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Abstract

We present deterministic sequences for use in
sampling-based approaches to motion planning. They si-
multaneously combine the qualities found in many other
sequences: i) the incremental and self-avoiding tenden-
cies of pseudo-random sequences, ii) the lattice struc-
ture provided by multiresolution grids, and iii) low-
discrepancy and low-dispersion measures of uniformity
provided by quasi-random sequences. The resulting se-
quences can be considered as multiresolution grids in
which points may be added one at a time, while satis-
fying the sampling qualities at each iteration. An effi-
cient, recursive algorithm for generating the sequences
is presented and implemented. Early experiments show
promising performance by using the samples in search
algorithms to solve motion planning problems.

1 Introduction

Sampling the configuration space has been one of the
fundamental issues in developing practical motion plan-
ners. Some approaches use context-specific heuristics to
concentrate samples in critical places [1, 4, 8, 19]. Clas-
sical grid-search approaches (see survey in [9]) and also
recent “lazy” approaches [3, 2, 5, 14]) have focused more
on how to sample the configuration space before taking
obstacles into account. In this paper, we consider sam-
pling issues from this perspective, and ask: What is the
best way to sample the space?

Here are several desirable criteria that we will con-
sider for an infinite sequence of samples over a bounded
configuration space:

1. Uniformity: Good covering of the space is ob-
tained without clumping or gaps. This can be for-
mulation in terms of optimizing discrepancy or dis-
persion [12, 13].

2. Lattice structure: For any sample, the location
of nearby samples can easily be determined.

3. Incremental quality: For any i, if the sequence is
suddenly terminated, it has decent coverage. This

is an advantage over a sequence that only provides
high-quality coverage for a fixed n.

A simple grid generated by scanning has good lattice
structure and uniformity, but fails to provide good in-
cremental quality. Quality coverage is only obtained at
values of i that yield a complete grid at some resolution.
It is intuitive that closed sequences (in which the total
number of samples is specified in advance) can achieve
better coverage than infinite or open sequences (in which
the total number is not specified), but this sacrifices in-
cremental quality; for many applications, paying a small
penalty in coverage to achieve incremental quality is a
welcome exchange. A random sequence exhibits incre-
mental quality, but at the expense of lattice structure
and even uniformity (clumps and gap are prevalent with
high probability [11, 13]). Thus, random sequences and
grids appear to be quite complementary. In probabilis-
tic roadmap (PRM) approaches (e.g., [1, 10, 15, 20]), one
is usually willing to sacrifice the first two properties to
obtain the last.

After considering the tradeoffs, we wondered whether
it is possible to define sequences that provide all three
qualities listed above. It turns out that this can be
done, and the resulting sequences of samples are the pri-
mary contribution of this paper. We next provide formal
definitions of discrepancy and dispersion, which our se-
quence will optimize.

2 Uniformity Measures

Uniform sampling criteria and techniques have been
developed by numerous mathematicians over the past
century. Excellent overviews of the subject include [12,
13]. Here we briefly introduce only the concepts needed
for this paper. Let X = [0, 1]d ⊂ <d define a space over
which to generate samples. Define a range space, R, as
a collection of subsets of X. Let R ∈ R denote one such
subset. Reasonable choices for R include the set of all
axis-aligned rectangles, the set of all balls, or the set of
all convex subsets.

Let µ(R) denote the Lebesgue measure (or volume) of
subset R. If the samples in P are uniform in some ideal



sense, then it seems reasonable that the fraction of these
samples that lie in any subset R should be roughly µ(R)
(divided by µ(X), which is simply one). We define the
discrepancy [18] to measure how far from ideal the point
set P is:

D(P,R) = sup
R∈R

∣∣∣∣
|P ∩R|

N
− µ(R)

∣∣∣∣ (1)

in which | · | applied to a finite set denotes its cardinality.
Whereas discrepancy is based on measure, a metric-

based criterion, called dispersion, can be introduced:

δ(P, ρ) = sup
q∈X

min
p∈P

ρ(q, p). (2)

Above ρ denotes any metric, such as Euclidean distance
or `∞. Intuitively, this corresponds to the radius of the
largest empty ball (assuming all ball centers lie in [0, 1]d).

