
From Dynamic Programming to RRTs:

Algorithmic Design of Feasible Trajectories

Steven M. LaValle

Department of Computer Science, University of Illinois, Urbana, IL 61801, USA

Abstract. This paper summarizes our recent development of algorithms that con-
struct feasible trajectories for problems that involve both differential constraints
(typically in the form of an underactuated nonlinear system), and global constraints
(typically arising from robot collisions). Dynamic programming approaches are de-
scribed that produce approximately-optimal solutions for low-dimensional prob-
lems. Rapidly-exploring Random Tree (RRT) approaches are described that can
find feasible, non-optimal solutions for higher-dimensional problems. Several key
issues for future research are discussed.

1 Introduction

In robotics, we frequently study the interaction between two elements: local
constraints, e.g., a nonlinear, underactuated, mechanical system and global

constraints, e.g., state space constraints that arise from a complicated envi-
ronment that is often modeled with thousands of piecewise-linear or piecewise-
algebraic constraints. Even considering one of these elements in isolation, de-
signing motions automatically that bring a system from an initial state to a
goal region represents a formidable research challenge, even if optimality is
abandoned. Whether appearing in control literature or algorithms (computer
science, robotics) literature, the problem is generally considered as a form of
motion planning. To emphasize the consideration of both nonlinear systems
and complicated environments, this paper refers to the problem as trajectory
design. If algorithms can be designed that are able to efficiently find and
possibly optimize feasible trajectories for broad classes of problems, many
application areas would be greatly impacted, including robotics, aeronautics,
automotive design, and computer graphics. The successful development of
such algorithms will most likely depend on a culmination of ideas from both
the algorithms and control communities.
In the algorithms community, focus has been primarily on global con-

straints, such as computing collision free paths in the presence of complicated,
global constraints on the configuration space of one or more movable bodies.
In this case, ẋ = u, and the configuration, x, simply represents the set of all
rigid or articulated body transformations. It is widely known that the class
of problems is NP-hard [50], which has caused the focus of research in this
area to move from exact, complete algorithms to sampling-based algorithms
that can solve many challenging high-dimensional problems efficiently at the



2 Steven M. LaValle

expense of completeness. Within the past decade, sampling-based versions of
earlier ideas were developed. The classic notion of a roadmap [12,29,48], is a
network of collision-free paths that captures the configuration-space topology,
and is generated by preprocessing the configuration space independently of
any initial-goal query. The most popular sampling-based variation is termed
a probabilistic roadmap (PRM) [24], which is formed by selecting numerous
configurations at random, and generating a network of paths by attempt-
ing to connect nearby points. In contrast to roadmaps, classical incremental
search ideas are based heavily on a particular initial-goal query, and include
methods such as dynamic programming, A∗ search, or bidirectional search.
Randomized approaches, such as the randomized potential field approach [3],
Ariadne’s clew algorithm [44], the planner in [23]1, and Rapidly-exploring
Random Trees (RRTs) [26], were introduced to handle higher-dimensional
planning problems through clever sampling.

A separate but extremely challenging problem is overcoming local con-
straints, such as the design of open-loop controls that bring an underactu-
ated nonlinear system from an initial state to a goal state or region, even with
no global constraints on the state space (e.g., [10,46]). Much of this work is
surveyed in [31].

This paper considers the problem of designing trajectories under both
local and global constraints on the state space. These problems are often
referred to as nonholonomic planning [4,30,31] or in the case of systems with
drift, kinodynamic planning [11,15,16,19,18,20,25,36]. Many of these methods,
such as those in [4,18], follow closely the incremental search paradigm because
it is generally more challenging to design a roadmap-based algorithm due to
the increased difficulty of connecting numerous pairs of states in the presence
of differential constraints (often referred to as the steering problem [31]).

Sections 3 and 4 summarize recent approaches to which I have con-
tributed, based on dynamic programming and Rapidly-exploring Random
Trees, respectively. Section 5 helps identify interesting directions for future
research.

