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Abstract— This paper addresses the sensing uncertainty
associated with the many-to-one mapping from a physical
state space onto a sensor observation space. By studying
preimages of this mapping for each sensor, a notion of sensor

dominance is introduced, which enables interchangeability of
sensors and a clearer understanding of their tradeoffs. The
notion of a sensor lattice is also introduced, in which all
possible sensor models are arranged into a hierarchy that
indicates their power and gives insights into the construction
of filters over time and space. This provides a systematic way
to compare and characterize information feedback in robotic
systems, in terms of their level of ambiguity with regard to
state estimation.

I. INTRODUCTION

We rely heavily on sensing to achieve robotic tasks

such as navigation, patrolling, searching, pursuit-evasion,

and coverage. Every sensor can be viewed as a mapping

from an enormously complicated physical world onto a set

of observations. We do not attempt to measure everything

about the world; therefore, we expect sensing uncertainty

to remain, even when sensors are performing perfectly

without noise or disturbances. Starting from the task, one

usually designs a filter that aggregates sensor observations

and provides feedback during execution. What sensors are

sufficient for the task? What sensors are necessary? When

are sensors interchangeable? If they are, then what are the

tradeoffs in terms of cost, power consumption, memory,

reliability, robustness, and computation time?

This paper takes a step toward understanding these

issues by the following chain of reasoning:

1) We introduce the notion of a virtual sensor model

to precisely define the information that the sensor

is supposed to measure. This is expressed as a

many-to-one mapping from a state space of world

states to sensor observations. Most importantly, it

does not depend on the particular physical sensor

implementation.

2) The preimages of the many-to-one mapping yield a

partition of the state space that captures the “resolu-

tion” at which the world can be sensed. By compar-

ing these partitions, we introduce a simple notion

of sensor dominance, which indicates whether one
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Fig. 1. The partition lattice for a (nearly trivial) four-element set. The
sensor lattice considers partitions over the entire state space and places
best and worst sensors are at the top and bottom, respectively.

sensor is able to simulate another by using its own

observations to predict the observations of the other.

This implies that either could be used for the same

task.

3) The set of all virtual sensor models are arranged into

a lattice of partitions (see Figure 1), called a sensor

lattice, which places the most powerful sensors at

the top and the most useless sensors at the bottom.

All other sensors appear somewhere in between. The

lattice gives insights into combining sensors and

constructing filters over space and/or time.

These three steps correspond to Sections II, III, and

IV, respectively. Section V generalizes the models and

concepts, and then Section VI and extends the sensor

dominance and lattice ideas to filters.

The ideas in this paper are inspired by several related

works. Sensors were viewed as partitions of state space in

[4], [6]. The notion of simulating one sensor using another

appears in the information invariants framework of Don-

ald [3]. The comparison of entire robotic systems through

the use of simulation appears in [13]; one implication of

the current paper is that if one sensor dominates another

in the sense defined in Section III, then the overall robotic

system that uses it will be at least as powerful in the sense

defined in [13]. The sensing uncertainty considered in



this paper is closely related to information structures from

dynamic game theory [1], [12]. The framework presented

in this paper can be combined with recent research on

minimalist filtering and planning, to establish relationships

between various systems and their relative computational

hardness [14].

II. PHYSICAL VS. VIRTUAL SENSORS

Rather than compare physical sensors themselves, we

compare mathematical models of sensors based on the

information that they are designed to measure. In this way,

any analysis that follows is invariant with respect to the

particular physical implementation.

The mathematical model starts with a precise descrip-

tion of the physical world. The set of all possibilities for

this is called the state space, X . The description includes

only information that is relevant to whatever tasks are

to be accomplished and whatever phenomena are to be

measured. A simplified state space is used here for the

purposes of clearly explaining the concepts; much more

general spaces are presented in [10].

A. Physical state space

Suppose that a single robot is placed into a bounded,

closed planar environment E ⊆ R
2 that may con-

tain polygonal holes. To avoid complications of obstacle

boundaries in configuration space, assume the robot is

a point. The robot’s configuration includes both position

(qx, qy) ∈ E and orientation qθ ∈ S1 in which S1 =
[0, 2π] with 0 and 2π identified (made equivalent).