3 One-Dimensional Sampling

To gain an understanding of the issues, it is helpful
to first consider the case of sampling a one-dimensional
space. In this case, a sequence introduced by van der
Corput in 1935 achieves all three desired criteria with
beautiful simplicity [17]. Consider a binary representa-
tion of points in [0, 1]. A one-dimensional “grid” can be
made by counting in binary. For example, if the resolu-
tion is 8, then samples are taken at: 0.000, 0.001, 0.010,
0.011, 0.100, etc. Of course, this scanning behavior of
the sequence does not have incremental quality.

The van der Corput sequence simply takes the binary
counting above and reverses the order of the bits. Dur-
ing the original scan, the least significant bit alternates
in every step, but this only yields a small change in value.
By reversing bit order, the change is maximized, caus-
ing the coverage to be nearly uniform at every point in
the sequence. After bit reversal, the sequence is: 0.000,
0.100, 0.010, 0.110, 0.001, 0.101, 0.011, 0.111. An infi-
nite sequence is constructed by using reversed-bit rep-
resentations of higher binary numbers. The next eight
samples are obtained by reversing binary representations
of 8 through 15.

This deterministic sequence is ideal in many ways; it
satisfies all three of the criteria from Section 1. It is
asymptotically optimal in terms of discrepancy (R is a
set of intervals), and also in terms of dispersion (note
that this would not be achieved by a random sequence).
It has a trivial lattice structure. Finally, the sequence
is incremental because at any given time, the sequence
can be stopped while still yielding low discrepancy and
low dispersion. If the sequence is stopped at i = 2k for
any integer k, then all samples are equally spaced, much
as in a classical grid. More importantly, if the sequence
is stopped elsewhere, the distribution of points is still
good, which would not be the case of the resolution was
simply improved by scanning.

4 Higher Dimensional Sampling

For use in motion planning, straightforward exten-
sions of the van der Corput sequence to [0, 1]d would be
very useful; unfortunately, such sequences have not been
found. Simply making a vector-valued sequence will only
generate samples along a diagonal line. Halton used the
bit-reversal technique to extend the sequence, using a dif-
ferent base for each dimension [7]. His method is as fol-
lows: choose d distinct primes p1, p2, . . . , pd (usually the
first d primes, p1 = 2, p2 = 3, . . . ). To construct the ith
sample, consider the digits of the base p representation
for i in the reverse order: i = a0+pa1+p2a2+p3a3+ . . .,
in which aj ∈ {0, 1, . . . , p− 1}. Define the following ele-
ment of [0, 1]:

rp(i) =
a0

p
+

a1

p2
+

a2

p3
+

a3

p4
+ · · · .

The ith sample in the Halton sequence is

(rp1
(i), rp2

(i), . . . , rpd
(i)), i = 0, 1, 2, . . . .

This sequence is known to produce asymptotically-
optimal discrepancy. It satisfies the first and last cri-
teria from Section 1; therefore, it is a useful sequence.
For virtually all randomized motion planning algorithms,
one can replace a pseudo-random sequence with the de-
terministic Halton sequence because of the satisfaction
of these properties. Recent experimental results in [6]
show Halton points performing well versus other sam-
pling techniques in the context of the PRM.

It is possible, though, to construct an alternative gen-
eralization of the van der Corput sequence, which is able
to satisfy all three criteria? The neighborhood structure
offered by a lattice is particularly useful in the context
of motion planning. For example, in the probabilistic
roadmap method, substantial time is invested in per-
forming nearest-neighbor queries to build the roadmap.
In a lattice, this information is already implicitly defined.

In addition to having grid structure, the van der Cor-
put sequence naturally creates a multiresolution grid as
it progressively fills in gaps in the unit interval. A gen-
eralization of the van der Corput sequence which has
grid structure should have this property as well, for sev-
eral reasons. First, for many problems it is impossible
to know ahead of time what an appropriate resolution
might be. In addition to this, it is intuitive that a
multiresolution approach yields more incremental qual-
ity than a grid of fixed resolution. Finally, any open
sequence (such as the van der Corput sequence) which
also has grid structure must be multiresolution, because
if the resolution is fixed, then the number of samples is
fixed as well, which is a contradiction for an open se-
quence.

