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Methods for Numerical Integration of
High-Dimensional Posterior Densities with

Application to Statistical Image Models
Steven M. LaValle, Kenneth J. Moroney, and Seth A. Hutchinson,Member, IEEE

Abstract—Numerical computation with Bayesian posterior den-
sities has recently received much attention both in the applied
statistics and image processing communities. This paper surveys
previous literature and presents efficient methods for computing
marginal density values for image models that have been widely
considered in computer vision and image processing. The particu-
lar models chosen are a Markov random field (MRF) formulation,
implicit polynomial surface models, and parametric polynomial
surface models. The computations can be used to make a va-
riety of statistically based decisions, such as assessing region
homogeneity for segmentation or performing model selection.
Detailed descriptions of the methods are provided, along with
demonstrative experiments on real imagery.

Index Terms—Bayesian computation, numerical integration,
statistical image segmentation.

I. INTRODUCTION

BAYESIAN analysis has proven to be a powerful tool in
many low-level computer vision and image processing

applications; however, in many instances this tool is limited by
computational requirements imposed by extracting information
from high-dimensional probability spaces. In a standard appli-
cation of Bayes’ rule, an integral (or summation) is required
to marginalize one set of the random variables with respect
to another. This can be costly when the dimensions of the
random variables are high, as is often the case with statistical
image models (e.g., [9], [21], and [39]).

High dimensionality of posteriors has led to the recent
development of computation techniques that have increased
the applicability of Bayesian analysis. For example, Gibbs
sampling is a Markov chain-based technique that allows in-
direct sampling from (marginal) distributions, and has proven
successful in image processing applications [17]. A recent
discussion and comparison of Markov chain methods that
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use Monte Carlo simulation, which includes the Gibbs sam-
pler, appears in [4] and [42]. Smith has provided a more
general survey of Bayesian computation methods, including
analytic approximations to the integrals, parametrizations and
quadrature rules, and some adaptive sampling techniques [41].

In this paper, we present numerical methods for efficiently
evaluating the marginalizing integrals for popular statistical
image models, discuss applications, and present an empirical
evaluation of the methods. We begin by introducing some
notions that are common in a statistical image processing
context (e.g., [17], [39], [46]). A vector represents a
continuous parameter space, and the vectorrepresents
the observations. These observations can be the image data,
usually represented by , or some statistics of the image
data. A noise (or degradation) model, , represents the
anticipated observation for a given parameter value. Finally,

represents a prior density on the parameter space.
Given these definitions, consider the marginalization of

with respect to , as follows:

(1)

It is assumed that both and are easily identified
such that the integrand of (1) is known. It is further assumed
that and are much more difficult to represent.

The need for efficient computation of (1) exists for many im-
age processing applications. Consider, for example, a Bayesian
estimation context. Here, one is interested in selecting the
that maximizes the likelihood, . This is done since
by the application of Bayes’ rule

(2)

is also maximized. By computing the denominator
of (2), the equation can be directly used to obtain a normal-
ized pdf value for a parameter, given the observations (i.e.,

). Using this, comparisons can be made to the prior
probability density function (pdf) values, .

Model order selection, a subject of interest in the computer
vision community [5], [34] is another example. Of particular
use for image segmentation, this subject addresses the problem
of deciding which model, or , is appropriate for a given
data set. The models are usually considered to be nested,

. For example, could represent a linear model,
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and a quadratic model. For two nested parameter spaces,
the following ratio of marginals has been used extensively for
Bayesian model selection [1], [9], [43]:

(3)

As (3) increases, confidence in also increases, favoring the
simpler model.

A third application of the marginal computation (1) is
found in the assessment of region homogeneity for image
segmentation. For two subsets, and , of an image, it
has been shown that the ratio

(4)

can be used along with Bayes’ rule to obtain the probability
that the data in and were generated by the same
parameter value (for some given parameter space) [28], [29].
The variable refers to a combined parameter space that is
associated with both and .

The two ratios, (3) and (4) (and similar forms) have ap-
peared recently in work from the statistics literature, and
are termedBayes factors. Smith and Speigelhalter used this
ratio for model selection between nested linear parametric
models [42]. Aitken has developed a Bayes factor for model
comparison that conditions the prior model on the data [1].
Kass and Vaidyanathan present and discuss some asymptotic
approximations and sensitivity to varying priors of the Bayes
factor [25]. The Bayes factor has also been carefully studied
for evidence evaluation in a forensic science context [3], [11],
[14], [15]. Other references to Bayes factors include [2], [18],
and [24].