If the environment is fixed and known, then the state

space is defined as X = E × S1. However, for many

problems, a precise map of the environment is not given

(hence, the popular SLAM problem). In this case, only the

map family E is given. For a concrete example, suppose

in this section that E is the set of all connected, bounded

polygonal regions (possibly with holes) in R
2. The state

space X then becomes the set of all pairs (q, E) in which

q = (qx, qy, qθ), (qx, qy) ∈ E and E ∈ E .

B. The sensor mapping

Now that the physical state space has been defined,

the mathematical model of a sensor is a mapping from

physical states to possible sensor readings. Let X be any

state space. Let Y denote the observation space, which

is the set of all possible sensor observations. A virtual

sensor is defined by a function

h : X → Y, (1)

called the sensor mapping. When x ∈ X , the sensor

instantaneously observes y = h(x) ∈ Y .

What does an observation y tell us about the external,

physical state? To understand this, we should think about

(a) 1DIR (b) Viewing all directions

φ

(c) OMNI (d) NWAL

Fig. 2. (a) The 1DIR virtual sensor provides a single distance
measurements, from the robot to the wall, in the direction that the robot
is facing. (b) Consider instead sensing in all directions. (c) The resulting
observation of OMNI is a distance function parametrized by viewing
angle. (d) The NWAL virtual sensor observes the distance to the nearest
wall.

all states x ∈ X that could have produced the observation.

For a given sensor mapping h this is defined as

h−1(y) = {x ∈ X | y = h(x)}, (2)

and is called the preimage of y. If h were invertible, then

h−1 would represent the inverse; however, because our

sensor models are usually many-to-one mappings, h−1(y)
is a subset of X , which yields all x that map to y.

C. Depth sensors

Consider the collection of subsets of X obtained by

forming h−1(y) for every y ∈ Y . These sets are disjoint

because a state x cannot produce multiple observations.

Since h is a function on all of X , the collection of subsets

forms a partition of X . For a given sensor mapping h, the

corresponding partition is denoted as Π(h).
The connection between h and Π(h) is fundamental to

sensing. The sets in Π(h) can be viewed as equivalence

classes. For any x, x′ ∈ X , equivalence implies that

h(x) = h(x′). These states are indistinguishable when

using the sensor. In an intuitive way, Π(h) gives the

sensor’s sensitivity to states, or the “resolution” at which

the state can be observed. The equivalence classes are the

most basic source of uncertainty associated with a sensor.

Consider measuring depth information from the per-

spective of the robot. Some sensor models are given in

Figure 3. In every case, a sensor mapping h : X →
Y can be formally defined (see [10]). Each state x =



1DIR: Distance to the wall in the direction that the robot

is facing.

OMNI: Distances to walls in all directions.

NWAL: Distance to the nearest wall.

PROX(ǫ): Detection of whether the wall is within distance ǫ.
CON: Detection of robot contact with the wall.

CONE: Distances to walls in a range of directions from

−π/4 to π/4.

MAXD(ǫ2): Distances to walls in the range of directions, but

reports no value when the distance is larger than ǫ2.

MNMX(ǫ1, ǫ2): Distances to walls in the range of directions, but

reports no value when the distance is less then ǫ1
or larger than ǫ2.

OCC(ǫ1, ǫ2): Detection of whether there is a wall within the range

of directions and between distances ǫ1 and ǫ2.

GAPS: The angular locations and lengths of the depth

discontinuities.

AGAP: The angular locations of the gaps without depths.

NGAP: The number of gaps.

STAR: Detection of the center of a star-shaped region.

Fig. 3. Various kinds of virtual sensors that measure depth and will be
used for comparison purposes.

Fig. 4. The preimage for 1DIR is a two-dimensional subset of E×S1,
assuming E is given. Shown here are several robot configurations within
the same preimage.

