Steps Toward Derandomizing RRT's

Stephen R. Lindemann

Steven M. LaValle

Dept. of Computer Science
University of Illinois
Urbana, IL 61801 USA
{slindema, lavalle}@uiuc.edu

Abstract

We present two motion planning algorithms, based on the
Rapidly Ezxploring Random Tree (RRT) family of algo-
rithms. These algorithms represent the first work in the
direction of derandomizing RRTs; this is a very chal-
lenging problem due to the way randomization is used in
RRTs. In RRTs, randomization is used to create Voronoi
bias, which causes the search trees to rapidly explore the
state space. Our algorithms take steps to increase the
Voronoi bias and to retain this property without the use
of randomization. Studying these and related algorithms
will improve our understanding of how efficient explo-
ration can be accomplished, and will hopefully lead to
improved planners. We give experimental results that
illustrate how the new algorithms explore the state space
and how they compare with existing RRT algorithms.

1 Introduction

For over a decade, randomized algorithms such as
the Randomized Potential Field Planner (RPP) [3], the
Probabilistic Roadmap (PRM) family [1, 9, 21, 24, 25],
Rapidly-Exploring Random Trees (RRTs) [10, 12, 13],
and others [4, 8, 17], have dominated the field of motion
planning. Recently, a great deal of attention has been
given to comparing random versus deterministic sam-
pling in the context of PRMs [6, 11]. A recent survey
of this field, termed sampling-based motion planning, is
given in [15]. In this paper, we discuss the role of ran-
domization in RRTs, and introduce two new planners
which move toward their derandomization.

Randomization is a common algorithmic technique,
and it is of great value in many contexts. Sometimes,
it is used to defeat an adversary who might gain an ad-
vantage from learning one’s deterministic strategy (e.g.,
cryptographic or sorting algorithms). Randomization is
also useful for approximation or in conjunction with am-
plification techniques (e.g., the randomized min cut al-
gorithm). It also allows for probabilistic performance
analysis, which can be very useful. For problems of nu-
merical integration, randomization can sometimes defeat
the “curse of dimensionality” [22].

In the context of the original PRM, the primary use
of randomization is to uniformly sample the configura-
tion space. Recently, the usefulness of randomization
for this purpose has been challenged; proponents of de-
terministic sampling argue that there are deterministic
sequences satisfying other uniformity measures (e.g., dis-
crepancy and dispersion) which perform at least as well
as random sampling. Furthermore, these methods give
deterministic guarantees of convergence (such as resolu-
tion completeness). Currently, work is being done both
to study the performance of various random and deter-
ministic sampling sequences in the PRM [11], and to con-
struct new deterministic uniform sequences with other
properties that are useful for motion planning [14].

It cannot be denied that contemporary motion plan-
ning algorithms, many of which use randomization, are
very efficient and able to solve many challenging prob-
lems. This might lead one to conclude that random-
ization is the key to their effectiveness; however, this is
not necessarily the case. On the contrary, randomiza-
tion can easily become a “black box” which obscures the
reasons for an algorithm’s success. Hence, attempts to
derandomize popular motion planning algorithms do not
reflect antipathy toward randomization, but rather the
desire to understand the fundamental insights of these
algorithms. After studying an algorithm in both its ran-
domized and derandomized forms, it will be possible to
intelligently decide which to use, or whether some mix-
ture of the two is appropriate. This approach might even
result in algorithms that combine deterministic and ran-
domized strategies in a way that achieves the benefits of
both. For example, [20] uses a combined sampling strat-
egy for constructing a Visibility PRM; they recursively
divide the space into quadrants (a deterministic strat-
egy) and choose a random sample within each quadrant.
In the area of low-discrepancy sampling, Wang and Hick-
ernell have constructed and analyzed randomized Halton
sequences [23]. Geraerts and Overmars have also inves-
tigated randomizing Halton points [6].