In summary, what is required is a multi-dimensional
generalization of the van der Corput sequence: an open
sequence generating a multiresolution grid and satisfying
the criteria given at the beginning of this paper. Below,
we present such a sequence.
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5 A New Sequence

Before proceeding to describe our new sequence, sev-
eral definitions will prove useful. Consider a classical grid
in the d-dimensional unit cube, [0, 1]d ⊂ <d; we define a
multiresolution classical grid of resolution level l to be a
grid with 2dl points (i.e., 2l points per axis). From this
definition, it is apparent that a grid of resolution level
l contains all the points from resolution level (l − 1),
and that of all grids having this property, it is the one
with the fewest points (assuming that all dimensions are
required to have the same number of points per axis).

In addition to considering classical grids, it is worth-
while to examine Sukharev grids as well [11, 16]. Con-
sider a grid in the d-dimensional unit cube, with k points
per axis; the unit cube may then be divided into kd re-
gions. While the classical grid places a vertex at the
origin of each region, the Sukharev grid places a vertex
at the center of each region. This has the advantage of
optimizing `∞ dispersion, defined in Section 2. While
this difference may not seem very large, it is significant
when the grids are taken to be multiresolution; while a
multiresolution classical grid has 2dl points for resolution
level l, a multiresolution Sukharev grid has 3dl points.
Most of our ideas apply equally to both classical and
Sukharev grids; while we will deal primarily with classi-
cal grids for the sake of brevity, we will note applications
to the Sukharev case as well.

We describe the points of a classical grid of resolution
l as follows:

Pn
l =

{(
i1
2l
, · · · , in

2l

)
: i ∈ Z, 0 ≤ i ≤ 2l − 1

}
.

One may also define the grid region associated with point
j at resolution level l as:

Gj,l =

[
j1, j1 +

1

2l

)
× · · · ×

[
jn, jn +

1

2l

)
.

Similar definitions may be made for the Sukharev case.
With these definitions in mind, we may proceed to

consider the sequence itself. To motivate the way our
sequence is generated, consider a d-dimensional classi-
cal grid of resolution level 1, having 2d total points. A
first question is raised immediately: in what order should
these points be placed? Two possible criteria for mak-
ing a decision are dispersion and discrepancy. As seen
above, these measure the uniformity of coverage of the
space; therefore, they are natural criteria for choosing
the optimal placement order. However, using dispersion
as the decision criterion for a multiresolution grid often
results in ties. In fact, in the case of a Sukharev grid or
a classical grid on a toroidal manifold, the `∞ dispersion
remains constant between complete resolution levels. For
example, a Sukharev grid with i points, 3dl ≤ i < 3d(l+1)

will have the same `∞ dispersion as the grid with 3dl

points (for a more-detailed explanation of the relation-
ship between `∞ dispersions of classical and Sukharev

grids, see [11]). Given this fact, it seems best to use
discrepancy as the decision criterion.

From the discussion of discrepancy in Section 2, a
range space R must be chosen over which to calculate
the discrepancy. Preferably, we should choose one which
is suitable for grids and grid regions. Hence, we define
the set of canonical rectangles, similar to the b-ary canon-
ical boxes in [12]: given positive integers n and m, let
Qn

m be the following family of n-dimensional canonical
rectangles:

Qn
m =

{[
i1
2m

,
i1 + j1
2m

)
× · · · ×

[
in
2m

,
in + jn
2m

)
:

i, j ∈ Z, 0 ≤ i ≤ 2m − 1, 1 ≤ j ≤ min(2m − i, 2)

}
.

This closely relates to the previous definitions regarding
the points of a multiresolution grid and their associated
grid regions. In fact, the rectangles of Qn

m may be as
wide in any dimension as a single grid region at resolution
level m−1, or two grid regions at resolution level m. For
the case of m = 1, visualize Qn

1 as the set of all convex
unions of the 2d grid regions of a unit cube. Finally,

define Q̃n
m =

⋃m
i=0Qn

i . Again, these definitions apply
to the case of classical grids, but analogous formulations
may be made for Sukharev grids.