(qx, qy, qθ, E) ∈ X provides sufficient information to

construct any of these virtual sensors. The 1DIR virtual

sensor, shown in Figure 2(a) provides a single distance

measurement in the forward direction and could be imple-

mented physically using a sonar or a single laser/camera

combination. What do the preimages look like? Suppose

E is given, so that X becomes E × S1, the C-space

of the robot. Almost every preimage h−1(y) is a two-

dimensional subset of X; see Figure 4. An interesting task

is to characterize the preimages for all x ∈ X (closely

related to motion planning for a ladder robot [8], [11]).

Whereas 1DIR provides the depth in one direction,

OMNI provides depth measurements in all directions;

see Figures 4(b) and (c). The observation can be con-

sidered as a function y : S1 → [0,∞) and could be

implemented by SICK-like laser scanners that provide

dense, accurate depth measurements.1 Using OMNI, the

preimages are much smaller. If E is given, we might able

to uniquely localize the robot from a single observation. If

the environment contains symmetries, then the preimage

1In practice, of course, depth is obtained only at a finite number of
directions; however, a useful mathematical model is that a continuum of
depths is observed.
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Fig. 5. The sensing range is limited for the MNMX virtual sensor,
which could correspond physically camera-based depth systems, such as
the KINECT

φ
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Fig. 6. A gap sensor example: Five discontinuities in depth are observed.

h−1(y) is a set of possible robot configurations (which are

the standard hypotheses obtained in localization [5], [9],

[15]). By taking the minimum distance over all directions,

NWAL is obtained, which observes the distance to the

nearest wall; see Figure 2(d). A binary-valued variant,

PROX(ǫ), can be construced in which y = 1 means that

the wall is no more than distance ǫ away and y = 0 means

it is further than ǫ. Two preimages are obtained. For the

special case of ǫ = 0, we obtain CON, for which y = 1 if

the robot position is on the boundary and y = 0 otherwise.

In this case, the two preimages are clear: The boundary

of E (for y = 1) and the interior of E (for y = 0). The

sensor could be implemented using a contact switch.

For camera-based distance measurements, limiting the

angular range may be appropriate, to obtain CONE, for

which y : [φmin, φmax] → [0,∞). MAXD(ǫ2) is a

variant of CONE that is depth limited: If the wall is

at least ǫ2 units away in some direction, it does not

return the precise distance (instead returning a special

symbol for that direction). MNMX(ǫ1, ǫ2) is a variant of

MAXD(ǫ2) that similarly cannot measure depths that are

within distance ǫ1 of the robot; see Figure 5. OCC(ǫ1, ǫ2)

is an occupancy detector for which y = 1 means that a

wall lies within the detection zone and y = 0 means it

does not. In this case, there are only two preimages.



Gap sensors form another family of virtual sensor

models. Note in Figure 2(c) that several discontinuities

may appear in the depth function provided by OMNI.

The virtual sensor GAPS indicates the angles in S1 at

which these occur (if there are any) and the length of

each gap (the amount that the distance jumps). AGAP is

similar to GAPS, but provides only the angles at which

gaps occur. NGAP is weaker than AGAP and indicates

only the number of gaps. Finally, STAR is a binary-valued

sensor that yields y = 1 if there are any gaps and y = 0
otherwise. Note that if y = 1, then it is immediately

known that E is star-shaped.

By considering preimages of h : X → Y , every virtual

sensor above partitions X into sets that produce the same

observation. If E is given, then each preimage h−1(y) is

a set of robot positions and orientations. If E is unknown,

then the preimages are much larger. For example, if y = 1
for the CON sensor, then it is known only that “the robot

is touching the wall in some environment.” For OMNI,

h−1(y) indicates all ways that the environment could exist

beyond the field of view of the sensor.

The depth sensors presented in this section are just

one family among many possibilities. They were chosen

to provide clear illustrations in coming sections. Other

families of sensors that fit into this framework include

detection sensors [10], relational sensors [7], and field

sensors [10].