2 Generic Problem Formulation

The problem formulation given in this section is intended to provide the
general idea; however, additional definitions will be needed in each of Sections
3 and 4.

1. State Space: A bounded manifold, X ⊂ <n

2. Boundary Values: xinit ∈ X and Xgoal ⊂ X

1 We note that the method introduced here is termed a PRM by the authors. Since
the method is based on incremental search, it is included here to help categorize
the methods based on their conceptual similarities.



Algorithmic Design of Feasible Trajectories 3

3. Constraint Satisfaction: A function, D : X → {true, false}, that
determines whether global constraints are satisfied from state x. This
could alternatively be a real-valued function that indicates distance from
the constraint boundary. Let Xfree ⊆ X denote the set of states, x, such
that D(x) = true (i.e., the constraints are satisfied).

4. Inputs: A set, U(x) ⊂ <m, for each x ∈ X, which specifies the set of
controls. This set may be finite, as in the case of a quantized system
[17,42], or a compact subset of <m, for some m ≤ n.

5. State Transition Equation: ẋ = f(x, u).
6. Incremental Simulator: Given the current state, x(t), and inputs ap-
plied over a time interval, {u(t′)|t ≤ t′ ≤ t + ∆t}, the incremental sim-
ulator yields x(t + ∆t) through numerical integration of f for a fixed
input.

Fig. 1. A challenging example: firing three off-center thrusters to bring a spacecraft
through an obstacle course.

An example that illustrates the problem formulation is shown in Fig. 1
(this was solved in [14]). The robot is a multiply-connected spacecraft mod-



4 Steven M. LaValle

eled with 869 triangles, and the environment is a collection of 216 small
squares, arranged in a grid formation. The robot is considered as a free-
floating rigid body in a vacuum. There are three thrusters on the robot, each
of which can provide a impulse thrust which yields a force with direction
that is not through the center of mass. The task is to compute a sequence of
firings for the thrusters that brings the robot from an initial state at rest to
goal state at rest, on the other side of the grid.

3 Dynamic Programming

Whether in control theory or the design of algorithms, Bellman’s principle of
optimality [5] has represented a powerful constraint on the set of candidate
solutions to an optimization problem. Assume that a discrete-time approxi-
mation is made to the original problem described in Section 2. Let k refer to
a stage or time step, and let xk and uk refer to the state and input at stage
k. Let K + 1 denote the final stage (as described later, this does not have to
be explicitly chosen).
Define a cost functional of the form

L(x1, . . . , xK+1, u1, . . . , uK) =

K
∑

k=1

l(xk, uk) + lK+1(xK+1), (1)

in which lK+1(xK+1) = 0 if xK+1 ∈ Xgoal, and lK+1(xK+1) =∞ otherwise.
Furthermore, l is a nonnegative real-valued function such that l(xk, uk) = 0
if and only if xk ∈ Xgoal (one might also require that uk represents an input
that expends no energy in this case). Assume that once the state reaches
Xgoal, it remains there until stage K + 1 without any further cost (other
variants are possible, of course).

3.1 Classical Cost-to-go Iterations

Classical numerical dynamic programming iterations [5–7,27,28] can numeri-
cally solve the problems of interest in this paper. Let the cost-to-go function
L∗

k : Xfree → [0,∞] represent the cost if the optimal trajectory is executed
from stage k until stage K + 1,

L∗
k(xk) = min

uk,...,uK

{

K
∑

i=k

l(xi, ui) + lK+1(xK+1)

}

. (2)

The approach computes representations of the cost-to-go functions iter-
atively from stage K + 1 to 1. In each iteration, L∗

k is computed using the
representation of L∗

k+1, by using the following dynamic programming equa-
tion, which involves a local optimization over the inputs:

L∗
k(xk) = min

uk

{

l(xk, uk) + L∗
k+1(xK+1)

}

. (3)



