. The tran-

sition will be contraction if and only if |f(x,θ)−f(y,θ)||x−y| < 1 ⇐⇒ sin(θ) <

sin(θ + φi,j). If θ > π
2 , then sin(θ) > sin(θ + φi,j). Thus we need θ < π

2 .
If θ + φi,j <

π
2 , then sin(θ) < sin(θ + φi,j) and we are done; otherwise we

need θ < π− θ−φi,j ⇒ θ < π
2 −

φi,j

2 . Combining all conditions, we have the

transition will be contraction if and only if θ < π
2 −

φi,j

2 .
ut

20 A. Nilles, Y. Ren, I. Becerra, S. M. LaValle

E Supplementary Figure for Theorem 1

Fig. 10: The notation setup for the proof of contracting cycle in a convex polygon.