III. SIMULATION BETWEEN VIRTUAL SENSORS

After seeing the virtual sensors in Figure 3, it is clear

that they could be physically implemented in various

ways. Which is most advantageous or appropriate in a

particular robotic system? A key step in answering this

question is to understand when it is possible for one virtual

sensor to simulate another and to know the cost involved.

Sensor simulation was considered earlier in [3]; here it

will be defined differently.

Suppose the state space X is predetermined and fixed.

Let h1 : X → Y1 and h2 : X → Y2 be any two virtual

sensor models. A partition Π1 is called a refinement of

Π2 if every set in Π1 is a subset of some set in Π2. Let

Π(h) denote the partition of X induced by the preimages

of h. We say that h1 dominates h2 if and only if Π(h1)
is a refinement of Π(h2). This is denoted as h1 � h2.

For some state x ∈ X , imagine receiving y1 = h1(x)
and y2 = h2(x). If h1 � h2, then h−1

1
(y1) ⊆ h−1

2
(y2) ⊆

X . This clearly means that h1 provides at least as much

information about x as h2 does. Furthermore, using y1,

we could infer what observation y2 would be produced

by h2. Why? Since Π(h1) is a refinement of Π(h2), then

every x ∈ h−1

1
(y1) must produce the same observation

y2 = h2(x). This implies that there exists a function g :
Y1 → Y2 such that h2(x) = g(h1(x)), written as h2 =

g ◦ h1. Hence, y1 contains enough information so that h1

could simulate h2. The simulation is accomplished by g.

Here is a diagram of the functions:

X Y2

Y1
h1 g

h2

.

(3)

Note that if Π(h1) = Π(h2), then h1 and h2 can simulate

each other.

One immediate conclusion is that if a robot system

can accomplish a task using h2 and h1 � h2 with g
efficiently computable, then h1 could be swapped for h2

while still accomplishing the task. The contrapositive is

also interesting: If the task cannot be solved using h1,

then it certainly cannot be solved using h2 because the

preimages are larger.

From the collection of sensors in Figure 3, it is tempt-

ing to always prefer OMNI because it dominates all of

the other sensors. However, this is not a good idea in

most cases. A physical implementation of OMNI might

cost thousands of dollars and it might draw significant

energy from the system. Furthermore, the computation of

g might be time consuming and possibly not robust due

to observation errors. Therefore, a direct implementation

of a simpler virtual sensor is preferred. The method:

1) Start by considering the task; 2) choose the weakest

virtual sensor that is sufficient for solving it; 3) obtain

a physical sensor that robustly implements the virtual

sensor. Neglecting the computational cost of g is similar

to the construction of an oracle machine in complexity

theory to obtain relativizations [2]. For some simulations,

note that g may be intractable to compute or not even

computable.

IV. THE LATTICE OF ALL SENSORS

For a fixed state space X , the dominance relation �
induces a partial ordering on all possible virtual sensor

models of the form h : X → Y . Figure 7 shows how the

depth sensors of Figure 3 are related.

What happens as we include more and more sensors,

and continue to extend the tree? There may be multiple

paths from the root to lower nodes, leading to a directed

acyclic graph. Continuing further, note that Y does not

need to be fixed, meaning we could take any set Y and

define any mapping h : X → Y . Consider defining an

equivalence relation ∼ on the enormous collection of all

possible virtual sensors for a fixed state space X . We say

that h1 ∼ h2 if and only if Π(h1) = Π(h2). If we no

longer pay attention to the particular h and Y , but only

consider the induced partition of X , then we imagine that

a virtual sensor is a partition of X . Continuing in this

way, the set of all possible virtual sensors is the set of all

partitions of X .
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OMNI

1DIR MAXD(ǫ2) PROX(ǫ)

CONE

OCC(ǫ1, ǫ2)

GAPS

AGAP

NGAP

STAR

MNMX(ǫ1, ǫ2) CON

Fig. 7. The virtual sensor models in Figure 3 are compared based on
refinements of the partitions they induce over X . Models higher in the
tree induce finer partitions. A lower sensor model can be “simulated”
by any model along the path from the root of the tree to itself.

