
A Multiresolution Approach for Motion Planning
Under Differential Constraints

Stephen R. Lindemann and Steven M. LaValle
Department of Computer Science

University of Illinois
Urbana, IL 61801 USA

{slindema, lavalle}@uiuc.edu

Abstract— In this paper, we present an incremental, mul-
tiresolution motion planning algorithm designed for systems
with differential constraints. Planning for these sytems is more
difficult than ordinary path planning due to the presence of
momentum (drift) or nonholonomic velocity constraints. Given
a motion planning problem for such a system and that a
solution to the problem exists, then a finite reachability graph
containing a solution trajectory is guaranteed to exist, under very
reasonable conditions. In general, this graph can be generated
using sufficiently dense input space sampling, sufficiently small
time step, and sufficiently large tree depth. We show how to find
and search such a tree in an incremental, multiresolution way. We
prove the completeness of our algorithm, discuss related practical
concerns, and show experimental results for several systems.

I. INTRODUCTION

Motion planning algorithms utilizing the configuration
space [1] have been developed with great success over the past
three decades. However, most motion planning algorithms–
including modern sampling-based algorithms–are designed
and used for standard path planning applications not involv-
ing differential constraints. Even though these problems are
extremely difficult (in fact, PSPACE-hard [2]), planning for
systems with differential constraints is much more challenging.
For example, the system may have significant momentum yet
small control influence, as in the case of a space ship using
small thrusters, or the system may not be fully actuated, as
in the case of nonholonomic mobile robots. These additional
restrictions make it more difficult for a motion planning
algorithm to find a feasible trajectory for the system; i.e., one
which takes into account both the differential constraints and
the global obstacle constraints.

Whereas path planning is more common, planning under
differential constraints has been addressed since Laumond in-
troduced nonholonomic planning to the community [3]. Some
approaches to planning under differential constraints are based
on decomposing the problem into two parts: first, planning
a path for the system without considering the constaints;
then, transforming the path to satisfy the constraints [4]–
[8]. These planners have the same completeness properties as
the underlying path planner. Sampling-based approaches using
random sampling are typically probabilistically complete: that
is, the probability of finding a feasible path approaches one
as the number of iterations goes to infinity, assuming that a
solution path exists. Examples of such planners include [9]–

[11]. Barraquand and Latombe [12] gave the first resolution
complete planner for nonholonomic multibody vehicles. Res-
olution complete planners are guaranteed to find a solution
trajectory in finite time if one exists, assuming the resolution
of the search is fine enough. Cheng and LaValle introduced
resolution complete RRTs [13]. Resolution completeness is
advantageous compared to probabilistic completeness because
it offers a strong deterministic performance guarantee, rather
than probabilistic bounds. Our algorithm extends Barraquand
and Latombe’s work and consequently is resolution complete.
We begin with a large search resolution and refine it incremen-
tally in a multi-resolution way. Figure 1 illustrates the type of
refinement our planner produces for a car-like robot.

Section II, briefly defines the problem of planning under
differential constraints and describes related work. Section
III discusses Barraquand and Latombe’s planner in more
detail, and presents our algorithm and its proof of resolution
completeness. Practical considerations and demonstrations of
our algorithm are given in Section V.

II. PROBLEM FORMULATION AND RELATED WORK

This section formally defines the problem we consider
and discusses related work for planning under differential
constraints.

A. Problem Formulation

The basic motion planning problem is to find a continous
path in the configuration space from an initial state to a goal
state, both of which are given. In the problem of motion plan-
ning under differential constraints, planning is performed in a
state space (often the phase space of the configuration space)
and the trajectory must satisfy the differential constraints
at every point. There can be both equality and inequality
constraints; the equality constraints are often expressed in the
state transition equation, ẋ = f(x, u). A solution trajectory
is constructed by computing a function u : [0, tf ] → U such
that the final position x(t) = x(0) +

∫ tf

0
f(x(s), u(s))ds is

the goal state, xgoal. In general, the input set is a bounded
subset of R

m. For the present, assume that we are given a
finite input set, U . Later, we will see that this is not necessary;
however, it will facilitate the description of our algorithm. Our
algorithm will return a finite sequence of inputs, each having



Fig. 1. From top to bottom: search graphs consisting of nodes of ranks 1,
2, and 3.

finite application time, which takes the system from the initial
state to the goal state.

