
Incrementally Reducing Dispersion by Increasing Voronoi Bias in RRTs

Stephen R. Lindemann Steven M. LaValle

Dept. of Computer Science

University of Illinois

Urbana, IL 61801 USA

{slindema, lavalle}@uiuc.edu

Abstract

We discuss theoretical and practical issues related to us-
ing Rapidly-Exploring Random Trees (RRTs) to incre-
mentally reduce dispersion in the configuration space.
The original RRT planners use randomization to create
Voronoi bias, which causes the search trees to rapidly
explore the state space. We introduce RRT-like planners
based on exact Voronoi diagram computation, as well as
sampling-based algorithms which approximate their be-
havior. We give experimental results illustrating how the
new algorithms explore the configuration space and how
they compare with existing RRT algorithms.

1 Introduction

While sampling-based motion planning algorithms
have been widely used for over a decade [2, 4, 9, 14, 8, 10],
recent years have seen an increase in attention given to
fundamental sampling issues [13]. Most of this work
deals with uniform sampling for PRMs [3, 7, 11]. In
this paper, we discuss RRTs and how to use sampling
techniques to increase their Voronoi bias, with the goal
of searching in a way that incrementally reduces disper-
sion.

Drawn from classical sampling theory, dispersion mea-
sures how well a space is covered by a sample set. For-
mally, the dispersion δ of a point set P is defined to be:

δ(P, ρ) = sup
q∈X

min
p∈P

ρ(q, p), (1)

in which X is the sample space and ρ a metric on X.
Intuitively, dispersion is the radius of the largest empty
ball (under ρ) in the space. (For more details about dis-
persion and uniformity measures, see our previous work
in [11] or Niederreiter’s comprehensive monograph [15].)
For PRMs, one can use dispersion to measure the quality
of a sample sequence used to construct the roadmap. For
RRTs, the dispersion of the search tree in the configu-
ration space can be seen as indicating the largest region
the tree has yet to explore. Hence, a good strategy for
exploration is that of incremental dispersion reduction:
at each step, extend the search tree in such a way as

to lower the dispersion as much as possible. Focusing
on dispersion reduction promotes growth toward unex-
plored regions and uniform coverage of the configuration
space.

In this paper, we will discuss the original RRT and
how its exploration strategy, Voronoi bias, promotes
dispersion reduction. We then introduce RRT-inspired
planners based on explicit Voronoi diagram construction
and which are completely Voronoi-biased. We then give
sampling-based algorithms which approximate the be-
havior of the exact algorithms, combining the greater
Voronoi bias of the exact planners with the practical ef-
ficiency of RRTs.

2 RRTs and Voronoi Bias

In this section, we will describe RRTs and show how
their Voronoi bias leads to dispersion reduction. We will
also introduce exact planners based on these ideas.

RRTs are incremental search algorithms; they incre-
mentally construct a tree from the initial state to the
goal state (bidirectional versions exist as well). At each
step, a random sample is taken and its nearest neighbor
in the search tree computed. A new node is then created
by extending the nearest neighbor toward the random
sample. See Figure 1 for pseudo-code; for in-depth de-
scription and analysis, see [12].

This exploration strategy has an interesting property:
it is characterized by Voronoi bias. At each iteration,
the probability that a node is selected is proportional
to the volume of its Voronoi region; hence, search is
biased toward those nodes with the largest Voronoi re-
gions (representing unexplored regions of the configura-
tion space). This causes RRTs to rapidly explore. Alter-
natively, RRTs can be seen as attempting to decrease dis-
persion. The random sample then becomes an estimate
of the center of the largest empty ball, and its distance to
its nearest neighbor an estimate of the dispersion. The
RRT then grows toward that sample, attempting to de-
crease the dispersion.