Algorithmic Design of Feasible Trajectories 5

Note that L∗
K+1 = lK+1 from (1), which implies that the final stage-dependent

cost-to-go function is immediately determined. If K is sufficiently large, then
for reasonably-behaved planning problems there exists an i < K such that
L∗

k = L∗
i for all k satisfying k > i. This will hold for problems in which: 1)

all optimal trajectories that reach the goal arrive within a bounded amount
of time; 2) infinite cost is obtained for a trajectory that fails to reach the
goal; 3) no cost accumulates while the robot “waits” in the goal region; 4)
the environment and system are stationary.
The cost-to-go values are computed over a finite set, P ⊂ Xfree, of sample

points on which the cost-to-go function L∗ is defined through interpolation.
In d-dimensions, the complexity of classical interpolation is O(2d); however,
in [35], we presented a method based on barycentric subdivision that reduces
this to O(n lg n). The dynamic programming equation (3) is applied at each
sample point to compute the next cost-to-go function, L̃∗

K . Each subsequent
cost-to-go function is similarly computed. Consider the computation of L̃∗

k.
For a finite-input model, the right side of (3) is an optimization over all
inputs uk ∈ U . The values L̃∗

k+1(xk+1) are computed by using the incremental
simulator and interpolation. For the compact input model, a set of sample
points are defined in U , and the right side of (3) is an optimization over
all inputs uk ∈ U . When the inputs are tried, the global constraints (e.g.,
collision checking) can be directly evaluated each time to determine whether
each xk+1 lies in Xfree.
Note that L∗

K represents the cost of the optimal one-stage strategy from
each state xK . More generally, L

∗
K−i represents the cost of the optimal (i+1)-

stage strategy from each state xK−i. It was assumed that all optimal trajec-
tories require no more than a bounded number of stages before terminating
in Xgoal. For a state x, let I(x) ⊂ P denote the set of sample points that are
used to compute the cost-to-go for x by interpolation. For the algorithm to
succeed, the resolution must be set so that I(xk+1) ⊂ Xgoal for sample points
near the goal region; otherwise, interpolation with infinity will be attempted,
and the algorithm will fail to progress. For a small, positive δ the dynamic
programming iterations are terminated when |L̃∗

k(xk)− L̃∗
k+1(xk+1)| < δ for

all sample points. Note that no original choice of K was necessary because
termination occurs when the cost values have stabilized. The resulting sta-
bilized cost-to-go function, L̃∗

1, can be considered as a representation of the
optimal feedback strategy, and is simply denoted as L̃∗.
From any state, x, the optimal input in this strategy is obtained by se-

lecting uk to minimize

L̃∗(x) = min
uk

{

l(x, uk) + L̃∗(x′)
}

, (4)

in which x′ is obtained by applying the incremental simulator to x and uk.
In the compact input case, only the inputs that are sample points in U(x)
are considered. Starting from any initial state, x1 ∈ Xfree, a trajectory can
be computed by iteratively applying (4) to compute and apply inputs un-



6 Steven M. LaValle

til termination in Xgoal is achieved. This results in a sequence of inputs,
u1, u2, . . . , uk, and a sequence of states, x1, x2, . . . , xk, in which xk ∈ Xgoal.
The cost functional (1) can be used to compute the cost of this trajectory.
Without numerical error, the cost would be L∗(x1). Let L̂

∗(x1) denote the
actual computed cost by applying L̃∗ to guide the state from x1 to Xgoal.