B. Planning Under Differential Constraints

As discussed in Section I, planning under differential con-
straints takes several forms. We will not discuss “plan and
transform” planners, as they are not as relevant to our work.
Instead, we focus on several probabilistically complete or
resolution complete algorithms which compute solution trajec-
tories directly. We delay discussing Barraquand and Latombe’s
algorithm until Section III.

Hsu et al. introduced an expansive-space planning algorithm
for kinodynamic robots and moving obstacles [9]; the algo-
rithm was later called the Expansive Space Tree (EST) method.
In this algorithm, a node in the tree is chosen according to a
biased probability measure, and an input from the control set is
chosen at random and applied from that node. If the resulting

trajectory is collision-free, then the new node is added to the
tree. In order to take moving obstacles into account, sampling
and collision checking was done in the state×time space.

LaValle and Kuffner developed Rapidly-Exploring Random
Trees (RRTs) for motion planning under differential con-
straints [10]. RRTs select a state at random from the state
space and find its nearest neighbor in the search graph. Then,
an input is applied which advances toward the random state.
The sampling and expansion process is Voronoi-biased and
tends to grow the search tree toward unexplored areas quickly.

Both of the above planners are probabilistically complete;
Cheng and LaValle developed an RRT variant which is
resolution complete [13]. It achieves this completeness by
discretizing the state space and ensuring exhaustive search of
the reachability graph.

Frazzoli et al. introduced the idea of maneuver-based mo-
tion planning for nonlinear systems with symmetries [14],
[15]. Some of their work is based on integrating maneuvers
(or motion primitives) with RRT-based search. In the context
of safety verification, Bahtia and Frazzoli introduce an RRT-
based method which refines the time discretization, a property
which our algorithm shares.

Finally, Ladd and Kavraki presented the PDST-EXPLORE
planner [11], designed to avoid some of the difficulties to
which other sampling-based algorithms are prone to when
applied to systems with differential constraints. This planner
chooses a trajectory segment based on a deterministic update
schedule and then creates a new segment extending from a
point in the existing segment, through the application of a ran-
dom control. This method is also probabilistically complete.

III. EXPLORING THE REACHABILITY GRAPH

INCREMENTALLY AND EXHAUSTIVELY

In this section, we will describe our algorithm and prove
that it is resolution complete. Since our method is inspired
by the nonholonomic planner of Barraquand and Latombe
[12], we will describe their method and show how our planner
significantly extends it.

A. Barraquand and Latombe’s Planner

In [12], Barraquand and Latombe present a resolution com-
plete algorithm for finding feasible (even optimal) trajectories
for nonholonomic mobile multi-body vehicles. Their algorithm
is simple yet innovative. It uses three parameters: the time
discretization, ∆t (they use the notation δt0); the maximum
allowable depth of the search tree, H; and the discretization of
the state space, R (the space is decomposed into a grid having
2R cells per axis). The first two parameters define a search tree
for the algorithm; the initial state is the root of the tree, and
every child node is formed by applying a fixed control for
length ∆t from a parent node. Denote this tree as T (∆t,H).
For the problems they consider, the system is controllable
using only four inputs (corresponding to forward/reverse and
the extremal steering angles); hence, the total number of nodes
in T (∆t,H) is 4H . Nodes are expanded one at a time using
a priority queue (they use the number of path reversals as