It should be noted that for RRTs, Voronoi bias does
not play the same role as in some other recent motion
planning algorithms [6, 16]. These algorithms compute

BUILD RRT(xinit)
1 Gsub.init(xinit);
2 for k = 1 to K do

3 xrand ← RANDOM STATE();
4 xnear ← NEAREST NEIGHBOR(xrand, Gsub);
5 ubest, xnew, success← CONTROL(xnear, xrand, Gsub);
6 if success
7 Gsub.add vertex(xnew);
8 Gsub.add edge(xnear, xnew, ubest);
9 Return Gsub

Figure 1: The basic RRT construction algorithm.

the discretized GVD (generalized Voronoi diagram) of
the environment and use this information to sample near
the medial axis of free space (for another medial axis-
based approach, see [17]). In this case, the Voronoi di-
agram is based on the environment. In RRTs, however,
the Voronoi bias is with respect to the Voronoi diagram
of the nodes in the search tree; that is, the nodes in the
search tree with the largest Voronoi regions tend to be
selected for exploration.

Using the notion of Voronoi bias, one may easily
conceptualize an RRT-like planner based on the ex-
act Voronoi diagram. At each iteration, construct the
Voronoi diagram of the search tree (note that this will
be a d-dimensional Voronoi diagram). Then, one can use
information from the Voronoi diagram to decide which
node to expand and in which direction to explore. Two
possibilities are readily apparent: either grow from the
node with the largest Voronoi region toward its center
(this requires calculating the volume of each Voronoi re-
gion), or grow toward the Voronoi vertex most distant
from the tree from one of its nearest neighbors (there
will be d + 1 of these, in general). Depending on one’s
interpretation, either of these approaches is a valid gen-
eralization of the basic RRT. The former approach cor-
responds more closely to the probabilistic interpretation
of Voronoi bias (the probability of a node being selected
being proportional to its associated Voronoi volume),
and the latter more closely to dispersion reduction. In
fact, the latter approach is precisely dispersion reduction,
since one of the vertices of the bounded Voronoi diagram
will be the largest empty ball in the configuration space,
and the distance from that vertex to its nearest neighbor
is the dispersion.

The above search strategies, as outlined, can easily
become trapped when the search tree encounters obsta-
cles in the configuration space (i.e., when it cannot grow
in the desired direction due to obstacles). Hence, modifi-
cations must be made for these Voronoi-biased planners
to be complete. A good way to do this is to introduce
“obstacle nodes” into the tree at each point where an ob-
stacle is encountered. The obstacle nodes are used along
with the other tree nodes in the Voronoi diagram compu-
tation, but they may not be chosen for expansion (they
are all leaves in the tree). Using obstacle nodes in this

Figure 2: The effect of obstacle nodes: on the left, explo-
ration is trapped by a local minimum; the largest Voronoi
region causes growth in the direction of the obstacle. On
the right, an obstacle node has been placed which solves
this problem; since the obstacle node cannot be selected
for expansion, growth proceeds from a different node,
away from the local minimum.

manner tends to make the planner grow along obstacle
boundaries and eliminates deadlock conditions. For an
illustration of the effect of obstacle nodes, see Figure 2.

Both the volume-based and the dispersion-reduction
approaches are theoretically feasible, since it is well-
known how to construct Voronoi diagrams in arbitrary
dimensions. Practically, however, it is no simple task to
robustly compute Voronoi diagrams in d dimensions, and
implementing algorithms that do so is difficult. In addi-
tion to this, most construction methods use an `2 metric
in Euclidean space; this is more restrictive than is ap-
propriate for general motion planning problems, which
may have different metrics and topologies. Finally, from
a purely practical point of view, the high cost of explic-
itly computing this information may outweigh its value
for practical planning purposes.

To illustrate the manner in which an exact Voronoi-
based planner explores, we have implemented an ex-
act Voronoi diagram-based RRT for 2-dimensional prob-
lems 1. In Section 3, we will see that only the
dispersion-reduction approach is practically feasible for
our sampling-based Voronoi-biased planners; hence, we
use the dispersion-reduction approach for the implemen-
tation of the exact algorithm as well. Figure 3 displays
the search trees for two problems.

3 Increasing Voronoi Bias in Practice

3.1 Sampling-based Voronoi-biased plan-
ning algorithms

Planners based on exact Voronoi computations suf-
fer from problems similar to those faced by classical
combinatorial motion planners. Just as combinatorial

1We use CGAL (http://www.cgal.org/) for Voronoi diagram
construction.

