
Motion Planning: Wild Frontiers

Steven M. LaValle

Here we give Part II the two-part tutorial. Part I empha-
sized the basic problem formulation, mathematical concepts,
and the most common solutions. The goal of the Part II is
to bring you to understand current robotics challenges from
a motion planning perspective.

I. INTRODUCTION

The basic problem of computing a collision-free path
for a robot among known obstacles is well-understood and
reasonably well-solved; however, deficiencies in the problem
formulation itself and the demand of engineering challenges
in the design of autonomous systems raise important ques-
tions and topics for future research.

The shortcomings of basic path planning become clearly
visible when considering how the computed path is typically
used in a robotic system. It has been known for decades that
effective autonomous systems must iterativelysensenew data
and act accordingly; recall the decades-oldSense Plan Act
(SPA) paradigm. Figure 1 shows how a computed collision-
free pathτ : [0, 1]→ Cfree is usually brought into alignment
with this view by producing a feedback control law. Step 1
producesτ using a path planning algorithm. Step 2 then
smoothsτ to produceσ : [0, 1] → Cfree, a path that
the robot can actually follow. For example, if the path is
piecewise linear, then a car-like mobile robot would not be
able to turn sharp corners. Step 3 reparameterizesσ to make
a trajectory q̃ : [0, tf] → Cfree that nominally satisfies the
robot dynamics (for example, acceleration bounds). In Step
4, a state-feedback control law is designed that tracksq̃ as
closely as possible during execution. This results in apolicy
or plan, π : X → U . The domainX is a state space(or
phase space) and U is an action space(or input space).
These sets appear in the definition of the control system that
models the robot:̇x = f(x, u) in which x ∈ X andu ∈ U .

One clear problem in this general framework is that a later
step might not succeed due to an unfortunate, fixed choice in
an earlier step. Even if it does succeed, the produced solution
may be horribly inefficient. This motivatesplanning under
differential constraints, which essentially performs Steps 1
and 2, or Steps 1, 2, and 3 in one shot; see Section II. The
eventual need for feedback in Step 4 motivates the direct
computation of afeedback plan, covered in Section III.

Another issue with the framework in Figure 1, which
is perhaps more subtle, is that this fixed decomposition
of the overall problem of getting a robot to navigate has
artificially inflated the information requirements. The frame-
work requires that powerful sensors, combined with strong

S. M. LaValle is with the Department of Computer Science, University
of Illinois at Urbana-Champaign,lavalle@uiuc.edu

Compute a collision-free path

τ : [0, 1] → Cfree

Smooth τ to satisfy differential constraints

σ : [0, 1] → Cfree

Design a trajectory that follows σ

q̃ : [0, t] → Cfree

π : X → U

Design a feedback controller to track q̃

Execute π on the robot

Complete geometric model of the world

STEP 1

STEP 4

STEP 3

STEP 2

Fig. 1. The long road to using a computed collision-free path.Note that
complete, perfect knowledge of the robot and obstacles enters in, and sensors
are utilized again only during the final execution.

prior knowledge, must be providing accurate state estimates
at all times, including the robot configuration, velocity
components, and obstacle models. This unfortunately over-
looks a tremendous opportunity to reduce the overall system
complexity by sensing just enough information to complete
the task. In this case, a plan isπ : I → U instead of
π : X → U , in which I is a specificinformation spacethat
can be derived from sensor measurements and from which
a complete reconstruction of the statex(t) ∈ X is either
impossible or undesirable. Section IV introduces sensing,
filtering, and planning from this perspective: The state cannot
be fully estimated, but tasks are nevertheless achieved.

II. DIFFERENTIAL CONSTRAINTS

In this section, it may help to imagine that the C-space
C is R

n to avoid the manifold technicalities from Part I. In
the models and methods of Part I, it was assumed that a
path can be easily determined between any two configura-
tions in the absence of obstacles. For example, vertices in
the trapezoidal decomposition approach are connected by a
straight line segment in the collision-free region,Cfree. This
section complicates the problem by introducingdifferential
constraints, which restrict the allowable velocities at each
point in Cfree. These arelocal constraints, in contrast to the
global constraints that arise due to obstacles.

Differential constraints naturally arise from the kinematics
and dynamics of robots. Rather than treating them as an
afterthought, this section discusses how to model them and

1

L

ρ

φ

θ

(x, y)

Fig. 2. The simple car has three degrees of freedom, but the velocity space
at any configuration is only two-dimensional.

incorporate them directly into the planning process. In this
way, a path is produced that already satisfies the constraints.

A. Modeling the constraints

For simplicity, suppose thatC = R
2. Let q̇ = (ẋ, ẏ) denote

a velocity vector, in which ẋ = dx/dt and ẏ = dy/dt.
Starting from any point inR2, say(0, 0), consider what paths
can possibly be produced by integrating the velocity:q̃(t) =
∫ t

0
q̇(s)ds. Here,q̇ is interpreted as a function of time. If no

constraints are imposed oṅq (other than requirements for
integrability), then the trajectorỹq is virtually unrestricted.
If, however, we require thaṫx > 0, then only trajectories for
which x monotonically increases are allowed. If we further
constrain it so that0 < ẋ ≤ 1, then the rate at whichx
increases is bounded. If time were measured in seconds and
R

2 with meters, theñq must cause travel in thex direction
with a rate of no more than one meter per second.

More generally, we want to express a set of allowable
velocity vectorsq̇ = (ẋ, ẏ) for everyq = (x, y) ∈ R

2. Rather
than write a set-valued function with domainR2, a more
compact, convenient method is to define a functionf that
yields q̇ as a function ofq and a new parameteru:

q̇ = f(q, u). (1)

This results in a velocity-valued function called thecon-
figuration transition equation, which indicates the required
velocity vector, givenq andu. The parameteru is called an
action (or input) and is chosen from a predeterminedaction
spaceU . Sincef is a function of two variables, there are two
convenient interpretations by holding each variable fixed:1)
if q is held fixed, then eachu ∈ U produces a possible
velocity q̇ at q; in other words,u parametrizes the set of
possible velocities; 2) ifu is fixed, thenf specifies a velocity
at everyq; this results in a vector field overC.