2



the priority). The algorithm will not necessarily expand all
nodes in T (∆t,H), however, because they require that each
discrete cell in the state space contain at most one node of the
tree. They call their planner asymptotically complete, which
means that if the parameters are chosen fine enough, a solution
will be found by the planner. Their proof of completeness has
three steps. First, they assert that if a solution path exists for
the continuous time systems they consider, then there exists a
small enough value of ∆t so that a solution path exists which
is generated by a finite sequence of controls, each applied for
time ∆t. Second, H can be chosen large enough so that this
path exists in T (∆t,H). Third, the state space discretization
R can be chosen fine enough that every node in T (∆t,H)
is in a separate cell, guaranteeing that the path will be found
during the search process, regardless of the order in which the
nodes of T (∆t,H) are expanded. Note that only ∆t and H
are needed for completeness, not R. The parameter R serves
two other purposes in their planner. The first purpose is as
a heuristic; it forces the search to be more uniform over the
entire configuration space and potentially reduces the number
of nodes expanded. Secondly, it can be used to discretize the
obstacles and perform collision checking; however, as they
note in their paper, there are better ways to perform this task.

The biggest disadvantage of Barraquand and Latombe’s
method is that there is no way to know ahead of time what
the parameter values should be in order for a solution to be
found. If a search fails, it is unclear whether the search depth
should be increased, the time step shortened, or the state space
resolution increased. Additionally, poor choices of time and
state space discretization can lead to problems. If the time
discretization is so fine that the system cannot move from one
cell to another in a single time interval, then no progress will
be made. This means that the state space discretization must be
made similarly fine, which potentially decreases its heuristic
value. We address these problems by describing a planner
which incrementally refines the search tree in a multiresolution
way.

B. Proposed Method

Our method can be seen as an multiresolution extension of
Barraquand and Latombe’s planner. Our method incrementally
decreases the time discretization, increases the depth of the
search, and refines the state space discretization. The proof
of completeness of our planner, like that of Barraquand and
Latombe, is structured around two key statements: first, with
∆t small enough and H large enough, a solution trajectory will
exist in T (∆t,H); and second, that this tree will be generated
and searched exhaustively given a fine enough state space
discretization. We assume that the first statement is true; there
are certain requirements on the system for this to be the case,
but a detailed discussion of issues related to this question is
beyond the scope of this work. Significantly more detail can be
found in [16]. Our algorithm searches an infinite sequence of
increasingly higher resolution reachability graphs, until either
the search is stopped or a solution trajectory is found. If a
solution trajectory exists, it is guaranteed to be found by the

GENERATE SEARCH TREE(initialState)

1 createNewNode(initialState)
2 while (!solutionFound &&

iterations < maxIterations)
3 x = chooseNode()
4 if (isTrajectoryV alid(parent(x), x))
5 T.insert(x)
6 for u in U
7 createNewNode(Child(x, u, 0))

// assume x = Child(y, u, i)
8 createNewNode(Child(y, u, i + 1))
9 iterations = iterations + 1
10 end while

Fig. 2. Our algorithm, which generates and searches a multiresolution
reachability graph.

planner.
Our algorithm expands nodes in the search tree based on

the ranks of nodes in the search tree; the rank of a node
encodes information regarding both the depth of the node in
the tree and the fineness of the time discretization required
to reach the node. For the moment, disregard the existence
of any state space discretization; as in the case of Barraquand
and Latombe, this is not essential for completeness and will be
considered later. The two parameters needed for our algorithm
are ∆t and a “lookahead” parameter l, which we will discuss
later. This parameter ∆t, in contrast to that of Barraquand
and Latombe, should be chosen to be large; it represents the
largest step the planner will attempt to take. The planner will
reduce the search time increment, as needed. This is related to
the R4T method of Bahtia and Frazzoli [17]. Assume that the
system transition equation is ẋ = f(x, u) and that the available
controls are consist of a finite set U . Let t = 2−i∆t, i ∈
{0, 1, . . .}; then every node will be generated from a parent
node as follows:

Child(x, u, i) = x +
∫ t

0

f(x, u)dτ

Then the rank of the node is defined to be:

Rank(Child(x, u, i)) = Rank(x) + i + 1

The rank of the initial state, which is the root of the tree, is
taken to be zero. Since i is greater than or equal to zero, the
rank of a child is always greater than that of its parent.