Now, let discrepancy be taken over the set Qd
1 be the

criterion for determining the optimal order of the points
of resolution level 1. Using this criterion, an optimal
ordering list L of the first 2d grid points (the first res-
olution level) may be explicitly computed (or, if we are
dealing with a Sukharev grid and use a suitable modified
range space, we may compute the optimal ordering list
Ls for the first 3d points). Hence, from this point on as-
sume that we have such an ordering. Note that this only
yields the correct ordering for the first resolution level.
How should we fill in the next resolution level?

To answer this question, recognize that L may be
viewed as an ordering not only of the first 2d samples,
but of the grid regions of the unit cube. This identifica-
tion can be made because the discrepancy is calculated
over a range space consisting of unions of these grid re-
gions. Since this is the case, to maintain optimality over
Qd

1, any future samples must follow this ordering: each
future group of 2d points must iterate through the or-
dering L in the same way as the first 2d points. Hence,
sample i must fall into the region of the unit cube spec-
ified by L[i mod 2d]. However, this solves only part of
our problem. Suppose that we know that point i of the
second resolution level must fall into Gj,1 for some j;
however, where within Gj,1 should it be placed? Recog-
nize that during the transition from resolution level l to
(l+1), each grid region is subdivided into 2d subregions.
Since our initial ordering scheme determined the opti-
mal ordering of placement of 2d points within a region,
we may recursively apply it to each subregion (with an
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GET SAMPLE(n,L, origin, factor)
1 Point sample← origin;
2 index← n % |L|; //remainder of integer division
3 nextN ← n/|L|; //quotient of integer division
4 sample← sample+ (currentFactor × L[index]);
5 if (nextN = 0)
6 return sample;
7 else
8 f ← factor/2;
9 return GET SAMPLE(nextN,L, sample, f);

Figure 1: Recursively generate a new sample from the
vertices of a classical grid.

appropriate scaling factor, of course). An algorithm that
implements this approach is given in Figure 1.

Therefore, define the infinite sequence for
a classical grid as Sd = {s0, s1, . . . : si =

GET SAMPLE(i, L,~0, 1.0)}, in which the zero
vector denotes the origin and L is the ordering list
appropriate for dimension d. A brief examination of
GET SAMPLE will yield insight into the behavior of
the sample sequence. At each recursion level, the integer
remainder (which is less than 2d) tells the function
which grid region of the current resolution level it
should go to. The function then updates the sample to
be the origin of that grid region. The integer quotient
tells the function how many times that grid region has
previously been visited, which in turn specifies how the
function behaves when it is called recursively on that
region. Finally, the function returns when it determines
that it has found the exact location of the sample.

It is important to note one particular feature. Sup-
pose that point i of resolution level l is added to grid
region Gj,(l−1). Then, by the nature of the recursion,
a corresponding point will have to be added to every
other grid region Gk,(l−1), k 6= j before another point is
added to Gj,(l−1). This feature contributes to the qual-
ity of uniformity discussed in the introduction, and will
contribute to the following proof, which shows that the
sequence retains optimality under recursion.

Theorem 1 Take the first i elements of the sampling
sequence Sd.

1. This sequence is a multiresolution grid sampling se-
quence of length i.

2. From the set of multiresolution grid sampling se-

quences, it is discrepancy-optimal over Q̃n
l , in which

l = dlog2d ie, i.e., the current resolution level.

Proof: (1) For this to be the case, the sequence must
form a classical grid for every i = 2dl, l ∈ Z. We show
this to be the case by induction on l. First, take the

base case l = 0. The first point of the sequence is the
origin, which is a classical grid of size 1. Now, assume
that i = 2dl, and that the sequence formed a classical
grid for every j = 2dm,m ∈ Z, 0 ≤ m ≤ l−1. Now, 2dl−
2d(l−1) = 2d(l−1)(2d − 1); by the observation preceding
this theorem, this implies that each grid region Gj,(l−1)

had 2d − 1 points added to the point already placed in
it at the previous resolution level. Moreover, these were
added according to the specification of the ordering list
L, which places points on the 2d grid vertices of a certain
region. Therefore, each region contains the 2d points of
a classical grid. Since the union of two classical grids of
uniform resolution results in a classical grid of the same
resolution, at i = 2dl the samples form a classical grid
of resolution l. Therefore, our inductive hypothesis is
shown to be true, and part (1) is proven.