In this paper, we introduce two methods for efficient eval-
uation of (1). These integration techniques apply when the
integrand of the marginalization (1) can be expressed in one
of two forms: 1) as a function of a quadratic, or 2) as a
function of a ratio of quadratics. In Section II we discuss
related integration methods, including certain limitations that
make these methods insufficient for our needs. Section III
discusses some popular statistical image models in which these
two types of integrands appear.

Integration methods that pertain to models in which
is a function of a quadratic in are discussed

in Section IV. Section IV-A discusses a technique which is
based on the idea that the integrand is asymptotically Gaussian
in . Since we are interested in techniques that can handle
large amounts of uncertainty, this technique is shown to
be most useful when the integrand isdirectly Gaussian in

. Section IV-B introduces a more general technique that
creates large computational savings by efficiently mapping
an -variate integration space into a single dimension. The
marginalization (1) can then be computed by traditional one-
dimensional (1-D) integration means, regardless of the original
dimension of integration. The parametric polynomial model
(Section III-A) and a Markov random field model (Section III-
B) are examples of models to which these methods apply.

In Section V, we discuss a Monte Carlo-based integration
method that applies to models in which is a
function of a ratio of quadratics. This technique defines an im-
portance sampling function for this class, which significantly
reduces the number of samples needed. An example of a model
to which this technique applies is the implicit surface model,
discussed in Section III-C.

In Section VI we show some segmentation results that were
obtained using the models in Section III. These results depend
heavily on the integration techniques presented in this paper.
Also shown are graphical depictions of the computational
savings yielded by the method in Section V. Finally, some
conclusions are presented in Section VII.

II. RELATED INTEGRATION METHODS

Numerical methods for integration have been a topic of
research for many years, and a number of methods have
been developed. Of these, several methods may seem plau-
sible; however, the complexity of a typical statistical image
model can cause them to be inappropriate. In this section,
we explore these methods and discuss the limitations of each
that make them inappropriate for our needs. Basic integration
techniques such as classical quadrature and basic Monte Carlo
are discussed in Sections II-A and II-B. Integration approaches
that have appeared in statistical contexts are discussed in
Sections II-C and II-D, which are asymptotic approximation
and Gibbs sampling, respectively.

A. Quadrature

One straightforward approach to many integration problems
is the use of classical quadrature. In general, a quadrature
formula can be expressed as

(5)

in which the integral is approximated by a linear combination
of values of the function. Three main concerns of this method
are determining the weights , the partitioning of the region
of integration, and the number,, of sample points.

It is well known that the number of sample points needed
for a certain degree of accuracy increases rapidly as the
dimension of integration increases (for example, see [27]). If
the dimension of integration is low (e.g., three or less), this
method can produce accurate approximations to an integral
with reasonable cost; however, since statistical image models
are often of high dimension, this rapid increase in the number
of samples makes the quadrature approach computationally
prohibitive.

B. Monte Carlo Integration and Importance Sampling

Monte Carlo integration, in general, is a technique that is
often suitable for high-dimensional integration. For a com-
plete introduction to Monte Carlo integration, see [22]. The
basic Monte Carlo method iteratively approximates a definite
integral by uniformly sampling from the domain of inte-
gration, and averaging the function values at the samples.
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The integrand is treated as a random variable, and the sam-
pling/averaging scheme yields a parameter estimate of the
mean, or expected value of the random variable.

Although the number of samples required for a certain
degree of accuracy does not depend on the dimension of
integration, there are two limitations to the basic Monte Carlo
approach: 1) the accuracy improves only linearly with the
number of samples, and 2) more samples are needed if the
integrand is peaked in a small region and approximately zero
elsewhere [22]. More elaborate schemes with faster conver-
gence rates are discussed in [49]; however, improvement in
the convergence rate for these methods is possible only for
low-dimensional cases (e.g., three or less). These approaches
typically incorporate some form of quadrature, yielding greater
computational cost.

The second limitation is of particular concern in a statistical
context. As the amount of information contained in a posterior
density increases, the integrand (1) becomes peaked. For
example, suppose an image is presented in which all of
the pixels are known to have some fixed, unknown real-
valued intensity, corrupted by additive Gaussian independent,
identically distributed (i.i.d.) noise with known variance. The
random variable can represent the fixed, underlying inten-
sity value, and can represent a vector of observed image
data. For a given observation, through Bayes’ rule
is proportional to . As the number of data points
increases, our ability to predict increases since
becomes peaked. By the proportionality, the integrand of (1)
also becomes peaked. This same type of behavior occurs with
the models discussed in this paper.

