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Abstract 
In this paper we provide a method for  characterizing fu -  

ture configurations under  the implementation of a mot ion  
strategy in the presence of sensing and control uncertain- 
ties. W e  provide general techniques which can apply to  ei- 
ther nondeterministic models of uncertainty (as typically 
considered in preimage planning research) or probabilistic 
models. Information-space concepts f r o m  modern control 
theory are utilized t o  define the notion of a strategy in this 
general context. W e  have implemented algorithms and 
show several computed examples that generalize the for -  
ward projection concepts f r o m  tradition literature in this 
area. 

1 Introduction 
It is important that a robotic system be able to accu- 

rately predict the outcomes of its actions when there is 
uncertainty in either execution (control) or sensing. In 
past research on manipulation planning, forward projec- 
tions have been used for this purpose (e.g., [3, 71). 

Two basic representations of sensing and control uncer- 
tainty have been proposed in the manipulation planning 
literature. We refer to these as nondeterministic uncer- 
tainty and probabilistic uncertainty, as done in [5]. Under 
nondeterministic uncertainty, it is assumed that parame- 
ter uncertainties lie in a bounded set. This uncertainty 
representation is the most common in previous manipula- 
tion planning research (e.g., [7, 9, 10, 121). Under proba- 
bilistic uncertainty, probability densities are used to rep- 
resent uncertainty associated with parameters. This ap- 
proach has been advocated for manipulation planning by 
Brost and Christiansen [2, 3, 41. Each Uncertainty repre- 
sentation offers advantages. For example, nondecermin- 
istic models do not require a statistical representation of 
the errors, and hence are often easier to  specify. 

In the remainder of the paper, we describe the spe- 
cific models of uncertainty that we use (Section 2), de- 
scribe nondeterministic forward projections and present 
computed examples (Section 3) and describe probabilis- 
tic forward projections and present computed examples 
(Section 4). 
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2 Modeling Uncertainty 
As introduced in [ll], we conceptualize the the robot's 

interaction with the environment as a dynamic game that 
is played between two players: the robot, A, and na- 
ture. The robot has a general plan to  achieve some goal, 
while nature makes some decisions that potentially inter- 
fere with A. At an abstract level, this general view of 
robotic manipulation tasks has been advocated in [13]. In 
this section, we describe specific models for control and 
sensing uncertainties that we consider throughout this pa- 
per. The models that we use here can be specialized to  
those given in, e.g., [3, 71. 

The control model Suppose the robot A is a polygon 
translating in the plane amidst polygonal obstacles. The 
action set of A, which we denote by U ?  is a set of com- 
manded velocity directions, which can be specified by an 
orientation, yielding U = [0,2n-). For a specified action, 
uk: The robot will attempt to move a fixed distance ( (v( (At  
(expressed in terms of a constant velocity modulus, l lwl l )  
in the direction specified by ' u k .  

The action space of nature, which we denote by 0" is 
a set of angular displacements, e:, such that - E O  5 0; 5 
ig. for some maximum angle €0 .  Under nondeterministic 
uncertainty, any action 0; E [ - c ~ , E Q ]  can be chosen by 
nature. When using probabilistic uncertainty, ~ ( 0 ; )  could 
be a continuous probability density function (pdf), which 
is zero outside of [-EO, EO]. 

To describe the effect of a robot action with respect to  
state, xk, we define a state transition equation as 

Xki-1 = f ( x k , u k , e g ) .  (1) 

Hence, given a robot action, nature's action, and the cur- 
rent state, the next state is deterministically specified. 
During execution, however, A will not know the action of 
nature. 

There are several cases to consider in defining the state 
transition equation, f .  First consider the state transition 
equation when x k  E C f r e e ,  at  a distance of a t  least llvlj& 
away from the obstacles. If A chooses action u k  from state 
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xk, and nature chooses e:, then xk+l is given by 

Let Ccontact represent the boundary of Cj... (hence 
Ccontact = Cvalid - c j w e ) .  If x k  E Ccontact, with a dis- 
tance of at least Ilt~llAt from the edge endpoints, then a 
compliant motion is generated by using the generalized 
damper model (see e.g., [14]) for certain choices of Uk. If 
Uk points into the obstacle edge with a sufficient angle to  
overcome friction, then the robot moves a fixed distance 
parallel to the edge. Otherwise, the robot either remains 
fixed, or moves away into Cf,,,. The remaining cases de- 
scribe when the robot moves from Cf,,, to Ccontact, from 
Ccontact to C f r e e ,  or from one edge in Cval id  to another. 
These cases are straightforward to  define with the gener- 
alized damper model, see e.g., [7, 101 