Now, we can formally describe our algorithm, which we
do in Figure III-B. When a node is chosen for expansion in
chooseNode, it is added to the search tree if the trajectory
connecting it to its parent is collision-free. If this occurs,
a number of children are generated, corresponding to the
inputs applied for the maximum time length ∆t. Regardless of
whether or not the node is added to the search tree, a new node
is generated from the parent at a smaller time discretization.
This means that the tree is continually being refined. When
a node is created, it is eligible for selection by chooseNode
(i.e., it is placed in a list of open nodes); a node is removed
from the open list when it is selected for expansion.

3



The order in which chooseNode selects nodes is critical
for resolution completeness. However, finding sufficient con-
ditions to apply is not difficult. Given some l ∈ Z

+, assume
that chooseNode never expands a node of rank i + l until
all nodes of rank i have been expanded. This is sufficient to
guarantee resolution completeness, which is formally stated in
the following theorem:

Theorem 1 If chooseNode never expands a node of rank i+l
until all nodes of rank i have been expanded, then the planner
is resolution complete.

Proof: We assume that there exists a reachability graph of
time discretization t = 2−i∆t and depth H , denoted T (t,H),
such that a solution path exists in T (t,H). As mentioned
above, conditions for this are discussed in [16]. In order to
show resolution completeness, we need to guarantee that the
algorithm will generate and search this entire tree. First, we
show that this tree is generated in its entirety (at least, all
collision free paths in the tree exist). We will use induction to
show that for any rank r, all nodes generated by collision-free
paths having rank r will be generated. Having done this, it
will be simple to show that they will be searched.

As our base case, it is obvious that all nodes with rank
r = 1 are added, since the root node is expanded in the first
iteration (since it is the only node in the tree at that time). The
children it generates during that iteration consist of the entire
set of nodes of rank 1. Now, assume that all nodes of rank
j, j ≤ r have been generated; we need to show that all nodes
of rank r+1 will eventually be generated. Note that all nodes
of rank j, j ≤ r must be chosen for expansion in finite time,
since there are finitely many of these nodes and they must all
be expanded before any node of rank r+ l is expanded. Every
node of rank r is generated as a result of the expansion of
some node with rank less than r; this can be seen since the
new nodes generated in lines 7 and 8 of the algorithm all have
rank equal to one greater than the rank of the node chosen for
expansion. Hence, every node of rank r will be generated in
finite time.

Now, we show that the tree T (t,H) will be exhaustively
searched. The maximum rank of any node in T (t,H) is (i +
1)H , since the maximum depth is H and the rank grows by
at most i + 1 for any node (since we have t = 2−i∆t for this
tree). By assumption, chooseNode will expand all these nodes
before any nodes of rank (i + 1)H + l are expanded. Since
the number of nodes of any given rank r is finite, (denote this
by Nr), the sum

∑(i+1)H+l−1
r=1 Nr is also finite and the tree is

guaranteed to be searched exhaustively in finite time. Hence,
the solution trajectory will be found.

Apart from the stated condition, there is great freedom in
how chooseNode is permitted to select nodes for expansion.
It may be possible to develop selection methods tailored to
dynamical systems, or any of a number of standard motion
planning heuristics could be applied. For example, the nodes
could be selected according to an RRT heuristic [10], so as to
reduce dispersion [18], or to maximize information gain [19],

3

2

1

4

5

20 2−1 2−2 2−3 2−4

t

d 3

2

1

4

5

20 2−1 2−2 2−3 2−4

t

d

Fig. 3. Different approaches to guaranteeing resolution completeness. On
the left, nodes must be added in the order specified; on the right, any node
from the strip may be added, and the strip is advanced when all nodes on the
lower boundary have been added. Our method is analogous to, though not
identical with, this method.

[20]. One could also use an optimality criterion to add nodes,
as in [12].

There are a number of different requirements that, if
placed on chooseNode, will yield resolution completeness.
A straightforward approach, given in [21], is to use a “tri-
angularization” approach to adding nodes of particular time
discretizations and depths. Our approach is advantageous
compared to this one because it provides much more flexibility
with respect to the order in which different nodes may be
added, without sacrificing the completeness guarantees. An
illustration of the differences may be seen in Figure 3.

