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Abstract— This paper presents a novel approach to computing
feedback laws in the presence of obstacles. Instead of computinga
trajectory between a pair of initial and goal states, our algorithms
compute a vector field over the entire state space; all trajectories
obtained from following this vector field are guaranteed to
asymptotically reach the goal state. As a result, the vector field
globally solves the navigation problem and provides robustness to
disturbances in sensing and control. The vector field’s integral
curves (system trajectories) are guaranteed to avoid obstacles
and are C

∞ smooth. We construct a vector field with these
properties by partitioning the space into simple cells, defining
local vector fields for each cell, and smoothly interpolating
between them to obtain a global vector field. We present an
algorithm that computes these feedback controls for a kinematic
point robot in an arbitrary dimensional space with piecewise
linear boundary; the algorithm requires minimal preprocessing
of the environment and is extremely fast during execution. For
many practical applications in two-dimensional environments,
full computation can be done in milliseconds. We also present an
algorithm for computing feedback laws over cylindrical algebraic
decompositions, thereby solving a smooth feedback version of the
generalized piano movers’ problem.

I. I NTRODUCTION

Motion planning and feedback control are fundamental
and well-studied problems in robotics. They both address
the problem of motion: how to control a system so that
it safely arrives at a target location. A feedback law is a
vector field which determines which input to apply from
any state; the trajectories described by the vector field all
converge to the goal state. Feedback control techniques have
been studied extensively for environments without obstacles,
and they provide robust and effective solutions to the global
navigation problem in that setting. Nearly all practical robotics
problems, however, involve obstacles. Robots are required
to operate in environments that are cluttered with obstacles,
and must solve tasks while avoiding them. Since traditional
feedback control methods do not take obstacles into account,
their usefulness for these problems is limited.

Traditional motion planning approaches, on the other hand,
use geometric algorithms to achieve obstacle avoidance. How-
ever, they generally only compute individual trajectoriesbe-
tween given initial and goal states. The computed trajectories
are open loop: that is, they are defined as a function of
time only, which leaves the robot no way to recover if it

deviates from the prescribed path during execution. Feedback
controllers, on the other hand, are much more robust. Because
they are defined as vector fields defined over the entire state
space, there is no need to be concerned with tracking a
particular path; the robot can simply follow the controllerfrom
its current state and be guaranteed to reach the goal state. The
fact that the current state of the system is used to determine
the input to apply makes this type of controlclosed loop.

Ideally, it is desirable to combine the robustness of feedback
with the ability of combinatorial algorithms to efficiently
take obstacles into account. The feedback law should pro-
vide global asymptotic convergence to the goal state while
guaranteeing obstacle avoidance. For any state, the value of
the feedback law should be easy to compute. The system
trajectories obtained from following the feedback law should
be smooth, in contrast to the jagged paths that motion planning
algorithms often produce. The most popular way to address
this problem (sometimes termedsimultaneous planning and
control) is through potential fields. In this approach, a real-
valued function is computed, the gradient of which is used
as the control law for the robot. The biggest drawback with
potential field methods is that it is very difficult in practice
to compute potential functions that will guarantee global
convergence. Theoretical methods exist [85] that make such
guarantees, but are difficult to implement and apply to real
world environments.

Our approach, on the other hand, builds on top of clas-
sical cell decomposition methods used for complete motion
planning. Once the cells are determined, we provide a simple
and efficient way to place smooth control laws over the
decomposition. Thus, exact, smooth feedback motion plans
seem to come for free, given the prepaid cost of classical path
planning. Over the cell decomposition, it is easy to define local
controllers that prevent obstacle collision and guide the system
toward the goal state. Our methods place simple local vector
fields over individual cells and smoothly blend them together
to form a global vector field that has the desired properties
of global convergence and obstacle avoidance. By working
directly with vector fields rather than computing them from
the gradient of a potential function, our methods are able
to have a high degree of flexibility from a practical design
perspective. In related work, we have also shown that our



methods extend to simple nonholonomic systems [66], [70],
which is quite difficult for potential field approaches. Also,
the system trajectories produced by our control law areC∞

smooth. Although this high degree of smoothness is not always
necessary, it is often advantageous. Smooth feedback provides
a greater level of robustness than non-smooth feedback; it
is also more reliable to implement on a physical system.
Smooth trajectories also tend to be visually appealing, which
is important for applications such as computer animation.

In this paper, we present algorithms for computing feed-
back laws over two types of cell decompositions. First, we
will address bounded, finite-dimensional state spaces with
piecewise linear (PL) boundaries; these can be decomposed
into convex polytopes. Although our methods work easily
in high-dimensional spaces, they are especially practicaland
fast for two-dimensional problems, which are common in
robotics applications. In this case, our algorithms efficiently
compute feedback laws in complex polygonal environments.
We also present algorithms to construct vector fields over
cylindrical algebraic decompositions. From the early years
of motion planning research, it has been known that these
decompositions can be used to exactly solve the generalized
piano movers’ problem, which is the one of the most general
formulations of the motion planning problem [91]. This is
possible because the cells of a cylindrical algebraic decom-
position exactly partition the configuration space into regions
corresponding to free space or to obstacles. By working with
local vector fields over cylindrical algebraic cells, we show
how to compute global feedback laws, instead of open loop
paths; this is a very basic result, and the most general result
on feedback motion planning to date, to our knowledge.

II. PROBLEM FORMULATION

This section gives the general problem formulation, which
follows closely with standard motion planning and control
theory notation (see [24], [56], [58] for more details). Denote
the world as W = R2 or W = R3. The world contains a
given obstacle region, which is a closed semi-algebraic set
O ⊂ W. Therobot is a 2D or 3D closed semi-algebraic set that
may be composed of one or more bodies. The configuration
spaceC is the smooth manifold corresponding to the space of
transformations of the robot. Eachq ∈ C embeds the robot
in W, yielding a subsetA(q) ⊂ W, which is the closed set
of points occupied by the robot. Avoiding collision between
A(q) andO, aconfiguration space obstacle regionCobst ⊆ C is
obtained. The openfree configuration spaceCfree is defined
as Cfree = C \ Cobst. The classical path planning problem
involves computing a pathτ : [0, 1] → Cfree, which connects
initial qi and goalqg configurations:τ(0) = qi andτ(1) = qg.

Our task differs in two ways: 1) we will leaveqi unspecified,
and instead of computing a single path, we compute a vector
field that upon integration encodes a family of paths that
arrive at qg from any reachableqi; 2) we replaceC by the
more generalstate spaceX used in control theory. In many
cases, it can be assumed thatX = C; however, we allow
the general case in which coordinates inX correspond toq
and its time derivativeṡq (or even higher order derivatives,

if necessary). See Chapter 13 of [58]. It is assumedX is
a differentiable manifold, and we define the semi-algebraic,
closedstate obstacle regionXobst and openfree state space
Xfree = X \ Xobst, which are derived fromCobst and any
additional constraints on time derivatives ofq.

Suppose that acell decompositionis given over some
connected open regionXcd ⊆ Xfree (for a completemethod,
Xcd = Xfree). The cell decomposition is a partition of
Xcd into “nicely behaved” regions which can be computed
using many existing algorithms. The choice depends on the
dimension ofX and the particular models used forO, the
robot, and other constraints onX.

Let xg be a desired goal point inXcd. Our task is to compute
a smooth feedback plan, which is a vector field defined over
Xcd for which all integral curves (trajectories) areC∞-smooth
and converge asymptotically toxg. Note that even though
all integral curves are smooth,V itself may only be smooth
almost everywhere, which is required because smooth vector
fields that converge toxg do not even exist whenXcd is
multiply connected.

How can the smooth feedback planV be used in practice?
Suppose that a time-invariantcontrol systemis expressed over
X in the usual manner,̇x = f(x, u), in which u is an input
at time t, taken from a predefinedinput space, U . Suppose
that for everyx ∈ Xcd, there exists au ∈ U such that
V (x) = f(x, u). In this case, if it is feasible to solveV (x) =
f(x, u) for u at every step, thenV immediately specifies what
controls to apply to converge toxg. The most common case
in which u always exists is for afully actuatedcontrol system
with unbounded inputs. Such systems can follow any smooth
trajectory arising fromV .

If V is designed in a way that cannot be followed by a
control systemẋ = f(x, u), then it may nevertheless be useful
as a guide foracceleration-based control, which attempts to
track V as closely as possible using the difference between
V (x) and f(x, u) as an error term [28], [86]. Rather than
tracking a path, as in the use of classical path planning results,
the idea is generalized to tracking the vector field, which offers
additional flexibility. If such control is not possible, or if it
is strictly required that there existsu ∈ U such thatV (x) =
f(x, u) at all times, then careful consideration must be given to
the particular vectors chosen inV . For example, special fields
need to be designed in the case of nonholonomic systems,
which we have done in [66], [70]. Also, if a robot cannot
follow V due to bounded inputs, it might nevertheless be able
to move along the same path inC by simply slowing down.