One common method for handling a peaked integrand
is to introduce importance samplinginto the Monte Carlo
integration [22]. Rather than sampling uniformly from the
domain of integration, the samples are concentrated in the
region in which the integrand peaks. The samples are ap-
propriately weighted in the resulting average to compensate
for the nonuniform distribution of sample points. While this
general technique is widely used in statistical computations,
each type of integrand requires a unique importance function.
This importance function defines the area in which the integral
is peaked, and is crucial for importance sampling to succeed. In
Section V, we introduce one such importance function defined
for models that can be expressed as a function of a quadratic
ratio.

C. Asymptotic Approximation

As mentioned in Section II-B, in an image processing
application, the integrand of (1) can become peaked. This ob-
servation has led to the use of asymptotic approximations when
the number of image elements is large [7], [39]. If the models
are expressed with smooth probability densities, then it can be
shown that the integrand of (1) is approximately Gaussian as
the number of samples increases (becoming a delta function as
the number of samples reaches infinity). The integral is directly
determined by integrating the approximating Gaussian.

In some applications, this has led to useful results; however,
in general we are interested in statistical methods that are

capable of handling a greater deal of uncertainty. For instance,
in a region-based segmentation scheme [30], [38], the number
of points in a region can vary dramatically. Smaller regions
will have a greater degree of uncertainty associated with them,
which leads poorer accuracy in the asymptotic approximation.

D. Gibbs Sampling

The Gibbs sampler was introduced to the image processing
community by Geman and Geman [17], and is described
in detail in [10]. Here we describe a brief overview of
the method. Assume that we have random variables

. The availability of the full conditionals of
the form is essential to the
applicability of this method. Given these, this method allows
us to create samples of the marginal densities by iteratively
extracting random samples from thefull conditionals. The
algorithm is initialized by selecting arbitrary values for the
random variables, . Samples are then extracted
as follows:

...
(6)

where . At the end of iterations, we have
. Assuming that is large enough, these represent

single samples from the random variables. Thus, this process
can be repeated, say, times to create samples of the
marginal distributions, . The Gibbs sampler can
therefore be used to estimate any marginal distribution [35].
Given samples, the distribution of theth variable can be
estimated as

(7)

In the case at hand, the reader is reminded that the marginal-
ization in (1) is the desired result. For the statistical models
discussed in Section III, densities are given to form the in-
tegrand, . Hence, of the two random variables
discussed in Section I, and , only one conditional is
available. Since the Gibbs sampler would also call for the
availability of the conditional, , it is inappropriate for
this problem.

III. I MAGE MODEL APPLICATIONS

We will present our general methods of numerical inte-
gration in Sections IV and V. In this section, we describe
examples of image models to which these methods apply. For
each application, sufficient information is given to form the
integrand of (1), . In each section we refer to a
set of image elements as, which could be a set of intensities
or range coordinates, depending on the image type.



1662 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 6, NO. 12, DECEMBER 1997

A. Parametric (Explicit) Polynomial Models

The general form of the parametric polynomial model is

(8)

in which and are positive integers. Thedegreeof the
model is the maximum over of . The parameter
space is thus spanned by the coefficients that are usually
selected for surface estimation. This image model has been
used for the segmentation of intensity images in [20], [31], and
[39], and for range image segmentation in [5], [31], and [38].
A survey and discussion of parametric polynomial surface
estimation that is based on calculus of variations is presented
in [8], and a survey of early facet-model research and other
intensity image segmentation techniques is presented in [19].

The observations, , are represented by a vector of point-
to-surface displacements of the image values (either range or
intensity) in , given a parameter value. We denote a single
displacement as

(9)

in which is the image value at theth row and th
column. The dimension of is equal to the number of pixels
in .

If we assume an additive Gaussian i.i.d. zero-mean noise
model, the joint density is obtained by taking the product of
the individual displacement densities

(10)

We define the prior model by assigning a uniform density
to a bounded parameter space. For regions that we have
considered, a rectangular portion of the parameter space can
always be identified that encloses nearly all of the probability
mass that contributes to the integrals in (4), and using the
integration method of Section IV-B, we are actually not re-
quired to specify bounds to perform the integration (all of
is used). The problem of selecting bounds for a uniform prior
has been known to lead to difficulty in Bayesian analysis, and
is referred to as Lindley’s paradox [32]. As the volume over
which the uniform density is defined increases, the ratio (4)
decreases.

B. A Markov Random Field Model

We use the Markov random field (MRF) formulation in-
troduced in [23]. This model has been applied to texture
segmentation of intensity images in [13], [39], and has been
recently extended to texture modeling and segmentation of
color images [36].