The sensing model A sensor can be viewed as a map- 
ping from states onto sensor values with potential inter- 
ference that is caused by nature. We characterize the 
potential interference of nature by a set of “sensing ac- 
tion” denoted by es. At every stage k, the robot makes 
an observation that is governed by the equation, 

Y k  = hk(Xk, o i ) ,  (3) 

which we term the observation equation, in which 0; E e S ~  
Suppose that we are considering nondeterministic un- 

certainty. The set of possible values for xk after only ob- 
serving Y k  can be determined from the observation equa- 
tion as: 

Under probabilistic uncertainty, we assume that the 
pdf, p ( O i ) ,  is known. By using the observation equa- 
tion, we can obtain a pdf for Xk, which is represented 
by P(xklYk). As a simple example, h could represent a 
position sensor that measures 26 with Gaussian noise. If 
h ( l ~ k ,  6 ; )  = xk +e;,  and ~ ( 6 ; )  is a Gaussian density, then 
P(xklyk) is Gaussian. 

If Y = X and hk is reduced to  the identity map from 
X to Y ,  then the sensing model reduces to perfect state 
information. Equation ( 3 )  represents the output equation 
used in control theory, and is also similar to  the projection 
of world states onto sensor values. Also, such transforma- 
tions have been studied extensively in statistical image 
modeling and in sensor error modeling. 

We now present a sensing model that  is similar to that 
used in [3 ,  7 ,  lo]. This sensing model will be used in Sec- 
tion 5. The robot A is equipped with a position sensor 
and a force sensor. Assume that the position sensor is cal- 
ibrated in the configuration space, yielding values in x’. 
The force sensor provides values in [0,27r)U{0), indicating 
either the direction of force, or no force (represented by 
0). 

We consider independent portions of the observation 
equation: h P  for the position sensor, and hf for the force 
sei is~r  (which together form a 3-dimensional vector-valued 
function). We partition the sensing action of nature, 0; 
into subvectors 0;” and O i l f ,  which act on the position 
sensor and force sensor, respectively. The observation for 
the position sensor is y: = hP(Zk,Oi’p) = x k  + 6 i q p .  Under 
nondeterministic uncertainty, 0;” could be any value in 
Oi.”. If probabilistic uncertainty is used, we could provide 
a density for nature as 

for some prespecified radius e p ,  and 0;” is 2-dimensional. 
For the force sensor we obtain either: 1) A value in 

[0,2r),  governed by 9; = hf(Xk,6;’dF) = a(Xk) + oilf, 

in which xk E Ccontact,  and the true normal is given by 
Q ( z ~ ) ,  or 2) An empty value, 0, when the robot is in 
Cf,,,. When the robot configuration lies in Ccontact and 
probabilistic uncertainty is in use, then we might choose 

for some positive prespecified constant e f  < fr. We con- 
sid.er the random variables of 0;” and Oi” to  be indepen- 
dent and identically distributed over a l l  stages. 

Information State For a given stage k ,  let 7]k denote 
some subset: 

q k  c {UlruZ,. . . >uk-l,Yl>YZ~. . . >Yk}. ( 7 )  

Thle value q k  is a set of past actions and observations 
that are known to A at stage k, ancl is termed the m -  
format ion  state of A. For instance, we could consider a 
memoryless robot, in which q k  = yk. A.s another example, 
we could have a sensorless robot as considered, in which 
q k  = {ul, ~. . , uk-1). w e  could also consider the stage in- 
dex k as part of the information space for the purpose of 
developing robot strategies that involve timing; however, 
we will not explicitly consider k as part of q k  in this paper. 

The set of vadues that q k  can assume is denoted by Nk, 
and is termed the znformatzon space. We define an an- 
formataon structure as the set of Nk ror all 1 < k _< K .  
As it is presently defined, the dimension of the informa- 
tion space grows linearly with the number of stages, which 
appears impractical. It turns out thah alternative repre- 
sentations of the information space can be determined. 

M o t i o n  s t ra tegies  At first it might seem appropriate 
to define some action uk for each stage. In general, due 
to the control uncertainty, it is not possible to  predict the 
trajectory of the robot for given motion commands. It is 
therefore advantageous to allow the robot to respond to 
infixmation that becomes available during execution. 
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We consider robot strategies for two cases: perfect in- 
formation and imperfect information. Suppose that the 
robot has perfect state information. We can implement a 
state-feedback strategy at stage k as a function gk : x --t U. 
For each state, xk, a strategy yields an action uk = gk (xk). 
The set of mappings (91, g2,. . . , gK} is denoted by g and 
termed a (robot) strategy of A. 

