Motion Planning: Wild Frontiers

Steven M. LaValle

Complete geometric model of the world

Here we give Part Il the two-part tutorial. Part | empha-

sized the basic problem formulation, mathematical cors;ept \k}
and the most common solutions. The goal of the Part Il is Compute a collision-free path
to bring you to understand current robotics challenges from 7:[0,1] = Cpree STEP 1
a motion planning perspective. \t}
|. INTRODUCTION Smooth 7 to satisfy differential constraints
The basic problem of computing a collision-free path 7 U= Cyre STEP 2
for a robot among known obstacles is well-understood and \k}
reasonably well-solved; however, deficiencies in the bl Design a trajectory that follows o
formulation itself and the demand of engineering challsnge 7:10,] > Cpree STEP 3
in the design of autonomous systems raise important ques- \k)/
tions and tOpiCS for future research. Design a feedback controller to track ¢
The shortcomings of basic path planning become clearly T XU STEP 4
visible when considering how the computed path is typically U

used in a robotic system. It has been known for decades that

effective autonomous systems must iterativedypsenew data

and act accordingly; recall the decades-oRknse Plan Act Fig. 1. The long road to using a computed collision-free phibte that

(SPA) paradigm Figure 1 shows how a Computed coIIisiorF—ompIete' perfect knowledge of the robot and obstaclessinteand sensors
' . . . are utilized again only during the final execution.

free pathr : [0, 1] — Cyyec is usually brought into alignment

with this view by producing a feedback control law. Step 1

producesr using a path planning algorithm. Step 2 thenyior knowledge, must be providing accurate state estisnate
smoothsT to produceo : [0,1] — Cpree, @ path that o g times, including the robot configuration, velocity
the robot can actually follow. For example, if the path is;omponents, and obstacle models. This unfortunately over-

piecewise linear, then a car-like mobile robot would not bg,oks a tremendous opportunity to reduce the overall system
able to turn sharp corners. Step 3 reparameterizesmake complexity by sensing just enough information to complete

atrajectory g : [0,¢¢] — Cyrec that nominally satisfies the he task. In this case, a plan is : Z — U instead of
robot dynamics (for example, aqcelerqtion bounds). In Step. x _, U, in which Z is a specificnformation spacehat

4, a state-feedback control law is designed that racks can pe derived from sensor measurements and from which
closely as possible during execu_tion._This results pobcy 5 complete reconstruction of the stat¢) € X is either
orplan, 7 : X’ — U. The domainX is astate spacdor jmpossible or undesirable. Section IV introduces sensing,
phase spageand U is an action space(or input spacg fjjtering, and planning from this perspective: The statencdn

These sets appear in the definition of the control system thgt 1|1y estimated, but tasks are nevertheless achieved.
models the robott = f(z,u) in whichz € X andu € U.

One clear problem in this general framework is that a later II. DIFFERENTIAL CONSTRAINTS
step might not succeed due to an unfortunate, fixed choice inn this section, it may help to imagine that the C-space

an earlier step. Even if it does succeed, the produced solutic js g to avoid the manifold technicalities from Part I. In
may be horribly inefficient. This motivatgslanning under the models and methods of Part I, it was assumed that a
differential constraints which essentially performs Steps 1path can be easily determined between any two configura-
and 2, or Steps 1, 2, and 3 in one shot; see Section Il. Thgns in the absence of obstacles. For example, vertices in
eventual need for feedback in Step 4 motivates the diref{e trapezoidal decomposition approach are connected by a
computation of deedback plancovered in Section Il strajght line segment in the collision-free regidh, ... This

~ Another issue with the framework in Figure 1, whichgection complicates the problem by introducidifferential

is perhaps more subtle, is that this fixed decompositiogynstraints which restrict the allowable velocities at each

of the overall problem of getting a robot to navigate hagint in /... These ardocal constraints, in contrast to the
artificially inflated the information requirements. Therfre- global constraints that arise due to obstacles.

work requires that powerful sensors, combined with strong pifferential constraints naturally arise from the kinefost

S. M. LaValle is with the Department of Computer Science, Ursig and dynamics _Of I’Ob(_)tS. Rather than treating them as an
of lllinois at Urbana-Champaigr,aval | e@ii uc. edu afterthought, this section discusses how to model them and

Execute 7 on the robot

move the center of the rear axle laterally because the rear
wheels would skid instead of roll. This induces the constrai
y/& = tan . This constraint, along with another due to the
steering angle, can be converted into the following forne (se
Section 13.1.2.1 of [12]):

T = ugcos b
U = ugsiné)