An image element represents a single intensity, ,
treated as a random variable. We have an-dimensional
parameter space, which represents the interaction of a pixel
with a local set of neighboring pixels. Theorder of an MRF
indicates the size of the local neighborhood that is considered.

Fig. 1. MRF pixel neighborhood withX[i; j] located in the center. For an
nth-order MRF, the pixels in boxes with numbers less than or equal ton

comprise the neighborhood.

Fig. 1 shows the neighbor set that is used for the MRF orders
considered in our experiments.

We use and to represent the mean and variance in
, respectively. For any general order of MRF interactions,

the image element of theth parameter interaction is denoted
by . Hence, in general at some point , the
model is

(11)

We could also consider as part of the parameter space.
This would require the selection of appropriate prior density,

, and require it to be integrated in (4).
The observation space, , is defined as a vector that

corresponds to all of the intensity data, , in some region
. Hence, the dimension of is equal to the number of pixels

in .
We assume that the noise process that occurs in the linear

prediction (11) is Gaussian. The joint density that we use over
the points in is not a proper pdf; however, it has been
considered as a reasonable approximation and used in previous
segmentation schemes [13], [36], [39].

We obtain the complete noise model by taking the product
of the density expressions over each of the individual pixels,
as follows:

(12)

For the texture model we also use a uniform prior density
on a bounded parameter space.

C. Implicit Polynomial Models

For this model each image element represents a point in,
specified by coordinates, which we denote by.
An implicit polynomial equation is represented as

(13)

with

(14)

The constants , and are nonnegative integers, rep-
resenting the exponents of each variable. Theused here
indicates that we have an implicit function with as the
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variables. We will later refer to , which yields a nonzero
value unless is on the surface. Thedegreeof the polynomial
model is the maximum over of . This model has
been used for range image segmentation in [7], [16], [45], [47],
and [48]. It has been used for object recognition applications
in [12] and [26].

With the formulation given by (13), there are redundant rep-
resentations of the solution sets (i.e., there are many parameter
vectors that describe the same surface in). It is profitable to
choose some restriction of the parameter space that facilitates
the integrations in (4), but maintains full expressive power.
We use the constraints and , to constrain the
parameter space to a half-hypersphere.

The observation considered here is a function of the signed
distances of the points from the surface determined
by , termed displacements. Define to be the
displacement of the point to the surface described by the
zero set . The function takes
on negative values on one side of the surface and positive on
the other.

We consider the following observation space definition, and
others are mentioned in [28]:

(15)

Note that we use instead of when the observation is a
scalar.

Although we have defined the observation space in terms
of the displacements, a closed-form expression for the dis-
placement of a point to a polynomial surface does not exist in
general. We use the following displacement estimate presented
in [48]:

(16)

To define the noise model, we express the density corre-
sponding to the displacement of an observed point from a
given surface. We use a probability model for range-scanning
error used and justified in [7]. The model asserts that the
density, , of the displacement of an observed point from
the surface, , is a Gaussian random variable with zero
mean and some known variance,.

Since taking the sum of squares of Gaussian densities yields
the chi-square density, the density using (15) is

(17)

Here, is the sum-of-squares for a given region,, and
parameter value , given by (15). Also, is the standard
gamma function and (the number of elements in).

We assign to be a uniform prior on the constrained
parameter space.

The method that we will discuss in Section V applies to
integrals in which the integrand is a function of a quadratic
ratio. We will now show that the model discussed above can
be approximated by such a function.

Here we consider the case of evaluating the integral (1) for
some region . Shown explicitly, the computation of interest is

(18)

where is assumed to be a uniform prior density, and
hence does not affect the integration. Using the displacement
estimate (16), the argument of the integrand is

(19)

Based on the need for computational efficiency, we borrow a
simplification used by Taubin and Cooper [48]. In their work,
the simplification was performed to facilitate optimization for
the purpose of parameter estimation of implicit surfaces. This
simplification makes the assumption that the magnitude of the
gradient remains fairly constant over the set of points, for
a given parameter value. Using this, (19) can be rewritten
with a numerator summation and a denominator summation.
Since their definition for the parameter space coincides with
our parameter space, this simplification is equally valid for our
work. This simplification thus yields

(20)

Recall that is linear in the parameters. The numerator
above must be a quadratic function in the parameter value,
since it is a linear function squared. The denominator is also
quadratic, since the gradient yields a linear function of, and
the magnitude squared yields a quadratic. The numerator and
denominator represent sums of quadratics, and hence are in
turn quadratic. From this, they can each be expressed as an

quadratic form, which gives

(21)

Thus, for this model, the integrand of (1) could be expressed as

(22)

in which and are positive definite symmetric matrices,
and represents the chi-square density. This is the form that
will be investigated in Section V.