For a common example of the configuration transition
equation, Figure 2 shows acar-like robot which has the
C-space of a rigid body in the plane:C = R

2 × S1. The
configuration vector isq = (x, y, θ). Imagine that the car
drives around slowly (so that dynamics are ignored) in an
infinite parking lot. Letφ be the steering angle of the front
tires, as shown in Figure 2. If driven forward, the car will
roll along a circle of radiusρ. Note that it is impossible to

move the center of the rear axle laterally because the rear
wheels would skid instead of roll. This induces the constraint
ẏ/ẋ = tan θ. This constraint, along with another due to the
steering angle, can be converted into the following form (see
Section 13.1.2.1 of [12]):

ẋ = us cos θ

ẏ = us sin θ

θ̇ =
us

L
tan uφ,

(2)

in which u = (us, uφ) ∈ U is the action;us is the forward
speed anduφ is the steering angle. NowU must be defined.
Usually, the steering angle is bounded by someφmax < π/2
so that |uφ| ≤ φmax. For the possible speed valuesus,
a simple bound is often made. For example|us| ≤ 1 or
equivalently,U = [−1, 1], produces a car that can travel
no faster than unit speed. A finite set of values is often
used for planning problems that are taking into account
only the kinematic constraints due to rolling wheels. Setting
U = {−1, 0, 1} produces what is called theReeds-Shepp
car, which can travel forward at unit speed, reverse at unit
speed, or stop. By further restricting so thatU = {0, 1}, the
Dubins car is obtained, which can only travel forward or
stop (this car cannot be parallel parked!).

Numerous other models are widely used. Equations sim-
ilar to (2) arise for common differential drive robots (for
example, Roombas). Other examples include a car pulling
one or more trailers, 3D ball rolling in the plane, and simple
aircraft models.

Now consider how the planning problem has changed. The
transition equationf becomes the interface through which
solution paths must be constructed. We must compute some
function ũ : [0, t] → U that indicates how to apply actions
so that upon integration, the resulting trajectoryq̃ : [0, t] →
C will satisfy: q̃(0) = qI , q̃(t) = qG, and q̃(t′) ∈ Cfree

for all t′ ∈ [0, t]. Intuitively, we now have to “steer” the
configuration into the goal, thereby losing the freedom of
moving in any direction.

B. Moving to the state space

The previous section considered what are calledkinematic
differential constraints because they arise from the geometry
of rigid body interactions in world. More broadly, we must
consider differential constraints that account for both kine-
matics and dynamics of the robot. This allows velocity and
acceleration constraints to be appropriately modeled, usually
resulting in a transition equation of the form̈q = h(q, q̇, u),
in which q̈ = dq̇/dt. Differential equations that involve
higher order derivatives are usually more difficult to handle;
therefore, we employ a simple trick which converts them into
a form involving first derivatives only, but at the expense of
introducing more variables and equations.

The simplest and most common case is called thedouble
integrator. Let C = R and let q̈ = h(q, q̇, u) be the special
caseq̈ = u. This corresponds, for example, to a Newtonian
point mass accelerating due to an applied force (recall
Newton’s Second Law,F = ma; here,q̈ = a andu = F/m).

2

mg

fu

flfr

Fig. 3. Attempt to land a lunar spacecraft with three orthogonal thrusters
that can be switched on or off. The 2D C-space leads to a four-dimensional
state space.

We now converth into two first-order equations. LetX = R
2

denote astate space, with coordinates(x1, x2) ∈ X. Let
x1 = q and letx2 = q̇. Note thatẋ1 = x2 and, usingq̈ = u,
we have thatẋ2 = u. Using vector notatioṅx = (ẋ1, ẋ2)
andx = (x1, x2), we can interpreṫx1 = x2 and ẋ2 = u as
a state transition equationof the form

ẋ = f(x, u), (3)

which works the same way as (1) but applies to the new state
spaceX as opposed toC.

To see the structure more clearly, consider the example
shown in Figure 3. Here,C = R

2 to account for the positions
of the non-rotatable spacecraft. Three thrusters may be turned
on or off, each applying forcesfl, fr, and fu. We make
three binary action variablesul, uf , anduu; each may take
on a value of0 or 1 to turn off or on the corresponding
thruster. Finally, lunar gravity applies a downward force of
mg. The following state transition equation corresponds to
independent double integrators in the horizontal and vertical
directions:

ẋ1 = x3 ẋ3 =
fs

m
(ulfl − urfr)

ẋ2 = x4 ẋ4 =
uufu

m
− g, (4)

which is in the desired form,̇x = f(x, u). Here, we have
that x1 = q1 and x2 = q2 to account for the position inC.
The componentsx3 and x4 are the time derivatives ofx1

andx2, respectively.
For much more complicated robot systems, the basic

structure remains the same. For ann-dimensional C-space,
C, the state spaceX becomes2n-dimensional. For a state
x ∈ X, the firstn components are precisely the configuration
parameters and the nextn components are their correspond-
ing time derivatives. We can hence imagine thatx = (q, q̇).
Other state space formulations are possible, including ones
that force even higher order differential equations into first-
order form, but this is avoided in this tutorial.

Aside from doubling the dimension, there are conceptually
no difficulties with planning inX under differential con-
straints in comparison toC. Note that obstacles inC become

Cobs

Xobs

X

C

Fig. 4. An obstacle regionCobs ⊂ C generates a cylindrical obstacle region
Xobs ⊂ X with respect to the state variables.

lifted into X to obtainXfree, as shown in Figure 4. If the
first n components ofx correspond toq and if q ∈ Cobs

(the obstacle region in C-space), thenx ∈ Xobs regardless
of which values are chosen for the remaining components
(which correspond tȯq).