0= f" tan ug,

in which uw = (us,uy) € U is the action;u, is the forward
speed and.y is the steering angle. Now must be defined.
Usually, the steering angle is bounded by safpg,, < 7/2
so that|ug| < ¢mas. FOr the possible speed values,
a simple bound is often made. For example| < 1 or
incorporate them directly into the planning process. Iis thiequivalently, U = [~1,1], produces a car that can travel
way, a path is produced that already satisfies the congtrainio faster than unit speed. A finite set of values is often
,) used for planning problems that are taking into account
A. Modeling the constraints only the kinematic constraints due to rolling wheels. Betti
For simplicity, suppose that = R?. Let§ = (i#,y) denote U = {—1,0,1} produces what is called thReeds-Shepp
a velocity vectoy in which & = dx/dt andy = dy/dt. car, which can travel forward at unit speed, reverse at unit
Starting from any point ifR?, say(0, 0), consider what paths speed, or stop. By further restricting so tfiat= {0, 1}, the
can possibly be produced by integrating the velogjfy) = Dubins caris obtained, which can only travel forward or
fot 4(s)ds. Here,q is interpreted as a function of time. If no stop (this car cannot be parallel parked!).
constraints are imposed aj (other than requirements for Numerous other models are widely used. Equations sim-
integrability), then the trajectory is virtually unrestricted. ilar to (2) arise for common differential drive robots (for
If, however, we require that > 0, then only trajectories for example, Roombas). Other examples include a car pulling
which monotonically increases are allowed. If we furtherone or more trailers, 3D ball rolling in the plane, and simple
constrain it so thad < ¢ < 1, then the rate at whiclx aircraft models.
increases is bounded. If time were measured in seconds andNow consider how the planning problem has changed. The
R? with meters, thenj must cause travel in the direction transition equationf becomes the interface through which
with a rate of no more than one meter per second. solution paths must be constructed. We must compute some
More generally, we want to express a set of allowabléunction @ : [0,¢] — U that indicates how to apply actions
velocity vectorsj = (i, 7) for everyq = (x,y) € R?. Rather so that upon integration, the resulting trajectqry|[0, {] —
than write a set-valued function with domalt?, a more ¢ will satisfy: §(0) = qr, §(t) = qg, and G(t') € Cprec
compact, convenient method is to define a functjothat for all #' < [0,¢]. Intuitively, we now have to “steer” the
yields ¢ as a function ofy and a new parameter. configuration into the goal, thereby losing the freedom of
i = f(q,u). 1) moving in any direction.

This results in a velocity-valued function called tlen-
figuration transition equationwhich indicates the required The previous section considered what are calie@matic
velocity vector, givery andu. The parameter is called an differential constraints because they arise from the gégme
action (or inpuf) and is chosen from a predeterminaction of rigid body interactions in world. More broadly, we must
spacel/. Sincef is a function of two variables, there are twoconsider differential constraints that account for botheki
convenient interpretations by holding each variable fixed: matics and dynamics of the robot. This allows velocity and
if ¢ is held fixed, then eaclh € U produces a possible acceleration constraints to be appropriately modeledallysu
velocity ¢ at ¢; in other words,u parametrizes the set of resulting in a transition equation of the forin= h(q, ¢, u),
possible velocities; 2) if: is fixed, thenf specifies a velocity in which ¢ = dq/dt. Differential equations that involve
at everyg; this results in a vector field oveft. higher order derivatives are usually more difficult to handl
For a common example of the configuration transitiortherefore, we employ a simple trick which converts them into
equation, Figure 2 shows ear-like robot which has the a form involving first derivatives only, but at the expense of
C-space of a rigid body in the plan€: = R? x S'. The introducing more variables and equations.
configuration vector is; = (z,y,#). Imagine that the car The simplest and most common case is calleddbeble
drives around slowly (so that dynamics are ignored) in aimtegrator. Let C = R and let§ = h(q, ¢, u) be the special
infinite parking lot. Lety be the steering angle of the front caseg = w. This corresponds, for example, to a Newtonian
tires, as shown in Figure 2. If driven forward, the car willpoint mass accelerating due to an applied force (recall
roll along a circle of radiug. Note that it is impossible to Newton’s Second Lawf’ = ma; here,j = a andu = F/m).

Fig. 2. The simple car has three degrees of freedom, but theityefpace
at any configuration is only two-dimensional.

B. Moving to the state space

fr fl

myg

Fig. 3. Attempt to land a lunar spacecraft with three orth@jdhrusters
that can be switched on or off. The 2D C-space leads to a fimoessional
state space.

We now convert into two first-order equations. Léf = R?
denote astate spacewith coordinates(zq,z2) € X. Let
x1 = ¢q and letz, = ¢. Note thatt; = x5 and, usingj = w,
we have thatio = u. Using vector notation: = (i1, d2)
andz = (z1,22), We can interpretr; = 2, andiy = u as
a state transition equatiof the form

&= f(x,u), 3)

which works the same way as (1) but applies to the new stateodel includes the cas&

spaceX as opposed tG.

To see the structure more clearly, consider the exampgefunction

T

Xobs

S

C

Fig. 4. An obstacle regio@,,s C C generates a cylindrical obstacle region
Xops C X with respect to the state variables.

lifted into X to obtain Xy,.., as shown in Figure 4. If the
first n components ofr correspond tog and if ¢ € Cops

(the obstacle region in C-space), there X, regardless

of which values are chosen for the remaining components
(which correspond t@).

C. Sampling-based planning

Now consider the problem gilanning under differential
constraints Let X be a state space with a given state
transition equationt = f(x,u) and action spacé/. This
= C. Given an initial state
xy € X and goal regionX¢ C X, the task is to compute
: [0,t] — U that has corresponding trajectory

shown in Figure 3. Here; = R? to account for the positions g : [0,4] = X free With §(0) = 27 and§(t) € Xg.

of the non-rotatable spacecraft. Three thrusters may bedur

on or off, each applying forceg;, f., and f,. We make

This unifies several problems considered for decades in
robotics: 1) nonholonomic planningwhich mostly arises

three binary action variables;, u;, andu,; each may take from underactuated systemsieaning that the number of
on a value of0 or 1 to turn off or on the corresponding action variables is less than the dimensionCpf2) kinody-
thruster. Finally, lunar gravity applies a downward forde onamic planning which implies that the original differential
mg. The following state transition equation corresponds t@onstraints orf are second-order, as in the case of Figure 3;
independent double integrators in the horizontal and aarti these problems include problematldft, which means that

directions:
T1 =13 T3 = i(ulfl - Urfr)
m
u
Ty = T4 $'4=u7fu—97 4)
m

which is in the desired formg = f(z,u). Here, we have
thatxy, = ¢ andxy = ¢o to account for the position i@.
The componentg; and z, are the time derivatives af,
andzo, respectively.

the state may keep changing regardless of the action (for
example, you cannot stop a speeding car instantaneously; it
must drift); 3) trajectory planning which has mostly been
developed around robot manipulators with dynamics and
typically assumes that a collision-free path is given aretise
to be transformed into one that satisfies the state transitio
equation.