IV. I NTEGRATION OF AN -VARIATE

FUNCTION OF A QUADRATIC

In this section, we consider an integral of the form

(23)

in which and is a scalar, real-valued quadratic
function

(24)

and is a positive continuous function. Examples of models
which provide the integrand of integrals of this type are
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the parametric polynomial model and MRF model, discussed
respectively in Sections III-A and III-B.

We discuss two methods that can be used to compute the
integral, (23). The first approach can be utilized when the
noise model is Gaussian, and the prior model is uniform. Also
discussed here is an asymptotic approximation for use with
large data sets, as done in [7] and [39]. The second approach
is efficient and more general, which numerically performs a
Lebesque integration on an ellipsoidal decomposition of the
parameter space.

A. Utilizing a Gaussian Assumption

Suppose that in particular, the noise model is Gaussian and
the prior model is uniform, as is precisely the case for the
models of Sections III-A and III-B. The joint density, ,
would then be Gaussian inand the integral in question would
be of the form

(25)

in which

(26)

and is the size of the data set over which the models
are defined. By completing the square in the integrand, the
integral becomes

(27)

in which is known to be the inverse of the covariance
matrix, is some constant, and represents the mean
vector.1 This can then be factored further to produce

(28)

From here we see that the integral in question, (25), is directly
evaluated by

(29)

since the integral in (28) is of the Gaussian and evaluates to
one. Further, by evaluating the integrand of (27) at ,
the maximum likelihood estimate of the true is
minimized and the constant can be found. Thus, it
is found that

(30)

Now, suppose the noise model is an arbitrary pdf common
to all elements of , a vector of iid random variables.

1In some cases, a valid covariance matrix may not be positive definite. In
practice, this usually corresponds to situations in which there are very few
data points.

Fig. 2. Decomposing the parameter space into concentric ellipsoids.

Thus the joint pdf over , is found by

(31)

In a paper by Bolle and Cooper [7], it was shown that for a
“reasonably smooth”a priori pdf , the integral

(32)

for large is approximately

(33)

where is the dimension of denotes determinant and
is the maximum likelihood estimate of the true.

is a matrix with th element

(34)

This was based on an earlier result that stated that (31) is
asymptotically Gaussian in.

B. Using a Lebesgue Integration Approach

The method discussed above provides an accurate and
efficient solution to (23) even with high uncertainty. It does
this with one restriction: that the integrand be Gaussian in the
parameter space. In this section, we introduce a more general
method that removes this restriction with no loss of accuracy
or efficiency.

Here, we transform the -variate integral in (23) into a
single integral by decomposing into subsets on which

is approximately constant. This is accomplished by
considering fixed values, , for , and the quadratic
surfaces in that result from using (24). Hence we consider
transforming the domain of integration fromto , yielding

(35)

thus collapsing the -dimensional integral into a 1-D integral
over the measure space induced on the reals by.

Now we consider the set of all points in the parameter space
that map between and (see Fig. 2):

(36)
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In a summation, the differential is represented by
the Lebesgue measure (or area) of. Hence, we can write

(37)

in which represents the measure of.
Since is quadratic, is a bounded set iff is

the equation of an ellipsoid. If is unbounded, then it can be
seen in (37) that the integral in (23) is infinite; therefore, we
are only concerned with cases in which represents
an ellipsoid.

The measure of is found by taking the set difference of
two concentric ellipsoids that are rotated and translated away
from the origin, as depicted in Fig. 2. Recall that the volume
of an ellipse is proportional to its axis lengths. To compute

, we center the ellipsoids at the origin with their axes
aligned with the coordinate axes.

By using an affine transformation on , described
in [6], we obtain the quadratic form , in which

is diagonal. The resulting standardized ellipse equation is

(38)

in which

(39)

and

(40)

The vector is computed by the product, , in which
is the corresponding matrix of eigenvectors of the matrix
. Also, represents the-th eigenvalue of the matrix .

The ellipse volume is

(41)

in which

if is even

if is odd.
(42)

and is the dimension of .
In practice, we compute the integral (23) by considering a

finite approximation of the sum in (37), as follows:

(43)

In general,numerical quadrature formulas can also be applied;
however, we have obtained satisfactory performance by di-
rectly using the sum.