2

Figure 3: Exploration using an exact Voronoi-biased
planner. On the left is the search tree in the middle of
the search process; on the right is the final tree. Note the
high degree of symmetry and small number of branches.

motion planners constructed an explicit representation
of configuration space obstacles, exact Voronoi-biased
planners must compute Voronoi diagrams in potentially
high dimensions. In each case, complex geometric al-
gorithms must be used to obtain the desired informa-
tion. Just as the success of modern motion planning
algorithms may be attributed to a shift from combinato-
rial algorithms to sampling-based ones [13], it is reason-
able to expect that one may approximate the behavior
of exact Voronoi-biased algorithms using sampling-based
techniques. Sampling-based algorithms of this type will
exhibit a degree of Voronoi bias, with a cost much less
than that of exact construction. In this section, we intro-
duce sampling-based versions of both the volume-based
and dispersion-reducing Voronoi-biased RRTs.

We have seen that RRTs grow in a Voronoi-biased
manner due to the way they process random samples
drawn from the configuration space. What would hap-
pen, then, if instead of taking a single sample, one took
K samples? One can hold an election between the nodes
of the search tree; the node which is nearest to the most
samples is selected for expansion and grown toward the
average of the samples it collected. Then, it holds that
the probability of a node being selected is related to its
Voronoi volume, corresponding directly to the notion of
Voronoi bias in the original RRT. In addition to being a
multi-sample version of an RRT, a planner of this type
can be viewed as an approximation of the exact planner;

BUILD VB-RRT(xinit)
1 Gsub.init(xinit);
2 for k = 1 to K do

3 ADD NEW SAMPLE(s, S);
4 FIND NEAREST NEIGHBORS(S, Gsub);
5 for x = 1 to X do

6 xbest = arg max(x.sampleCount, x ∈ Gsub);
7 xnext ← xbest.sampleAverage;
8 ubest, xnew, success← CONTROL(xbest, xnext, Gsub);
9 if success

10 Gsub.add vertex(xnew);
11 Gsub.add edge(xnear, xnew, ubest);
12 FIND NEAREST NEIGHBORS(S, Gsub);
13 Return Gsub

Figure 4: The basic volume-based RRT construction al-
gorithm.

the fraction of samples a node collects approximates the
volume of its Voronoi region, and the average of its sam-
ples an approximation of the center of that region.

Upon reflection, it is apparent that it is not necessary
to select K new samples at each iteration. If K samples
are selected at some iteration which are uniform over the
configuration space, they are equally uniform at the next
iteration. Hence, they may be reused. This is highly ad-
vantageous, because if samples are not reused, the cost
of doing K nearest-neighbor queries per node expansion
is prohibitive. If at some point during the search it is
determined that the initial K samples are insufficient,
more may be added. Obstacle nodes can straightfor-
wardly be incorporated into this volume-based planner
and are in fact necessary for its operation (without them,
the planner can reach deadlock in the same way as the
exact planner). Pseudo-code for this planner (which we
denote VB-RRT) is given in Figure 4

Constructing a sampling-based dispersion-reducing
planner proceeds similarly. Again take K samples, and
sort them in decreasing order of distance from their near-
est neighbors in the search tree; this ranks them accord-
ing to how well they estimate the largest empty ball in
the space. Then choose the sample most distant from
its nearest neighbor, and grow from that neighbor to-
ward the sample. If this fails (an obstacle is encoun-
tered), take the next best sample and repeat the pro-
cess. If this fails for all K samples, then add more and
continue. Obstacle nodes can be incorporated into this
planner as well, but unlike the previous case, they are
not essential. Even if the planner appears “stuck” for
a short time, adding additional samples will eventually
allow it to proceed. Pseudo-code for this algorithm (de-
noted DR-RRT) is given in Figure 5. As before, this
planner can be interpreted in two different ways. It can
be seen as a multi-sample RRT (under the dispersion-
reduction interpretation), or as an approximation of an

3

BUILD DR-RRT(xinit)
1 Gsub.init(xinit);
2 for k = 1 to K do

3 ADD NEW SAMPLE(s, S);
4 FIND NEAREST NEIGHBORS(S, Gsub);
5 for x = 1 to X do

6 xnext = arg max(sample.ownerDistance, s ∈ S);
7 xbest ← xnext.owner;
8 ubest, xnew, success← CONTROL(xbest, xnext, Gsub);
9 if success

10 Gsub.add vertex(xnew);
11 Gsub.add edge(xnear, xnew, ubest);
12 FIND NEAREST NEIGHBORS(S, Gsub);
13 Return Gsub

Figure 5: The basic dispersion-reducing RRT construc-
tion algorithm.

exact dispersion-reducing planner.