Due to the great difficulty of planning under differential
constraints, nearly all planning algorithms are sampling-

For much more complicated robot systems, the basfased, as opposed to combinatorial. To develop sampling-

structure remains the same. For adimensional C-space,

based planning algorithms in this context, several digzaet

C, the state spac& becomes2n-dimensional. For a state tions are needed. For ordinary motion planning, odly
z € X, the firstn components are precisely the configuratiorﬂ_eed?d to be dlscret|;ed; with dlfferentlgl cor?strgmtsa' t
parameters and the nextcomponents are their correspond-time interval and possibly alst’ require discretization, in

ing time derivatives. We can hence imagine that (g, ¢).

addition toC (or X).

Other state space formulations are possible, including one One of the simplest ways to discretize the differential
that force even higher order differential equations intstfir constraints is to construct discrete-time modelwhich is

order form, but this is avoided in this tutorial.

characterized by three aspects:

Aside from doubling the dimension, there are conceptually 1) Time is partitioned into intervals of length¢. This en-

no difficulties with planning inX under differential con-
straints in comparison t6. Note that obstacles ii become

ables stages to be assigned, in which stagedicates
that (k — 1) At time has elapsed.

VL)Y

(b)

Fig. 7. (a) The first four stages of a dense reachability gfapthe Dubins
car. (b) One possible search graph, obtained by allowing at oree vertex
per cell. Many branches are pruned away. In this simple exartipee are

Two stages Four stages

Fig. 5. A reachability tree for the Dubins car with three anti. Thekth ~ no cell divisions along thé-axis.

stage produce8” new vertices.

- (@) (b)
e za \BVP
Fig. 6. The reachability graph from the origin is shown afteee stages BVP g [\ i
(the true state trajectories are actually parabolic arceamwédicceleration or
deceleration occurs). Note that a lattice is obtained, eittistance traveled o
in one stage increases hg increases. (c) (d)

Fig. 8. (a) Forward, unidirectional search for which the BMFavoided.
_ . . (b) Reaching the goal precisely causes a BVP. (c) Backwanidjractional
2) A finite subsetU; of the action spacé’ is chosen. If search also causes a BVP. (d) For bidirectional search, Wiedises when

U is already finite, then this selection may ig = U. connecting the trees.
3) The actiona(t) must remain constant over each time
interval.

From an initial statez, areachability treecan be formed by reachability tree becomes a directed acyclic graph, roated
applying all sequences of discretized actions. Figure /sho the origin. Every vertex, except the origin, has out-degree
part of this tree for thédubins carfrom Section II-A with three, which corresponds to the three possible actions. For
Ud = {—bmaz, 0, dmaz }- The edges of the tree are circularplanning purposes, a solution trajectory can be found by
arcs or line segments. For general systems, each trajectapplying standard graph search algorithms to the lattice. |
segment in the tree is determined by numerical integratiam solution is not found, then the resolution may need to be
of © = f(&(¢),u(t)) for a givenu. In general, this can increased.
be viewed as arncremental simulatothat takes an input Generalizations of this method exist for fully-actuated-sy
function @ and produces a trajectory segménthat satisfies tems. It is also possible to form an approximate latticeneve
& = f(z(t),a(t)) for all time. for underactuated systems, by partitioning the C-spaae int
Sampling-based planning algorithms proceed by exploringmall cells and ensuring that no more than one reachability
one or more reachability trees that are derived from digree vertex is expanded per cell [1]; see Figure 7. Eachgell i
cretization. In some cases, it is possible to trap the tre&s o initially marked as being in collision or being collisioreg,
a regular lattice structure. In this case, planning becomdsit not yet visited. As cells are visited during the search,
similar to grid search. Figure 6 shows an example of sudhey become marked as such. If a potential new vertex lands
a lattice for the double-integratér= « [6]. For a constant in a visited cell, it is not saved. This has the effect of pngni
actionu # 0, the trajectory is parabolic and easily obtainedhe reachability tree.
by integration. Ifu = 0, then the trajectory is linear. Consider The planning problem under differential constraints can
applying constant actions = —amqz, v = 0, u = amq, for be solved by incremental sampling and searching, just as
some constant.,,,,, > 0 over some fixed interval\t. The the original planning problem in Part I. The discretization

do not necessarily have to be increased as a multiresolutio
grid. Search trees are constructed by iteratively selgctin
vertices and applying the incremental simulator to geeerat
trajectory segments. If these are collision free, then they
are added to the search trees, and a test for a solutio
trajectory occurs. One issue commonly confronted is the two
point boundary-value problem (BVP), illustrated in Fig@e