(2) We also show this by induction on the current res-
olution l. First, we note that resolution level 0 consists
of only one point, which is placed on the origin, and it

is trivially optimal over Q̃n
0 , which consists simply of the

unit cube. Now, assume that i is such that the current
resolution level is l, and that all sequences up to length

2d(l−1) are optimal over Q̃n
l−1. We will show that the

sequence is optimal over Q̃n
l , and the proof will be com-

plete.

From the definition of Q̃n
l , Q̃n

l = Q̃n
(l−1)∪Qn

l . Also, we

know that the first 2d(l−1) points were added in the opti-

mal order with respect to Q̃n
(l−1), by assumption; denote

the grid region associated with the j-th sample of that
complete grid as Gj,(l−1) (the j-th sample is located at
the origin of Gj,(l−1)). Each of the points of the current
resolution level fall into one of the Gj,(l−1); moreover,
by the nature of the recursion, the order in which they
fall into the Gj,(l−1) is the same order that the original

2d(l−1) points did. Consequently, all points of the cur-
rent resolution level are optimal with respect to the set

of rectangles Q̃n
(l−1).

Now, examine the rectangles which are part of Qn
l ,

which can be partitioned into the set of all rectangles
which are completely contained within one of the Gj,(l−1)

above, and those which are not. For those which are com-
pletely contained within one of the Gj,(l−1), optimality
is clearly seen. Denote as pj the subset of the sample
sequence contained in Gj,(l−1); by the definition of the
recursion, the points Gj,(l−1) are added to Gj,(l−1) in
precisely the optimal order defined in L; since this is the
case for all Gj,(l−1), the point sequence is optimal for all
rectangles completely enclosed in some Gj,(l−1).

Finally, we must consider the set of all rectangles in
Qn

l which are not enclosed in any Gj,(l−1). First, note
that forQn

l the maximum width of any rectangle in a sin-

gle dimension is 1/2(l−1), the size of each block Gj,(l−1).
Let r ∈ Qn

l be a rectangle partially enclosed in grj ; then,
there are three possibilities for each dimension of r: first,
it is entirely in Gj,(l−1); second, it covers the top half
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of Gj,(l−1) and the bottom half of some other block; or
third, it covers the bottom half of Gj,(l−1) and the top
half of some other block. Denote by ro the portion of r
which is outside of Gj,(l−1), and by ri the portion which
is inside. Now, one can take the reflection of r about ri;
then, each part of ro is mapped to a place inside Gj,(l−1).
Define q to be a rectangle resulting from such a reflec-
tion, and note that q ⊆ Gj,(l−1) and q ∈ Qn

l . Hence,
we know that q is part of a set of rectangles for which
optimal discrepancy has already been shown.

Let Pc be the set of points in the sequence for which
analogous points can be found in every grid region
Gj,(l−1), and let Pi be the remaining points. Note that
all points in Pi are analogous to each other by the obser-
vation immediately preceding this theorem; this implies
that no rectangle in Qn

l can contain more than one of
these points. Now, take some rectangle r as described
above. If this rectangle contains a point p ∈ Pi, then de-
noteGj,(l−1) as the grid region containing this point; else,
choose it to be any grid region containing a portion of r.
Define ro, ri as above; then, we may once again take the
reflection of r about ri. The rectangle q obtained from
this reflection has measure identical to rectangle r, and
it contains the same number of points. We know this to
be the case, because by assumption all points in ro have
analogues in Gj,(l−1). This is the case since p ∈ Pi is
contained in ri, by our choice of Gj,(l−1); thus, all points
in ro are part of Pc and consequently have analogues in
every grid region of resolution (l−1). Thus, since r and q
have identical measures and numbers of enclosed points,
and q is part of the set for which optimal discrepancy
has been shown, it is impossible for r to hurt the total
discrepancy.