We believe that a great deal of work remains to in-
vestigate deterministic variants of contemporary motion
planning algorithms. We have already mentioned efforts

to derandomize PRMs; namely, those which attempt to
use deterministic uniform sampling methods. It is also
interesting to consider derandomizing RRTSs; this is a
very challenging task, due to the way that randomiza-
tion is used in RRTs.

2 Randomization in RRT's

In the case of RRTSs, derandomization is more difficult
than with PRMs. In the original PRM, the primary use
of randomization is to produce a uniformly distributed
sample sequence in order to cover the space; for RRTs,
the use of randomization is more subtle. As opposed to
the former case, simply replacing random samples with
deterministic ones will not capture the essence of the
exploration strategy of RRTs. In order to understand
the best way to derandomize RRTs, we will outline the
role of random sampling in the basic RRT algorithm.

The basic RRT algorithm operates very simply; the
overall strategy is to incrementally grow a tree from the
initial state to the goal state. The root of the tree is the
initial state; at each iteration, a random sample is taken
and its nearest neighbor in the tree computed. A new
node is then created by growing the nearest neighbor
toward the random sample. For an in-depth description
and analysis of RRTs, see [13].

In [13], it is argued that RRTs explore rapidly because
samples “pull” the search tree toward unexplored areas of
the state space. This occurs because the probability that
a vertex is selected for expansion is proportional to the
area of its Voronoi region. Hence, a node at the frontier
of the tree is likely to be chosen to grow into previously
unexplored territory. This argument can be made be-
cause the samples are independent and taken from a uni-
form random distribution. RRTs are consequently able
to explore in a Voronoi-biased manner, with very low
cost (generating random samples is inexpensive). This
appears to be the primary use of randomization in RRTs.
In this light, it may not be beneficial to simply replace
random samples with deterministic ones in RRT plan-
ners. In a uniform deterministic sequence, samples are
not independent from each other; consequently, one can-
not argue about the probability of a vertex being selected
in the same way as one can when using random samples.
It is also clear that in the context of RRTSs, the con-
cepts of Voronoi bias and deterministic sampling are not
necessarily related. In the case above, one could use de-
terministic sampling and have little or no Voronoi bias;
as we will see later, one may freely vary the amount of
Voronoi bias using random sampling.

It should be noted that for RRTs, Voronoi bias does
not play the same role as in some other recent motion
planning algorithms [5, 19]. These algorithms compute
the discretized GVD (generalized Voronoi diagram) of
the environment and use this information to sample near
the medial axis of free space (for another medial axis-
based approach, see [24]). In this case, the Voronoi di-
agram is based on the environment. In RRTs, however,

the Voronoi bias occurs with respect to the Voronoi di-
agram of the nodes in the search tree; that is, the nodes
in the search tree with the largest Voronoi regions tend
to be selected for exploration.

One may use the concept of Voronoi bias to construct
a deterministic RRT. Simply construct the d-dimensional
Voronoi diagram of the nodes in the tree and use this in-
formation (along with a decision rule) to incrementally
grow the search tree. Two possible decision rules are:
grow toward the centroid of the largest Voronoi region
(this requires calculation of the volumes of the Voronoi
regions); or, attempt to reduce the size of the largest
empty ball (the center of the largest empty ball is a
Voronoi vertex). Either of these approaches is theoret-
ically feasible, since it is well-known how to construct
Voronoi diagrams in arbitrary dimensions. Practically,
however, it is no simple task to robustly compute Voronoi
diagrams in d dimensions, and implementing algorithms
that do so is quite difficult. In addition to this, most con-
struction methods use an £ metric in Euclidean space;
this is more restrictive than is appropriate for general
motion planning problems, which may have different
metrics and whose topologies are are often more com-
plicated. Finally, the cost of explicitly computing this
information may be prohibitive from a practical point of
view.