The relationship between sensors in terms of domi-

nance then leads to the well-known idea of a partition

lattice, depicted in Figure 1 for the set X = {1, 2, 3, 4}.

Recall that a lattice is a set together with a partial order

relation � for which every pair of elements has a least

upper bound (lub) and a greatest lower bound (glb).

Starting with any set, the set of all partitions forms a

lattice. The relation � is defined using refinements of

partitions: π1 � π2 if and only if π1 is a refinement of

π2.

Now observe that for any state space X , all possible

sensors fit nicely into the partition lattice of X . Further-

more, � indicates precisely when one sensor dominates

another. The tree depicted in Figure 7 is embedded in

this lattice. The top of the lattice corresponds to bijective

sensors, for which h : X → Y is a bijection and Π(h) is

the collection of all singleton sets. It is the finest partition

possible because the sensor provides enough information

to reconstruct x, assuming h−1(y) is computable. The

bottom of the lattice corresponds to dummy sensors, for

which Π(h) = {X}. An example dummy sensor is

h : X → {0}, which outputs y = 0, regardless of the

state. All “interesting” sensors lie between the dummy

and bijective sensors in the lattice.

The glb and lub have interesting interpretations in the

sensor lattice. Suppose that for two partitions, Π(h1) and

Π(h2), neither is a refinement of the other. Let Π(hglb)
and Π(hlub) be the glb and lub, respectively, of h1 and h2.

The glb Π(hglb) is the partition obtained by “overlaying”

the partitions Π(h1) and Π(h2). Take any state x ∈ X .

Let y1, y2, and yglb, be the observations obtained by

applying h1, h2, hglb, respectively. An element of Π(hglb)

is obtained by intersecting preimages, h−1

1
(y1)∩h−1

2
(y2).

There is a straightforward way to construct some represen-

tative hglb from h1 and h2. Let Yglb = Y1×Y2 and hglb :
X → Yglb be defined as yglb = (y1, y2) = (h1(x), h2(x)).
This means that both h1 and h2 are combined to produce

a single sensor. The partition Π(hglb) is just the common

refinement. This process actually corresponds to spatial

filtering in Section VI-A.

The lub, Π(hlub), is the opposite of Π(hglb) in some

sense. The partition Π(hlub) is as coarse as it needs to be

so that every element contains the complete preimages of

h1 and h2. Again starting from any x ∈ X , Π(hlub) is the

finest partition for which h−1(y1)∪h−1(y2) ⊆ h−1(ylub).
One way to “visualize” these relationships is to imagine

the case in which X = Y = R
3 and restrict the set of

all sensor mappings to be only linear ones, y = Cx. If

C has rank 2, then the preimages h−1(y) are lines in R
3.

Consider two linear sensors, with matrices C1 and C2

having rank 2. The glb produces preimages that are the

intersection of two lines. The lines must always intersect

because both preimages are observations of same state

x ∈ R
3. If the combined 3 by 6 matrix, [C1 C2], has rank

three, then all preimages will be points, and the glb is a

bijective sensor. The preimages for the lub in this case

is the set of all planes in R
3. Each plane is obtained by

taking the union of the preimages, which forms a pair of

intersecting lines.

A well studied algebraic structure exists over the parti-

tion lattice with respect to the glb and lub operations. The

algebra satisfies axiomatic identities for commutativity,

associativity, absorption, and idempotency. These imme-

diately apply to the space of all virtual sensors to yield an

algebra of sensor models. This may provide further insight

into the selection of sensors and the design of filters. It will

be seen in Section VI that filter design is based heavily

on the glb.

V. GENERALIZATIONS AND EXTENSIONS

The state spaces and virtual sensors described in Sec-

tions II to IV were chosen facilitate explanations of sensor

dominance and the sensor lattice. The concepts, however,

extend well beyond these examples. This section briefly

indicates some of these extensions. More details, and

additional concepts such as sensor noise and other sensor

families, appear in [10].