Our method extends easily to the case where the input set
is not finite. Assume that the input set is bounded and that S
is a sample sequence that is dense in U , and let Sn be the
first n elements of S (alternatively, it could denote the first
n “resolution levels” of the sample sequence, which might
be on the order of 2n samples). Let T (t,H, Sn) be the tree
generated by applying inputs from Sn, at time discretization t,
up to depth H . We can then use a triangularization argument
as in [21], or a revised rank criterion, to maintain resolution
completeness in this setting. Cheng and LaValle use a sampled
input space in their formulation of the resolution completeness
problem [16].

Up to this point, we have ignored the issue of state space
discretization. While it appeared in Barraquand and Latombe’s
planner, we argued above that it did not play an important role
in the resolution completeness of the planner. Rather, it can be
used to improve the efficiency of the planner by forcing the
exploration to be more global, while not preventing resolution
completeness. Also in the interest of promoting efficient
search, we propose an incremental, multi-resolution analogue
to Barraquand and Latombe’s state space discretization. First,
it can be noted that the key use of the discretization was
that the tree was not permitted to add a node in a cell that
already contained one. This forces new nodes to be added
to unexplored cells. However, there is no need to require
that the cells in the partition be grid cells, which is what
arise from a standard discretization of the space. Any kind of
partition will work for this purpose, although some partitions
will certainly be better than others [21]. We propose that the

4



Voronoi diagram of a finite point set P be used to partition
the space. Thus, a node with nearest neighbor p ∈ P would
not be added if another node in the tree exists with p as its
nearest neighbor.

This partition can be refined in an incremental way by
adding more points to the point set P . In order for the partition
to be useful, the point sequence generating P needs to be
dense, uniform, and incremental; possible choices of sample
sequences are random or quasi-random points or incremental
grid sequences [22]. Note that the partition is only refined
in a loose sense; technically, it is not a refinement because
a post-refinement cell may not be contained entirely in any
pre-refinement cell, although performance might be improved
if this was the case. It should be noted that after a refinement,
the tree may have two or more nodes present in a single cell;
this is acceptable, but we continue to require that no new nodes
can be added in that cell if this occurs.

Assuming we utilize a state space partitioning scheme as
above, we need to show that the resolution completeness of
our planner is not detrimentally affected. First, define the set
of open nodes to be all nodes eligible for expansion without
considering the state space partition; for some i, they will all
have some rank r satisfying i ≤ r < i + l. We have already
shown that this set will always have size greater than zero.
Define the set of valid nodes to be those open nodes which
are eligible for expansion under the state space partition. We
now permit chooseNode to select for expansion only valid
nodes, rather than simply open nodes. Then, assume that the
sample sequence generating P is dense. Then, we have the
following:

Theorem 2 Let chooseNodes be as in Theorem 1, together
with the requirements given above. If the partition is refined
any time the number of valid nodes is zero, then the algorithm
is resolution complete.

Proof: The number of open nodes is guaranteed never to
reach zero. Since the sample sequence is dense, there exists
some number of samples n such that if P = {s1, s2, · · · , sn},
each open node is in a separate cell of the partition. Then every
open node is also valid, and will be chosen by chooseNode.
Thus, the resolution completeness guarantee still holds.

IV. PRACTICAL CONSIDERATIONS AND EXPERIMENTS

In our implementation of this planner, we encountered
several practical issues which deserve to be addressed. We
believe that they are related to fundamental issues in sampling-
based planning under differential constraints and give direction
for future research.

Motion Primitives: The value of motion primitives, in-
troduced by Frazzoli et al., has become more apparent in
recent years, both in the context of RRTs (as in [14]), and in
other planners such as PDST-Explore [11]. In the context of
our planner, carefully-designed motion primitives offer great
advantages over simply applying constant inputs. Recall that
we set the initial ∆t quite large, with the goal of permitting

the planner to take large steps in a single iteration; however,
applying a constant input over a long time interval is often un-
desirable for systems with significant dynamics. For example,
applying the same input may give the system far too much
momentum in one direction. It is far more useful to apply an
input for a shorter length of time and utilize the rest of the
time to coast, or to apply inputs which balance each other, thus
keeping the system momentum at more manageable levels.
If motion primitives can be designed which can be applied
for any ∆t, then they fit perfectly with our planner; ideally,
we would like to have a range of inputs which scale from
carefully-designed motion primitives at large ∆t to appropriate
constant inputs for small ∆t. We believe that finding good sets
of motion primitives is a key issue in planning for systems with
differential constraints.