Under differential constraints, it is assumed to be noiakiv

to connect a pair of states exactly. Difficult computatiorss/m

be necessary (a mini-planning problem in itself!) to make

the connection. Therefore, it is important to minimize the @) (b)
amount of BVP computations, if possible. Fig. 9. a) A 2D grid-planning problem. b) A solution feedbadhrp
D. Challenges

~ Although significant progress has been made and magy.oncern, then we should even know what action to apply
issues are weII—un.derstood, numerous unresol_ved issHes 48 places in the state spacé. In these cases, we must
main before planning un'dfar d|fferen.t|al constraints beesm “feed” the current estimated configuration or state “back”
as well-solved as the original planning problem: into the plan to determine which action to apply.
o It has been shown in several works (e.g., [9], [10],] .
[15]) that a wise choice ofmotion primitivesdramati- A. Feasible feedback planning
cally improves planning performance. Each is an action Keep in mind that the issue of differential constraints
history @ : [0,At] — U, and when composed, the (Section II) is independent of the need for feedback. Both
state space is efficiently explored. There is no generake treated together in control theory and neither is tceate
understanding of how primitives should be designed tin classical path planning; however, Section Il treated dif
optimize planning performance. ferential constraints without feedback. It is just as dalesi
« Many sampling-based methods depend critically on thi® consider feedback without differential constraints as a
metric over X. Ideally, this metric should be close to possible representation on which to build systems.
the optimal cost-to-go between points; however, calcu- In the case of having differential constraints, we use
lating these values is as hard as the planning problethe state transition equatioh = f(z,u) over the state
itself. What approximations are efficient to compute andpace X (which includes the cas& = (). In the case
useful to planning? of no differential constraints, we should directly spedifie
« The region of inevitable collisionX,.;. is the set of velocity. In this case, specializes ta: = v with U = R"
all states from which, not matter what action history(assumingX is n-dimensional). In practice, the speed may
is applied, entry intoX,,s is unavoidable. Note that be bounded, such as requiring that < 1. This is a very
Xos € Xe € X. As a robot moves faster, the weak differential constraint because it does not constran
portion of the C-space that is essentially forbiddemossible directions of motion.
grows due to drift. There has been interest in calculating To understand feedback plan representation issues, it is
estimates ofX,.;. and evidence that avoiding it early on helpful to consider the discrete grid example in Figure 9.
in searches improves performance (e.g., [8]); howeveA robot moves on a grid, and the possible actions are up
more powerful and efficient methods of calculating and1), down (), left (), right (—), and terminate «(7);
incorporatingX,;. are needed. some directions are not available from some states. In each
« Is it advantageous to trap the system onto a latticéme step, the robot moves one tile. This corresponds to
and then perform search, or is it most effective ta discrete-time state transition equatioh = f(z,u). A
incrementally explore the reachability tree via speciasolution feedback plan of the form: X — U is depicted in
search methods? Figure 9. From any state, simply follow the arrows to travel
to the goalzg. Each next state is obtained fromand f
1. FEEDBACK MOTION PLANNING asz’ = f(x,n(x)). The shown plan is even optimal in the
Recall from Figure 1 that at the last step, feedback isense that the number of steps to get:¢gpis optimal from
usually employed to track the path. This becomes necessafiy starting state.
because of imperfections in the transition equation. If the Another way to represent a feedback plan is through an
goal is to reach some part of the C-space, then why worijitermediatepotential functiony : X — [0, co]. Given f and
about the artificial problem of tracking a path produced by ap, a plan~ is derived by selecting according to:
imperfect model? This observation calls for a differentomt
of “solution” to the planning problem. Rather than compgtin u* = argmin {d’(f(% U))}, (5)
a pathr : [0,1] — C or trajectoryq : [0,t] — C, we need uel(=)
representations that indicate what action to apply when thehich means that* € U(z) is chosen to reducg as much
robot is at various places in the C-space. If dynamics aies possible«* may not be unique).

R? and there are polygonal obstacles. Furthermore, there is
only a weak differential constraint that= « and|u| = 1.

A feedback plan must then specify at every pointCig...

a direction to move at unit speed. Figure 11 shows a simple
example that converts a triangular decomposition (recals
decompositions from the Part I) into a feedback plan by
indicating a constant direction inside of each trianglee Th
task in each triangle is to induce a flow that carries the robot
into a triangle that is one step closer to the goal. A navagati
function can likewise be constructed on continuous spaces.
Figure 12 shows the level sets of a navigation function that
sends the robot on the shortest path to the goal.

These examples produce piecewise linear trajectories
which are usually inappropriate for execution because the
velocity is discontinuous. One weak form of differential
constraint is that the resulting plan is smooth along all
trajectories to the goal. The method shown in Figure 11 can
be adapted to produce smooth vector fields by using bump
functions to smoothly blend neighboring field patches [14].
Smooth versions of navigation functions can also be dedigne
for most environments if the obstacles ¥ are given [16].