A. More bodies in the environment

Consider placing various kinds of bodies into an en-

vironment E, which may or may not contain robots. A

body B occupies a subset of E and can be transformed

using its own configuration parameters. For example, a

body could be a point that is transformed by (qx, qy) pa-

rameters or a rectangle that is transformed by (qx, qy, qθ)



parameters. We can write B(qx, qy, qθ) ⊂ E to indicate

the set of points occupied by B when at configuration

(qx, qy, qθ). In applications, bodies may have many alter-

native interpretations, such as robots, people, landmarks,

obstacles, objects, pebbles, targets, evaders, treasures, and

transmitters.

Each body has predefined properties that become crit-

ical for sensing and actuation tasks: 1) What are its

motion capabilities? It could be static, predictably mov-

ing, or unpredictably moving. 2) Can it be distinguished

from other bodies? Each could be assigned a possibly

nonunique label, allowing the bodies to be anywhere along

the range from completely indistinguishable to partially

distinguishable (teams) to uniquely identifiable. 3) How

does it interact with other bodies? It could obstruct sen-

sors, obstruct motions of others, or even be manipulated

by others.

A rich variety of filtering and planning tasks can be

formulated in this way, such as target tracking, monitoring,

counting bodies, pursuit-evasion, and mapping. The state

space X is then expanded to account for their configura-

tions, and the sensor mappings are once again expressed

as h : X → Y . Sensor dominance and the sensor lattice

follow accordingly.

B. Sensors over state-time space

Of course the world is not static. Let T refer to an

interval of time, such as T = [0,∞). Using any physical

state space X , we define state-time space Z = X × T .

Sensors that provide information about both state and time

are defined as h : Z → Y . Preimages in Z are defined as

h−1(y) = {(x, t) ∈ Z | y = h(x, t)}, (4)

which means that h can now be considered as a partition of

state-time space, Z. As an example, a sensor observation

might imply that a person entered the room within the past

hour. Sensor dominance from Section III and the sensor

lattice from Section IV extend directly by replacing X
with Z.

C. Sensors over state-trajectory space

Many sensors depend on a previous history of states.

Examples are odometry and delayed measurements. This

results in a sensor definition that subsumes both h : X →
Y and h : Z → Y . Let a state trajectory up to time t
be denoted as x̃ : [0, t] → X . The set of all possible

trajectories for any possible t ∈ T is called the trajectory

space and is denoted by X̃ . For a history-based sensor,

the sensor mapping is h : X̃ → Y . In this case, a given

state trajectory x̃ produces an observation y = h(x̃). The

preimage,

h−1(y) = {x̃ ∈ X̃ | y = h(x̃)}, (5)

Preimage Object

Plane
Image

Pinhole

y

Landmark

Landmark

Sensor

Preimage

(a) (b)

Fig. 8. (a) The preimage is a ray for a pinhole camera model. Using
two calibrated cameras, the rays are intersected to locate the object. (b)
Ancient triangulation is based on holding the viewing angle fixed. This
leads to circular preimages.

yields the set of possible trajectories in X̃ that produce the

same y. The preimages induce a partition of X̃ , and all

history-based sensors can be arranged into a sensor lattice

over X̃ .

VI. FROM SENSORS TO FILTERS

Filtering is concerned with combining information

from multiple sensor observations. If these occur at the

same instant or the state does not vary over time, then

filtering can be viewed as triangulation, which is covered

in Section VI-A. The more general, time-varying case is

addressed in Section VI-B.

A. Time-independent filtering

Consider any n sensor mappings hi : X → Yi for i
from 1 to n. If each produces an observation yi ∈ Yi

at some common instant, then what are the possible

states? The following problems are equivalent: 1) The

observations were obtained at the same instant and we

want the possible states at that same instant; 2) the state

does not vary over time, but the observations might occur

at various points in time. Both of these are referred to as

a time-independent or spatial filtering problem.