III. R ELATED WORK

In this section, we describe related work in motion planning
and control. We begin by outlining open loop motion planning,
and continue by describing closed loop methods such as
potential field techniques. Finally, we will describe work
based on decomposing the environment into discrete cells and
creating controllers for each cell, which is our approach inthis
paper.
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A. Open Loop Planning

The development of algorithms that compute open loop
trajectories is motivated by the difficulty of finding feedback
plans in complex environments. The non-convex constraints
induced by obstacles in the environment pose significant prob-
lems for classical feedback control techniques [18], [23],[48],
[89]. Due to the difficulty of finding closed loop feedback con-
trollers in complex high dimensional spaces, motion planning
algorithms attempt to compute only a collision free open loop
trajectory; even so, motion planning is PSPACE-hard [83].
Such algorithms have been extensively studied [24], [56], [58].
Most algorithms ignore differential constraints completely,
assuming that the robot is a fully-actuated kinematic system
(called free-flying or holonomic). These algorithms include
classical motion planning algorithms and many sampling-
based algorithms, including the Randomized Path Planner
(RPP) [4] and Probabilistic Roadmaps (PRMs) [47]. If the
robot is not actually kinematic and holonomic, then the paths
produced by these algorithms need post-processing to be
transformed into feasible trajectories for the system; this is
generally referred to asdecoupled trajectory planning. Post-
processing methods include time-scaling [10], [97], steering
[55], [79], or other transformations [25], [35], [57], [93].
In contrast to decoupled trajectory planning, some sampling-
based motion planning algorithms directly generate feasible
trajectories. Algorithms of this type include Rapidly-exploring
Random Trees (RRTs) [60], [61], Expansive Space Trees
(ESTs) [45], [46], and PDST-Explore [54]. Other approaches
include the use of mixed integer programming, which com-
putes optimal paths for problems with polygonal obstacle
constraints and piecewise-affine system dynamics [8], [84],
[90]. Both direct and decoupled planning algorithms return
open loop trajectories rather than closed loop plans.

One way to improve robustness for open loop paths is to
use them as feedforward components in a feedback controller.
This has several disadvantages, however. First, paths generated
by motion planning algorithms often are of poor quality,
having unnecessary sharp turns. This may result in them
being difficult to track for a dynamical system. Second, this
approach still does not produce aglobal feedback plan; only
a local feedback plan in a neighborhood of the nominal
trajectory is computed. As a result, it may be difficult to
maintain collision avoidance guarantees. Another approach is
to use motion planning algorithms themselves as the feedback
mechanism. In such a model, any time the system deviated
from the prescribed trajectory, the trajectory would be re-
planned (probably from scratch) based on the new state of
the system. This approach is problematic as well. First, it
has a very high computational cost, even given the power
of modern computers, and may not be suitable for real-
time applications. Second, asymptotic convergence to the goal
state cannot be guaranteed, even though one might informally
expect convergence to occur.

B. Closed Loop Methods

The most common approach to obtaining feedback in the
presence of obstacles is to use a potential field. Assume we

have a system witḣx = u. If a potential fieldP can be defined
that is uniformly maximal on the obstacle boundaries, minimal
at the goal state, and whose gradient is non-zero except at the
goal state, then settingu = −∇P yields convergence to the
goal. Simple analysis shows that the potential fieldP is a
suitable Lyapunov function.

The use of potential fields for robot navigation became
popular in the 1980s [49], [53]. Khatib’s foundational work
utilized a potential field over the operational space (workspace)
to guide a manipulator or mobile robot to the goal. The basic
potential field approach combines a term that is attractive to
the goal state with terms that are repulsive with respect to
the obstacles. Theory and experiments with different potential
fields are given in [110]. Many additional references for
potential fields for robot navigation can be found in [43], [74],
[117]. The problem with these potential field methods is that
they typically have local minima other than the goal state.
Any initial condition in the region of attraction of these local
minima will fail to reach the goal state. Our algorithms, in
contrast, have global convergence guarantees.

Although it is not simple to find potential functions that
are free of spurious local minima, it is sometimes possible.
Harmonic functions (potential functions which are solutions
to Laplace’s equation) are guaranteed to be free of such local
minima, and can be used for global robot navigation. Connolly
et al. develop numerical solutions of Laplace’s equations for
path planning [29]–[32]. For low-dimensional environments,
it is possible to discretize the space and consider each nodeas
part of a resistive grid with obstacle boundaries as sources
and the goal point as a sink [100], [104], [108]. Wang
and Chirikjian simulate steady state heat transfer in [111].
Waydo and Murray use stream functions for navigation in two-
dimensional environments [112].

One of the most influential potential field techniques is
that of Rimon and Koditschek [85]. They definenavigation
functions, which are potential functions satisfying several
technical conditions, and which are guaranteed to be free of
spurious local minima. They show how to construct navigation
functions for several types of environments, which they call
sphere worlds, star worlds, and forests of stars. Following
the gradient of the navigation function is guaranteed to lead
to the goal state from almost every initial condition (that
is, every initial condition except for a set of measure zero).
Theoretically, navigation functions can be constructed for a
large family of configuration spaces, although this can be very
difficult to implement in practice. Navigation functions have
been extended to the case of multiple, nonholonomic robots
[71], [72], [102], [103].

There are a number of other local navigation approaches
based on potential fields. These include the Virtual Force
Field (VFF) [12] and the Vector Field Histogram (VFH) [13]
and their extensions, VFH+ [107] and VFH∗ [106]. These
methods build a potential field online, using range sensor
measurements. This online potential field can be used to avoid
obstacles and move toward the goal, but convergence is not
guaranteed. The Curvature Velocity Method [52], [98] and
the Dynamic Window Approach [36] choose controls at each
time step that are optimal over the set of admissible controls
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(i.e., those for which the robot can always halt without hitting
an obstacle). The optimality criteria can be chosen to cause
the robot to travel towards the goal, and the robots generally
move quite rapidly while observing the safety constraints;once
again, however, convergence is not guaranteed. The dynamic
window approach is extended in [17], [82], [99].

Potential field methods have also been integrated with
sampling-based motion planning algorithms in a variety of
ways. The sampling-based neighborhood graph (SNG) covers
the free space with balls, each of which is equipped with
a local navigation function that is guaranteed to convey the
robot into a ball nearer to the goal state [115]. Bohlin
used Green kernels to compose a workspace potential using
samples fromSE(3) [11]. Elastic roadmaps build dynamic
roadmaps using features in the workspace [116]. Connectivity
between roadmap milestones is determined by local potential
functions. Elastic roadmaps have been successfully applied
to challenging problems in dynamic environments, but they
lack completeness guarantees. Approaches like these can be
viewed as hybrid control systems, which are discussed more
fully below.

Velocity field control is an alternative to potential field
methods. Velocity field control places a vector field over the
state space directly, rather than computing it as the gradient
of a potential field. One motivation for this approach is thatit
allows task specification (e.g., trajectory or contour following)
without time parameterization. It was introduced by Li and
Horowitz [62]–[64]; stability of the system is demonstrated us-
ing notions of passivity. Velocity field control has been applied
frequently to robot manipulators [21], [78], with the velocity
field specified over the operational space of the manipulator.
Velocity fields have also been applied to wheeled mobile
robots [33], [113], [114]. Although stability and convergence
results are obtained for systems with nontrivial dynamics,
velocity field methods do not consider environments with
obstacles.

Another approach is to use numerical techniques to compute
an approximate optimal value function on the space, which
then serves as a potential field. In this case, not only is feed-
back achieved, but also approximately optimal trajectories [9],
[59], [77], [94], [95], [105]. The time and space complexity
of these algorithms are exponential in the dimension of the
state space, for fixed sampling or discretization resolution;
therefore, the curse of dimensionality prevents the application
of this approach beyond a few dimensions.

As we have seen, the basic problem with these methods
is that they generally either do not have formal convergence
and obstacle avoidance guarantees, or they are not simple to
implement and use for robots operating in complex real-world
environments. Our goal is to do better than this: to construct
feedback laws which have strong convergence and safety
properties and which are also highly efficient and practical.

C. Hybrid Control Systems and Sequential Composition

A hybrid control system is one that incorporates both
discrete and continuous dynamics. The control system operates
in one of a distinct number of modes, and switches or jumps

between them when certain conditions are met. Formal models
of hybrid systems have been defined and studied [1], [14]–
[16], [65], [109]. One particular type of hybrid controlleris
based on sequential composition of funnels [19], [73], [86].
In this framework, a collection of controllers is developed,
each of which converges to a goal set that is either the actual
goal state or in the domain of another controller. Followinga
sequence of these controllers will cause the system to arrive
at the goal state.

In the case where the environments are polygonal (a com-
mon scenario), one approach is to divide the environment into
convex cells and use local controllers on each cell. If the
controller for each cell funnels the robot to an appropriate
edge of the cell, then the controller for the next cell can take
over. When the goal cell is reached, the local controller causes
the robot to converge to the goal state. The case of piecewise
affine hybrid systems has been studied extensively, considering
control on simplices [7], [38], [39], [87], rectangles [6],
[51], or general polytopes [40], [41] (see also references in
these works). Since affine functions over simplices are exactly
determined by their value at the vertices of the simplices, it is
possible to prove reachability and controllability results simply
by solving linear inequalities. Fainekoset al. show how to use
controllers such as these in an integrated approach capableof
satisfying complex linear temporal logic specifications [34].