3.2 Improved Algorithms

In each pass over the state space in the method above, most of the values
remain unchanged because they either have not been reached, or the optimal
value is already known. In [35], we introduced three improved variations that
focus the computation only on the active portion of the state space, much
in the same way as Dijkstra’s algorithm on a graph. The first of the three is
summarized here.
For a sample point, p ∈ P , consider the values L̃∗

k+1(p) and L̃∗
k(p), which

are the cost-to-go values at p from iteration k+1 to iteration k of the classical
algorithm. Note that for any k ∈ {2, . . . ,K+1} and any p ∈ P , the cost-to-go
is monotonically nonincreasing, L̃∗

k(p) ≤ L̃∗
k+1(p). If L̃

∗
k(p) = L̃∗

k+1(p), then

there are two possible interpretations: 1) L̃∗
k(p) is infinite,

2 which implies that

no trajectories exist which can reach Xg from p in stages k to K+1; 2) L̃∗
k(p)

is finite, which implies that the cost-to-go has been correctly computed for p,
and it will not decrease further in subsequent iterations. For each of these two
cases, the costly evaluation of (3) performs no useful work. Furthermore, if p
belongs to the second case, it never needs to be considered in future iterations.
Let Pf be called the finalized set, which is the set of all sample points for which
the second condition is satisfied. Let Pu denote the unreached set, which is
the set of all sample points for which the first condition is satisfied. One more
situation remains. If L̃∗

k(p) < L̃∗
k+1(p), then in iteration k the evaluation of

(3) is useful because it reduces the estimate of the true cost-to-go at p. Let
Pa denote the active set, which denotes these remaining sample points. Note
that Pf , Pu, and Pa define a partition of P . We assume that Pa is small
relative to P in each iteration.
For a set of sample points, P1, let R(P1) ⊆ Xfree denote the set of all

states, x, such that I(x) ⊆ P1. For any subset C ⊂ Xfree, let Pre(C) denote
a preimage, which is the set of all xk+1 ∈ Xfree such that there exists some
uk ∈ U with xk+1 obtained by integration of f over ∆t, starting with xk ∈ C

and applying input uk. In other words, Pre(C) gives the set of states from
which the set C is reachable in a single stage.
Figure 2 shows an algorithm based on preimages that avoids most of the

wasted computations of the classical algorithm. Steps 2 to 4 perform a cost-

2 In practice, a large positive floating point number represents this cost. In this
case, the cost-to-go actually increases in each iteration. This does not pose a
problem, however, because this is the only case in which an increase can occur,
and it is correctly interpreted



Algorithmic Design of Feasible Trajectories 7

1 Pa ← {}; Pf ← P ∩Xgoal

2 for each p ∈ Pre(R(Pf )) \ Pf

3 Compute lub(p)
4 insert(p, Pa)
5 while Pa 6= ∅ do

6 for each p ∈ Pa

7 Recompute lub(p)
8 if lub(p) is unchanged
9 delete(p, Pa)
10 if lub(p) is unchanged and finite
11 insert(p, Pf )
12 Pa = Pre(R(Pa)) \ Pf

Fig. 2. This algorithm computes the optimal navigation function while avoiding
most of the wasted computations of the classical algorithm.

to-go computation for every sample point outside of Pf that can reach the
finalized region in one stage. Step 3 computes and stores the cost-to-go for
a sample point using interpolation; this value is referred to as lub(p), which
indicates that it represents lowest upper bound on the optimal cost-to-go.
Over time, the value is repeatedly updated until lub(p) = L̃∗(p). Steps 5-12
generate a loop that terminates when Pa is empty. Within each iteration, an
updated lub(p) is computed for each p ∈ Pa. If the dynamic programming
computation does not change, then one of two possibilities exists: p is finalized
or p is unreached. In either case, it should not belong to Pa, and is therefore
deleted.

The second dynamic programming variation in [35] additionally assumes
that the state, xk+1, obtained through integration of the state transition
equation from xk over ∆t, always lies in a different interpolation region as
xk. In this case, a Dijkstra-like algorithm results, which is able to compute the
optimal cost-to-go in a single pass over the state space. The third variation in
[35] additionally assumes time optimal solutions are requested, which results
in an efficient wavefront propagation algorithm.