Time Discretization and State Space Partitioning: A
choice of appropriately large time discretization is not only
advantageous insofar as it enables large steps to be taken, but
it is also important when using the state space partitioning
method we describe. The motivation for using our method
as opposed to a strict grid discretization as in [12] is that
the partition can be initialized with only a few points and
then can be refined incrementally as needed. Our planner is
still affected by the problem described earlier for Barraquand
and Latombe’s planner: if the time discretization is fine (i.e.,
∆t is too small), then a fine state space partition is needed;
otherwise, no nodes can be added, since only one tree vertex
per cell is permitted.

Lookahead and Heuristic Search: The choice of the
lookahead parameter has significant impact on the way that
the planner searches the reachability graph. If the lookahead
parameter is very large (recall that it can be any finite non-
negative integer), then the behavior of the planner will mimic
that of the heuristic used to guide chooseNode (after taking
into account the state space partition requirement). If the
lookahead is zero, the planner essentially performs breadth
first search. A small lookahead parameter often interacts with
the state space partition in the same way that a small ∆t does,
reducing the efficiency of the planner for simple problems.
This is because a small lookahead causes the planner to add
nodes close to the initial state early in the search, and the
state space partition must become very fine in order to permit
these nodes to be added. For many problems, a reasonably
large lookahead is preferable, because it retains resolution
completeness while exploiting the (hopefully well-informed)
heuristic search behavior in chooseNode.

Figure 4 illustrates paths found by our algorithm. In the first
experiment, a Reeds-Shepp car must navigate a maze. In this
example, motion primitives were not used. As can be seen in
the figure, the large ∆t causes there to be many reversals. This
could be alleviated by introducing motion primitives which
regulate the amount the car can turn during one ∆t. In the
second experiment, we solve a lane changing problem where
a car must swerve to avoid the obstacle while traveling at a
large velocity. The state space of the vehicle has 5 degrees
of freedom, incorporating sliding dynamics into the motion

5



Fig. 4. Two sample trajectories found by our planner. On top, a Reeds-Shepp
car must navigate the maze; on bottom, a car with sliding dynamics performs
a high-speed lane change.

of the car. We used constant inputs as well as basic motion
primitives in the construction of the search tree.

V. CONCLUSION

In conclusion, we have presented a new motion planning
algorithm for systems with differential constraints. Our work is
an incremental, multi-resolution extension of Barraquand and
Latombe’s seminal planner for multibody mobile robots. We
proved that our planner is resolution complete, both with and
without the use of a state space partition. Our planner provides
a platform for providing these strong deterministic guarantees
while utilizing popular heuristic search techniques to enhance
practical performance. We implemented our planner and have
tested it on several systems with differential constraints. We
have also identified key practical considerations for our plan-
ner. In the future, we plan to address these areas in more depth.
We would also like to develop good sets of motion primitives
for common dynamical systems and to test our planner on
more difficult planning problems.

ACKNOWLEDGMENT

This work was funded in part by NSF Awards 9875304,
0118146, and 0208891.

REFERENCES

[1] T. Lozano-Pérez and M. A. Wesley, “An algorithm for planning collision-
free paths among polyhedral obstacles,” Communications of the ACM,
vol. 22, no. 10, pp. 560–570, 1979.

[2] J. H. Reif, “Complexity of the mover’s problem and generalizations,” in
Proc. of IEEE Symp. on Foundat. of Comp. Sci., 1979, pp. 421–427.

[3] J. P. Laumond, “Trajectories for mobile robots with kinematic and envi-
ronment constraints,” in Proc. of International Conference on Intelligent
Autonomous Systems, 1986, pp. 346–354.