Conner et al. use local potential fields to define control
policies on individual polygonal cells [28]. To define the
field, they use the pullback of a potential function on a
disk, which has a closed form solution. They require that the
gradients of the potential fields be perpendicular to the cell
boundaries, so that adjoining potential fields can be easily
pieced together (i.e., the gradient of the potential field, and
thus the control policy, is continuous). Putting together the
individual “component control policies” guarantees that the
global control policy brings the robot to the goal. In addition to
specifying a control policy for kinematic systems, they develop
control policies for second order systems. They also use the
composition of funnels technique to deploy control policies
for convex-bodied robots with nonholonomic constraints [27].

Finally, our work can also be viewed as the sequential com-
position of funnels, in which the environment is decomposed
into appropriate cells and local control policies defined over
each cell [67]–[69]. Our methods give stronger smoothness
results than the above methods, and have extended them to a
unicycle robot [66] and a car-like robot [70].

IV. SMOOTH FEEDBACK ON CONVEX CELL

DECOMPOSITIONS

In this section, we describe how to construct a smooth
feedback plan on ad-dimensional cell complex embedded
in Rd, in which each cell is an open convex polytope. An
earlier version of this work appeared in [67]. As we have
already discussed, this might result from a decomposition of a
d-dimensional space with a piecewise linear boundary. If the
space is described using an arrangement of hyperplanes, an
acceptable decomposition is simply to use the complement of
the arrangement. An alternative decomposition with potentially

4



fewer cells is vertical decomposition [42], [92]. The inputto
our algorithm is the cell complex and a goal statexg. As
discussed in Section II, the task is to construct a vector field
on the cell complex such that the integral curves are smooth,
avoid obstacles, and converge to the goal state.

A. Description

To compute the desired smooth feedback plan, our algorithm
performs the following steps:

1) Given the cell decomposition, compute a discrete plan
over the cells.

2) Design local controllers (vector fields) that avoid obsta-
cles and are consistent with the discrete plan.

3) Smoothly combine the local controllers to obtain a
global controller that has the desired properties.

We discuss these each in turn.
Discrete plan computation:Let a d-dimensional cell in

a cell complex be called ad-cell. Suppose that a connected
cell complex is given in which a collection ofd convex
cells are specified along with(d − 1) convex cells at the
boundaries between pairs of adjacentd-cells. Under the con-
vention thatXcd is open, these cells are sufficient for motion
planning because all paths between twod-cells go through a
shared(d − 1)-cell. Since we do not need to consider lower
dimensional cells, we will henceforth use the termcell to
refer to ad-cell and face to refer to a(d − 1)-cell. Define
the connectivity graph to be the graph that has a vertex for
each cell (d-cell) and an edge between two vertices if and
only if the corresponding cells share a face ((d − 1)-cell)
on their boundaries. Compute a discrete plan over this graph
such that following the plan from any vertex leads to vertex
corresponding to the cell containing the goal state. A variety
of graph search algorithms can be used for this purpose,
with or without optimality criteria. For example, breadth-first
search can be used, with a corresponding linear bound in
execution time. Alternatively, edge weights can be assigned
using distance between cell centroids, and Dijkstra’s algorithm
or dynamic programming can be used to find cell paths that
induce shorter paths through the environment. The resulting
directed graph defines asuccessorfor every cell except the
goal cell. The successor of a cell is the next cell on the path
to the goal cell; the shared face is called theexit faceof the
first cell. Each cell with a successor is termed anintermediate
cell, in distinction with the goal cell, which has no successor.
See Figure 1 for an illustration.

Local vector fields:The directed graph and correspond-
ing successor relations define a high-level discrete plan. Now,
we define local vector fields that are consistent with this
plan. To do so, we define two types of vector fields: those
corresponding to cells in the decomposition, which we call
cell vector fields; and those corresponding to faces, which we
call face vector fields. Intuitively, the purpose of a cell vector
field is to guide the robot through the cell to the exit face,
which leads to the successor cell. The purpose of the face
vector fields is to guarantee avoidance of theXcd boundary
and to guarantee adherence to the discrete plan; in other words,
the face vector fields prevent the robot from crossing a cell
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Fig. 1. An environment decomposed into convex cells, and the corresponding
connectivity graph and discrete plan.

xg

Fig. 2. Vector fields assigned to the faces.

face corresponding to theXcd boundary or an improper cell
transition, instead causing the robot to cross the exit face
into the successor cell. For the sake of clarity, we will delay
discussing the formal requirements for these vector fields.For
now, consider the face vector fields to be normal to their
corresponding faces and oriented in the appropriate directions,
and the cell vector fields to always point toward the exit face.
In the case of the goal cell, all face vector fields point inward
and the cell vector field always points at the goal state. See
Figure 2 for an illustration of face vector fields.

Smooth interpolation:Now we proceed to the third task
of our algorithm, which is to interpolate between these local
vector fields to obtain a global vector field that has the desired
smoothness and convergence properties. Consider a single
cell; we then have a single cell vector fieldVc and a set
of face vector fields{Vfi

}. We will form a vector fieldV
by interpolating between these vector fields; we will do this
in such a way thatV equals the face vector fields on their
corresponding faces. This guarantees that the vector field will
be continuous across cell boundaries (we will see later thatall
derivatives will match across cell boundaries as well, yielding
smoothness). Interpolation is greatly simplified if it is only
pairwise, rather than interpolating between all of the local
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fi

Fig. 3. A cell, partitioned using the generalized Voronoi diagram. The dashed
lines are the GVD surface, and the shaded region is the regionof influence
(Voronoi region) of facefi.

vector fields simultaneously. A natural choice for this is to
use the generalized Voronoi diagram (GVD) of the cell [81],
[88]. The GVD is formed by partitioning the cell intoVoronoi
regions, of which there are one per face. The Voronoi region of
each face is defined to be the set of points inside the polytope
that are closer to that face than to any other face; we refer
to the Voronoi region of a face as itsregion of influence. The
GVD surfaceis the set of points which are equidistant from
two or more faces of the cell. Since the faces are(d − 1)-
dimensional hyperplanes, the GVD surface is the union of
subsets of hyperplanes, each of which is equidistant from a
pair of faces. See Figure 3.

For any point in the region of influence of facefi, V
will be an interpolation ofVfi

and Vc. On the face itself,
V = Vfi

; the rest of the boundary of the region of influence
is contained in the GVD surface, and we assignV = Vc.
In order to smoothly interpolate over an individual region,we
need a smooth function which is uniformly zero on the facefi

and uniformly one on the GVD surface. This function should
be smooth, except on the(d − 2)-dimensional intersection
of fi and the GVD surface. Lack of smoothness at these
points will not adversely affect our method, because we have
already indicated that all system trajectories move from cell
to cell through(d−1)-dimensional faces, not through(d−2)-
dimensional ones. We construct smooth interpolating functions
using bump functions, a common construction in differential
geometry, which are defined as follows:

Definition 1 Let X be a smooth manifold, and letK be a
closed set andU an open set,K ⊂ U ⊆ X. A bump function
over U is a smooth, real-valued functionφ : X → [0, 1] such
that:

1) φ has support contained inU .
2) φ(x) = 1 for everyx ∈ K.

Numerous bump functions are known. We will introduce
one that transitions smoothly from 0 to 1 on the unit interval
and is simple to express. First, define

λ(s) = (1/s)e−1/s. (1)

The bump function is then defined as

b(s) =
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Fig. 4. A plot of the bump function given in (1), which is used tosmoothly
interpolate between vector fields.

An illustration of this bump function is given in Figure 4. The
bump function has the important property that all derivatives
equal zero at the endpoints of the unit interval.

Proposition 1 For any i, dib/dsi(0) = dib/dsi(1) = 0.

Proof: By inspection of (2), it is clear thatdib/dsi(0−) =
dib/dsi(1+) = 0, since b is identically 0 for s < 0 and
identically 1 for s > 1. Therefore, consider the derivatives
in the open unit interval. From Equation 1, straightforward
application of L’Hôpital’s rule yields

lim
s→0+

dλ(s)

ds
= lim

s→1−

d

ds
(λ(1 − s)) = 0.

All higher derivatives ofλ are likewise zero, by successive
applications of L’Ĥopital’s rule. Equation 2 yields

db(s)

ds
=

dλ
ds (λ(s) + λ(1 − s)) − λ(s)

(

dλ
ds + d

dsλ(1 − s)
)

(λ(s) + λ(1 − s))2

=
dλ
ds λ(1 − s) − λ(s) d

dsλ(1 − s)

(λ(s) + λ(1 − s))
2 .

As s → 0+, both λ(s) and dλ
ds go to zero; hence,db

ds → 0.
Similarly, ass → 1−, both λ(1 − s) and d

dsλ(1 − s) go to
zero; again,db

ds → 0. All higher derivatives go to zero in the
same way.

The parameters we use for the bump function is the product
of a number of analytic switches, which is smooth over the
interpolation region (the region of influence of the face). For
any pointp in the Voronoi region of facefi, let

s(p) = 1 −
∏

j 6=i

ρ(p, fj) − ρ(p, fi)

ρ(p, fj)
, (3)

in which ρ is the Euclidean distance metric inℜn. This func-
tion is smooth (except on the(n − 2)-dimensional boundary
of the cell), and has the desired property of being identically
equal to zero on the cell face. The rest of the boundary of the
region of influence is the GVD surface, on which the equation
ρ(p, fj) = ρ(p, fi) is satisfied for somej. Therefore, (3) is
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identically equal to one on this boundary. Note that explicit
computation of the GVD isnot required for this construction;
it is simple to determine which face’s Voronoi region any
particular point is in, by computing the distance to each face of
the cell. The point is in the Voronoi region (region of influence)
of the face which is closest to it.