C. Sampling-based planning

Now consider the problem ofplanning under differential
constraints. Let X be a state space with a given state
transition equationẋ = f(x, u) and action spaceU . This
model includes the caseX = C. Given an initial state
xI ∈ X and goal regionXG ⊂ X, the task is to compute
a function ũ : [0, t] → U that has corresponding trajectory
q̃ : [0, t]→ Xfree with q̃(0) = xI and q̃(t) ∈ XG.

This unifies several problems considered for decades in
robotics: 1) nonholonomic planning, which mostly arises
from underactuated systems, meaning that the number of
action variables is less than the dimension ofC; 2) kinody-
namic planning, which implies that the original differential
constraints onC are second-order, as in the case of Figure 3;
these problems include problematicdrift, which means that
the state may keep changing regardless of the action (for
example, you cannot stop a speeding car instantaneously; it
must drift); 3) trajectory planning, which has mostly been
developed around robot manipulators with dynamics and
typically assumes that a collision-free path is given and needs
to be transformed into one that satisfies the state transition
equation.

Due to the great difficulty of planning under differential
constraints, nearly all planning algorithms are sampling-
based, as opposed to combinatorial. To develop sampling-
based planning algorithms in this context, several discretiza-
tions are needed. For ordinary motion planning, onlyC
needed to be discretized; with differential constraints, the
time interval and possibly alsoU require discretization, in
addition toC (or X).

One of the simplest ways to discretize the differential
constraints is to construct adiscrete-time model, which is
characterized by three aspects:

1) Time is partitioned into intervals of length∆t. This en-
ables stages to be assigned, in which stagek indicates
that (k − 1)∆t time has elapsed.

3

Two stages Four stages

Fig. 5. A reachability tree for the Dubins car with three actions. Thekth
stage produces3k new vertices.

q̇

q

Fig. 6. The reachability graph from the origin is shown afterthree stages
(the true state trajectories are actually parabolic arcs when acceleration or
deceleration occurs). Note that a lattice is obtained, but the distance traveled
in one stage increases as|q̇| increases.

2) A finite subsetUd of the action spaceU is chosen. If
U is already finite, then this selection may beUd = U .

3) The actionũ(t) must remain constant over each time
interval.

From an initial state,x, a reachability treecan be formed by
applying all sequences of discretized actions. Figure 5 shows
part of this tree for theDubins car from Section II-A with
Ud = {−φmax, 0, φmax}. The edges of the tree are circular
arcs or line segments. For general systems, each trajectory
segment in the tree is determined by numerical integration
of ẋ = f(x̃(t), ũ(t)) for a given ũ. In general, this can
be viewed as anincremental simulatorthat takes an input
function ũ and produces a trajectory segmentx̃ that satisfies
ẋ = f(x̃(t), ũ(t)) for all time.

Sampling-based planning algorithms proceed by exploring
one or more reachability trees that are derived from dis-
cretization. In some cases, it is possible to trap the trees onto
a regular lattice structure. In this case, planning becomes
similar to grid search. Figure 6 shows an example of such
a lattice for the double-integrator̈q = u [6]. For a constant
actionu 6= 0, the trajectory is parabolic and easily obtained
by integration. Ifu = 0, then the trajectory is linear. Consider
applying constant actionsu = −amax, u = 0, u = amax for
some constantamax > 0 over some fixed interval∆t. The

(a) (b)

Fig. 7. (a) The first four stages of a dense reachability graphfor the Dubins
car. (b) One possible search graph, obtained by allowing at most one vertex
per cell. Many branches are pruned away. In this simple example, there are
no cell divisions along theθ-axis.

XGxI
xI

xG

BVP

(a) (b)

xI

xG
BVP xG

xI

BVP

(c) (d)

Fig. 8. (a) Forward, unidirectional search for which the BVPis avoided.
(b) Reaching the goal precisely causes a BVP. (c) Backward, unidirectional
search also causes a BVP. (d) For bidirectional search, the BVP arises when
connecting the trees.

reachability tree becomes a directed acyclic graph, rootedat
the origin. Every vertex, except the origin, has out-degree
three, which corresponds to the three possible actions. For
planning purposes, a solution trajectory can be found by
applying standard graph search algorithms to the lattice. If
a solution is not found, then the resolution may need to be
increased.

Generalizations of this method exist for fully-actuated sys-
tems. It is also possible to form an approximate lattice, even
for underactuated systems, by partitioning the C-space into
small cells and ensuring that no more than one reachability
tree vertex is expanded per cell [1]; see Figure 7. Each cell is
initially marked as being in collision or being collision-free,
but not yet visited. As cells are visited during the search,
they become marked as such. If a potential new vertex lands
in a visited cell, it is not saved. This has the effect of pruning
the reachability tree.

The planning problem under differential constraints can
be solved by incremental sampling and searching, just as
the original planning problem in Part I. The discretizations

4

do not necessarily have to be increased as a multiresolution
grid. Search trees are constructed by iteratively selecting
vertices and applying the incremental simulator to generate
trajectory segments. If these are collision free, then they
are added to the search trees, and a test for a solution
trajectory occurs. One issue commonly confronted is the two-
point boundary-value problem (BVP), illustrated in Figure8.
Under differential constraints, it is assumed to be nontrivial
to connect a pair of states exactly. Difficult computations may
be necessary (a mini-planning problem in itself!) to make
the connection. Therefore, it is important to minimize the
amount of BVP computations, if possible.

D. Challenges

Although significant progress has been made and many
issues are well-understood, numerous unresolved issues re-
main before planning under differential constraints becomes
as well-solved as the original planning problem:

• It has been shown in several works (e.g., [9], [10],
[15]) that a wise choice ofmotion primitivesdramati-
cally improves planning performance. Each is an action
history ũ : [0,∆t] → U , and when composed, the
state space is efficiently explored. There is no general
understanding of how primitives should be designed to
optimize planning performance.