Since we have now shown that the sequence is opti-

mal over Q̃n
(l−1) and Qn

l , we know that the sequence is

optimal over Q̃n
l = Q̃n

(l−1) ∪ Qn
l . Therefore, our induc-

tive hypothesis is shown to be true and part (2) of the
theorem is proven.

6 Useful Properties for Motion Planning

Thus far we have defined a sample sequence which
incrementally builds a multiresolution grid in an order
which is discrepancy-optimal over an appropriately cho-
sen range space. While this is of value on its own, we
are particularly interested in using this sequence for mo-
tion planning applications, especially those which de-
pend heavily on having a good sample set (e.g., the
PRM). Hence, we now examine several properties of this
sample sequence, to demonstrate the potential benefits
of this sequence in motion planning applications.

A first consideration is the amount of time required to
generate each sample. If it is computationally expensive
to generate the sample sequence, this may offset time
gained through the quality of the sequence. Hence, we
give bounds on the time required to generate a particular
sample. (In this and all future considerations, all scalar

mathematical operations are considered to be constant
time, since they depend on internal representation only.
Vector operations are considered to be O(d) time.)

Property 1 The position of the i-th sample in the
d-dimensional sampling sequence Sd can be generated in
O(log i) time.

Proof: The recursive function specified in Figure 1
may be written as GL(i) = GL(i/2d) + O(d). The so-
lution to this recursion is O(d log2d i). Since log2d i =
(log i)/d, the final result is O(d(log i)/d) = O(log i).

For purposes of comparison, pseudo-random samples
usually require O(d) time and Halton samples require
O(d log i).

In the introduction, we stated that lattice structure
is desirable because the location of neighbors can eas-
ily be determined. It is well-known that all points in
a lattice can be specified in terms of a colloction of d
linearly-independent basis vectors b1, . . . , bd. In the case
of a grid, the basis vectors are simply the columns of the
d× d identity matrix. By adding (or subtracting) these
basis vectors, the neighbors of a point can be found im-
mediately. We define the i-neighbors of a point p as those
points which may be reached by adding or subtracting i
distinct basis vectors, 1 ≤ i ≤ n.

However, our points are specified in terms of their
index in the sequence; based on this index alone, it is
unclear how to calculate the index of a neighbor in the
sample space. It is possible to do so, however. The
algorithm is too long to present here in its entirety; thus,
we will sketch its operation.

For any element in the ordering list L, it is possible
to store the order indices of all of the i-neighbors of each
element. Since any i-neighbor may be found through
a sequence of 1-neighbors, it suffices to store the order
indices of each elements 1-neighbors, of which there are
2d. The space required to do this is consequently O(d2d),
since |L| = 2d.

Now, suppose we wish to find a particular 1-neighbor
of sample i. As in the GET SAMPLE function, we may
execute a recursion, storing the sample index of each
“ancestor” and the order index between ancestors. We
then use this information along with the neighborhood
information stored with each element in the ordering
list L to find the sample index of the desired neighbor.
Then, we perform a simple query to see if the sample
corresponding to this index exists.

Property 2 Let the number of samples taken so far be
N . Then, a 1-neighbor of any of these samples can be
found in O((logN)/d) time.

Proof: Apply the algorithm described above. The
function will recurse at most O((logN)/d) times
and generate as many ancestors, similar to the
GET SAMPLE function. Note that this requires only
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O((logN)/d) rather than O(logN) time as in the analy-
sis of GET SAMPLE because the actual sample location
is not being remembered; only indices are being calcu-
lated, which are dimension-independent. Now, to find
the desired neighbor, the entire ancestor chain may have
to be traversed (this is similar to binary addition, in
which adding 1 may result in each bit needing to be
changed). However, only a constant amount of work is
done each time (applying some simple formulas to ob-
tain new indices). After doing this, the sample index of
the desired neighbor has been calculated; if this value
is larger than N , then the neighbor does not exist. If
a vector of pointers to previous samples is kept, simply
indexing into this vector will allow one to determine the
previously-calculated position of this sample. Therefore,
the total time required is simply O((logN)/d).