Putting the pieces together, the overall vector fieldV is
defined as:

V (p) = unit (b(p)Vf (p) + (1 − b(p))Vc(p)) , (4)

in which Vf is the face vector field for that point,Vc is the
cell vector field,b is the bump function withb(p) shorthand
for b(s(p)), andunit is a normalization function, ensuring that
V is a unit vector field.

The approach needs only slight modifications for the goal
cell. In this case, the GVD is not used to partition the cell;
instead, the region of influence of a face is defined to be the
(interior of) the convex hull of the face together with the goal
point. This clearly results in a subdivision of the cell. The
interpolating function, then, goes from zero on the face to one
on the rest of the boundary of the cell. Since the boundary
consists of a number of hyperplanes (as in the previous case),
it is easy to compute the necessary distances and the value of
the interpolating bump function.

By showing how to construct the vector field on both
the goal cell and intermediate cells, we have constructed a
vector field over the entire cell decomposition. Next, we will
formally specify sufficient conditions for the face and cell
vector fields and prove that the resulting vector fieldV satisfies
the requirements of a smooth feedback plan.

B. Theoretical Results

We begin by formally defining cell vector fields for inter-
mediate cells. Note that the GVD surface is the union of a set
of faces, each of which is a subset of a(d − 1)-dimensional
hyperplane equidistant between two cell faces.

Definition 2 Let C be a convex cell with exit facefx, and
consider the GVD ofC. A cell vector fieldVc is a smooth
unit vector field onC that satisfies the following:

1) For each pointx ∈ C, there exists ay ∈ fx and α ∈ R

such thatVc(x) = α(y − x).
2) Let h be a GVD face, with normaln. If Vc(x) · n = 0

for somex ∈ h, thenVc(x) · n = 0 for all x ∈ h.
3) The directed transition graph induced by this choice of

vector fields is acyclic and every path through this graph
terminates at the node corresponding to the exit edge.

Although this definition permits many different types of cell
vector fields, we will consider a more narrow class of cell
vector fields in practice. Consider a convex cellC with exit
face fx with outward pointing normalnx, and let C̄ be the
(possibly unbounded) cell resulting from the removal offx

from C. Let Vc(x) = unit(p−x), in whichp ∈ C̄ \C is fixed.
A variety of similar constructions are possible. See Figure5
for an illustration.

Proposition 2 As defined above,Vc is a cell vector field.

Fig. 5. Three possible cell vector fields. Each points towardthe exit face at
the bottom of the cell.

Proof: Each integral curve ofVc is a straight line; it is
simple to see that each integral curve crosses the exit face,fx;
hence, the first condition is satisfied. For the second condition,
note that each face of the GVD is a portion of the hyperplane
separating two faces ofC. If Vc is constant, then the second
condition is clearly satisfied. IfVc is otherwise, then for some
GVD face with normaln, the sign ofVc·n is fixed for anyx on
the GVD face; this can be easily verified from the definition
of Vc above. For the third property, we have already stated
that each integral curve is a straight line that crossesfx.
Together with the second property, this directly implies the
third property.

The definition for a face vector field is simple. Again, let
C be an intermediate cell with exit facefx. For any facef ,
let the associated normal vectorn be inward pointing iff 6=
fx, and outward pointing forf = fx. For any facef 6= fx,
denote the hyperplane of points equidistant tof and fx (the
bisecting hyperplane) bybf . Denote the unit normal vector
of this hyperplane to benbf , and let it be oriented so that
nbf · nx > 0, for nx the normal of the exit face.

Definition 3 A face vector fieldcorresponding to a facef
is a smooth unit vector fieldVf such that for everyp ∈ f ,
Vf (p) · n > 0. If f 6= fx, the conditionVf (p) · nbf > 0 must
hold for everyp in the closure of the region of influence off ;
if f = fx, Vf (p) · n > 0 must hold.

We now show that these broad conditions on the cell and
face vector fields are sufficient for the integral curves ofV to
reach the exit face of the cell in finite time.

Theorem 1 Under Definitions 2 and 3 above, all integral
curves ofV reach the exit face in finite time.

Proof: Take any pointp in a region of influence of some
f 6= fx. It is clear from the definition ofVc that there exists
someǫ1 such thatVc(p) · nbf ≥ ǫ1. With respect to the face
vector field, we know thatVf ·nbf is bounded away from zero
on a closed set, which implies that there exists someǫ2 such
that Vc(p) · nbf ≥ ǫ2. Therefore, the overall vector fieldV
will satisfy V (p) ·nbf ≥ ǫ for ǫ = min(ǫ1, ǫ2), everywhere on
that region of influence. This implies that the integral curve
containingp will reach the bisecting hyperplanebf in finite
time, unless it first reaches a GVD face. If it reaches a GVD
face, then it crosses into the region of influence of another
cell, and will never return to the first region of influence, by
property (3) of Definition 2. Applying this property repeatedly,
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we see that the integral curve will reach the region of influence
of the exit face in finite time.

Assume that the integral curve has reached the region of
influence of the exit face. The integral curve then either
reaches the exit face or some GVD face in finite time, because
the distance to the exit face is decreasing at a rate that has a
positive lower bound. The integral curve cannot reach another
GVD face by the third condition of Definition 2; therefore, it
reaches the exit face in finite time after entering the regionof
influence of the exit face. Therefore, all integral curves inthe
cell reach the exit face in finite time.

We have shown that for every intermediate (non-goal) cell,
every integral curve of the generated vector field will reach
the exit face of that cell, and hence continue to the next
cell. Consequently, we have shown that all integral curves will
reach the goal cell. However, it remains to be shown that all
integral curves in the goal cell will reach the goal point. The
argument is much the same.

In the goal cell, we use a different definition of the cell
vector field. Formally, we require that for any pointp 6= xg in
the goal cell,Vc(p)·(xg−p) > 0; also, we requireVc(xg) = 0.
Practically, we use a cell vector field that is always oriented
towardxg,

Vc(p) = b(||xg − p||)unit(xg − p), (5)

to satisfy this condition. This is smooth, satisfies the inner
product requirement, and decays to zero at the goal point.

Theorem 2 All integral curves in the goal cellCg asymptot-
ically converge to the goal point.

Proof: This statement is proven similarly to Theorem
1. Both the face and cell vector fields satisfy an inner
product constraint guaranteeing that at any pointp 6= xg,
V (p) · (xg − p)≥ ǫ for someǫ > 0. The only place where
V (p) · (xg − p)= 0 is at the goal pointxg; therefore, every
integral curve asymptotically converges toxg.

Given the previous theorems, the following theorem holds
true:

Theorem 3 The integral curves of the vector fieldV , defined
over Xcd ⊆ Xfree, asymptotically converge to the goal state
xg.

Proof: From Theorem 1, any integral curve in an
intermediate cell proceeds to the exit edge and thus continues
to the successor cell. All integral curves consequently proceed
to the goal cell in finite time. Theorem 2 then implies that the
integral curves asymptotically converge to the goal state.

We emphasize that the conditions we have given on the face
and cell vector fields are not necessary, but sufficient. Other
than those we have outlined, there are many combinations of
face and cell vector fields that will yield the same result. If
a choice of vector fields is made that does not satisfy these
sufficient conditions, it may still be possible to show that
convergence follows. Arguments like those made above would
likely be sufficient to verify convergence: ensuring that the
combination of face and cell vector fields will always make

“sufficient progress” (e.g., satisfy an inner product constraint)
in each intermediate cell, and will converge to the goal state
once the goal cell is reached.

Having fully described the construction ofV and shown
that the integral curves converge to the goal state, we now
prove the following:

Theorem 4 All integral curves ofV are smooth.

Proof: As we have defined them, all local face and cell
vector fields are smooth. We have already argued that the bump
function b(s) is smooth. The parameter functions is smooth
on every Voronoi region, except on a set of measure zero (the
(d−2)-dimensional boundary of the cell face). Integral curves
never pass through these points, because every integral curve
in a particular cell passes to the successor cell through the
open (d − 1)-dimensional face between them. The fact that
all derivatives of the bump function equal zero fors = 0 and
s = 1 guarantees that the vector field (and, correspondingly, its
integral curves) are smooth across cell boundaries and across
the GVD surface within each cell. Therefore, the integral
curves ofV are smooth.

C. Efficiency

We have claimed that our method is extremely fast to
compute. There are two primary computational costs. First,
there is the cost to compute the component vector fields given
an environment and a goal state; this is theprecomputation
cost. Second, there is the problem of computing the value of
the vector field at a given point; this is theexecutioncost.
These can both be done quickly. We will give the asymptotic
complexity of these algorithms, but we emphasize that the
constants in the asymptotic analysis are quite small; these
methods are very efficient in practice as well as in theory.