3.2 Relating Voronoi Bias and Derandom-
ization

Thus far, we have seen two different types of Voronoi
bias. In the original RRT (and in its volume-based
multi-sample extension), Voronoi bias has to do with
the fact that a correlation exists between the probabil-
ity of a node’s selection and the volume of its Voronoi
region. Alternatively, one may view Voronoi-biased be-
havior as that which approximates the behavior of an
exact Voronoi-biased planner. While the first point of
view is inconsistent with RRT derandomization, the sec-
ond perspective on Voronoi bias is perfectly in harmony
with it 2.

In the original (single-sample) RRT, random sam-
pling is crucial to Voronoi bias. If one replaces these
random samples with deterministic ones, no statement
about node selection probability can be made. One may
still argue that, over time, the deterministic uniform se-
quence will cause the search tree to grow in all direc-
tions equally. It may be that this is sufficient for RRTs
to perform well; however, it is no longer Voronoi bias,
strictly speaking. Viewing the original RRT from the ap-
proximation perspective is tenuous at best, since a single
sample can hardly be seen as approximating information
from an exact Voronoi diagram.

In contrast with this, the multi-sample RRT planners
are much more reasonably viewed as approximations of
exact Voronoi-biased planners. Together with the fact
that even with random samples there is no simple ex-
pression relating the probability of a node being selected
to the volume of its Voronoi region, this suggests that
random sampling is no longer necessary for claims of
Voronoi bias. Hence, either deterministic or random-

2That is, assuming one doesn’t mind a derandomized rapidly-
exploring random tree

ized sampling methods can be used. It is worthwhile to
note that as K approaches infinity, even the use of ran-
dom samples converges to deterministic behavior. Thus
the multi-sample Voronoi diagram approximation per-
spective provides a solid foundation for derandomizing
RRTs.

3.3 Experimental results

Our experimental goals are twofold: first, to gain in-
tuition about Voronoi-biased exploration; and second,
to compare the practical performance of our strongly
Voronoi-biased planners to standard RRTs. To accom-
plish the first goal, we show pictures of solutions for
twosimple 2-dimensional problems; see Figure 6 for re-
sults corresponding to those shown in Figure 3. These
are intended to illustrate how Voronoi-biased planners
explore the search space. From this figure, one can see
that as the number of samples in the sample set S in-
creases, the resulting search tree looks increasingly like
the one produced by the exact Voronoi planner. Even
with fewer samples, the growth patterns are quite differ-
ent from the standard RRT, which produces a tree with
many more branches.

For the second goal, we present results for several
problems of varying difficulty. Since one key benefit of
RRTs is their ability to solve problems with nonholo-
nomic constraints, we show how our planner solves these
problems in addition to giving results for standard path-
planning problems. All experiments use the dispersion-
reducing RRT planner, which is more efficient than the
volume-based RRT. This is because the use of obstacle
nodes, which are necessary for the volume-based RRT,
creates a problem similar to the “narrow passage” prob-
lem which PRM planners are subject to. Obstacle nodes
cause situations in which it is necessary to sample a tiny
region in order for the search to make progress. This
causes the volume-based RRT to be impractical in its
current form. However, the dispersion-reducing RRT
does not use obstacle nodes and hence does not suffer
from this problem; for the rest of this section, we deal
exclusively with DR-RRT.