While these Voronoi bias-maximizing approaches are
worth exploring, we do not seek to do so in this paper.
Instead, we propose two algorithms which lie between the
original RRT and the fully Voronoi-biased approaches.
These algorithms are more Voronoi-biased than the origi-
nal RRT, but not as much so as those based on explicitly-
constructed Voronoi diagrams. In related work, we intro-
duce another derandomized RRT variant, which is based
on inremental dispersion reduction [16]; however, that
approach will not be discussed in this paper.

3 A spectrum of RRT-like planners

We wish to construct planners that take the idea of
Voronoi bias and emphasize it more strongly than in
the original RRT algorithm. However, to avoid the dif-
ficulties with explicitly constructing Voronoi diagrams,
we desire an approximate, sampling-based approach.
Hence, our new algorithms will lie in the middle of a
spectrum of RRT-like planners, with the original RRT
on one side and a deterministic Voronoi diagram-based
method on the other.

We have seen that the RRTs grow in a Voronoi-biased
manner due to the way they process the random samples
drawn from the configuration space. What would hap-
pen, then, if instead of taking a single sample, one took
k samples? One can sort the nodes in the tree accord-
ing to how many samples they were the nearest neighbor
for, and grow from the nodes which collected the most
samples. We call this algorithm the Multi-Sample RRT
(MS-RRTa), and pseudo-code for the basic algorithm is
given in Figure 1. Note that during a particular itera-

BUILD_MS-RRTA (2) BUILD_MS-RRTB(ins1)

1 Gsub.init(xinit); 1 Gsub.init(xim-t);
2 forx=1to X do 2 fork=1to K do
3 for i =1to k do 3 ADD_NEW_SAMPLE((sample, sampleList);
4 Zrand — RANDOM_STATE(); 4 forx=1to X do
5 Znear < NEAREST NEIGHBOR(Zrand, Gsub); 5 Zpest = max(z.sampleCount,x € Gsup);
6 Tnear-sampleCount += 1; 6 Tnewt — Tvest-sampleAverage/Tyest.sampleCount;
7 Tpear-sampleAverage += Trand; 7 Ubests Tnew, sSuccess «— CONTROL(Zpest, Tnewt, Gsub);
8 Zpest < max(x.sampleCount,x € Gsup); 8 if success
9 Tnewt — Tpest-sampleAverage/Tyest.sampleCount; 9 Gsup-add_vertex(Tnew);
10 Ubests Tnew, sSuccess «— CONTROL(Zpest, Tnewts Gsub); 10 Gsup-add_edge(Tnear, Tnew, Ubest);
11 if success 11 REDISTRIBUTE_SAMPLES(sampleList, G sub);
12 Gsup-add_vertex(Tnew); 12 Return Gsup
13 G sup-add_edge(Tnear, Tnew, Ubest);
14 CLEAR_SAMPLE_INFO(Gsuw);

15 Return Ggyp;

Figure 1: The basic MS-RRTa construction algorithm.

tion, a node grows toward the average of the samples it
collected; this may be viewed as an estimate of the cen-
troid of that node’s Voronoi region (clearly, it is guaran-
teed to be within the node’s Voronoi region). Also, as
k approaches infinity, we probabilistically obtain the ex-
act Voronoi volumes and Voronoi region centroids. This
means that one may view k as a knob which changes the
behavior of the algorithm from randomized to determin-
istic (hence we refer to it as partially randomized). We
also see that the cost of running this algorithm grows lin-
early with k, since at each iteration k nearest-neighbor
queries must be performed. Presumably, having more
Voronoi bias will result in better exploration and con-
sequently fewer nodes in the search tree; however, the
cost of each node grows as the Voronoi bias is increased.
Hence, the best performance is achieved by finding the
best value of the parameter k, which is not necessarily a
simple task.