If the robot does not have direct access to state infor- 
mation, its actions are instead conditioned on the infor- 
mation state. In this case we define a strategy at stage k 
of A as a function gk : Nk 4 U. For each information 
state, V k ,  a strategy yields an action uk = gk(7k). In a 
sense, the "planning" actually occurs in this information 
space. These strategy concepts are equivalent to a feed- 
back control law [l, 81, and are similar t o  a conditional 
multi-step plan in manipulation planning [IO]. 

We also define a strategy, yo, for nature. Since nature 
is considered as a decision maker that can interfere with 
the robot, we allow nature's actions to depend in general 
on the state, Xk, and the action of the robot, uk. We 
can define a pure or deterministic strategy for nature as 
a deterministic mapping a t  each stage as 7: : X x U --t 

0". Under nondeterministic uncertainty we will assume 
that nature implements a deterministic strategy that is 
unknown to the robot. We will use the notation I?' to 
refer to the space of strategies that are available to nature 
under nondeterministic uncertainty. 

Under probabilistic uncertainty, we consider a random- 
ized or mixed strategy for nature, in which the action of 
nature is represented by a pdf, p(0k) (or we can more gen- 
erally consider P(Ok\Zk, uk)). The specific action of nature 
at stage k is denoted by 0 k ,  sampled from the random 
variable 0k. Therefore the robot is given a pdf, ~ ( 6 , ) ~  
that characterizes the action taken by nature at stage k .  
Although the randomized strategy is known by the robot, 
the actions that  will be chosen are sampled from a random 
variable a t  each stage. 

3 Nondeterministic Forward Projections 
Under nondeterministic uncertainty, the strategy of na- 

ture y' is deterministic, but unknown to  the robot. The 
resulting nondeterministic forward projection includes all 
of the system states that could result from the various 
actions of nature (including nature's sensing actions). In 
this way, it yields a set of possible futures under the im- 
plementation of a strategy. 
3.1 The perfect information case 

We use the notation Fj (xi, g) to denote the minimal 
subset of X that is guaranteed to contain xj, if the system 
begins in state xi a t  stage i and strategy g is implemented 
up to stage j. 

Assume that some g is given, and that at stage k .  the 
state, zk, is known. The action taken by the robot at 
stage IC is known to be Uk = gk(Zk). Therefore we can 
write 

Although the action is known, the resulting next state 
xk+] is nondeterministic because of nature, 0; E 0". 

Suppose that we wish to determine the outcome a t  
stage xk+2, if we know xk. From ( g ) ,  we already know 
that xk+l E Fk+1 (zk, uk). The nondeterministic action of 
nature at stage k + 1 must next be taken into account to 
yield 

This forward projection can also be expressed with a set 
union as 

One interpretation for this representation is that from 
each possible state in the single-stage forward projection 
from stage k to  stage k + I, the single-stage forward pro- 
jection from stage k + 1 to  stage k + 2 is possible. The 
resulting xk+2 E x represents the union of ail of these 
single-stage forward projections (see Figure I). 

-1 

X X x \  

Stage 1 Stage 2 Stage 3 

Figure 1. A depiction of a two-stage forward projection under 
nondeterministic control uncertainty. 

The forward projection for a finite number of stages 
from stage 1 can be considered as an iterated union, 

Fk(z1,g) = U " I  U Fk(xk-1 jg). 
5 2  E F 2  i Zl J )  5: k - 1 E F k  - 1 (Zb--2 , g )  

(14) 
which is an extension of (13). The projection from any 
stage IC to  stage IC + N can be similarly defined. 

The classical reachability concept [6] can be defined 
using our framework. We say that the goal is reachable at 
stage k if Fk (xI, g) C G. In other words, if the strategy 
is guaranteed to bring the robot into the goal region for 
some k ,  then reachability a t  stage k holds. We can also 
define a reachability that does not depend I C .  We can 
say that the goal is reachable if for every possible state 
trajectory, {XI, .., x ~ + 1 }  (under the implementation of a 
given g), there exists a k such that z k  E G. 
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3.2 The imperfect information case 
We consider, as in the perfect information case, a deter- 

ministic strategy for nature, yo, which is unknown to the 
robot. We will define the forward projection in a manner 
similar to the perfect information case. 