Our experimental results, corresponding to the prob-
lems shown in Figure 7, are shown in Figures 8, 9, and 10.
For these experiments, the DR-RRT planner used was a
dual-tree version analogous to a dual-tree RRT-Connect.
With respect to running time, the DR-RRT showed small
improvements for two of the six problems and was sig-
nificantly better for the two bent corridor problems. For
the six-dimensional bent corridor, the speedup factor was
nearly 5; for the eight-dimensional corridor, the success
rate was over twice that of RRT-Connect. With respect
to numbers of search tree nodes and collision checks,
DR-RRT was better regularly superior to RRT-Connect.
Often, DR-RRT required 25-50% of the nodes and col-
lision checks required by RRT-Connect. The difference
between execution time results and node and collision
check results suggests that the current per node cost of

4

Figure 6: Varying degrees of sampling-based Voronoi
bias. On the top is a standard RRT; in the mid-
dle a dispersion-reducing RRT with initial |S| = 100;
on the bottom a dispersion-reducing RRT with initial
|S| = 1000.

DR-RRT is high. We believe that this is in fact the case,
and we will discuss ways which the algorithm and its im-
plementation can be improved to decrease per node cost
and consequently execution time. Overall, these initial
results are very encouraging; in conjunction with the im-
provements we will now discuss, they show potential for
a highly effective and practical motion planner.

The simplicity of the basic RRT algorithm is a source
of both elegance and efficiency. In the quest to achieve
more Voronoi-biased exploration, the planners intro-
duced in this paper lose some of this simplicity. It is
consequently important to carefully examine the sources
of computational cost in these Voronoi-biased planners.
Doing so will allow interpretation of experimental results
as well as illuminating areas that, when improved, will
yield a better-performing planner. First, examine the
costs associated with building an RRT. At each iteration,
a sample is taken, its nearest neighbor in the search tree
is found, and an attempt to expand that node is made. If
large portions of the configuration space are unreachable
from their nearest neighbors, it may take many iterations
before the expansion is successful and a new tree node
is produced. This can happen when the space has local
minima, for example. Now, consider the cost involved
in building a DR-RRT. At each iteration, a sample s
is chosen from S as the most desirable direction to ex-
pand. Its nearest neighbor is already known (the nearest
neighbor is computed once when a sample is originally
added to S, and updated thereafter), and an expansion
is attempted. If a new node is created, then it must
be determined which samples this new node is nearest
neighbor to, and updates made accordingly. This step is
one of the chief bottlenecks of the algorithm; in the worst
case, it is possible that |S| metric computations will have
to be performed. Using the insight that the query being
performed (i.e., given a set of balls and a query point,
return all balls the point lies inside of) is similar to a
stabbing query [5], one can build data structures to re-
duce the number of metric calls required. Given a set of
axis-aligned boxes and a query point, a stabbing query
returns every box which contains the query point. Us-
ing multi-level segment trees, these queries can be an-
swered in O(logd n + k) time (our current approach is
somewhat less sophisticated). Since we are actually in-
terested in balls, not boxes, we approximate the balls by
their bounding boxes and use those in the data struc-
ture. Each returned box is then checked to see if the
ball it represents contains the query point. Depending
on the size of the ball radii, there is significant potential
for metric call reduction.

The simple data structure we implemented is suit-
able for an `2 metric on a d-dimensional space of the
form Ri × (S1)d−i; test results for metric call savings
are shown in Figure 11. We implemented versions that
found the best splitting for each cell and those which
tested only a small subset of splittings, and found the
latter to be more cost-effective. The tests were run by

5

Figure 7: Snapshots of problem environments. Top to
bottom, left to right, they are: a car with a trailer (5
dof); a car with two trailers (6 dof); a rigid body problem
(6 dof); a 2-d projection of a bent corridor (6, 8 dof); and
a multi-body problem (48 dof). The radius of the bent
corridor is 0.15.

Problem Dim RRT-Connect DR-RRT

Trailer (N) 5 175.69 (47) 130.13 (44)

2 Trailers (N) 6 35.48 (50) 52.81 (49)

Spring 6 0.25 (50) 0.4 (50)

Corridor 6 75.21 (50) 15.75 (50)

Corridor 8 361.55 (17) 257.98 (36)

Multi-body 48 119.34 (50) 178.82 (50)

Figure 8: Comparisons of the planning times required
for our experiments (in seconds). Results are averaged
over 50 trials; the two nonholonomic problems are de-
noted by (N). The corridor experiments were terminated
if solutions were not found within 1200 seconds; all other
experiments were terminated if solutions were not found
within 600 seconds. The numbers in parentheses give
number of successes out of 50. All experiments were
done on a 2.4 GHz PC running Linux.