[4] P. Ferbach, “A method of progressive constraints for nonholonomic
motion planning,” in IEEE Int. Conf. Robot. & Autom., 1996, pp. 2949–
2955.

[5] J. P. Laumond, S. Sekhavat, and F. Lamiraux, “Guidelines in nonholo-
nomic motion planning for mobile robots,” in Robot Motion Plannning
and Control, J.-P. Laumond, Ed. Berlin: Springer-Verlag, 1998, pp.
1–53.

[6] S. Sekhavat, P. Svestka, J.-P. Laumond, and M. H. Overmars, “Multilevel
path planning for nonholonomic robots using semiholonomic subsys-
tems,” Int. J. Robot. Res., vol. 17, pp. 840–857, 1998.

[7] F. Bullo and K. M. Lynch, “Kinematic controllability for decoupled
trajectory planning in underactuated mechanical systems,” IEEE Trans.
on Robotics and Automation, vol. 17, no. 4, pp. 402–412, 2001.

[8] P. Choudhury and K. Lynch, “Trajectory planning for second-order
underactuated mechanical systems in presence of obstacles,” in Proceed-
ings of the Workshop on Algorithmic Foundations of Robotics, 2002.

[9] D. Hsu, R. Kindel, J.-C. Latombe, and S. Rock, “Randomized kino-
dynamic motion planning with moving obstacles,” in Algorithmic and
Computational Robotics: New Directions, B. R. Donald, K. M. Lynch,
and D. Rus, Eds. Wellesley, MA: A K Peters, 2001.

[10] S. M. LaValle and J. J. Kuffner, “Rapidly-exploring random trees:
Progress and prospects,” in Algorithmic and Computational Robotics:
New Directions, B. R. Donald, K. M. Lynch, and D. Rus, Eds. Welles-
ley, MA: A K Peters, 2001, pp. 293–308.

[11] A. M. Ladd and L. E. Kavraki, “Fast exploration for robots with
dynamics,” in Proc. Workshop on Algorithmic Foundation of Robotics,
2004, pp. 313–328.

[12] J. Barraquand and J.-C. Latombe, “Nonholonomic multibody mobile
robots: Controllability and motion planning in the presence of obstacles,”
Algorithmica, vol. 10, pp. 121–155, 1993.

[13] P. Cheng and S. M. LaValle, “Resolution complete rapidly-exploring
random trees,” in Proc. IEEE Int’l Conf. on Robotics and Automation,
2002, pp. 267–272.

[14] E. Frazzoli, M. A. Dahleh, and E. Feron, “Real-time motion planning
for agile autonomous vehicles,” AIAA Journal of Guidance and Control,
vol. 25, no. 1, pp. 116–129, 2002.

[15] ——, “Maneuver-based motion planning for nonlinear systems with
symmetries,” IEEE Trans. Robot. & Autom., 2005.

[16] P. Cheng and S. M. LaValle, “Resolution completeness for sampling-
based motion planning with differential constraints,” Submitted to the
International Journal of Robotics Research, 2004.

[17] A. Bhatia and E. Frazzoli, “Incremental search methods for reachability
analysis of continuous and hybrid systems,” in Hybrid Systems: Com-
putation and Control, Mar. 2004.

[18] S. R. Lindemann and S. M. LaValle, “Incrementally reducing dispersion
by increasing Voronoi bias in RRTs,” in Proc. IEEE International
Conference on Robotics and Automation, 2004.

[19] B. Burns and O. Brock, “Information theoretic construction of prob-
abilistic roadmaps,” in IEEE/RSJ Int. Conf. on Intelligent Robots &
Systems, 2003, pp. 650–655.

[20] ——, “Sampling-based motion planning using predictive models,” in
IEEE Int. Conf. Robot. & Autom., 2005.

[21] S. M. LaValle, Planning Algorithms. Cambridge University Press (also
available at http://msl.cs.uiuc.edu/planning/), to be published in 2006.

[22] S. R. Lindemann, A. Yershova, and S. M. LaValle, “Incremental grid
sampling strategies in robotics,” in Workshop on the Algorithmic Foun-
dations of Robotics, 2004, pp. 297–312.

6