• Many sampling-based methods depend critically on the
metric overX. Ideally, this metric should be close to
the optimal cost-to-go between points; however, calcu-
lating these values is as hard as the planning problem
itself. What approximations are efficient to compute and
useful to planning?

• The region of inevitable collisionXric is the set of
all states from which, not matter what action history
is applied, entry intoXobs is unavoidable. Note that
Xobs ⊆ Xric ⊆ X. As a robot moves faster, the
portion of the C-space that is essentially forbidden
grows due to drift. There has been interest in calculating
estimates ofXric and evidence that avoiding it early on
in searches improves performance (e.g., [8]); however,
more powerful and efficient methods of calculating and
incorporatingXric are needed.

• Is it advantageous to trap the system onto a lattice
and then perform search, or is it most effective to
incrementally explore the reachability tree via special
search methods?

III. FEEDBACK MOTION PLANNING

Recall from Figure 1 that at the last step, feedback is
usually employed to track the path. This becomes necessary
because of imperfections in the transition equation. If the
goal is to reach some part of the C-space, then why worry
about the artificial problem of tracking a path produced by an
imperfect model? This observation calls for a different notion
of “solution” to the planning problem. Rather than computing
a pathτ : [0, 1] → C or trajectoryq̃ : [0, t] → C, we need
representations that indicate what action to apply when the
robot is at various places in the C-space. If dynamics are

xG
uT

(a) (b)

Fig. 9. a) A 2D grid-planning problem. b) A solution feedback plan.

a concern, then we should even know what action to apply
from places in the state spaceX. In these cases, we must
“feed” the current estimated configuration or state “back”
into the plan to determine which action to apply.

A. Feasible feedback planning

Keep in mind that the issue of differential constraints
(Section II) is independent of the need for feedback. Both
are treated together in control theory and neither is treated
in classical path planning; however, Section II treated dif-
ferential constraints without feedback. It is just as sensible
to consider feedback without differential constraints as a
possible representation on which to build systems.

In the case of having differential constraints, we use
the state transition equatioṅx = f(x, u) over the state
spaceX (which includes the caseX = C). In the case
of no differential constraints, we should directly specifythe
velocity. In this case,f specializes toẋ = u with U = R

n

(assumingX is n-dimensional). In practice, the speed may
be bounded, such as requiring that|u| ≤ 1. This is a very
weak differential constraint because it does not constrainthe
possible directions of motion.

To understand feedback plan representation issues, it is
helpful to consider the discrete grid example in Figure 9.
A robot moves on a grid, and the possible actions are up
(↑), down (↓), left (←), right (→), and terminate (uT);
some directions are not available from some states. In each
time step, the robot moves one tile. This corresponds to
a discrete-time state transition equationx′ = f(x, u). A
solution feedback plan of the formπ : X → U is depicted in
Figure 9. From any state, simply follow the arrows to travel
to the goalxG. Each next state is obtained fromπ and f
as x′ = f(x, π(x)). The shown plan is even optimal in the
sense that the number of steps to get toxG is optimal from
any starting state.

Another way to represent a feedback plan is through an
intermediatepotential functionφ : X → [0,∞]. Givenf and
φ, a planπ is derived by selectingu according to:

u∗ = argmin
u∈U(x)

{

φ(f(x, u))
}

, (5)

which means thatu∗ ∈ U(x) is chosen to reduceφ as much
as possible (u∗ may not be unique).

5

1

1

1

1

2 2

22

2 2

3 3

3 3 4 5 6 7

7 8

8

8

9

9

9

10

10

10

11

11

11

0

12

12

12

12

13

13

13

1314

14

14

14

15

15

15

15 16

16

16

1617

17

17 17

18

18

18

19

19

19

20

20

2021

21 212222

Fig. 10. The cost-to-go values serve as a navigation function.

xG

Fig. 11. A triangulation is used to define a vector field overX. All solution
trajectories lead to the goal.

When is a potential function useful? Letx′ = f(x, u∗),
which is the state reached after applying the actionu∗ ∈
U(x) that was selected by (5). A potential function,φ, is
called anavigation functionif

1) φ(x) = 0 for all x ∈ XG.
2) φ(x) =∞ if and only if no point inXG is reachable

from x.
3) For every reachable state,x ∈ X \ XG, applying u∗

produces a statex′ for which φ(x′) < φ(x).

In this case, the produced plan is guaranteed to lead to the
goal. Figure 10 shows a navigation function for our example.

Now consider moving to a continuous C-space. The ideas
presented so far nicely extend. The planπ : X → U applies
over whichever space arises. For example, supposeX = C ⊂

xG

(a) (b)

Fig. 12. (a) A point goal in a simple polygon. (b) The level setsof the
optimal navigation function (Euclidean cost-to-go function).

R
2 and there are polygonal obstacles. Furthermore, there is

only a weak differential constraint thatẋ = u and |u| = 1.
A feedback plan must then specify at every point inCfree

a direction to move at unit speed. Figure 11 shows a simple
example that converts a triangular decomposition (recall such
decompositions from the Part I) into a feedback plan by
indicating a constant direction inside of each triangle. The
task in each triangle is to induce a flow that carries the robot
into a triangle that is one step closer to the goal. A navigation
function can likewise be constructed on continuous spaces.
Figure 12 shows the level sets of a navigation function that
sends the robot on the shortest path to the goal.

These examples produce piecewise linear trajectories
which are usually inappropriate for execution because the
velocity is discontinuous. One weak form of differential
constraint is that the resulting plan is smooth along all
trajectories to the goal. The method shown in Figure 11 can
be adapted to produce smooth vector fields by using bump
functions to smoothly blend neighboring field patches [14].
Smooth versions of navigation functions can also be designed
for most environments if the obstacles inX are given [16].