Problem Dim RRT-Connect DR-RRT

Trailer (N) 5 5782.38 3439.27

2 Trailers (N) 6 2685.2 1764.8

Spring 6 1972.12 1710.72

Corridor 6 17706.38 4030.8

Corridor 8 50247.35 25005.5

Multi-body 48 14848.62 17044.8

Figure 9: Comparisons of the numbers of nodes required
for our experiments.

Problem Dim RRT-Connect DR-RRT

Trailer (N) 5 2260261 300551

2 Trailers (N) 6 675464 186774

Spring 6 5875 7269

Corridor 6 53534 15011

Corridor 8 150148 85063

Multi-body 48 44800 70887

Figure 10: Comparisons of the numbers of collision
checks required for our experiments.

6

5 10 15 20 25 30 35 40 45 50
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Maximum ball radius

F
ra

ct
io

na
l s

av
in

gs

rf = 0.75
rf = 0.90

Figure 11: Plots of metric call savings for a simple data
structure answering stabbing queries. The rf parame-
ter represents the strictness of the splitting requirements
(higher values are more lenient). Each data point repre-
sents the average of 100 trials.

generating 1000 6-dimensional balls, with random center
and radius (the radius was chosen uniformly up to some
maximum value), building the data structure, and then
making 1000 random queries. The time required to build
the data structure was consistently less than 5 ms.

A disadvantage of this approach is that it introduces
the costs of building additional data structures, incre-
mentally updating them (if possible), and determining
when they need to be rebuilt. Given the need for the
planner to work well for many different topologies and
metrics, adapting traditional stabbing query data struc-
tures while making them as fast as possible is a chal-
lenge (perhaps inspiration may be drawn from [1]). At
the present time, our implementations are only partly
effective in reducing the solution time; there is room for
improvement.

Making the nearest-neighbor update step as efficient
as possible is likely the single largest practical challenge
to improve the performance of DR-RRT. Another place
where changes could lead to improved performance is
the sample selection criteria. Currently, the DR-RRT
chooses a sample from S as representing a good explo-
ration direction (specifically, as being the best estimate
of the largest empty ball in the configuration space).
This selection rule is motivated solely by the desire to in-
duce Voronoi bias in the planner, and does not take into
account any other considerations. For example, there
could be a sample which has been unsuccessfully grown
toward by a large number of different nodes in the tree
(in whose Voronoi regions the sample lied at some point
in the search). If a new node is generated and becomes

the nearest neighbor to this sample, then it is likely that
another connection attempt will be made, in spite of all
the previous failures. For a problem using thousands of
samples, it is possible (and, perhaps, common), for the
creation of a new node to immediately result in hundreds
of unsuccessful connection attempts (and corresponding
collision checks). Hence, there is significant potential for
savings if the planner is more careful about which sam-
ples it chooses to expand toward, taking into account
more information than simply a sample’s distance to its
nearest neighbor.

4 Conclusions and Future Work

In conclusion, we discussed the exploration strategy
of RRTs, their Voronoi bias, and the goal of dispersion
reduction. We then introduced exact planners designed
that explore using the Voronoi diagram of the search
tree. These exact planners are capable of finding the
largest empty ball in the configuration space and shrink-
ing it, thus reducing dispersion. Finally, we presented
sampling-based algorithms which can approximate, with
arbitrary precision, the behavior of the exact algorithms,
for more general problems and with less cost. These
sampling-based algorithms can effectively use either de-
terministic or random samples. The use of high num-
bers of samples promotes predictable and highly Voronoi-
biased behavior, but at a high cost; low numbers of sam-
ples yield greater Voronoi bias than RRTs, while still
keeping the cost low. These planners heavily bias search
toward unexplored regions of the configuration space, fo-
cusing on reducing dispersion.