The scheme described in the proof above can easily be
adapted to the case of motion planning, in which some
samples of index less than N may not exist, due to be-
ing in collision with some obstacle. In this case, the
corresponding entry in the vector is nil, and the query
returns that the vertex does not exist. Also, the fact
that we can calculate neighbors in this way suggests the
potential for developing “lazy” planners that can search
the space without allocating huge amounts of space for
storing edge connections and neighborhood information.

This method is an improvement over näıve search (in
which the proximity of every sample to the initial point
is checked), and can be used to find 2-,. . .,d-neighbors
in addition to 1-neighbors; however, there may be situa-
tions in which it is desired to determine the radius neces-
sary to connect to the i-neighbors of a particular point at
resolution level l, for use in näıve search. At resolution
level l, the distance between 1-neighbors is 1/2l; hence,

the distance between i-neighbors is
√
i(1/2l)2 =

√
i/2l.

Thus, by setting the connection radius appropriately,
one may use some other technique to connect neighbor-
ing grid points. In passing, it should be noted that to
prevent a point from connecting with non-neighboring
points (e.g., those of distance 2/2l in a single direction),
i must be 3 or less.

Finally, since the grid is multiresolution, it may be
possible to reduce collision checks in resolution level l by
remembering some results from resolution level (l − 1).
We give a bound on the number of collision checks that
may be saved in this way.

Property 3 If samples are connected only to their
1-neighbors, then at most a fraction of 1

2d−1 (1 − 1
2l−1

)
of the collision checks required at resolution level l may
be saved.

Proof: The total number of points in a grid of resolu-
tion level l is 2dl. Assume for a moment that we are on a
toroidal manifold, so that each point has 2d 1-neighbors.
Then the total number of edges is d2dl, since each edge is

shared by two points. Now, to correct for being in <d, we
must remove some edges. For each dimension, a fraction
of 2l of the edges cross the boundary (since we may re-
call that the number of points per axis is 2l). Therefore,
we must remove d2dl/2l = d2(d−1)l edges, leading to a
total of d2dl − d2(d−1)l edges in resolution level l. Since
the fraction of collision checks saved is the same as the
fraction of new edges covered by edges of the previous
resolution level, we find that we may save:

2(2d(l−1) − 2(d−1)(l−1))

2dl − 2(d−1)
= 2 · 2−d 2

dl − 2 · 2(d−1)l)

2dl − 2(d−1)
=

1

2d−1

(
1− 2(d−1)l)

2dl − 2(d−1)

)
=

1

2d−1

(
1− 1

2l − 1

)

From the equation above, it can be seen that while
there may be some savings for low-dimensional appli-
cations, there will be only slight savings for higher-
dimensional problems. Consequently, we expect the pri-
mary benefits of our sequence’s lattice structure to be in
its implicitly-defined neighbors, rather than in collision
check savings.

7 Experimental Results

While extensive empirical testing is needed to conclu-
sively determine the utility of our sequences, we have
conducted a number of experiments using the classical
grid-based sequence in a PRM-like planner. Our experi-
ments both confirm our fundamental claim that disper-
sion and discrepancy are good measures of the quality of
sample sequences and pose new questions that will need
to be addressed in future work. For comparison pur-
poses, we tried four different sampling schemes: random
sampling from the configuration space, and three differ-
ent grid sampling techniques, which are random order,
scanning order, and the discrepancy-optimal order dis-
cussed in this paper. Results of four initial experiments
can be seen in Figures 3 and 4. In these experiments,
all grid sampling methods were configured to connect
only to their neighbors in the current grid resolution level
(although the algorithm described in Section 6 was not
used), and the pure random samples used a fixed radius
to connect to their neighbors, as in the original PRM.

As expected, all of the grid sampling sequences per-
formed better than random sampling for each of the
problems. This indicates that low dispersion and dis-
crepancy are important qualities for a sample sequence to
possess. While calculating grid samples is more compu-
tationally expensive than taking random samples, having
a higher quality sequence often makes it worth the cost.