B. Optimal feedback planning

. . o) . . In many contexts, we may demand eptimal feedback
Fig. 11. A triangulation is used to define a vector field a¥erAll solution y . . y p .
trajectories lead to the goal. plan. In the discrete-time case, the goal is to design a plan
that optimizes a cost functional,

K
Whe_n is a potential function useful?_Let = f(x,_u*), L(Z1, . TR, UL, UK) = Zl(l'kauk)+lK+l(=’17K+1)7
which is the state reached after applying the actidne 1
U(z) that was selected by (5). A potential functiop, is (6)
called anavigation functiorif from every possible start state,. Eachi(zy,ux) > 0 is
1) ¢(z) =0 for all = € X. the cost-per-stageand /11 (zx+1) is thefinal cost which

2) ¢(z) = oo if and only if no point in X is reachable is0if xx11 € Xg, or co otherwise. In the special case

from . of l(z,ur) = 1 for all z; and ug, (6) simply counts the
3) For every reachable state,c X \ X¢, applying u* number of steps to reach the goal. _
produces a state’ for which ¢(z’) < é(z). The continuous-time counterpart to (6) is
In this case, the produced plan is guaranteed to lead to the o tr _ ~
goal. Figure 10 shows a navigation function for our example. L(#,a) = /O Wz (1), a(t))dt + Lp(Z(tr)), @)

Now consider moving to a continuous C-space. The ideas _ L ' _
presented so far nicely extend. The plan X — U applies N Whichtp is the termination (or final) time.

over whichever space arises. For example, supposeC C Consider a functior;” : X' — [0, cc] called the optimal
cost-to-go which gives the lowest possible cdst(x) to get

from anyz to X¢. If © € X¢, thenG*(z) =0, and if X¢

is not reachable from, thenG*(z) = co. Note thatG* is a
special form of a navigation functiof as defined in Section
llI-A. In this case, the optimal plan is executed by applying

u* = argmin {l(x,u) + G*(f(x,u))} (8)

ueU(x)

If the term [(x,u) does not depend on the particular
chosen, then (8) actually reduces to (5) with = ¢.

The key challenge is to construct the cost-to-G6.
Fortunately, due to the dynamic programming principle, the

Zl)

(b) cost can be written as (se@)):
Fig. 12. (a) A point goal in a simple polygon. (b) The level setshe * - . *
optimal navigation function (Euclidean cost-to-go funnjio Gi(ak) = wr IGI%JI?M) {l(m’f’ uk) + Gk-i-l(x’“‘*‘l)}')

Stage k + 1 j sampling. Can implicit volumetric representations be
Possible next states constructed and utilized efficiently via sampling?

« Merging with Section 1l leads to both complicated
Tk differential constraints and feedback. Hybrid systems
Fig. 13. Even though, is a sample point, the next statg, ;, may land mOdeI,s sometimes h?',p by switching Contr0|,|e,r_s °‘_’er
between sample points. For eagh € U, interpolation may be needed for cells in a decomposition [5]. Another possibility is
the resulting next states, 1 = f(2k, uk). to track space-filling trees, grown backwards from the
goal, as opposed to single paths [17]. If optimality is
not required, there are great opportunities to improve

Stage k

The expresses the cost-to-go from stage~;, in terms of planning efficiency.

the cost-to-go from stage+ 1, Gy, ;. The classical method .« If a fast enough path planning algorithm exists for a

of value iteration[2] can be used to iteratively compute cost- problem, then the “feedback plan” could be a dynamic

to-go functions until the values stabilize as a station@ty replanner that recomputes the path as the robot ends

There are also Dijkstra-like methods [12] gpalicy iteration up in unexpected states or the obstacles change. When

methodg2]. is this kind of solution advantageous and how does it
When moving to a continuous state spake the main relate to explicitly computingr : X — U?

difficulty is that G (x)) cannot be stored for every, € X. « Perhaps the plan as a mapping: X — U is too

There are two general approaches. One is to approxiGigte constraining. Would it be preferable to compute a plan

using a parametric family of surfaces, such as polynomials that indicates for every state a setpafssibleactions that
or nonlinear basis functions derived from neural networks are all guaranteed to make progress toward the goal?
[3]. The other is to stor&;, only over a finite set of sample This would leave more flexibility during execution to
points and use interpolation to obtain its value at all other account for unexpected events.
points [11]. As an example for the one-dimensional case, the
value of G, in (9) at anyz € [0,1] can be obtained via IV. SENSING UNCERTAINTY
linear interpolation as Recall from Section | that after following the classical
steps in Figure 1, the information requirements are driven
1 () = Gy (si) + (1=)G (si), (10) artificially high: Complete state information, includinget
in which the coefficient: € [0, 1]. models of the obstacles, is needed at aII_times. Qn the
. . . other hand, we see numerous examples in robotics and
Computing such approximate, optimal feedback plans

seems to require high resolution sampling of the state spa@e‘e‘ture of simple systems that cannot possibly build coraplet

which limits their application to lower-dimensions (lessn maps of their environment while nevertheless accomplgshin

. L : . interesting tasks. A simple Roomba vacuum cleaner can
5 in most applications). Although the planning algorithms_, ~. :
L ’) . gbtain a reasonable level of coverage with poor sensors

are limited to lower-dimensional problems, extensions tQ .
. e . . and no prior obstacle knowledge. Ants are able to construct
otherwise difficult cases is straightforward. For example

consider the stochastic optimal planning problem, in Whic@omplex living spaces and transport food and materials.