We select starting and ending points, and in (43) by
making the assumption that

(44)

and

(45)

Hence, the performance of this method is affected by the rate
at which approaches the origin. To clarify, the rate at which
this method converges is directly related to the width of. If

is sharply distributed about the origin, i.e., small, then the
number of discrete sample points, , needed is also small.
As flows out from the origin, i.e., increasing, the number
of required sample points also increases. This, however, is
a small factor when compared to computational savings this
method brings.

V. INTEGRATION OF AN -VARIATE

FUNCTION OF A QUADRATIC RATIO

In this section, we consider an integral of the form

(46)

in which and is a ratio of quadratics of the form

(47)

Note that for some scalar . We consequently
assume that the parameter space is constrained with the
standard norm, , and that . The implicit
polynomial model of Section III-C is a model family that is
included by this form.

Although the integrand in the previous section permitted
an efficient decomposition of the domain of integration, a
similar approach does not seem possible for an integrand of
the type in (46). Due to the quadratic expression appearing
in the denominator, the level sets are not ellipses, but instead
correspond to intersections of ellipses in the domain of inte-
gration. For this problem, however, Monte Carlo integration
with importance sampling provides reasonable computation
performance. In particular, we identify a small, rectangular
region in the domain of integration that contains all of the
points that significantly contribute to the integral. The random
sampling is then only performed inside the rectangular region,
and the number of samples required is significantly reduced
(by a factor of thousands in many practical cases).

Before proceeding with a Monte Carlo analysis, we first
transform the integral over the parameter space into a volume
integral over the unit hypercube (see Fig. 3). This transforma-
tion is a generalization of the spherical coordinate transforma-
tion [28], [44]

... (48)
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Fig. 3. Parameter space is transformed into the unit hypercube for integra-
tion.

The magnitude of the transformation Jacobian is

(49)

Finally, the transformed integral becomes

(50)

In the derivation that follows, we treat the new region of
integration as a vector of random variables, denoted by,
defined on a unit cube. Let denote the integrand of
(50).2

The integral (50) is represented as

(51)

Take a set of independent samples, , drawn
uniformly from the space . The th estimate of is

(52)

By the strong law of large numbers,
as , with probability one. Consider the variance of the
estimate, . From (52), we observe by
linearity that , since the region
of integration is the unit cube. From this observation we obtain
an expression for the variance of the estimate [33],

(53)

This indicates that the error variance is reduced at a rate of
.

Although the result does not depend on the dimension of
integration, the convergence can be slow in practice. For each
additional significant digit of accuracy, 100 times as many
points must be used. When using the Monte Carlo approach
for statistical quantities, an additional problem results. If a
density becomes peaked around a small portion of the space,
then most (or nearly all) of the random samples are drawn from
the portion of the space in which the function is approximately

2By h 2 L2, we mean that h2 <1.

zero. As mentioned in Section II-B, one general approach to
this difficulty is to perform importance sampling.

Consider a strictly positive probability density function
(pdf), , defined on . We can compute the equivalent
integral

(54)

by drawing samples from the density .
We will next determine a rectangular region, defined

with boundaries , with for each
. We will choose a such that there

are no points outside of that significantly contribute to the
integration (due to peaking).

For a given and a positive we can define a pdf
for Monte Carlo sampling as

if
otherwise

(55)

in which represents the area (or measure) of. This
pdf will concentrate percent of the samples around
the peak. In practice, we choose essentially all of the samples
from , and have found little sensitivity to the choice of. The
pdf in (55) can alternatively be replaced by a pdf that varies
within . For instance, the samples might be generated by a
truncated Gaussian density, with a mean at the center of.
An alternative pdf could additionally improve performance,
and this remains a topic of future investigation.

We next discuss the selection of the’s, and how the
sampling is performed. Since the integrand of (46) is formed as
a product of densities, we can take some maximum value such
that sample points that yield a quadratic-ratio value greater
than contribute relatively little to the integration, since the
density at least asymptotically approaches zero. For the model
discussed in Section III-C, the integrand is proportional to a
chi-square density. For this case we use the Cornish–Fisher
approximation [50] to the chi-square cumulative distribution
function to obtain value for at the 99.9th percentile for some

. The left side of the equation below represents the set of all
parameter values that yield sum-of-squares less than. Note
that this is a subset of the right side

(56)

Therefore, the right side above describes the interior of a
cone, centered at , which encloses all the points
in the parameter space that significantly contribute to the
integration. Note that in general, some axes of this cone may
be unbounded; however, we additionally have .