Our second algorithm is similar to the first Multi-
Sample RRT. Its differences are based on two key ob-
servations. First, if one can obtain approximate Voronoi
information from a set of k£ uniformly distributed random
samples, one may also obtain it from k uniformly dis-
tributed deterministic samples (the Voronoi information
depends only on uniformity, not randomness). Hence,
as long as one has a sequence with good incremental
quality (i.e., the set of samples {s;,...,s;+x} from the
sequence is uniformly distributed for all i, k), one may
take k samples from that deterministic sequence and ex-
pect the algorithm to work as well as with random sam-
ples (in our experiments so far, we have used Halton
points [7]). Second, if some set of k samples gives a good
approximation, then there is no need to pick k new sam-
ples during the next iteration. Instead, the old samples
may be used again, saving the cost of doing k nearest-
neighbor queries at each iteration. At most, one must
do k metric evaluations per new node, which can yield

Figure 2: The basic MS-RRTb construction algorithm.

significant savings. To distinguish the algorithm result-
ing from these observations from the previous one, we
denote this one as MS-RRTb; pseudo-code is given in
Figure 2. In both of these algorithms, one may reach
a point where the k samples no longer provide enough
resolution to make a good choice about where to extend
the tree; in the case of the MS-RRTa, one may decide to
take k + ko samples each iteration instead of k. In the
case of MS-RRTD, one can add ks new samples to the
previous set and continue as before.

Each of these algorithms takes the key feature of
RRTs, Voronoi bias, and uses sampling techniques to
increase that bias. Another approach, based on disper-
sion reduction, is given in [16]. In the next section, we
discuss a few implementation details of our algorithms,
and some experimental results.

4 Implementation Details and Experi-
mental Results

Under certain situations, the performance of RRT al-
gorithms can be degraded by local minima. For example,
imagine the scenario where a node has a large Voronoi
region but is prevented from growing due to proximity
to an obstacle. In many cases, this causes little trouble
because eventually another node will be chosen to ex-
pand. However, both of the MS-RRT algorithms exhibit
greedy, Voronoi-biased behavior. This causes problems
with local minima to be magnified. To address this prob-
lem, both of our planners include obstacle nodes, which
are nodes in the search tree representing configurations
in the obstacle region of C-space. They are generated
when an obstacle is encountered during a connection at-
tempt. These nodes are not candidates for expansion
(i.e., they are all leaves in the tree), but they are al-
lowed to “own” samples. As a result, nodes which are
selected for expansion do not repeatedly grow toward a
local minimum. Unfortunately, obstacle nodes can have
problems of their own. For certain difficult problems
(e.g., those with narrow corridors), many obstacle nodes

can be created, which can significantly degrade perfor-
mance because more samples are required to decide how
to grow the tree. Consequently, we are currently inves-
tigating alternative approaches which combine the local
minimum-avoiding effects of obstacle nodes without their
disadvantages.

Each of our new algorithms has bottlenecks that do
not appear in standard RRT planners. As seen from
Section 3, MS-RRTa does a large number of nearest-
neighbor queries; consequently, the performance of this
algorithm depends both on the number of samples taken
per iteration and on the efficiency of the nearest-neighbor
calculation. Doing many nearest-neighbor queries is un-
avoidable for this method, but it is possible to reduce the
cost of these queries to a manageable level. We do this
by using a nearest neighbor package based on Kd-trees
[2, 18]. Likewise, MS-RRTb has a bottleneck as well: up-
dating the nearest neighbor for each sample after adding
new nodes to the tree. Currently, we use the naive ap-
proach which calls the metric function for each new node
and each sample, updating the nearest neighbor where
appropriate. It should be possible to accelerate this by
using an appropriate data structure (most likely, some
form of a Kd-tree); developing a way to do this is not
trivial, however, and we have not yet done so. Once
this is accomplished, however, MS-RRTb should speed
up significantly, particularly for difficult problems which
require large numbers of samples.