First, consider the precomputation phase. If breadth-first
search is done on the graph corresponding to the cell complex,
the successor of each cell can be found inO(n) time, in which
n is the number ofd-dimensional cells in the decomposition.
If a Dijkstra-like approach is used, the complexity becomes
O(n log n). The face vector fields can be assigned in linear
time if perpendicular face vector fields are used. The cell
vector fields likewise require only linear time, since they can
be assigned to point to the centroids of the exit faces. Hence
determining the component vector fields, given a cell complex
and its connectivity graph, can be done in linear time.

Second, consider the execution cost. If the cell in which
the query point lies is unknown, then a point location query
must be performed to determine in which cell the point
lies. This can clearly be done in linear time, and may be
answered in logarithmic time if some preprocessing of the
cell decomposition is done. In two dimensions, the optimal
preprocessing bound isO(n) time, but practical algorithms
typically require O(n log n). Also, only linear space is re-
quired in two dimensions. A good algorithm for this purpose is
Kirkpatrick’s triangulation refinement method [50]. In higher
dimensions, the results are not as good: logarithmic query time
(more precisely,O(d log n), in which d is the dimension) can
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be attained, but only at the cost of exponential space:O(n2d

)
[37].

If the cell of the query point is known, it requires linear
time (in the number of faces of the cell) to compute the vector
field value, because computing the bump function parameter
requires computing the distance to each face of the cell. In
practice, the number of faces of any cell is so small that
the cost of computing the vector field value is practically
negligible. If there is no error in following the vector field, only
a single point location query must be performed to compute an
entire trajectory. Consider two successive query points: they
must either lie in the same cell, or the second one lies in the
cell that is the successor to the first one. This is guaranteed
to hold as long as we assume that the vector field is queried
at a high enough rate, which is a weak assumption. The most
reasonable assumption is that the vector field is queried almost
continuously (as in real time control), which will result inthe
condition holding true. In the presence of error, this may not
always be the case; however, we expect that it should typically
hold in practice, assuming that the error is small.

We may also assume that the cell complex is not given to us
directly, but that it must be computed by decomposing a gen-
eral polygonal environment. We can do this for any dimension
using vertical decomposition (an arbitrary-dimension version
of trapezoidal decomposition); see [42] for details. If we
restrict ourselves to the two-dimensional case, there are many
ways to decompose polygon into convex pieces. One option
is Keil’s algorithm for computing a convex decomposition
with a minimal number of pieces. Keil’s algorithm requires
O(nr2 log n) time, in whichn is the number of vertices andr
the number of reflex vertices. Triangulation can be done in lin-
ear time [22], and a practical implementation based on Seidel’s
algorithm is available, which requiresO(n log∗ n) time [80].
In practice, these algorithms can decompose even large and
complicated environments in milliseconds, on modern desktop
computers. Shewchuk’s Triangle library [96] is extremely use-
ful for this; it produces high-quality Delaunay triangulations
from general polygonal environments. The output can be used
directly, or post-processed using an algorithm such as Hertel-
Mehlhorn [44] to obtain larger and fewer convex cells.

D. Discussion and Computed Examples

Thus far, we have focused almost exclusively on theoretical
considerations. While the algorithm and its theoretical proper-
ties are the primary focus of this work, we also wish to present
several computed examples. We consider these examples to
be proof of concept; they have been chosen to illustrate our
approach and, we hope, to convey intuition about the feedback
controllers computed by it. We do not attempt to make precise
statements about performance, or to “push the limits” of what
is practically feasible in a hard or soft real time setting.
Computed examples are given in Figures 6-8.

We will also briefly discuss some issues associated with
using our approach to compute “good” feedback plans for
practical mobile robot applications. In the discussion of theory
above, we attempted to make the formal conditions for conver-
gence guarantees as broad as possible. The reason for this is

xg
xg

Fig. 6. A computed example; the left figure shows several systemtrajectories,
and the right figure illustrates the entire vector field.

xg
xg

Fig. 7. A second computed example.

that we want to allow as much room as possible for flexibility
at the point of implementation, while still maintaining provable
guarantees. Choice of cell decomposition and selection of face
and cell vector fields are important for our algorithm, but
may be driven by application-specific concerns in a particular
context. We will outline some issues we have encountered
in our preliminary experiments, and comment on reasonable
options for other implementations and applications.

Designing face and cell vector fields:In Section IV-B, we
stated fairly general conditions on the face and cell vector
fields under which convergence is guaranteed. This permits a
great deal of application-level design flexibility. To thisend,
we will outline several approaches for designing face and
cell vector fields. We also give several concrete examples to
illustrate the impact of the choice of convex decomposition
and face and cell vector fields on the “quality” of the resulting
paths.

Consider a face vector field for some face other than the
exit face of a cell. To satisfy the necessary conditions for
convergence, such a vector field must be directed inward at
the face itself and must satisfy an inner product constraint
with the normal of the face that is equidistant from the face
and the exit face. Although these requirements are quite loose,
we will consider only the class of constant vector fields, with
the goals of simplicity and practical performance. A great deal
of design freedom still remains under the constant vector field
restriction.

First, consider the case of a constant face vector field with
only the restriction that it must be inward-pointing on the face
itself. In other words, we have only the constraintVf ·nf > 0,
in which nf is the inward-pointing normal of the face. With
this much freedom, there are several obvious ways to choose
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xg

xg

Fig. 8. A third computed example.

Vf that might be advantageous in terms of generating high-
quality paths. Different applications might choose any of the
following, depending on their specific requirements:

• Choose the vector field to point toward the exit face as
much as possible, to promote short paths.

• Choose it to pointas far away fromthe exit face as
possible, to avoid the sharp turns that the first approach
might induce.

• For simplicity, just make each face vector field perpen-
dicular to its face.

• Incorporate additional information. For example, compute
the centroid of the cell or of the exit face, and direct the
vector field toward it.

In different situations, each of these approaches could offer
advantages; this greatly depends on the particular application.
The first will tend to induce short paths, but with high curva-
ture. The second takes longer paths, but has fewer sharp turns.
Note, however, thatany fixed vector field will have integral
curves with sharp turns; this is an inescapable consequenceof
the uniqueness of solutions to differential equations (integral
curves are solutions to the differential equations corresponding
to the vector field). This is a fundamental difference between
feedback approaches and open loop motion planning. The
third approach is simple enough to be used as a default,
“out of the box” method before attempting improvements or
optimizations. Its weakness, however, is high sensitivityto the
underlying decomposition; this can be seen in the computed
examples, for which perpendicular vector fields were used. The
fourth approach also tends to increase separation from theXcd

boundary, but is less extreme than the second approach. We
have not performed sufficient experiments to make definitive
comparisons between these methods (and there are many
others, to be sure); we leave that for future work.

Convergence can be guaranteed for any of the above ap-
proaches. The constraints for guaranteeing convergence are all
simple inner product constraints (i.e., each constraint requires

Fig. 9. The influence of different convex decompositions. On the left, a path
with sharp turns arising from the choice of decomposition andperpendicular
face vector fields; on the right, the artifacts eliminated through a better
decomposition.

that the vector field have positive inner product with the nor-
mal of some hyperplane). Therefore, it is usually straightfor-
ward to take a broad concept such as “point away from the exit
face as much as possible” and translate it into an admissible
face vector field. If the desired direction of travel violates a
dot product constraint, simply project that vector onto each
violated constraint. The result is the direction that movesin
the desired direction as much as possible while satisfying all
constraints necessary to make convergence guarantees.

Cell vector fields can also have a significant impact on
path quality. As we discussed above, the cell vector fields can
sometimes be constant vector fields; otherwise, we generally
choose a pointp and letVc(x) = unit(p − x). We described
above the conditions on the placement ofp. The distance from
the exit face top has a significant impact on the resulting
paths; the closerp is to the exit face, the more the integral
curves tend to bunch together when leaving the exit face. An
extreme choice is to placep on the exit face itself; this strongly
influences the integral curves to leave the cell nearp. Choosing
p near the centroid of the exit face can be beneficial. Caution
must be exercised, however, because improper placement ofp
on the exit face can lead to undesirably sharp turns.

Finally, the choice of convex decomposition can greatly
affect the quality of the resulting paths, especially near the
goal cell. This is particularly important when the face vector
fields are chosen to be perpendicular to the edges. See Figure
9 for an illustration of this point.

Dynamic Environments:As we have described it, our
algorithm applies to static, known environments. For prac-
tical applications, however, this will not necessarily be the
case. Environments can change continuously over time, as
in the case of moving obstacles, or discretely, as when a
door opens or closes in a building environment. We do not
wish to explicitly integrate environment uncertainty intoour
algorithm; we assume, then, that we have complete knowledge
of the environment at all times, even though it may change
unpredictably. A practical application can easily integrate our
approach with sensor-based map updates and higher level
exploration behavior; therefore, this assumption is sufficient
for our interests.

We will consider two types of changes to the environment.
First, take the case of discrete changes in the environment;in
our model, this takes the form of new faces being introduced
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or removed that change the topology of the environment. If the
face under consideration corresponds to a face in the convex
decomposition, then the decomposition remains unchanged;
the only change is that an open face has become an face on
theXcd boundary, or vice versa. Hence, the most our algorithm
has to do is update the connectivity graph and search it to ob-
tain a new directed graph defining updated successor relations.
If the edge introduced does not correspond to a face in the
decomposition, then the decomposition must be recomputed
such that this is the case. As before, the connectivity graph
must then be searched to generate the successor relations. This
possibility indicates that if there is prior knowledge about what
faces can be removed or introduced into the environment, this
should be incorporated into the initial decomposition.