Let denote the eigenvalues of ,
in decreasing order. Also, let denote the corresponding
eigenvector matrix, which is a rotation matrix that aligns
the cone with the coordinate axes (diagonalizing). Take

, and we obtain

(57)
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Fig. 4. Segmentation results of range data image using the implicit quadric surface model of Section III-C and integration technique of Section V.

in which . Using , the equation
becomes

(58)

in which some are negative.
We next determine maximum values for eachunder the

constraint that lies in the interior of the cone.
Note that represents the minimum-valued eigenvector

(by the imposed ordering). By inspection of (58), it can be
observed that each that corresponds to a positive eigenvalue
can be bounded as

(59)

The rectangular subset of that has corners located at
coordinates encloses the cone.

We can apply the inverse of the spherical coordinate trans-
formation (48) to map the corners of the box into. These
form a rectangular subset, , of in which the corners have
coordinates we denote by .3

Using these results, the integral (1) can be computed by
sampling from and transforming the points into to obtain

(60)

in which represents when . Note that we
have , which represents the factor by which
the number of required samples is reduced. In Section VI,
we show plots of how this factor is affected by region size,
region variance, and the degree of the polynomial model used
to represent the data.

To compute an integral in the denominator of (4), the
transformation must be applied to two different functions of a
quadratic form. For this case we use the smallest rectangular
region, (and corresponding rotation) of the two regions

and . If that region is then the integral is computed

3Some of rectangular faces in the parameter space may lie outside the unit
hypersphere. When the first axis is found that is outside, the remainingci are
set to their maximum value,1=2.

by

(61)

in which the are the eigenvalues of and is its
eigenvector matrix.

VI. COMPUTED EXAMPLES

The integration techniques presented in this paper have been
implemented, and the resulting computations have been used
by our segmentation algorithms. In related research we have
developed algorithms that: 1) determine a segmentation by
iteratively merging regions that have a high probability of
homogeneity [29], and 2) determine a set of the most plausi-
ble segmentation hypotheses while maintaining corresponding
probabilities [30]. Integrals of the form (1) are computed
numerous times in these algorithms, thus requiring efficient
integration algorithms. We have performed numerous experi-
ments on range and intensity images with up to 20-dimensional
parameter spaces, and several results are highlighted in this
section to illustrate the utility of the integration methods.
This section also presents some experimental analysis of the
performance improvement that is gained over crude Monte
Carlo by using the method discussed in SectionV to select
samples.

Figs. 4–8 show segmentation results that were obtained
using a clustering algorithm presented in [29]. The algorithm
description, given in Fig. 6, can be considered as agglom-
erative clustering [39], [40] with the metric-based merging
criterion replaced by the probability of homogeneity, which
is briefly discussed in Appendix A. The probabilities are
computed for all adjacent region pairs, and the pair with
the highest probability is merged. The new, merged region
replaces the two individual regions in, and new merging
probabilities are computed. This process iterates until the
stopping criterion in line 4 is met.

We allow two different stopping criteria in line 4: either the
number of final regions is specified, or merging is terminated
after the highest-probability merge is below some value,
reflecting a high risk merge. For the segmentations with range
data the probability of homogeneity decreases abruptly once
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Fig. 5. Segmentation results of range data image using the implicitquadric surface model of Section III-C and integration technique of Section V.

Fig. 6. Highest-probability-first merging algorithm.

the major classes have been formed; consequently, we were
able to use an insensitive terminating probabilityto halt the
merging. For the intensity images, the parametric models are
not as accurate. Consequently, for many of the images, there
is not an abrupt decrease in probabilities, and consequently we
specified the class numbers for these experiments.

Figs. 4 and 5 show two range image experiments. The
three-dimensional (3-D) range data sets shown in Figs. 4(a)
and 5(a) were modeled using the implicit quadric surface
model of Section III-C. The use of this model results in six-
dimensional integrals within the probabilistic homogeneity (4).
The integration technique described in Section V performed
these integrations efficiently. Figs. 4(b) and 5(b) show an
(automated) initial partition of the image, on which the clus-
tering is performed. The final segmentation results, shown in
Figs. 4(c) and 5(c), are obtained after performing the clustering
and a simple boundary localization operation [29].

Fig. 7 shows texture segmentation results on intensity im-
ages that were obtained by clustering on images that were
initially partitioned with a square grid to make 64 square
regions. These segmentations were computed using second-
and third-order MRF models (described in Section III-B). The
parameter space dimension of these models are 8 and 12,
respectively. The technique introduced in Section IV-B was
used to compute the integrals involved in these segmentations.