A few other implementation details will suffice to in-
troduce some experiments. First, one of the best RRT
planners is RRTConCon, a variant which uses two trees
(one starting at the initial state, the other at the goal
state) and is more greedy than the basic RRT (see [13] for
details). Hence, our experiments use corresponding ver-
sions of the MS-RRT planners (except where otherwise
noted). Also, MS-RRTa defaults to random sampling for
a particular iteration if it is unable to grow the tree in
the attempted Voronoi-biased manner. In experiments
using the basic algorithms, we use the basic RRT which
has been modified to attempt to connect to the goal af-
ter each iteration (we denote this variant as ModRRT).
Finally, our experiments below are all holonomic. This is
a departure from typical RRT applications, since RRTs
can easily be applied to systems with dynamics. How-
ever, our new algorithms are somewhat metric-sensitive
(which is to be expected, since they are strongly Voronoi-
biased, and the Voronoi diagram depends on the metric),
and for systems with dynamics finding an appropriate
metric is difficult. We are currently considering ways to
resolve this difficulty.

First, we present two two-dimensional examples to il-
lustrate how emphasizing Voronoi bias affects the growth
of the search tree. The first example consists of a simple
local minimum separating the initial and goal states (see
Figure 3). Both MS-RRT planners initially grow into the
local minimum and create an obstacle node upon encoun-
tering the obstacle; they then grow the other direction

and around the local minimum. Observe the effects of
randomization in MS-RRTa: while the deterministic MS-
RRTb always chooses a single direction to grow, random-
ization in the MS-RRTa sometimes causes it to grow in
both directions (sometimes, it grows in a single direction
like MS-RRTb). Also, the modified RRT planner (Mod-
RRT) requires significantly more planning iterations to
solve the problem than either MS-RRT algorithm. This
is primarily due to the effect of obstacle nodes, which
cause MS-RRTs to avoid obstacles more than an ordi-
nary RRT. Our second example is shown in Figure 4.
The algorithms behave in a manner similar to the previ-
ous example. Third, in our description of the MS-RRTa
algorithm, we mentioned that one could view the number
of samples taken per iteration as a knob which changes
behavior from a small degree of Voronoi bias (as in the
basic RRT) to a large degree of Voronoi bias. In Figures
5 and 6, we show how varying the value of k affects the
growth patterns.

Finally, we give two six-dimensional problems to il-
lustrate our algorithms’ performance for these problems.
The algorithms presented are not capable of outperform-
ing RRTConCon with respect to solution time; however,
it they do represent reasonable approaches to planning.
An alternative RRT-based approach, which is based on
incremental dispersion reduction, and uses many of the
ideas from this paper, has led to improved performance
over RRTConCon, based on our recent experiments [16].

5 Conclusions and Future Work

In conclusion, we have discussed the role of random-
ization in RRTs and introduced two new algorithms
which increase Voronoi bias. By studying these al-
gorithms, insight may be gained into the reasons for
RRT algorithms’ effectiveness at solving motion plan-
ning problems. Decreasing the effect of randomization
allows us to isolate certain aspects of the algorithms’
behavior, without the inherent “sloppiness” that results
from randomization. Understanding the key reasons for
RRTSs’ effectiveness is the first step toward making more
efficient planners, which may or may not utilize random-
ization.

Our long-term goals include developing efficient plan-
ners based on insights gained from studying the algo-
rithms presented in this paper, as well as other algo-
rithms from the spectrum of RRT-like planners. In the
near future, we plan to implement and study other RRT-
like planners similar to those presented here; we hope
to examine both sampling-based approaches and those
based on explicit Voronoi computations. We also would
like to study the performance of different sampling tech-
niques (randomized and deterministic) in these different
planners; this will show whether or not randomization
is of value in RRT algorithms. We believe that studies
of this type will greatly increase our understanding of
efficient motion planning and configuration space explo-
ration, and will enable us to develop better-performing

algorithms.

Acknowledgments

This work was funded in part by

NSF Awards 9875304, 0118146, and 0208891.

References

[1]

[10]

N. M. Amato and Y. Wu. A randomized roadmap
method for path and manipulation planning. In
IEEE Int. Conf. Robot. € Autom., pages 113-120,
1996.

A. Atramentov and S. M. LaValle. Efficient near-
est neighbor searching for motion planning. In
Proc. IEEE Int’l Conf. on Robotics and Automa-
tion, pages 632637, 2002.