B. Optimal feedback planning

In many contexts, we may demand anoptimal feedback
plan. In the discrete-time case, the goal is to design a plan
that optimizes a cost functional,

L(x1, . . . , xK+1, u1, . . . , uK) =

K
∑

k=1

l(xk, uk)+lK+1(xK+1),

(6)
from every possible start statex1. Each l(xk, uk) > 0 is
the cost-per-stageand lK+1(xK+1) is the final cost, which
is 0 if xK+1 ∈ XG, or ∞ otherwise. In the special case
of l(xk, uk) = 1 for all xk and uk, (6) simply counts the
number of steps to reach the goal.

The continuous-time counterpart to (6) is

L(x̃, ũ) =

∫ tF

0

l(x̃(t), ũ(t))dt + lF (x̃(tF)), (7)

in which tF is the termination (or final) time.
Consider a functionG∗ : X → [0,∞] called the optimal

cost-to-go, which gives the lowest possible costG∗(x) to get
from anyx to XG. If x ∈ XG, thenG∗(x) = 0, and if XG

is not reachable fromx, thenG∗(x) =∞. Note thatG∗ is a
special form of a navigation functionφ as defined in Section
III-A. In this case, the optimal plan is executed by applying

u∗ = argmin
u∈U(x)

{

l(x, u) + G∗(f(x, u))
}

. (8)

If the term l(x, u) does not depend on the particularu
chosen, then (8) actually reduces to (5) withG∗ = φ.

The key challenge is to construct the cost-to-goG∗.
Fortunately, due to the dynamic programming principle, the
cost can be written as (see [?]):

G∗

k(xk) = min
uk∈U(xk)

{

l(xk, uk) + G∗

k+1(xk+1)
}

. (9)

6

xk

Stage k + 1

Stage k

Possible next states

Fig. 13. Even thoughxk is a sample point, the next state,xk+1, may land
between sample points. For eachuk ∈ U , interpolation may be needed for
the resulting next state,xk+1 = f(xk, uk).

The expresses the cost-to-go from stagek, G∗

k, in terms of
the cost-to-go from stagek +1, G∗

k+1. The classical method
of value iteration[2] can be used to iteratively compute cost-
to-go functions until the values stabilize as a stationaryG∗.
There are also Dijkstra-like methods [12] andpolicy iteration
methods[2].

When moving to a continuous state spaceX, the main
difficulty is thatG∗

k(xk) cannot be stored for everyxk ∈ X.
There are two general approaches. One is to approximateG∗

k

using a parametric family of surfaces, such as polynomials
or nonlinear basis functions derived from neural networks
[3]. The other is to storeG∗

k only over a finite set of sample
points and use interpolation to obtain its value at all other
points [11]. As an example for the one-dimensional case, the
value of G∗

k+1 in (9) at anyx ∈ [0, 1] can be obtained via
linear interpolation as

G∗

k+1(x) ≈ αG∗

k+1(si) + (1− α)G∗

k+1(si+1), (10)

in which the coefficientα ∈ [0, 1].
Computing such approximate, optimal feedback plans

seems to require high resolution sampling of the state space,
which limits their application to lower-dimensions (less than
5 in most applications). Although the planning algorithms
are limited to lower-dimensional problems, extensions to
otherwise difficult cases is straightforward. For example,
consider the stochastic optimal planning problem, in which
the state transition equation is expressed asP (xk+1|xk, uk).
In this case, theexpectedcost-to-go satisfies:
G∗

k(xk) =

min
uk∈U(xk)

{

l(xk, uk)+
∑

xk+1∈X

G∗

k+1(xk+1)P (xk+1|xk, uk)

}

,

(11)
which again provides value iteration methods and in some
cases Dijkstra-like algorithms. There are also variationsfor
optimizing wost-case performance, computing game theo-
retic equilibria, and reinforcement learning, in which the
transition equation must be learned in the process of de-
termining the optimal plan.

C. Challenges

Feedback motion planning appears to be significantly more
challenging than path planning. Some current challenges are:

• The curse of dimensionality seems worse: Methods are
limited to a few dimensions in practice. Cell decom-
position methods do not scale well with dimension
and optimal planning methods require high-resolution

sampling. Can implicit volumetric representations be
constructed and utilized efficiently via sampling?

• Merging with Section II leads to both complicated
differential constraints and feedback. Hybrid systems
models sometimes help by switching controllers over
cells in a decomposition [5]. Another possibility is
to track space-filling trees, grown backwards from the
goal, as opposed to single paths [17]. If optimality is
not required, there are great opportunities to improve
planning efficiency.

• If a fast enough path planning algorithm exists for a
problem, then the “feedback plan” could be a dynamic
replanner that recomputes the path as the robot ends
up in unexpected states or the obstacles change. When
is this kind of solution advantageous and how does it
relate to explicitly computingπ : X → U?

• Perhaps the plan as a mappingπ : X → U is too
constraining. Would it be preferable to compute a plan
that indicates for every state a set ofpossibleactions that
are all guaranteed to make progress toward the goal?
This would leave more flexibility during execution to
account for unexpected events.

IV. SENSING UNCERTAINTY

Recall from Section I that after following the classical
steps in Figure 1, the information requirements are driven
artificially high: Complete state information, including the
models of the obstacles, is needed at all times. On the
other hand, we see numerous examples in robotics and
nature of simple systems that cannot possibly build complete
maps of their environment while nevertheless accomplishing
interesting tasks. A simple Roomba vacuum cleaner can
obtain a reasonable level of coverage with poor sensors
and no prior obstacle knowledge. Ants are able to construct
complex living spaces and transport food and materials.
Since maintaining the entire state seems futile for most
problems, it makes sense to start with the desiredtask and
determine what information isrequiredto solve it. This could
lead to a minimalist approach in which a cheap combination
of simple sensors, actuators, and computation is sufficient.

The goal in this section is to give you the basic idea
of how planning appears from this perspective. There are
many open challenges and directions for future research. The
presentation here gives representative examples rather than
complete modeling alternatives; for more details, see [12],
[13].