Second, the environment can change in a more general
way; entire obstacles might move, or gross changes to the
environment could be made (as in the case of sensor-based
map updates). These changes can be either large or small, and
may or may not affect the topology of the space. If the changes
are local, then it may be possible to repair the decomposition
by recomputing the cells in the neighborhood of the change.
If the change is large, then the entire decomposition may
have to be recomputed. In small environments, it is likely that
recomputing the entire decomposition from scratch will be
more efficient than attempting to make local repairs; in large
environments, this may not be the case. As we have already
mentioned, there are efficient algorithms to perform the convex
decomposition; in two dimensions, it can be done for many
environments in just milliseconds. This indicates that even in
dynamic environments, real time performance can be achieved.

V. SMOOTH FEEDBACK ON CYLINDRICAL ALGEBRAIC

DECOMPOSITIONS

Up to now, we have discussed how to construct smooth
feedback plans on cell complexes in which each cell is a
convex polytope, and we have shown how our methods can
be applied effectively in practice. An earlier version of this
work appeared in [68]. In this section, we consider the same
problem on a different type of decomposition. We describe
the construction of smooth feedback plans on cylindrical alge-
braic decompositions, which greatly extends the results ofthe
previous section. Since cylindrical algebraic decompositions
can be used to solve a very general class of motion planning
problems, our algorithm demonstrates how to compute smooth
feedback for the same class of problems. In addition, the
feedback laws can be computedefficiently; precisely, they
can be computed inO(n), in which n is the complexity
of the decomposition (the number ofd-dimensional cells in
the decomposition). Since the number of cells in a general
cylindrical algebraic decomposition can be doubly-exponential
in the dimension of the space, efficient computation of smooth
feedback with respect to the decompositions still implies a
very pessimistic overall time bound. However, there exist
problems that admit cylindrical decompositions that have
much better complexity bounds (e.g., planning for the ladder
[3] or a polygon translating and rotating in the plane [2]). In
cases such as these, our algorithm has potential for practical
implementation and use.

A. Cylindrical Algebraic Decomposition

To generate a smooth feedback plan over the entire cell
decomposition, our algorithm will make use of the cells’
cylindrical structure. Therefore, we will describe cylindrical
algebraic decompositions as a preliminary to the presentation
of our algorithm.

A cylindrical algebraic decomposition(CAD), also known
as a Collins Decomposition[26], of Rn is defined in the
following inductive way (see [5] for a more formal definition):

Definition 4

1) A cylindrical algebraic cellC1 of level one is either an
interval (a, b) or a point a.

2) A cell Cn of leveln has one of the two forms: it is either
the set of pairs{(x, y) : x ∈ Cn−1, f(x) < y < g(x)}
or the set of pairs{(x, y) : x ∈ Cn−1, y = f(x)}, in
whichf, g ∈ Q[x1, xn−1] are polynomials over the field
of rational numbers.

The cells’ cylindrical structure is apparent from the def-
inition. For a set of polynomialsP taken from the set
Q[x1, . . . , xn], a CAD adapted toP is one in which each cell
in the decomposition is sign-invariant underP. The number
of cells in the decomposition is polynomial in the cardinality
of P, as well as in the algebraic degree of the members ofP;
however, it is doubly exponential in the dimension.

In addition to proposing the decomposition, Collins gave
an algorithm to compute it [26]. This algorithm (which we
will refer to as the CAD algorithm) has two phases. In the
first phase, the polynomials ofP are projected down one
dimension at a time, using a projection that preserves the
zeros ofP as well as the intersections of the members of
P. Once the polynomials have been projected intoR1, the
critical points are located; these points, and the corresponding
open intervals, become the cells ofC1. In the second phase,
the cells ofC1 are lifted into R2, becoming cylinders that
are partitioned based on the critical points of the polynomials
that are now inQ[x1, x2]. This is repeated, each time lifting up
and partitioning the resulting cylinders, untilRn is reached. At
that point, a sign-invariant partition ofRn has been obtained.
As noted in [5], [91], the unbounded cells can be treated as
the others by considering the set of polynomials to include
xi = ±∞, for i = 1, . . . , n. More details can be found in [5],
[58], [76]. A (very) simple illustration can be seen in Figure
10. Additionally, the algorithm can compute a single point in
each cell of any dimensioni, 1 ≤ i ≤ n; such points are called
algebraic points.

Schwartz and Sharir showed how to use the CAD algo-
rithm to solve the generalized piano movers’ problem. In this
problem, the robotR and the obstacle regionO are specified
as semi-algebraic sets; a collision-free path must be found
from an initial configuration to a goal configuration, if one
exists. Additionally, there may be more than one robot, and the
robots may be connected in a kinematic tree. For this problem,
Cfree andCobst are semi-algebraic in the configuration space,
and each cell in the cylindrical algebraic decomposition ofthe
configuration space is either completely contained inCfree or
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Fig. 10. Two polynomials projected intoR1, preserving the critical points
and intersections. After the projection, each interval is lifted into R

2 where
it becomes a cylinder of cells. Each new 2-cell is sign-invariant under the
polynomials.

completely contained inCobst. Using the connectivity graph of
thed-dimensional CAD cells, it is possible to find a collision-
free cell path from the cell containing the initial state to
the one containing the goal state, if one exists. Schwartz
and Sharir then showed how to specify a continuous path
from the initial to the goal state that goes from cell to cell
in the solution cell path without entering any other cells.
The computed path moves from one full-dimensional cell to
another, through a connecting cell of one lower dimension;
as we discussed above, this is always the case when the
free configuration space is taken to be an open set, which
is the standard convention. To determine the connectivity
relations efficiently, Schwartz and Sharir make a stronger
assumption on the set of polynomialsP than is required for
the basic CAD algorithm. The assumption of “well-basedness”
eliminates local pathology, but local connectivity can still be
quite complicated. See [91] for more details.

B. Algorithm assumptions

To compute smooth vector fields over cylindrical decom-
positions, our algorithm makes specific input assumptions.
First, our algorithm assumes the entire cylindrical algebraic
decomposition is specified as input, consisting of all cells
(of all levels), together with their corresponding algebraic
descriptions. We also assume that the connectivity graph
of the decomposition is provided. The CAD algorithm can
compute algebraic points for every cell; these will be used as
well. Finally, we assume the existence of exact root structure
functions for each cell in each level of the decomposition. The
root structure functionr : Rn×Z+ maps any pointx ∈ Rn to
the set of roots of the polynomials in the(n+1)-dimensional
lifted cylinder above it (for convenience, consider±∞ to be
roots). This is a standard part of the CAD algorithm (see [75],
[101]), although it is a computationally expensive operation.
For some applications, it is possible to improve efficiency by
identifying only root intervals rather than exact roots, using

root separation/gap theorems. See [5], [20].

C. Algorithm Description

We will now present our algorithm for generating smooth
feedback plans over CADs. As in Section IV, we will construct
smooth feedback over individual cells and then guarantee
that smoothness is preserved across the boundaries crossed
by the resulting integral curves. We assume that the input
to our algorithm is the entire cylindrical algebraic decom-
position, consisting of cells of all levels, together with their
corresponding algebraic descriptions, and a connectivitygraph
corresponding to the connectivity of then-dimensional cells in
the decomposition. In the construction of a CAD, it is possible
to generate a point in each cell (of any level); these are called
algebraic points, and we assume that we are given these as
well (note that it is trivial to compute algebraic points given
the full algebraic descriptions of each cell). As we previously
described, the connectivity graph can be searched to determine
the cell path to the goal cell from any cell in the connected
component of the goal; this determines the successor of each
cell. We will construct a vector field over the closure of each
cell such that all integral curves are guaranteed to reach the
face between the cell and its successor, without reaching any
other face. We require all integral curves to be smooth, and
smoothness must be preserved across the faces separating a
cell from its successor. We will discuss our algorithm in terms
of an openn-dimensional cellC (and its closureC̄) and its
successorS, both full-dimensional cells of leveln. These cells
share an(n − 1)-dimensional face, which we denoteFS .