A filter can be considered as a generalization of the

ancient principle of measurement triangulation. The trian-

gulation of the observations is denoted by △(y1, . . . , yn)
and is the intersection of preimages (2) of each sensor

observation, to obtain:

△(y1, . . . , yn) = h−1

1
(y1)∩h

−1

2
(y2)∩· · ·∩h

−1

n (yn), (6)

which is a subset of X .

Many familiar examples of spatial filtering can be mod-

eled with (6). Figure 8(a) shows a small object appearing

in an image under the pinhole camera model. Let X = R
2.

The preimage h−1(y) is a ray that extends outward from

the pinhole and through the object in R
3. By placing two

calibrated cameras into a scene and observing the same

object, (6) intersects the rays to uniquely determine the

object location. This is classical stereo vision. Figure 8(b)



shows classical triangulation, which is a technique used

for thousands of years by ancient Greeks, Egyptians, and

Chinese. The sensor mapping provides the angle between

a pair of landmarks, as observed from the sensor location.

The preimage is a circular arc. For three landmarks, we

can observe two angles, one per pair of landmarks. The

sensor location in R
2 is uniquely determined by (6), which

is the intersection of circular arcs. For another example,

suppose that radio towers emit signals and the distance

to each tower can be measured, possibly by using time of

arrival (TOA). The preimage for one distance observation

is a circle (or sphere in R
3), and (6) yields the classical

trilateration localization technique. Suppose that instead

of TOA, only the time difference of arrival (TDOA)

is available. In that case, the preimages are hyperbolic

curves (or surfaces in R
3), and (6) produces the method

of hyperbolic positioning, which was used in the Decca

Navigator System in World War II to locate ships.

Note that these filtering methods are idealized. If mea-

surement noise or disturbances occur, then it is well known

in practice that many more measurements are needed.

Rather than finding a common intersection, an error cost

can be formulated and the best state estimate is often

found by least squares minimization of the sum-of-squares

error. However, the filter is originally designed based on

the ideal intersection of preimages.

Now consider the implications of Sections III and IV.

Using triangulation (6), imagine replacing one of the

sensors, say hi, with another, say h′
i, that dominates it.

Since h−1(y′i) ⊂ h−1(yi), (6) produces a filter that is

at least as good as the original. The set of possible sets

using h′
i must be a subset of the possible states obtained

from using hi. Regarding the sensor lattice, interpret (6)

as the construction of a “super” sensor h△ : X → Y
that obtains a smaller preimage due to the intersection of

original preimages. A partition Π(h△) of X is induced

and hence this must live in the sensor lattice over X . The

methods described above all yield unique states from the

observations (assuming general position of landmarks),

and therefore h△ is equivalent to the bijective sensor

in these cases. Furthermore, for any pair of sensors, the

resulting super sensor h△ corresponds to the greatest

lower bound (glb) in the sensor lattice. It is therefore

interesting to consider spatial filter design as a trip through

the sensor lattice, attempting to reach super sensors that

are higher than original sensors.

B. Temporal filtering

In the time-varying case, we once again consider the

time interval T , the state-time space Z = X × T , and

the trajectory space X̃ . It will be helpful to distinguish

between complete and partial trajectories. Suppose T =
[0, tf ], in which tf is the final time. A complete trajectory

x̃(0)
x̃(tf )

h−1

1
(y1)

x̃

t1 t2 t3

X

Z

T

h−1

3
(y3)h−1

2
(y2)

Fig. 9. Each complete trajectory that is consistent with the observations
must pass through the preimage of each observation, y1, y2, and y3.

is of the form x̃ : T → X and a partial trajectory is of

the form x̃ : [0, t] → X for any t ∈ [0, tf ). (We could

alternatively allow unbounded trajectories: Define T =
[0,∞) and allow any t ∈ T to define a partial trajectory.)

Let X̃c denote the set of complete trajectories.

Suppose that each sensor is of the form hi : Z → Y
and yi = hi(xi, ti) = (y′i, ti), in which y′i = h′

i(x) is a

standard sensor mapping from Section II. Here xi is the

state at time ti ∈ T , which can be written as xi = x̃(ti)
for the trajectory x̃ : T → X in X̃ . Essentially, hi is a

sensor that indicates the precise time of each observation.