Let X be a state space that is typically much larger
than C. A state x ∈ X may contain robot configuration
parameters, the configuration velocities, and even a complete
representation of the obstaclesO ⊂ W. A change inx could
correspond to a moving robot or a change in obstacles. In
this case,X is not even assumed to be a manifold (it is just
a large set!). Suppose that a discrete-time state transition
equationx′ = f(x, u) for u ∈ U indicates how the entire
world changes.

In this section, the statex is hidden from the robot. The
only information it receives from the external world is from

7

sensor mappingsof the formh : X → Y , in which Y is the
set of sensor outputs, called theobservation space. Think
of h as a many-to-one mapping. A weaker sensor causes
more states to produce the same output. In other words, the
preimageh−1(y) = {x ∈ X | y = h(x)} is larger.

At any time during execution, the full set of information
available to the robot consists of all sensor observations
and all actions that were applied (and any given initial
conditions). This is called thehistory information state (or
I-state); if an observation and action occurs at each stage,
then it appears at stagek as:

ηk = (u1, . . . , uk−1, y1, . . . , yk). (12)

Imagine placing the set of all possibleηk for all k ≥ 1 in a
large setIhist called thehistory I-space. Although Ihist is
enormous, the “state”ηk ∈ Ihist is at least not hidden from
the robot. We can therefore define aninformation feedback
plan π : Ihist → U .

Of course,Ihist is so large that it is impractical to work
with directly. Therefore, we design afilter that “compresses”
each ηk to retain only some tasks-critical pieces of in-
formation. The result is an impliedinformation mapping
κ : Ihist → I into some newfilter I-space I. As new
information,uk−1 andyk, becomes available, the filter I-state
ιk ∈ I becomes updated through afilter transition equation:

ιk = φ(ιk−1, uk−1, yk). (13)

Now letI be any I-space. Generally, the planning problem
is to chose eachuk so that some predetermined goal is
achieved. LetG ⊂ I be called agoal region in the I-space.
Starting from an initial I-stateι0 ∈ I, what sequence of
actionsu1, u2, . . ., will lead to some future I-stateιk ∈ G?
Since future observations are usually unpredictable, it may
be impossible to specify the appropriate action sequence
in advance. Therefore, a better way to define the action
selections is to define a planπ : I → U , which specifies
an actionπ(ι) from every filter I-stateι ∈ I.

During execution of the plan, the filter (13) is executed,
filter I-statesι ∈ I are generated, and actions get automat-
ically applied usingu = π(ι). The state transition equation
x′ = f(x, u) produces the next state, which remains hidden.

Using a filterφ, the execution of a plan can be expressed
as

ιk = φ(ιk−1, yk, π(ιk−1)), (14)

which makes the filter no longer appear to depend on actions.
The filter runs autonomously as the observations appear.

A. Generic Examples

To help understand the concepts so far, we describe some
well known approaches in terms of filters over I-spacesI
and information feedback plansπ : I → U .

State feedback:Suppose we have a filter that produces a
reliable estimate ofxk usingηk and fits the incremental form
(13), in which the I-space isI = X and ιk is the estimate
of xk. In this case, a plan as expressed in (14) becomes

���
���
���
���

���
���
���
���
���
���
���

���
���
������
���
���

���
���
������
���
���

���
���
������
���
���
���

���
���
���
���
���
���
���

���
���
������
���
���

���
���
������
���
���

���
���
���

���
���
���
���

���
���
���
���
���
���
���

���
���
������
���
���

���
���
������
���
���

���
���
������
���
���
���

���
���
���
���
���
���
���

���
���
������
���
���

���
���
������
���
���

���
���
���

��
��
��
��

��
��
��
��
��
��
��

��
��
����
��
��

��
��
����
��
��

��
��
����
��
��
��

��
��
��
��
��
��
��

��
��
����
��
��

��
��
����
��
��

��
��
��

��
��
��
��

��
��
��
��
��
��
��

��
��
����
��
��

��
��
����
��
��

��
��
����
��
��
��

��
��
��
��
��
��
��

��
��
����
��
��

��
��
����
��
��

��
��
��

���
���
���
���

���
���
���
���
���
���
���

���
���
������
���
���

���
���
������
���
���

���
���
������
���
���
���

���
���
���
���
���
���
���

���
���
������
���
���

���
���
������
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

��
��
��

��
��
��

��
��
��

��
��
��

���
���
���

���
���
���

���
���
���

���
���
���

��
��
��

��
��
��

��
��
��

��
��
��

���
���
���

���
���
���

���
���
���
���

���
���
���
���

��
��
��
��

��
��
��
��

���
���
���

���
���
���

���
���
���

���
���
���

��
��
��

��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

(a) (b)

Fig. 14. (a) A discrete grid problem is made in which a robot is placed
into a bounded, unknown environment. (b) An encoding of a partial map,
obtained from some exploration. The hatched lines representunknown tiles
(neither white nor black).

π : X → U . This method was used implicitly throughout
Section III.

This choice of filter is convenient because there is no
need to worry in the planning and execution stages about
uncertainty with regard to the current state. All sensing
uncertainty is the problem of the filter. This is a standard
approach throughout control theory and robotics; however,
as mentioned in Section I, the information requirements may
be artificially high.

Open loop: This example uses (13) to count the number
of stages by incrementing a counter in each step. The I-space
is I = N. A plan is expressed asπ : N → U . This can be
interpreted as a specifying a sequence of actions:

π = (u1, u2, u3, . . .). (15)

The result is just a sequence of actions to apply. Such plans
are often calledopen loop because no significant sensor
observations are being utilized during execution. However, it
is important to be careful, because implicit time information
is being used: It is known thatu3 is being applied later than
u2, for example.

Sensor feedback:At one extreme, we can make the system
memoryless orreactive, causing actions to depend only on
the current observationyk. In this case,I = Y and (13)
returnsyk in each iteration. A plan becomesπ : Y → X.
If a useful task can be solved in this way, then it is almost
always advantageous to do so. Most tasks, however, require
some memory of the sensing and action histories.