3.3 Convergence Conditions

One advantage of numerical dynamic programming is that convergence to
the optimal solution can be guaranteed for some suitable choice of constants.
This section gives conditions such that both L̃∗(x) and L̂(x) converge to
L∗(x) for all X ∈ Xfree, which are proved in [35], based on extending earlier
analysis from [7]. For the finite input model, U(x) is finite for all x ∈ Xfree.
Furthermore, it is assumed that there exist positive constants α1 and α2,
such that for all x, x′ ∈ Xfree, and for all u ∈ U(x) ∩ U(x′),

‖f(x, u)− f(x′, u)‖ ≤ α1‖x− x′‖



8 Steven M. LaValle

and
‖l(x, u)− l(x′, u)‖ ≤ α2‖x− x′‖.

These represent Lipschitz conditions which are needed to establish conver-
gence to the optimal solution in the algorithms.
For the compact input model, U(x), is a compact subset of <m for some

m ≤ n. Furthermore,

U =
⋃

x∈Xfree

U(x)

is compact. It is assumed that there exist positive constants α1 and α2, such
that for all x, x′ ∈ X, there exists a positive constant β such that

U(x) ⊂ U(x′) + {u | ‖u‖ ≤ β‖x− x′‖}.

It is also assumed that for all x, x′ ∈ Xfree, and for all u, u
′ ∈ U(x),

‖f(x, u)− f(x′, u)‖ ≤ α1(‖x− x′‖+ ‖u− u′‖)

and
‖l(x, u)− l(x′, u)‖ ≤ α2(‖x− x′‖+ ‖u− u′‖).

Let dx denote the dispersion of the set, P , of sample points over Xfree, which
is defined as:

dx = max
x∈Xfree

min
p∈P

‖x− p‖.

Intuitively, the dispersion measures the furthest distance possible in which
a state can be placed away from the nearest sample point. For the compact
input model, a dispersion, du, can similarly be defined for a set of samples
defined over U .
As the number of samples increases, the dispersion becomes smaller. The

convergence result is therefore stated in terms of dispersion:

Proposition 1. For classical dynamic programming and the three variants

mentioned in this section, there exists a positive constant ε > 0 such that

‖L∗(x)− L̃∗(x)‖ < ε (dx + du) ∀x ∈ Xfree

and

‖L∗(x)− L̂∗(x)‖ < ε (dx + du) ∀x ∈ Xfree.

Under the finite input model, the proposition holds true by setting du = 0.

3.4 Barraquand and Latombe’s Method

To ease the transition to the topic of Section 4, it is interesting to consider a
dynamic programming variant introduced in [4]. In contrast to maintaining
cost-to-go functions over Xfree, as in the methods above, the approach in [4]
is to grow a tree of trajectories. Each vertex of the tree represents a state, and
each edge represents a piece of the trajectory over which an input is applied.
The state space, X, is partitioned into a rectangular grid in which each

element is called a cell, to which one of three labels may be applied:



Algorithmic Design of Feasible Trajectories 9

• OBST: The cell contains points in X \Xfree. These are usually precom-
puted.

• FREE: The cell has not yet been visited by the algorithm, and it lies
entirely in Xfree.

• VISITED: The cell has been visited, and it lies entirely in Xfree.

Initially, all cells are labeled either FREE or OBST.
Let Q represent a priority queue in which the elements are states, sorted

in increasing order according to L, which represents the cost accumulated
along the path constructed so far from xinit to x.

FORWARD DYNAMIC PROGRAMMING(xinit, xgoal)
1 Q.insert(xinit, L);
2 T .init(xinit);
3 while Q 6= ∅ and FREE(xgoal)
4 xcur → Q.pop();
5 for each x ∈ NBHD(xcur)
6 if FREE(x)
7 Q.insert(x, L);
8 T .add vertex(x);
9 T .add edge(xcur, x);
10 Label cell that contains x as VISITED;
11 Return G;

The algorithm iteratively grows a tree, T , which it rooted at xinit. The
NHBD function tries all inputs, and returns a set of states that can be reached
in time ∆t. For each of these states, if the cell that contains it is FREE, then
T is extended. At any given time, there is at most one vertex per cell. The
algorithm terminates when the cell that contains the goal has been reached.
Convergence of the algorithm is argued in [4] for car-like like robot systems;
however, its general convergence remains to be established.