. S ince maintaining the entire state seems futile for most
the state transition equation is expressed . . .
. q pressec @k“'xk’uk) problems, it makes sense to start with the destesdk and
In this case, thexpectectost-to-go satisfies:

G () = determine what information igquiredto solve it. This could
kAR lead to a minimalist approach in which a cheap combination
) . of simple sensors, actuators, and computation is sufficient
wn €U (1) {l(xk7“k)+ Z Gkﬂ(mkH)P(kamk’“k)}7 The goal in this section is to give you the basic idea
Trr1€X (11) of how planning appears from this perspective. There are

which again provides value iteration methods and in somgany open challenges and directions for future researaé. Th

cases Dijkstra-like algorithms. There are also variatifors presentation here gives representative examples rathar th

optimizing wost-case performance, computing game the omplete modeling alternatives; for more details, see,[12]

retic equilibria, and reinforcement learning, in which th 13].

transition equation must be learned in the process of dﬁ{ LetCXAbet ? state ;pace that t'? typlljca}[IIy mf'.“'Ch Itglrger
termining the optimal plan. anC. A statex € may contain robot configuration

parameters, the configuration velocities, and even a caeple
representation of the obstacl®sc W. A change inz could
correspond to a moving robot or a change in obstacles. In
Feedback motion planning appears to be significantly mokgjs case X is not even assumed to be a manifold (it is just
challenging than path planning. Some current challenges ag |arge set!). Suppose that a discrete-time state transitio
» The curse of dimensionality seems worse: Methods aegjuationz’ = f(z,u) for v € U indicates how the entire
limited to a few dimensions in practice. Cell decom-world changes.
position methods do not scale well with dimension In this section, the state is hidden from the robot. The
and optimal planning methods require high-resolutiomnly information it receives from the external world is from

C. Challenges

sensor mappingsf the formh : X — Y, in whichY is the
set of sensor outputs, called tlebservation spaceThink
of h as a many-to-one mapping. A weaker sensor cause
more states to produce the same output. In other words, th
preimageh~!(y) = {x € X | y = h(z)} is larger.

At any time during execution, the full set of information
available to the robot consists of all sensor observations
and all actions that were applied (and any given initiaFig. 14. (a) A discrete grid problem is made in which a robot l&ced
conditions). This is called thaistory information siate (or 15,8 29 tnlioun envionment. (& An encoding of e,
I-state) if an observation and action occurs at each staggeither white nor black).
then it appears at stageas:

e = (U1, Uk—1, Y15+ -5 Yk)- (12) 7 : X — U. This method was used implicitly throughout
Section Il
This choice of filter is convenient because there is no
need to worry in the planning and execution stages about
uncertainty with regard to the current state. All sensing
uncertainty is the problem of the filter. This is a standard
plan 7 : Zpise — U. L , approach throughout control theory and robotics; however,
,Of c;ourse,Ihist is so large th_at 'F is impractical to work as mentioned in Section I, the information requirements may
with directly. Therefore, we designfdter that “compresses” . artificially high.
each 7, to retain only some tasks-critical pieces of in- 5yan |50p: This example uses (13) to count the number
formation. The result is an impliethformation mapping t stages by incrementing a counter in each step. The I-space

k¢ Inise — 1 into some newfilter |-spaceZ. AS NeW s 7 _ N A plan is expressed as: N — U. This can be
information,u;_, andy, becomes available, the filter "Stateinterpreted as a specifying a sequence of actions:
tx € Z becomes updated througHikier transition equation:

= (u1,ug, us, .. .). (15)

e = Gl i,). (13) The result is just a sequence of actions to apply. Such plans
Now letZ be any I-space. Generally, the planning problenare often calledopen loop because no significant sensor
is to chose eachy, so that some predetermined goal isobservations are being utilized during execution. However
achieved. LetG C 7 be called agoal regionin the I-space. is important to be careful, because implicit time inforroati
Starting from an initial |-stateq € Z, what sequence of is being used: It is known thais is being applied later than
actionsuy, us, ..., will lead to some future I-statg, € G? ug, for example.
Since future observations are usually unpredictable, if ma Sensor feedbackAt one extreme, we can make the system
be impossible to specify the appropriate action sequengeemoryless oreactive causing actions to depend only on
in advance. Therefore, a better way to define the actidhe current observatiop;. In this case,Z = Y and (13)
selections is to define a plan : 7 — U, which specifies returnsy; in each iteration. A plan becomes: Y — X.
an actionz () from every filter I-state € 7. If a useful task can be solved in this way, then it is almost
During execution of the plan, the filter (13) is executed@lways advantageous to do so. Most tasks, however, require
filter I-states. € 7 are generated, and actions get automasome memory of the sensing and action histories.
ically applied usingu = 7(:). The state transition equation Full history feedback:Sensor feedback was at one end
«' = f(z,u) produces the next state, which remains hidder®f the spectrum by discarding all history. At the other end,

Using a filterg, the execution of a plan can be expressewe can retain all history. The filter (13) simply concatesate
as ui—1 and y; onto the history. The filter I-space is just

U = A1y Yo T(th_1))s (14) T = ZIpist- As mentioned pefore, however, this becomes
unmanageable at the planning stage.

Imagine placing the set of all possiblg for all £ > 1in a
large setZ,;s; called thehistory I-space Although Z;,;.; is
enormous, the “statef), € Z;, is at least not hidden from
the robot. We can therefore define emfiormation feedback

which makes the filter no longer appear to depend on actio

The filter runs autonomously as the observations appear.rﬁ' Designing task-specific I-spaces

It is best to design the I-space around the task. A discrete

A. Generic Examples exploration task is presented first. A robot is placed into
To help understand the concepts so far, we describe Sc)r%edlscrete environment, in which coordinates are described

by a pair (i, j) of integers, and there are only four possible

well known approaches in terms of filters over I-spaZes "~ .
P P orientations (such as north, east, west, south). The giates

and information feedback plans: 7 — U.
State feedbackSuppose we have a filter that produces &
reliable estimate of;;, usingn, and fits the incremental form
(13), in which the I-space i = X and . is the estimate in whichZ xZ is the set of alli, j) positions,D is the set of
of xx. In this case, a plan as expressed in (14) becomdspossible directions, anél is a set of environments. Every

X=ZXxXZxDxE, (16)

E € & is a connected, bounded set of “white” tiles and all o
such possibilities are included i&; an example appears in
Figure 14(a). All other tiles are “black”. Note thétx Z x D
can be imagined as a discrete versiorR3fx S*.