Full history feedback:Sensor feedback was at one end
of the spectrum by discarding all history. At the other end,
we can retain all history. The filter (13) simply concatenates
uk−1 and yk onto the history. The filter I-space is just
I = Ihist. As mentioned before, however, this becomes
unmanageable at the planning stage.

B. Designing task-specific I-spaces

It is best to design the I-space around the task. A discrete
exploration task is presented first. A robot is placed into
a discrete environment, in which coordinates are described
by a pair(i, j) of integers, and there are only four possible
orientations (such as north, east, west, south). The state space
is

X = Z× Z×D × E , (16)

in which Z×Z is the set of all(i, j) positions,D is the set of
4 possible directions, andE is a set of environments. Every

8

E ∈ E is a connected, bounded set of “white” tiles and all
such possibilities are included inE ; an example appears in
Figure 14(a). All other tiles are “black”. Note thatZ×Z×D
can be imagined as a discrete version ofR

2 × S1.
The robot is initially placed on a white tile, in an unknown

environment, with an unknown orientation. The task is to
move the robot so that every tile inE is visited. This strategy
could be used to find a lost “treasure”, which has been placed
on an unknown tile. Only two actions are needed: 1) move
FORWARD in the direction the robot is facing, and 2)ROTATE

the robot90 degrees counterclockwise. If the robot is facing
a black tile andFORWARD is applied, then a sensor reports
that it is blocked and the robot does not move.

Consider what kind of filters can be made for solving
this task. The most straightforward one is for the robot to
construct a partial map ofE and maintain its position and
orientation with respect to its map. A naive way to attempt
this is to enumerate all possibleE ∈ E that are consistent
with the history I-state, and for each one, enumerate all
possible(i, j) ∈ Z × Z and orientations inD. Such a filter
would live in an I-spaceI = pow(Z × Z × D × E), with
each I-state being a subset ofI. An immediate problem
is that every I-state describes a complicated, infinite set of
possibilities.

A slightly more clever way to handle this is to compress
the information into a single map, as shown in Figure 14(b).
Rather than be forced to label every(i, j) ∈ Z×Z as “black”
or “white”, we can assign a third label, “unknown”. Initially,
the tile that contains the robot is “white” and all others are
“unknown”. As the robot is blocked by walls, some tiles
become labeled “black”. The result is a partial map that has
a finite number of “white” and “black” tiles, with all other
tiles being labeled “unknown”. An I-state can be described
as two finite setsW (white tiles) andB (black tiles), which
are disjoint subsets ofZ × Z. Any tiles not included inW
or B are assumed to be “unknown”.

Now consider a successful search plan that uses this filter.
For any “unknown” tile that is adjacent to a “white” tile,
we attempt to move the robot onto it to determine how to
label it. This process repeats until no more “unknown” tiles
are reachable, which implies that the environment has been
completely explored.

A far more interesting filter and plan are given in [4]. Their
filter maintains I-states that use only logarithmic memory
in terms of the number of tiles, whereas recording the
entire map would use linear memory. They show that with
very little space, not nearly enough to build a map, the
environment can nevertheless be systematically searched.For
this case, the I-state keeps track of only one coordinate (for
example, in the north-south direction) and the orientation,
expressed with two bits. A plan is defined in [4] that is
guaranteed to visit all white tiles using only this information.

Moving to continuous spaces leads to the familiar simul-
taneous robot localization and mapping (SLAM) problem
[7], [18]. For the localization problem alone, suppose that
a Kalman filter is used. In this case, the filter I-state is
ι = (µ,Σ) in which µ is the robot configuration estimate and

φ φ

g1

g2

g3

g4

g5

(a) (b)

Fig. 15. Consider a robot placed in a simple polygon. (a) A strong sensor
could seem omnidirectionally to provide a distance measurement along
every direction from0 to 2π. (b) A gap sensorcan only indicates that
there are discontinuities in depth. A cyclic list of gaps{g1, g2, g3, g4, g5}
is obtained, with no angle or distance measurements.

1

2 3

4

1

2

3

4 5

5

Fig. 16. The gap navigation tree captures the structure of the shortest paths
to the current robot location (the white circle on the left).The tree on the
right characterizes precisely how the shortest paths to therobot location are
structured.

Σ is the covariance. The Kalman filter computes transitions
that follow the form (13). When mapping is combined,
each filter I-state encodes a probability distribution over
possible maps and configurations. The I-spaceI becomes
so large that sampling-basedparticle filtersare developed to
approximately compute (13).

A full geometric map is useful for many tasks; however,
the I-space can be reduced dramatically by focusing on a
particular task. An example from [19] is briefly described
here. Consider a simple “gap sensor” placed on a mobile
robot in a polygonal environment, as shown in Figure 15.
Suppose the task is to navigate the robot optimally in terms
of the shortest possible Euclidean distance. The robot is
not given a map of the environment. Instead, it uses gap
observations and records an association between gaps when
two gaps merge into one. It is shown in [19] that this
corresponds precisely to the discovery of a bitangent edge,
which is a key part of theshortest path graph(alternatively
calledreduced visibility graph), a data structure that encodes
the common edges of optimal paths from all initial-goal
pairs of positions. The filter I-state records a tree, shown in
Figure 16, that indicates how the gaps merged. The tree itself
is combinatorial (no geometric data) and encodes precisely

9

the structure needed for optimal robot navigation from the
robot’s current location. The robot is equipped with an action
that allows it to “chase” any gap until that gap disappears
or splits into other gaps. Using the tree, it can navigate
optimally to any place that it has previously “seen”. The set
of all trees forms the filter I-spaceI from which distance-
optimal navigation can be entirely solved in an unknown
environment without measuring distances.

C. Challenges

Due to the wide variety of tasks and possible combinations
of sensors and control models, many challenges remain to
design planning algorithms by reducing the complexity of
the I-space. The overall framework involves the following
steps:

1) Formulate the task and the type of system, which
includes the environment obstacles, moving bodies,
and possible sensors.