Interestingly, the random grid sampling sequence per-
formed better than the discrepancy-optimal order in the
problems of five and six dimensions (though not in the
lower-dimensional problems). Does this indicate that
randomly sampling grid vertices is a good compromise

6



Figure 2: Preliminary experiments: clockwise from the
top left, the dimensions of the configuration spaces are
2, 5, 6, and 3.

Prob. Dim R Avg GS R Avg Scan Opt

Point 2 929.08 949.08 4034 758
Bar 3 1751.7 3698.6 2961 3598
Links 5 26201.2 19574.86 32383 23266
Elbow 6 5803.26 1567.44 3517 2703

Figure 3: Comparisons of the number of nodes for several
sampling methods in a PRM planner. Random sampling
sequences are averaged 50 trials.

between the deterministic and random approaches, or
are there other problems of moderate dimensions for
which the discepancy-optimal sampling proves to be su-
perior? These questions require many more carefully de-
signed experiments. Also, we have not yet integrated
our neighbor-finding algorithm into our planners; once
this is done, we expect to see even greater improvements
of grid sampling over random sampling. These improve-
ments will be seen for all grid sampling methods. Thus,
this will not be helpful in gaining insight into random
grid sampling versus discrepancy-optimal grid sampling.

8 Conclusions and Future Work

In conclusion, we have presented a new sample se-
quence, which satisfies all of the desirable criteria
explained in Section 1 (uniformity, lattice structure,

Prob. Dim R Avg GS R Avg Scan Opt

Point 2 2.2144 0.6028 6.52 0.37
Bar 3 1.9852 1.624 1.08 1.48
Links 5 373.26 165.60 438 219.1
Elbow 6 71.11 14.2896 63.2 29.56

Figure 4: Comparisons of the construction times (in sec-
onds) corresponding to the results of the figure above.

and incremental quality), and which is an arbitrary-
dimensional generalization of the van der Corput se-
quence. As a low-discrepancy, low-dispersion sequence,
it provides good coverage of the sample space; as a lat-
tice, it has implicit neighborhood structure, which can be
exploited in planning algorithms; and having incremen-
tal quality, it provides good coverage if terminated after
any sample and can be easily interchanged with other
incremental sampling techniques. These properties sug-
gest that this sequence will be of benefit to the motion
planning community. In particular, we believe that this
sequence is a useful replacement for random sampling in
PRM-style planners.

There are several directions for future work. In the
previous section, we expressed the desire to do compre-
hensive experimental analysis; as part of this, we would
like to determine limits on the dimensions for which this
sequence is useful, and to gain insight into the relative
merits of different types of grid sampling methods. Sec-
ond, we would like to discover a more elegant way to de-
scribe and generate the sequence (such as the bit-reversal
description appropriate for the van der Corput and Hal-
ton sequences); currently, we use a less-appealing recur-
sive scheme based on an explicitly-calculated ordering
for the first resolution level. Third, we would like to in-
vestigate the possibility of using other sets of rectangles
for discrepancy calculations. Fourth, we have already
mentioned that the extension to the Sukharev grid is
fairly straightforward; similarly, an extension to an ar-
bitrary lattice is not difficult. We would like to imple-
ment and test both of these extensions. Finally, we plan
to continue to develop software generating and utilizing
this sample sequence for use in our own planners, and
to make the software available for use by the commu-
nity (the latest versions of this software are available at
http://msl.cs.uiuc.edu/∼slindema/sampling).
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[18] H. Weyl. Über die Gleichverteilung von Zahlen mod
Eins. Math. Ann., 77:313–352, 1916.

[19] S. A. Wilmarth, N. M. Amato, and P. F. Stiller.
Maprm: A probabilistic roadmap planner with sam-
pling on the medial axis of the free space. In IEEE
Int. Conf. Robot. & Autom., pages 1024–1031, 1999.

[20] Y. Yu and K. Gupta. On sensor-based roadmap:
A framework for motion planning for a manipulator
arm in unknown environments. In IEEE/RSJ Int.
Conf. on Intelligent Robots & Systems, pages 1919–
1924, 1998.

8