The robot is initially placed on a white tile, in an unknown -
environment, with an unknown orientation. The task is to B &
move the robot so that every tile i is visited. This strategy - K \
could be used to find a lost “treasure”, which has been placed 9 \
on an unknown tile. Only two actions are needed: 1) move g
FORWARD in the direction the robot is facing, and RpTATE '
the robot90 degrees counterclockwise. If the robot is facing (a) (b)

a black tile andFORWARD is applied, then a sensor reports

that it is blocked and the robot does not move. Fig. 15. Consider a robot placed in a simple polygon. (a) Argrsensor
. . . . could seem omnidirectionally to provide a distance measurerakmg
Consider what kind of filters can be made for solvinGyery direction fromo to 2. (b) A gap sensorcan only indicates that

this task. The most straightforward one is for the robot there are discontinuities in depth. A cyclic list of gafs, g2, g3, 94, g5}
construct a partial map of and maintain its position and is obtained, with no angle or distance measurements.

orientation with respect to its map. A naive way to attemp
this is to enumerate all possible € £ that are consistent
with the history I-state, and for each one, enumerate g
possible(i, j) € Z x Z and orientations inD. Such a filter
would live in an I-spac&Z = pow(Z x Z x D x E), with
each I-state being a subset 6f An immediate problem
is that every |-state describes a complicated, infinite §et
possibilities.

A slightly more clever way to handle this is to compresg
the information into a single map, as shown in Figure 14(b
Rather than be forced to label evelyj) € Z x Z as “black”
or “white”, we can assign a third label, “unknown”. Initigll
the tile that contains the robot is “white” and all others are
“unknown”. As the robot is blocked by walls, some tilesFig. 16. The gap navigation tree captures the structureeoghiortest paths
become labeled *black”. The resut is a partial map that hd 1€ eeert ocot locaton (e wite cucle o he et e o e
a finite number of “white” and “black” tiles, with all other structured.
tiles being labeled “unknown”. An |-state can be described
as two finite set$? (white tiles) andB (black tiles), which
are disjoint subsets df x Z. Any tiles not included inlW” X is the covariance. The Kalman filter computes transitions
or B are assumed to be “unknown”. that follow the form (13). When mapping is combined,

Now consider a successful search plan that uses this filt@ach filter I-state encodes a probability distribution over
For any “unknown” tile that is adjacent to a “white” tile, possible maps and configurations. The |-sp@cbecomes
we attempt to move the robot onto it to determine how tso large that sampling-baseadrticle filtersare developed to
label it. This process repeats until no more “unknown” tilesipproximately compute (13).
are reachable, which implies that the environment has beenA full geometric map is useful for many tasks; however,
completely explored. the I-space can be reduced dramatically by focusing on a

A far more interesting filter and plan are given in [4]. Theirparticular task. An example from [19] is briefly described
filter maintains I-states that use only logarithmic memonhere. Consider a simple “gap sensor” placed on a mobile
in terms of the number of tiles, whereas recording theobot in a polygonal environment, as shown in Figure 15.
entire map would use linear memory. They show that witlsuppose the task is to navigate the robot optimally in terms
very little space, not nearly enough to build a map, thef the shortest possible Euclidean distance. The robot is
environment can nevertheless be systematically searEbed. not given a map of the environment. Instead, it uses gap
this case, the I-state keeps track of only one coordinate (fobservations and records an association between gaps when
example, in the north-south direction) and the orientatioriwo gaps merge into one. It is shown in [19] that this
expressed with two bits. A plan is defined in [4] that iscorresponds precisely to the discovery of a bitangent edge,
guaranteed to visit all white tiles using only this inforioat ~ which is a key part of theshortest path graplfalternatively

Moving to continuous spaces leads to the familiar simulealledreduced visibility graply a data structure that encodes
taneous robot localization and mapping (SLAM) problenthe common edges of optimal paths from all initial-goal
[7], [18]. For the localization problem alone, suppose thgpairs of positions. The filter I-state records a tree, shawn i
a Kalman filter is used. In this case, the filter I-state igigure 16, that indicates how the gaps merged. The treé itsel
v = (u, X) in which p is the robot configuration estimate andis combinatorial (no geometric data) and encodes precisely

the structure needed for optimal robot navigation from that this level might just as well be considered as “algorithmi
robot’s current location. The robot is equipped with anatti control theory” in which control approaches are enhanced
that allows it to “chase” any gap until that gap disappear® take advantage of geometric data structures, sampling-
or splits into other gaps. Using the tree, it can navigatbased searching methods, collision detection algorittamd,
optimally to any place that it has previously “seen”. The sedther tools familiar to motion planning. The wild frontiers
of all trees forms the filter I-spac€ from which distance- are open; there are plenty of interesting places to explore.

optimal navigation can be entirely solved in an unknow
environment without measuring distances.

r:lg\cknowledgments

The author is grateful for the following support: NSF

C. Challenges

grant 0904501 (IIS Robotics), NSF grant 1035345 (CNS

Due to the wide variety of tasks and possible combinationS8yberphysical Systems), DARPA SToMP grant HR0011-05-
of sensors and control models, many challenges remain 160008, and MURI/ONR grant NO0014-09-1-1052.

design planning algorithms by reducing the complexity of

the I-space. The overall framework involves the following
steps:

1) Formulate the task and the type of system, which

includes the environment obstacles, moving bodies|2]

and possible sensors.