Suppose that n observations, y1, . . ., yn are obtained,

each of which is generated by yi = hi(x̃(ti), ti). What

is the set of possible complete trajectories? Figure 9

illustrates the calculations. Each yi introduces a thin

vertical window h−1(yi) ⊂ Z at time ti through which a

trajectory must travel to account for the observation. The

set of possible complete trajectories are those that travel

through all n windows.

For a single observation yi = hi(xi, ti), the set of

possible complete trajectories is

h̃−1

i (yi) = {x̃ ∈ X̃c | x̃(ti) = hi(xi, ti)}, (7)

which is similar to (2). For the set of n observations, we

calculate the subset of X̃c of possible complete trajectories

by

△̃(y1, . . . , yn) = h̃−1

1
(y1)∩h̃

−1

2
(y2)∩· · ·∩h̃

−1

n (yn), (8)

which can be considered as a form of triangulation, similar

to (6).

Since (7) and (8) appear to be preimages and triangu-

lation, they can be once again viewed in a sensor lattice.

However, the lattice is over X̃c, the set of all complete

trajectories. Each observation partitions X̃c into class of



trajectories that could account for it. The triangulation (8)

applied to a pair of observations calculates a refinement

of partitions, which is a lub in the lattice. Thus, this form

of temporal filtering can be considered as traveling in a

sensor lattice. In most settings, a unique trajectory will not

be discovered due to time gaps in which no observations

are made. Hence, the top of the lattice is not reached.

Another filtering problem is to determine the possible

states at some time t ∈ T , assuming t > ti for all i from

1 to n. This is expressed as

{x ∈ X | ∃x̃ ∈ △̃(y1, . . . , yn) with x̃(t) = x}. (9)

In many forms of temporal filtering, actions u, se-

lected from some set U , are additionally given [16].

These are applied to a state transition equation to further

constrain the possible trajectories. Using our formulation,

this requires restricting X̃c so that only trajectories that

satisfy the observed actions are included. Once this is

handled, the preimage and triangulation concepts remain

unchanged.

What was neglected above is the more complicated case

in which perfect time stamps ti are not available with

each yi. In this case, the vertical bars at precise times

in Figure 9 become “blobs” or more general regions in Z
because the times are unknown. For an observation y ∈ Y ,

any preimage in Z and corresponding partition of Z is

possible. The temporal filter then uses the observations to

construct a refinement of partitions over Z. This might

not, however, induce a refinement of partitions over X̃c

because one trajectory could be explained by multiple

observation sets y1, . . ., yn (this was not the case when

perfect time stamps were given).

VII. CONCLUSIONS

We introduced the notion of a sensor lattice, which

provides a new way understand the relative power of

sensors and filters that are constructed from them. Within

a filter or robotic system that uses the filter, a sensor

can clearly be replaced with another if sensor domination

is achieved as defined in Section III and the resulting

simulation is efficiently computable. A clear interpretation

of the uncertainty due to the many-to-one mapping of

sensors is provided by the place in the sensor lattice.

Filters attempt to travel up in the lattice by improving

information.

Many important and interesting open questions remain.

The topic of sensor noise is somewhat orthogonal to this

paper because we are concerned with what is possible

or impossible, and we want to understand how sensors

are related from a design perspective (when the system

is conceived). Understanding implementation tradoffs and

extending sensor lattices to account for noise and distur-

bances remains for future work. In another direction, the

computational decidability and complexity of the various

constructions in the paper have not been determined in

particular contexts. How much does it cost to do simulate

one sensor with another? What are the other tradeoffs?

Computing the preimages explicitly (recall Figure 4) for

various sensors may be useful in the design of novel filters,

which require preimage intersections (recall (6)). Substan-

tial work remains in identifying useful families of virtual

sensors. What virtual sensors lead to efficient algorithms

for filtering, which can then be used in feedback control

laws?
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