The previous forward projection (14) provided a subset 
of X in which the system state will lie after the execution 
of a strategy. With imperfect sensing we can consider the 
motions to  occur in the information space. In fact, we 
can consider the information space as a new “state space” 
in which there is perfect “state” information. For this 
reason, a forward projection can also be defined directly 
on the information space. 

It is assumed for the forward projection that the history 
has not yet been given. Suppose that an information state, 
r]k E Nk, is given. Under the implementation of g, the 
action u k  = g k ( q k )  is known. 

We now define the information forward projection for 
a single stage. This will be an intermediate concept that 
is used to  define the forward projection as a subset of the 
state space. We have previously used F to  represent a 
subset of X ,  and we will use p to  refer to  a subset of 
the information space. After applying an action ‘uk and 
receiving sensor observation Y k f l ,  we obtain 

I s ’ + l ( q k e g ( q k ) )  = p k + l ( q k i u k )  = 
{%+I E Nk+llVk U { ‘ u k , Y k + l l  c %+I, 

z k + i  E F k + i ( x k , ~ )  n F k + i ( Y k + i ) ,  

zk E F k ( q k ) ) i  (15) 

which depends on (9) and (4), and F k ( q k )  C X is the sub- 
set representation of the information state from Section 2. 

To obtain the information forward projection from 
stage 1 to  some stage k ,  we can iteratively apply (15). 

The information forward projection can be mapped to  
subsets of the state space. For a given p k ( q 1 ,  g), the subset 
of X in which the system state will lie is 

U a(%). (16) 
9 E  € 4 ( m  &7) 

The goal is reachable a t  stage k if set defined in (16) is 
a subset of G. 

4 Probabilistic Forward Projections 
Under nondeterministic uncertainty, the forward pro- 

jections yielded subsets of the state space; however, for 
probabilistic uncertainty, the forward projections will be 
specified by pdf’s on the state space. We use the notation 
p(z,lz,,g) in this section to represent the density that is 
obtained if the system begins a t  state x, at stage i and 
strategy g is implemented. This density follows directly 
from the state transition equation, and the densities for 
nature of the form, ~ ( 8 ; ) .  
4.1 The perfect information case 

The following development parallels the development of 
the forward projection in Section 3.1. Assume that some 

g i s  given, and that a t  stage k ,  the state, x k s  is known. 
The action taken by the robot at stage k is known to be 
u k  = g k ( z k ) .  Therefore we can write 

p ) ( x k + l l z k , g )  P ( x k + l I Z k , g L ( z k ) )  = P ( x k + l l z k , u k ) .  

(17) 
Recall from Section 2 that p ( z k + l l z k , u k )  can be deter- 
mined from the state transition equation. 

Next consider predicting the outcome at  stage k + 2, if 
we begin at stage k and apply g: 

P ( z k + 2  I z k ,  9 )  = P ( Z k t 2  l z k t l  I g k + l  (zk+l)) 

p ( z k + l  (zkr g k ( x k ) ) d z k + l . ( 1 8 )  

J 
The result after applying two actions is a posterior den- 
sity on X .  Figure 2 depicts the forward projection; this 
can be contrasted to Figure 1, which showed the forward 
prodection under nondeterministic uncertainty. 

X X X 

Stage 1 Stage 2 Stage 3 

Figure 2. A depiction of a two-stage forward projection under 
probabilistic cont col uncertainty. 

The forward projection for a finite number of stages 
from stage 1 results in the posterior: 

The projection from any stage k to stage k + N can be 
simj larly defined. 

We can now define probabilistic notions of reachability. 
The probability that the goal is reached at stage k is given 
by 

~ P ( z k l Z l , ~ ) d ~ k ,  (20) 

in which the region of integration is the goal region, G C 
X .  
4.2 The imperfect information case 

In this section we develop the forward projections for 
the case in which( there is probabilistic uncertainty in both 
sensing and control. The forward projection for this case 
will be considered as a density on X ,  which is conditioned 
on a, particular strategy and initial statr  (either x1 or 71). 
This density indicates where the roboi, will be likely to 
end up when a fixed g is implemented, a t  some specified 
stage. Note that we could also derive p( j7k  1711, r), resulting 
in a pdf on the information space. 
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At stage k ,  the density on X after starting a t  v1 is given 
by 