J. Barraquand and J.-C. Latombe. Robot motion
planning: A distributed representation approach.
Int. J. Robot. Res., 10(6):628-649, December 1991.

D. Challou, D. Boley, M. Gini, and V. Kumar. A
parallel formulation of informed randomized search
for robot motion planning problems. In IEEE Int.
Conf. Robot. & Autom., pages 709-714, 1995.

M. Garber and M. C. Lin. Constraint-based motion
planning using voronoi diagrams. In Proc. Work-
shop on Algorithmic Foundation of Robotics, 2002.

R. Geraerts and M. H. Overmars. A compara-
tive study of probabilistic roadmap planners. In
Proc. Workshop on the Algorithmic Foundations of
Robotics, December 2002.

J. H. Halton. On the efficiency of certain quasi-
random sequences of points in evaluating multi-
dimensional integrals. Numer. Math., 2:84-90, 1960.

D. Hsu, J.-C. Latombe, and R. Motwani. Path plan-
ning in expansive configuration spaces. Int. J. Com-
put. Geom. & Appl., 4:495-512, 1999.

L. E. Kavraki, P. Svestka, J.-C. Latombe, and M. H.
Overmars. Probabilistic roadmaps for path planning
in high-dimensional configuration spaces. IEFEE
Trans. Robot. & Autom., 12(4):566-580, June 1996.

J. J. Kuffner and S. M. LaValle. RRT-connect: An
efficient approach to single-query path planning. In
Proc. IEEE Int’l Conf. on Robotics and Automa-
tion, pages 995-1001, 2000.

S. M. LaValle and M. S. Branicky. On the relation-
ship between classical grid search and probabilistic
roadmaps. In Proc. Workshop on the Algorithmic
Foundations of Robotics, December 2002.

S. M. LaValle and J. J. Kuffner. Randomized
kinodynamic planning. International Journal of
Robotics Research, 20(5):378-400, May 2001.

[13]

[14]

[15]

[16]

[20]

S. M. LaValle and J. J. Kuffner. Rapidly-exploring
random trees: Progress and prospects. In B. R.
Donald, K. M. Lynch, and D. Rus, editors, Algorith-
mic and Computational Robotics: New Directions,
pages 293-308. A K Peters, Wellesley, MA, 2001.

S. R. Lindemann and S. M. LaValle. Incremental
low-discrepancy lattice methods for motion plan-
ning. In Proc. IEEE International Conference on
Robotics and Automation, 2003.

S. R. Lindemann and S. M. LaValle. Current is-
sues in sampling-based motion planning. In P. Dario
and R. Chatila, editors, Proc. Fighth Int’l Symp. on
Robotics Research. Springer-Verlag, Berlin, 2004. To
appear.

S. R. Lindemann and S. M. LaValle. Incremen-
tally reducing dispersion by increasing voronoi bi-
asin RRTs. In IEEFE IEEFE International Conference
on Robotics and Automation, 2004. Under review.

E. Mazer, J. M. Ahuactzin, and P. Bessiere. The
Ariadne’s clew algorithm. J. Artificial Intell. Res.,
9:295-316, November 1998.

D. M. Mount. ANN programming manual. Techni-
cal report, Dept. of Computer Science, U. of Mary-
land, 1998.

C. Pisula, K. Hoff, M. Lin, and D. Manocha. Ran-
domized path planning for a rigid body based on
hardware accelerated voronoi sampling. In Proc.
Workshop on Algorithmic Foundation of Robotics,
2000.

B. Salomon, Maxim Garber, Ming. C. Lin, and Di-
nesh Manocha. Interactive navigation in complex
environments using path planning. In Proceedings
of the ACM SIGGRAPH 2003 Symposium on In-
teractive 3D Graphics, 2003.

T. Simeon, J.-P. Laumond., and C. Nissoux. Visi-
bility based probabilistic roadmaps for motion plan-
ning. Advanced Robotics Journal, 14(6), 2000.