We know thatC is bounded by upper and lower bounding
polynomials in each dimension; letui andli be these polyno-
mials in dimensioni. For simplicity, assume that there are no
unbounded cells; after describing the algorithm it will become
clear that the algorithm works for unbounded cells as well. It
is intuitive that eachui andli should correspond to exactly one
(n− 1)-cell (face) in the decomposition, separatingC from a
neighboringn-cell. However, this is not the case. There may be
many faces that correspond to a single bounding polynomial,
or none at all. This is illustrated in Figure 11. Denote byF̄+

i

the union of all upper bounding faces ofC corresponding to
dimensioni, and byF̄−

i the union of all lower bounding faces
of C corresponding to dimensioni. We use the bar notation
to indicate that the logical “face” is the union of a number of
actual faces in the decomposition. Note thatF̄+

i corresponds
to the zeros ofui and F̄−

i corresponds to the zeros ofli. If
the exit faceFS is an upper face corresponding to dimension
i, then FS ⊆ F̄+

i . The two will not generally be equal;FS

may form a hole in the larger facēF+
i . See Figure 12

We will construct a vector field over̄C in much the same
way as we did for convex polytopes. We will define appro-
priate smooth distance functions representing the distance to
each face of the cell, as well as face vector fields for each face
and a cell vector field for the cell. Face vector fields are easily
defined; any faceF ⊆ F̄+

i will be assigned a vector field of
− ∂

∂xi
and any faceF ⊆ F̄−

i will be assigned a vector field
of + ∂

∂xi
. This is the case except forFS ; for any x ∈ FS , the
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C1

C2

Fig. 11. Adjacent cylinders in a cylindrical algebraic decomposition. CellC1

has no adjacent cells corresponding to one of its upper bounding polynomials,
and cell C2 has two adjacent cells corresponding to a lower bounding
polynomial (the cells above and belowC1).

F̄

FS

C

S

Fig. 12. A cellC, its successorS, and the shared faceFS . The shared face
is a hole in the larger facēF of C. Lifting these cells into higher dimensions
could continue to restrict the face they share.

face vector fieldVf is defined as

Vf (x) =

{

+ ∂
∂xi

if FS ⊆ F̄+
i

− ∂
∂xi

if FS ⊆ F̄−
i .

This definition ensures that the face vector fields point inward
on all faces ofC except the exit face,FS ; this implies that no
integral curves leaveC except by the exit face, as desired.

Recall that through the construction of the CAD, algebraic
points have been computed that lie in the interior of each cell;
we will use the algebraic points in the cells of leveln − 1,
which connect the full-dimensional cells. Denote the algebraic
point in FS as pa. We now define therelative height, which
is a diffeomorphism fromC̄ to the unit cube. For any point
x = (x1, . . . , xn) ∈ C̄ and dimensioni, let Pi−1x be the
projection from the point to its firsti − 1 components, let

r : Ri−1 × Z+ be the root function corresponding toPi−1x,
and assume thatr(Pi−1x, l) ≤ xi ≤ r(Pi−1x, l + 1). Define
the relative heighthi : C̄ → [0, 1] as

hi(x) =
xi − r(Pi−1x, l)

r(Pi−1x, l + 1) − r(Pi−1x, l)
. (6)

This is a smooth mapping, since both the upper and lower
bounding polynomials are smooth. Again, even in the case
where there are no actual faces corresponding toui and li,
as in Figure 11, the bounding polynomials are well-defined.
Also, we can arbitrarily definehi(x) to be zero ifui(x) =
li(x); this can only occur when faces corresponding to certain
dimensions are missing, again as in Figure 11. The lack of
smoothness at these points is not problematic because no
integral curves of the vector field pass through these points.
This is the case because these points are always part of cells
that are less than(n− 1)-dimensional; we have already stated
that all integral curves will go from full-dimensional cellto
full-dimensional cell through faces of only one dimension
less. We can now define therelative coordinatesof x as
h(x) = (h1(x), . . . , hn(x)) ∈ [0, 1]n. We can intuitively
define the cell vector fieldVc as the vector field which
induces a straight line path towardpa, in relative coordinates.
Formally, this can be computed using the Jacobian ofh, which
is guaranteed to have full rank sinceh is a diffeomorphism
on C: Vc(x) := (Jh(x))−1(h(pa) − h(x)).

Now, all we need is to define acceptable distance functions
to each face. Then, we can blend the component vector fields
together as in Section IV, and we will show that the integral
curves of the resulting vector field always reach the goal. The
distance function is easy to define, using the relative height
functions. Assume that the exit faceFS ⊆ F̄±

i ; for any face
F̄±

j , j 6= i, define the scaled perpendicular distance function
d⊥ as follows:

d⊥(x, F ) =

{

1−hj(x)
1−hj(pa) if F ⊆ F̄+

j
hj(x)
hj(pa) if F ⊆ F̄−

j

(7)

As required, the distance function equals zero on the face itself
and is greater than zero elsewhere. Also, at any point that has
the same relative height as the algebraic point in a particular
dimension, the upper and lower faces will be equidistant.
Also, multiple faces that correspond to the same bounding
polynomial will have the same distance; this is acceptable,
because such faces will have the same face vector field.

In the case of the upper and lower faces in the dimension
corresponding to the exit face, a small change must be made.
In this case, simply letd⊥(x, F ) = |hi(x) − hi(p)|. We
will also need to define another distance function to use to
distinguishFS from the remainder ofF̄±

i , to use when the
point x is in the region of the cell closest tōF±

i .
Understanding cell connectivity is important for computing

the distance toFS , becauseFS can be a hole in the larger face
F̄±

i , as discussed above. It is useful to note that ifFS ⊆ F̄±
i ,

then bothC andS were lifted from the same full-dimensional
cell in a lower level. This means that the “parents” ofC and
S in the lower level were adjacenti-dimensional cells in the
same cylinder, separated by an(i − 1)-dimensional cell. The
parent cells shared a complete face at that level; lifting the
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cells into higher dimensions may have restricted the area of
the face that they share until they share a face which is a hole
in the larger face. An example of this is in Figure 12.

Keeping in mind that each successive lifted dimension adds
constraints that may restrict the shared face betweenC andS,
consider some pointx ∈ F̄±

i . It is simple to verify whether
or not x lies in FS (simply check to see if it satisfies the
constraints of the bounding polynomials ofFS). In addition
to this, we need a smooth function defined over all ofF̄±

i

that can serve as a distance function, indicating how farx
is from FS even if x /∈ FS . One option that seems obvious
but which is incorrect would be to compute the distance to
each of the bounding polynomials ofFS that is unsatisfied,
smooth them using a bump function if necessary, and add them
together. This is incorrect because the bounding polynomials
of FS are not necessarily well-defined for any pointx ∈
F̄±

i . Similarly, the bounding polynomialsuF
j and lFj are not

guaranteed to be well-defined unlessuF
k and lFk are satisfied,

for all k ∈ i + 1, . . . , j − 1; this happens when the bounding
polynomials ofFS coincide with those ofS rather than those
of C. Consequently, our distance function will only depend
on uF

j and lFj if all lower bounding polynomials are satisfied.
We will construct a function that is uniformly equal to one

outsideFS , uniformly zero on some subsetF ′
S ⊆ FS , and

smoothly transitions between the two onFS \ F ′
S . We need

to make several definitions in order to construct this function.
Recalling that the cell faces are zeros of polynomials, define
z+
j (x) and z−j (x) as the zeros ofuF

j and lFj that correspond
to x: namely, z+

j (x) and z−j (x) are identical tox in all
coordinates except for coordinatej, which is chosen so that
uF

j (z+
j (x)) = lFj (z−j (x)) = 0. For someα ∈ (0, 1) define the

satisfaction functionwj : F̄±
i → [0, 1] as

wj(x) = b

(

1

α

(

hj(x) − hj(pa)

hj(z
+
j (x)) − hj(pa)

− (1 − α)

))

+ b

(

1

α

(

hj(x) − hj(pa)

hj(z
−
j (x)) − hj(pa)

− (1 − α)

))

.

(8)

The satisfaction functionwj considers the bounding polyno-
mials of FS corresponding to dimensionj and is identically
one for points above the upper bounding polynomial or below
the lower bounding polynomial in that dimension. It equals
zero for any x such that the difference in relative height
from x to pa (in directionxj) is less than(1 − α) times the
difference in relative height frompa to the boundary ofFS ,
again in directionxj . These can be used to construct the final
distance functiond̂n, which for any pointx ∈ F̄±

i indicates
the “distance” from that point toFS , and does so smoothly.
The definition is inductive, as follows:

d̂i+1(x) = wi+1(x)

...

d̂j(x) = d̂j−1(x) + (1 − d̂j−1)wj(x)

(9)

The final distance function,̂dn(x), is a smooth distance
function that can be used to guide the robot through the exit
face FS , which is a “window” in the larger facēF±

i . The
important results are summarized in the proposition below:

Proposition 3 The following properties hold:

1) For all j such thati + 1 ≤ j ≤ n, d̂j is well-defined.
2) The functiond̂n is smooth, identically equal to one on

F̂±
i \FS , and identically equal to zero on an open subset

of FS .