P ( Z k  1771 19) = 

P(Zk177k-1, gk-l(vk-1))dvk-l lVk-z,gk-2(Tk-2)) 

P(mlvl,gl(Vl))dvk-I ‘ ’ ’ d V 2 .  (21) 
s 

The first term in the integrand can be determined using 

P(Zk+llVk,Uk) = P(Zk+llZk,Uk)P(skl77k)dZk. ( 2 2 )  J’ 
Each of the remaining terms can be reduced to 

P ( 7 7 k + l I r l k > g k ( m ) )  

= P(Y1,. . . 3 Yk+lr U l r  . . . > UklY1,. . . , Y k ,  u l , .  . . > uk) 
= P(Yk+llrlk,Uk). (23) 

This reduction occurs because most of the sensing and 
action history appears on both sides of the density ex- 
pression. The right side of (23) can be further reduced 
to 

in which all three terms in the final integrand are known. 
The density ~ ( g k + ~ l ~ k + l )  is inferred from the sensing 
model; p(zk+l (zk, uk) is inferred from the control model; 
p ( z k 1 q k )  is the density representation of the current infor- 
mation state. 

5 Computed Examples 
In this section we present computed examples that il- 

lustrate the forward projection concepts. These forward 
projections are provided under the assumption that con- 
stant motion commands are given to  the robot. In other 
words, some U E U is chosen, and a strategy is defined as 
g k  I U for all k E (1, . . . , K } .  This will make the compar- 
ison of our forward projections to previous research more 
clear. 

We have computed forward projection examples in a 
straightforward way, by using a discretized, array rep- 
resentation for the state space. Under nondeterministic 
uncertainty, this can be considered as a bit-map repre- 
sentation of the forward projection. Under probabilistic 
uncertainty, the representation approximates a pdf on X 
by using a fine grid. In the first step of the computation. 
the array is initialized to reflect the uncertainty associated 
with the initial state. At each additional step. the forward 
projection for the next stage is represented in a new ar- 
ray, which is determined by applying the given strategy to 
the elements in the previous array (in the implementation. 
only two copies of the array are needed at any given time). 

Figure 3. The example environment that is considered in this 
section. The obstacles in the workspace are indicated by gray 
regions, and the black region represents the goal. 

We have found this computational technique to  produce 
reasonable representations of forward projections. 

The example depicted in Figure 3 is designed to spread 
the possible locations of the robot over a large portion of 
the state space. We use the control model that is discussed 
in Section 2 .  The given strategy is g k  E g7r for all k E 
{l,.  . . , K }  (i.e., move down). 

Figure 4 shows the forward projections at several differ- 
ent stages, under nondeterministic uncertainty. Figure 5 
illustrates the forward projection under probabilistic un- 
certainty. For these examples, we assume that p ( P )  is uni- 
form on the interval [ - E O ,  E @ ] .  Initially, the pdf is sharply 
peaked; however, as control uncertainty accumulates, the 
density becomes more diffuse. Whenever compliance i s  
possible, the density becomes narrower in the direction 
perpendicular to the edge. The compliant motions have 
the effect of “funneling” the probability mass into smaller 
regions. The pdf values become larger since the density 
must integrate to one. This effect can be seen in Figure 
5 as a triangular obstacle causes the probability mass to 
divide. In the final stages, there is also a peaking effect; 
this corresponds to the robot sticking at some final state. 
Maximizing the probability that the goal will be achieved 
can be thought of as causing as much of the probability 
mass to  stay in the goal as possible. 

A significant distinction between probabilistic and non- 
deterministic forward projections becomes clear after ex- 
amining these results. The nondeterministic forward pro- 
jections indicate that very little prediction is possible since 
the set of possible states grows very quickly. By observing 
the probabilistic forward projection, however, most of the 
probability mass appears to terminate in the goal region. 
This corresponds closely to  the arguments about worst- 
case analysis eliminating many reasonable motion plans: 
these arguments were given in [ll] and also in [3 ,  41. 

6 Conclusion 
In this paper, we have presented forward projections as 

a construction that can be used to  characterize the per- 
formance of a robot system operating in the presence of 
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k = l  k = 11 

k = 22 IC = 33 

Figure 4. The nondeterministic forward projection is repre- 
sented by the lightly-shaded regions. 

k = l  k = 6  

k = 11 k = 20 

uncertainties in both sensing and control. More specifi- 
cally, we have developed formalisms for nondeterministic 
forward projections and for probabilistic forward projec- 
tions, and presented computed examples of each. 
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