The experiments presented in this paper indicate both
that the sampling-based dispersion-reducing RRT works
well in practice and that there is ample room for im-
provement. In the future, we plan to address the two
main practical considerations addressed above: efficient
nearest-neighbor update and the sample selection crite-
ria. Making improvements in these areas will hopefully
result in a planner that is both satisfying in its theoret-
ical basis and highly efficient in its operation.

Acknowledgments This work was funded in part by
NSF Awards 9875304, 0118146, and 0208891.

References

[1] A. Atramentov and S. M. LaValle. Efficient near-
est neighbor searching for motion planning. In
Proc. IEEE Int’l Conf. on Robotics and Automa-
tion, pages 632–637, 2002.

[2] J. Barraquand and J.-C. Latombe. Robot motion
planning: A distributed representation approach.
Int. J. Robot. Res., 10(6):628–649, December 1991.

[3] M. S. Branicky, S. M. LaValle, K. Olson, and
L. Yang. Quasi-randomized path planning. In
Proc. IEEE Int’l Conf. on Robotics and Automa-
tion, pages 1481–1487, 2001.

7

[4] D. Challou, D. Boley, M. Gini, and V. Kumar. A
parallel formulation of informed randomized search
for robot motion planning problems. In IEEE Int.
Conf. Robot. & Autom., pages 709–714, 1995.

[5] M. de Berg, M. van Kreveld, M. Overmars, and
O. Schwarzkopf. Computational Geometry: Algo-
rithms and Applications. Springer, Berlin, 1997.

[6] M. Garber and M. C. Lin. Constraint-based motion
planning using voronoi diagrams. In Proc. Work-
shop on Algorithmic Foundation of Robotics, 2002.

[7] R. Geraerts and M. H. Overmars. A compara-
tive study of probabilistic roadmap planners. In
Proc. Workshop on the Algorithmic Foundations of
Robotics, December 2002.

[8] D. Hsu, J.-C. Latombe, and R. Motwani. Path plan-
ning in expansive configuration spaces. Int. J. Com-
put. Geom. & Appl., 4:495–512, 1999.

[9] L. E. Kavraki, P. Svestka, J.-C. Latombe, and M. H.
Overmars. Probabilistic roadmaps for path planning
in high-dimensional configuration spaces. IEEE
Trans. Robot. & Autom., 12(4):566–580, June 1996.

[10] J. J. Kuffner and S. M. LaValle. RRT-connect: An
efficient approach to single-query path planning. In
Proc. IEEE Int’l Conf. on Robotics and Automa-
tion, pages 995–1001, 2000.

[11] S. M. LaValle, M. S. Branicky, and S. R. Linde-
mann. On the relationship between classical grid
search and probabilistic roadmaps. International
Journal of Robotics Research. Selected for publica-
tion in late 2003 from among papers that appeared
at the 2002 Workshop on the Algorithmic Founda-
tions of Robotics.

[12] S. M. LaValle and J. J. Kuffner. Rapidly-exploring
random trees: Progress and prospects. In B. R.
Donald, K. M. Lynch, and D. Rus, editors, Algorith-
mic and Computational Robotics: New Directions,
pages 293–308. A K Peters, Wellesley, MA, 2001.

[13] S. R. Lindemann and S. M. LaValle. Steps toward
derandomizing RRTs. In IEEE/RSJ Int’l Conf. on
Intelligent Robots and Systems, 2003. Under review.

[14] E. Mazer, J. M. Ahuactzin, and P. Bessière. The
Ariadne’s clew algorithm. J. Artificial Intell. Res.,
9:295–316, November 1998.

[15] H. Niederreiter. Random Number Generation and
Quasi-Monte-Carlo Methods. Society for Indus-
trial and Applied Mathematics, Philadelphia, USA,
1992.

[16] C. Pisula, K. Hoff, M. Lin, and D. Manoch. Ran-
domized path planning for a rigid body based on
hardware accelerated Voronoi sampling. In Proc.
Workshop on Algorithmic Foundation of Robotics,
2000.

[17] S. A. Wilmarth, N. M. Amato, and P. F. Stiller.
MAPRM: A probabilistic roadmap planner with
sampling on the medial axis of the free space. In
IEEE Int. Conf. Robot. & Autom., pages 1024–1031,
1999.

8