(1]

2) Define the models, which provide the state space Bl
sensor mappingk, and the state transition functigh [4]
3) Determine an I-spacé& for which a filter ¢ can be
practically computed. 5]
4) Take the desired goal, expressed oXerand convert
it into an expression oVer. (6]
5) Compute a planr over Z that achieves the goal in
terms ofZ. [71

Ideally, these steps should all be taken into account tegeth
otherwise, a poor choice in an earlier step could lead tqds]
artificially high complexity in later steps. Worse yet, a 9
feasible solution might not even exist. Consider how Stepgz
4 and 5 may fail. Suppose that in Step 3, a simple I-
space is designed so that each I-state is straightforwafd!
and efficient to compute. If we are not careful, then Step
4 could fail because it might be impossible to determingii]
whether particular I-states achieve the goal. For examplﬁ2]
the open-loop filter from Section IV-A simply keeps track
of the current stage number. In most settings, this providéss)
no relevant information about what has been achieved in the
state space. Suppose that Step 4 is successful, and consjggr
what could happen in Step 5. A nice filter could be designed
with an easily expressed goalin however, there might exist

no plans that can achieve it. In light of these difficultieseo |15
open challenge may be to design a decomposition, better
than the one in Figure 1, of the overall problem so that
information requirements are reduced along the way. [16]

V. CONCLUSION

Note the sharp contrast between Parts | and Il of this tutét’!
rial. From the perspective of Part |, it is tempting to thihkt
motion planning is dead as a research field. Most of the issues
have been well studied for decades and powerful methoH$
have been developed that are in widespread use throughgigj
various industries. However, differential constraintsed-
back, optimality, sensing uncertainty, and numerous other
issues continue to bring exciting new challenges. In some
sense, combining components in Figure 1 amounts to merg-
ing planning and control theory. Thus, the subject of plagni

10

REFERENCES

J. Barraquand and J.-C. Latombe. Nonholonomic multibody ileob
robots: Controllability and motion planning in the presené¢®bsta-
cles. Algorithmica 10:121-155, 1993.

R. E. Bellman and S. E. DreyfusApplied Dynamic Programming
Princeton University Press, Princeton, NJ, 1962.

D. P. Bertsekas and J. N. TsitsiklidNeuro-Dynamic Programming
Athena Scientific, Belmont, MA, 1996.

M. Blum and D. Kozen. On the power of the compass (or, why maze
are easier to search than graphs).Phoceedings Annual Symposium
on Foundations of Computer Sciengmges 132-142, 1978.

M. S. Branicky, V. S. Borkar, and S. K. Mitter. A unified freework for
hybrid control: Model and optimal control theorlEEE Transactions
on Automatic Contrql43(1):31-45, 1998.

B. R. Donald, P. G. Xavier, J. Canny, and J. Reif. Kinodyma
planning. Journal of the ACM40:1048-66, November 1993.

H. Durrant-Whyte and T. Bailey. Simultaneous localizatiand
mapping: Part |EEE Robotics and Automation Magazjrie3(2):99—
110, 2006.

Th. Fraichard and H. Asama. Inevitable collision statastep towards
safer robots?Advanced Roboticpages 1001-1024, 2004.

E. Frazzoli, M. A. Dahleh, and E. Feron. Maneuver-basediono
planning for nonlinear systems with symmetridEEE Transactions
on Robotics21(6):1077-1091, December 2005.

J. Go, T. Vu, and J. J. Kuffner. Autonomous behaviors fderac-
tive vehicle animations. IfProceedings SIGGRAPH Symposium on
Computer Animation2004.

R. E. Larson and J. L. CastiPrinciples of Dynamic Programming,
Part Il. Dekker, New York, 1982.

S. M. LaValle. Planning Algorithms Cambridge University Press,
Cambridge, U.K., 2006. Also available at http://plannisgueuc.edu/.
S. M. LaValle. Filtering and planning in information sys. Technical
report, Department of Computer Science, University of lin®cto-
ber 2009. Available at http://msl.cs.uiuc.eglgvalle/iros09/paper.pdf.
S. R. Lindemann and S. M. LaValle. Simple and efficient &thms
for computing smooth, collision-free feedback laws over givell de-
compositionsInternational Journal of Robotics Resear@8(5):600—
621, 2009.

M. Pivtoraiko and A. Kelly. Generating near minimal spargncontrol
sets for constrained motion planning in discrete state spacke
Proceedings IEEE/RSJ International Conference on Igefit Robots
and Systems2005.

E. Rimon and D. E. Koditschek. Exact robot navigatiomgsartificial
potential fields. IEEE Transactions on Robotics & Automatjon
8(5):501-518, October 1992.

R. Tedrake, I. R. Manchester, M. M. Tobenkin, and J. Wh&ts.
Time optimal trajectories for bounded velocity differentiive vehi-
cles. International Journal of Robotics Reseay@9:1038-1052, July
2010.

] S. Thrun, W. Burgard, and D. FoRrobabilistic RoboticsMIT Press,

Cambridge, MA, 2005.

B. Tovar, R Murrieta, and S. M. LaValle. Distance-optimavigation
in an unknown environment without sensing distandé&EE Trans-
actions on Robotigs23(3):506-518, June 2007.