J. F. Traub, G. W. Wasilkowski, and H. Wozni-
akowski. Information-Based Complexity. Academic
Press Professional, Inc., San Diego, 1988.

X. Wang and F. J. Hickernell. Randomized halton
sequences. Mathematical and Computer Modelling,
32:887-899, 2000.

S. A. Wilmarth, N. M. Amato, and P. F. Stiller.
Maprm: A probabilistic roadmap planner with sam-
pling on the medial axis of the free space. In IEEFE
Int. Conf. Robot. & Autom., pages 1024-1031, 1999.

[25] Y. Yu and K. Gupta. On sensor-based roadmap:
A framework for motion planning for a manipulator
arm in unknown environments. In IEEE/RSJ Int.
Conf. on Intelligent Robots € Systems, pages 1919—
1924, 1998.

MSRRTa

MSRRTb

1

ModRRT

Figure 3: A simple 2-d example. Top row, from left to
right: MS-RRTa after 81 iterations (81 nodes, 1 obsta-
cle node), MS-RRTa at completion (114 iterations, 114
nodes, 1 obstacle node). Second row: MS-RRTb after 41
iterations (41 nodes, 1 obstacle node), MS-RRTb at com-
pletion (81 iterations, 81 nodes, 1 obstacle node). Third
row: ModRRT after 92 iterations (81 nodes), ModRRT
at completion (249 nodes, 384 iterations).

MSRRTa i
" .
iy .
i 3 ""' P Akl
: oy 3 2 * I /
A
: 4 :

MSRRTb

Ll L L

Figure 5: Top row, from left to right: MS-RRTa with k& =
ModRRT 10,k = 100. Bottom row, MS-RRTa with k£ = 1000, k =
. A 10000.

Figure 4: A 2-d maze. Top row, from left to right: MS- |
RRTa after 400 iterations (400 nodes, 14 obstacle nodes),
MS-RRTa at completion (989 iterations, 989 nodes, 39
obstacle nodes). Second row: MS-RRTbD after 400 itera-
tions (400 nodes, 14 obstacle nodes),MS-RRTb at com-
pletion (762 iterations, 762 nodes, 25 obstacle nodes).
Third row: ModRRT after 858 iterations (400 nodes), lum=
ModRRT at completion (4869 iterations, 2896 nodes).

Figure 6: From left to right: MS-RRTb with & =
1000, k£ = 10000.

Goal
.

frv

=
=
=

Figure 7: The first two frames are the initial and goal
configurations of a 3d rigid body example. The third is
a two-dimensional representation of a 6-d bent corridor
problem.

.
Iniial

| Prob. [Dim | RRTConCon | MS-RRTa [MS-RRTD |

LM 2 0.01 0.01 0.01
Maze 2 0.19 0.21 0.17
Spring 6 0.7652 8.37 6.01
Corr. 6 101.18 1170 444.6

Figure 8: Comparisons of the planning times required
for our experiments. RRTConCon and MS-RRTa results
are averaged over 100 trials. Implementations were done
in Gnu C++ on a 2.0GHz PC running Linux.

| Prob. [Dim | RRTConCon | MS-RRTa [MS-RRTb

LM 2 1134 91.1 (2.1) 88 (2)
Maze | 2 456.49 389.3 (28.7) 150 (31)
Spring | 6 22725 3392 (76.33) | 1875 (31)
Corr. | 6 14085 18975 (773) | 29223 (1173)

Figure 9: Comparisons of the number of nodes corre-
sponding to the results of the previous figure. Where ap-
plicable, the number of obstacle nodes is given in paren-
theses.

| Prob. | Dim | RRTConCon | MS-RRTa | MS-RRTD |

LM 2 320.2 274.67 255
Maze 2 1411.41 1279.6 1365
Spring 6 6793.17 11850 6405
Corr. 6 42494 55686 80750

Figure 10: Comparisons of the number of collision checks
corresponding to the results of the previous figure.