Proof: We prove the first property by induction. As we
have already indicated,wj(x) is only guaranteed to be well-
defined if the polynomial constraintslFk anduF

k are satisfied
for all k ∈ i + 1, . . . , j − 1. For 1 ≤ k ≤ i, the constraints
are always satisfied because the cellsC andS are in the same
cylinder in the projection intoRi. Therefore, we know that
the base casêdi+1 is well-defined. Now assume that̂dj is
well-defined and consider̂dj+1. The function d̂j+1 will be
well-defined if d̂j = 1 for any point x such thatwj+1 is
not well-defined (since the term containingwj+1 will then
vanish). But this fact is apparent from the definition ofd̂j ; if
some constraintlFk or uF

k is not satisfied, then we havêdl = 1
for all k ≤ l ≤ j. Therefored̂j = 1 over any point where
wj+1 is not well-defined, and sôdj+1 is well-defined over all
of F̄±

i .
For the second property, the above proof also yields the

fact that d̂n is identically equal to zero on̂F±
i \ FS . It is

also readily apparent that if all polynomial constraints are
satisfied by a factor of(1 − α), then we haved̂n = 0. So
we simply need to verify that̂dn is smooth. It is constructed
using smooth functions, so all we need to verify is that the
derivatives exist on the constraint polynomials, which is the
boundary where the satisfaction functions become ill-defined.
This can be argued inductively, as above. The base case,d̂i+1,
is clearly smooth. Now assume that̂dj is smooth. Just as
guaranteeing that̂dj = 1 whereverwj+1 is not well-defined
is sufficient to maked̂j+1 well-defined, we use the property
that all derivatives of the bump functionb(s) are zero outside
the unit interval. This implies that anywhere the function
wj+1 is not well-defined, the derivatives of̂dj all equal zero.
Consequently, all derivatives of̂dj+1 exist and are well-defined
over F̂±

i , and the functiond̂n is smooth.
Using these distance functions, for any pointx ∈ C we can

determine the face in whose region of influence it lies (i.e.,
which face it is closest to in relative coordinates). There are
three different cases. Assume as before thatFS ⊆ F̄±

i . First,
for some facēF±

j with j 6= i, we say thatx lies in the region of
influence ofF̄±

j if ρ(x, F̄±
j ) ≤ ρ(x, F̄±

k ), for all k. Second, we
say thatx lies in the region of influence ofFS if ρ(x, F̄±

i ) ≤
ρ(x, F̄±

k ) for all k and if d̂n(x) ≤ 1 − d̂n(x). Finally, x lies
in the region of influence of̄F±

i \FS if ρ(x, F̄±
i ) ≤ ρ(x, F̄±

k )

for all k and if 1 − d̂n(x) ≤ d̂n(x).
The final step is to define a function for each face that

interpolates between a value of zero on the face itself and
a value of one on the boundaries of its region of attraction
(loosely, the “faces” of the GVD). As in Section IV, we use
a product of analytic switches. For any facēF±

j with j 6= i,
use the following:

s(p) = 1 −
∏

F̄ 6=F̄±

j

d⊥(p, F̄ ) − d⊥(p, F̄±
j )

d⊥(p, F̄ )
, (10)
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in which F̄ ∈ F are the faces ofC. Also, additional product
terms need to be added for facesF that share a larger face
⊂ F̄±

i with the exit faceFS . These product terms usêd,
rather thand⊥. This function is smooth (except where faces
meet), and has the desired property of being identically equal
to zero on the face of the cell and one on the boundary of
the region of influence. Using the shorthandb(p) = b(s(p)),
we again define the global vector fieldV at point p as
V (p) = unit(b(p)Vf (p) + (1 − b(p))Vc(p)), in which Vf is
the face vector field for the face in whose region of influence
p lies, Vc the cell vector field,b the bump function, andunit
is the normalization function that forcesV to be a unit vector
field.

We must also define the vector field on the goal cell so
that the integral curves converge to the goal pointxg inside
the goal cell. All face vector fields point inward in this case;
the cell vector field is the vector that points fromx to xg,
in relative coordinates. As before, this is defined asVc(x) :=
(Jh(x))−1(h(xg) − h(x)). Similarly, thed⊥ function should
be modified to consider coordinates relative to the goal point
xg rather thanpa.

D. Formal Analysis

We need to establish that the feedback plan associated with
our constructed vector field has all of the required properties;
the proofs are similar to those in Section IV.

Theorem 5 The vector fieldV is smooth except for a set of
measure zero and has smooth integral curves.

Proof: Consider the functions used in the construction
of V in a particular cell. The perpendicular distance function
d⊥ is smooth since the bounding polynomials of the cell are
smooth, and the satisfaction functions and distance functions
d̂j are likewise smooth. The parameter functions is smooth
except on the(n− 2) dimensional surfaces where faces meet,
and the integral curves never go through these places. As
we know, the bump functions are smooth. They guarantee
smoothness across cell boundaries and between regions of
influence within a cell because all derivatives equal zero there
(see Section IV). Hence all integral curves ofV are smooth.

Theorem 6 The integral curves ofV remain inXcd.

Proof: This property is obvious from the construction of
the vector field. In any cell, the face vector field corresponding
to the boundary ofXcd will be inward pointing, because it can
never be the exit face. The vector fieldV is identically equal
to the face vector field on the face itself, due to the bump
function and its parameter function. Hence, the vector field
always points away from theXcd boundary and the integral
curves never leaveXcd.

Theorem 7 The integral curves ofV asymptotically converge
to the goal state.

Proof: First, we show that for any non-goal cellC, all
the integral curves ofC reach the exit faceFS and thus enter

the successor cellS. Recall that the cell vector field is defined
asVc(x) := (Jh(x))−1(h(pa)− h(x)), in which pa is the al-
gebraic point in the exit faceFS . Hence following the integral
curves of this vector field will cause the relative coordinates to
converge to those ofpa: namely,hj(x) → hj(pa), 1 ≤ j ≤ n.
The face vector fields corresponding to allF̄±

j , j 6= i also
cause the relative coordinates to converge. The only exception
is hi, which must be considered separately because the vector
field corresponding tōF±

i \FS points away frompa. Consider
all dimensions except dimensioni. We know that the relative
coordinates will converge to a neighborhood of those ofpa in
some finite timeT (again, not considering dimensioni). This
implies that for a suitably chosen neighborhood, the regionof
influence ofF̄±

i \FS cannot be entered after timeT , because
it lies entirely outside this neighborhood. Consequently,we
can guarantee the convergence ofhi after time T , and all
relative coordinates are guaranteed to converge. Once within a
neighborhood ofpa (in relative coordinates) in all dimensions,
it is simple to observe that the integral curves reach the exit
face FS in finite time, since the face vector field ofFS is
outward-pointing.

The case of the goal cell is similar. In this case, the
cell vector field and face vector fields all cause the relative
coordinates to converge to those of the goal state. Therefore,
for any neighborhood of the goal point, the integral curves will
converge in finite time. Since the integral curves ofV reach the
exit face of any cell in finite time, and reach any neighborhood
of the goal state in finite time, we have the global result that
all integral curves ofV asymptotically converge to the goal
state.

VI. CONCLUSION AND FUTURE WORK

We have presented algorithms that construct smooth feed-
back plans on two different types of cell decompositions of
any finite dimension. A smooth feedback plan defines a feed-
back law, which smoothly stabilizes the system to a selected
goal state from anywhere in the state space, while avoiding
obstacles. To accomplish this, we construct a vector field on
the state space that is smooth except for a set of measure zero
and which has integral curves that are smooth and converge
to the goal. Feedback (i.e., closed loop control) is important
because it provides a measure of robustness to uncertainty
in sensing and control. Using feedback, inputs are computed
as (typically simple) functions of the current state, and itis
therefore possible to compute them at a very high rate, further
improving performance. Smooth feedback also contributes to
practical robustness because the control changes smoothlyin
response to small perturbations in the state. This implies that
when using smooth feedback, a practical system is likely to
perform better when errors occur. Although smooth controls
can still have arbitrarily high derivatives (any continuous curve
has a smooth approximation that can be arbitrarily close),
they tend to avoid rapid input changes whenever possible, also
leading to more reliable operations.

We first described how to construct smooth feedback plans
for a point robot moving in a state space with a piecewise lin-
ear boundary. We did this by first computing a decomposition
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of the state space into convex polytopes, and then constructing
local feedback laws over individual cells and smoothly tran-
sitioning between them. We also described how to construct
smooth feedback plans over the cells of a cylindrical algebraic
decomposition. The important work of Schwartz and Sharir
demonstrated how to solve the general piano movers’ problem
using the Collins decomposition, a type of cylindrical algebraic
decomposition [91]. Our work extends this, showing that not
only can these decompositions solve single motion planning
queries, but can also be used to compute a global smooth
feedback plan. Moreover, this feedback can be computed
essentially for free, given the complexity of the CAD cells.
Hence, our work proves the existence of smooth feedback
plans for a very general class of motion planning problems.
To our knowledge, this is the most general result to date.

Although this is an interesting theoretical result, it has
limited practical utility because the number of cells in a
Collins decomposition is doubly exponential in the dimension
of the space. Since our algorithm is applicable to any type
of cylindrical algebraic decomposition, our method may be
practical for problems that use CADs but do not require the
full complexity of Collins decompositions. For example, our
approach applies to the specific decompositions produced for
a ladder robot [3] and a robot translating and rotating in the
plane [2].

In conclusion, we have presented algorithms that efficiently
solve the feedback motion planning problem, once a cell de-
composition has been computed. This result builds on existing
complete path planning methods and obtains a smooth vector
field for virtually no additional cost. However, two shortcom-
ings of the method remain as topics of future research. First,
there is no explicit way to induce a preference toward trajecto-
ries that have lower curvature. We simply provide smoothness,
which in the worst case could be arbitrarily close to a non-
smooth point. Second, our methods produce trajectories that
are sensitive to the particular cell decomposition, ratherthan
focusing on the quality of the overall trajectories. Computing
vector fields that optimize quality measures while maintaining
smoothness would be ideal; however, this seems intractable
given our present understanding of the state of the art.
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