2) Define the models, which provide the state spaceX,
sensor mappingsh, and the state transition functionf .

3) Determine an I-spaceI for which a filter φ can be
practically computed.

4) Take the desired goal, expressed overX, and convert
it into an expression overI.

5) Compute a planπ over I that achieves the goal in
terms ofI.

Ideally, these steps should all be taken into account together;
otherwise, a poor choice in an earlier step could lead to
artificially high complexity in later steps. Worse yet, a
feasible solution might not even exist. Consider how Steps
4 and 5 may fail. Suppose that in Step 3, a simple I-
space is designed so that each I-state is straightforward
and efficient to compute. If we are not careful, then Step
4 could fail because it might be impossible to determine
whether particular I-states achieve the goal. For example,
the open-loop filter from Section IV-A simply keeps track
of the current stage number. In most settings, this provides
no relevant information about what has been achieved in the
state space. Suppose that Step 4 is successful, and consider
what could happen in Step 5. A nice filter could be designed
with an easily expressed goal inI; however, there might exist
no plans that can achieve it. In light of these difficulties, one
open challenge may be to design a decomposition, better
than the one in Figure 1, of the overall problem so that
information requirements are reduced along the way.

V. CONCLUSION

Note the sharp contrast between Parts I and II of this tuto-
rial. From the perspective of Part I, it is tempting to think that
motion planning is dead as a research field. Most of the issues
have been well studied for decades and powerful methods
have been developed that are in widespread use throughout
various industries. However, differential constraints, feed-
back, optimality, sensing uncertainty, and numerous other
issues continue to bring exciting new challenges. In some
sense, combining components in Figure 1 amounts to merg-
ing planning and control theory. Thus, the subject of planning

at this level might just as well be considered as “algorithmic
control theory” in which control approaches are enhanced
to take advantage of geometric data structures, sampling-
based searching methods, collision detection algorithms,and
other tools familiar to motion planning. The wild frontiers
are open; there are plenty of interesting places to explore.

Acknowledgments

The author is grateful for the following support: NSF
grant 0904501 (IIS Robotics), NSF grant 1035345 (CNS
Cyberphysical Systems), DARPA SToMP grant HR0011-05-
1-0008, and MURI/ONR grant N00014-09-1-1052.

REFERENCES

[1] J. Barraquand and J.-C. Latombe. Nonholonomic multibody mobile
robots: Controllability and motion planning in the presenceof obsta-
cles. Algorithmica, 10:121–155, 1993.

[2] R. E. Bellman and S. E. Dreyfus.Applied Dynamic Programming.
Princeton University Press, Princeton, NJ, 1962.

[3] D. P. Bertsekas and J. N. Tsitsiklis.Neuro-Dynamic Programming.
Athena Scientific, Belmont, MA, 1996.

[4] M. Blum and D. Kozen. On the power of the compass (or, why mazes
are easier to search than graphs). InProceedings Annual Symposium
on Foundations of Computer Science, pages 132–142, 1978.

[5] M. S. Branicky, V. S. Borkar, and S. K. Mitter. A unified framework for
hybrid control: Model and optimal control theory.IEEE Transactions
on Automatic Control, 43(1):31–45, 1998.

[6] B. R. Donald, P. G. Xavier, J. Canny, and J. Reif. Kinodynamic
planning. Journal of the ACM, 40:1048–66, November 1993.

[7] H. Durrant-Whyte and T. Bailey. Simultaneous localization and
mapping: Part I.IEEE Robotics and Automation Magazine, 13(2):99–
110, 2006.

[8] Th. Fraichard and H. Asama. Inevitable collision states -a step towards
safer robots?Advanced Robotics, pages 1001–1024, 2004.

[9] E. Frazzoli, M. A. Dahleh, and E. Feron. Maneuver-based motion
planning for nonlinear systems with symmetries.IEEE Transactions
on Robotics, 21(6):1077–1091, December 2005.

[10] J. Go, T. Vu, and J. J. Kuffner. Autonomous behaviors for interac-
tive vehicle animations. InProceedings SIGGRAPH Symposium on
Computer Animation, 2004.

[11] R. E. Larson and J. L. Casti.Principles of Dynamic Programming,
Part II. Dekker, New York, 1982.

[12] S. M. LaValle. Planning Algorithms. Cambridge University Press,
Cambridge, U.K., 2006. Also available at http://planning.cs.uiuc.edu/.

[13] S. M. LaValle. Filtering and planning in information spaces. Technical
report, Department of Computer Science, University of Illinois, Octo-
ber 2009. Available at http://msl.cs.uiuc.edu/∼lavalle/iros09/paper.pdf.

[14] S. R. Lindemann and S. M. LaValle. Simple and efficient algorithms
for computing smooth, collision-free feedback laws over given cell de-
compositions.International Journal of Robotics Research, 28(5):600–
621, 2009.

[15] M. Pivtoraiko and A. Kelly. Generating near minimal spanning control
sets for constrained motion planning in discrete state spaces. In
Proceedings IEEE/RSJ International Conference on Intelligent Robots
and Systems, 2005.

[16] E. Rimon and D. E. Koditschek. Exact robot navigation using artificial
potential fields. IEEE Transactions on Robotics & Automation,
8(5):501–518, October 1992.

[17] R. Tedrake, I. R. Manchester, M. M. Tobenkin, and J. W. Roberts.
Time optimal trajectories for bounded velocity differentialdrive vehi-
cles. International Journal of Robotics Research, 29:1038–1052, July
2010.

[18] S. Thrun, W. Burgard, and D. Fox.Probabilistic Robotics. MIT Press,
Cambridge, MA, 2005.

[19] B. Tovar, R Murrieta, and S. M. LaValle. Distance-optimal navigation
in an unknown environment without sensing distances.IEEE Trans-
actions on Robotics, 23(3):506–518, June 2007.

10