Fig. 8 shows the segmentation of an intensity image
by applying a quadric parametric polynomial model of

Section III-A directly to the intensities. Again, the technique
from Section IV-B was used.

In each case, the appropriate integration method was used to
compute the probability of homogeneity. The displayed results
depend on the quality of the clustering algorithm, which heav-
ily dependent on the ability to compute the marginalization,
(1), accurately and efficiently.

We next present some results that indicate the computational
savings that are obtained by using the method in Section V in
comparison to using basic Monte Carlo sampling. One of the
key difficulties of using crude Monte Carlo in a statistical
context is the generation of samples that are concentrated
where the probability densities are peaked. The method in
Section V overcomes this difficulty by identifying a small
region that contains the peak. The sample reduction factor,,
used in (60), directly indicates the savings that are obtained
over crude Monte Carlo, and is graphed for several cases.

The factor varies depending on several things: the region
size, the locations of the data points, the region variance,
and the degree of model used. Although the factor can vary
tremendously from application to application, we provide
some indication of its value by constructing synthetic planar
regions of various sizes and variances. All of the regions
are square, and the first two coordinates of the points lie at
consecutive integer coordinates. Gaussian noise was simulated
and applied to the data. The regions were modeled using
the implicit polynomial model of Section III-C. The sample



LAVALLE et al.: NUMERICAL INTEGRATION OF HIGH-DIMENSIONAL POSTERIOR DENSITIES 1669

Fig. 7. Final segmentation results on texture intensity images. The MRF modelof Section III-B was used along with the integration technique of Section IV-B.

Fig. 8. Intensity image segmenation results using the quadric parametric polynomial model of Section III-A and the integration technique of SectionIV-B.

Fig. 9. Sample reduction factor using implicit polynomial model of degree 1.

reduction factor was then computed for each region. Fig. 9
shows the factor as it relates to region size and variance while
using the planar model (implicit polynomial model of degree
1). Fig. 10 shows the factor while using the quadric model
(implicit polynomial model of degree 2). Note that as variance
increases, the integral rapidly becomes more peaked. This
results in dramatic increases in the savings factor. Increasing
the amount of information in the region will also cause the

integral to become peaked, although, at a slower rate. This is
shown in the figures as a slight increase in reduction factor as
the region size is increased.

Suppose the integral is computed for a region that contains
900 points and has a variance of 0.01, which is quite typical
in a range-image application. In the planar case, our method
produced a savings of nearly 18 000. For the same region,
using the quadric model, our method reduced the number
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Fig. 10. Sample reduction factor using implicit polynomial model of degree 2.

of sample points by a factor of over 5.510 . As another
example, suppose a region contains 10 000 points and has
a variance of ten, which is typical of an intensity-image
application. Using the quadric model, the savings factor was
over 6700. The largest factor that we have obtained in this
experiment for the quadric model was 1.3 10 , which
corresponds to a region that has 10 000 points with a variance
of 0.000 01.

VII. CONCLUSION

We have presented integration methods that compute a
marginal density value for a wide class of statistical image
models. In particular, these methods have been successfully
applied to the implicit polynomial surface model family, the
parametric (explicit) polynomial surface model family, and a
Markov random field model family. These integration methods
were crucial for the Bayesian computation required in our
related segmentation work [28], which use (4).

In general, we believe these computation methods will
prove useful for additional image processing applications in
which high-dimensional Bayesian modeling is employed. For
example, since the models presented in Section III are nested
families, an interesting area of future work remains to study
the application of (3) for model selection.

APPENDIX

REGION MERGING PROBABILITY

With every image element,, we associate a random vector
, representing the image information, which may be 3-D

position, intensity, color, or other information. Aregion, , is
some connected subset of the image. In practice, most region-
based segmentation algorithms begin by partitioning the image
into an initial set of regions, (e.g., [19], [37], [38], [39]).
This provides a computational advantage (since there are not
as many potential groupings of data points to consider), and
also allows statistical models to be effectively exploited [39].

For each we define the following four components.

• Parameter space: A random vector, , which could, for
instance, represent a space of polynomial surfaces.

• Observation space: A random vector, , obtained as a
function of the data .

• Noise model: A conditional density, , which
models noise and uncertainty.

• Prior model: An initial parameter space density, .

We have shown that for two regions, and , the
posterior probability that is homogeneous, given
a prior probability, , is determined through the following
proposition [29]:

Proposition 1: Given the observations and , the pos-
terior membership probability is

(62)

in which

(63)

and

(64)

The condition that is homogeneous has been
represented by . The and ratios represent a
decomposition into prior and posterior factors.
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