4 Rapidly-Exploring Random Trees

The dynamic programming-based methods are limited to state spaces of
only a few dimensions. The Rapidly-exploring Random Tree (RRT) was
introduced in [33] as an exploration algorithm for quickly searching high-
dimensional spaces that have both global constraints (arising from workspace
obstacles and velocity bounds) and differential constraints (arising from kine-
matics and dynamics). The key idea is to bias the exploration toward unex-
plored portions of the space by randomly sampling points in the state space,
and incrementally “pulling” the search tree toward them. Based on RRTs,
a randomized, sampling-based approach to trajectory design was introduced
in [36]. In that paper, RRTs were applied to trajectory design problems for
hovercrafts and rigid spacecrafts that move in a cluttered 2D or 3D environ-
ment. Theoretical performance bounds are presented in [37]. In [21], RRTs



10 Steven M. LaValle

BUILD RRT(xinit)
1 T .init(xinit);
2 for k = 1 to K do

3 xrand ← RANDOM STATE();
4 EXTEND(T , xrand);
5 Return T

EXTEND(T , x)
1 xnear ← NEAREST NEIGHBOR(x, T );
2 if NEW STATE(x, xnear, xnew, unew) then

3 T .add vertex(xnew);
4 T .add edge(xnear, xnew, unew);
5 if xnew = x then

6 Return Reached;
7 else

8 Return Advanced;
9 Return Trapped;

Fig. 3. The basic RRT construction algorithm.

were applied to the design of collision-free trajectories for a helicopter in a
cluttered 3D environment. In [53], RRTs were applied to the design of tra-
jectories for underactuated vehicles. In [25], another tree-based randomized
approach to trajectory design was introduced.

init

near
x

x

newx

x

Fig. 4. The EXTEND operation.

The basic RRT construction algorithm is given in Fig. 3. A simple itera-
tion is performed in which each step attempts to extend the RRT by adding
a new vertex that is biased by a randomly-selected state, x ∈ X. The EX-
TEND function, illustrated in Fig. 4, selects the nearest vertex already in the
RRT to x. The “nearest” vertex is chosen according to some metric, ρ. This
can be accomplished naively in linear time, or algorithms that perform near



Algorithmic Design of Feasible Trajectories 11

logarithmic time can be applied (see [1] for a discussion of these issues in the
context of RRTs).

The function NEW STATE makes a motion toward x by applying an
input u ∈ U for some time increment ∆t. The input, u, can be chosen at
random, or selected by trying all possible inputs and choosing the one that
yields a new state as close as possible to the sample, x (if U is infinite, then
a finite approximation or analytical technique can be used). NEW STATE
implicitly checks whether the new state (and all intermediate states) satis-
fies the global constraints. For many problems, this can be performed quickly
(“almost constant time”) using incremental distance computation algorithms
[22,39,45] by storing the relevant invariants with each of the RRT vertices. If
NEW STATE is successful, the new state and input are represented in xnew

and unew, respectively. The first row of Fig. 5 shows an RRT grown from the
center of a square region in the plane. In this example, there are no differ-
ential constraints (motion in any direction is possible from any point). The
incremental construction method biases the RRT to rapidly explore in the be-
ginning, and then converge to a uniform coverage of the space [37]. Note that
the exploration is naturally biased towards vertices that have larger Voronoi
regions. This causes the exploration to occur mostly in the unexplored portion
of the state space.

Fig. 5. The RRT rapidly explores in the beginning, before converging to the sam-
pling distribution. Below each frame, the corresponding Voronoi regions are shown
to indicate the exploration bias.



12 Steven M. LaValle

4.1 RRT-Based Trajectory Design Algorithms

In principle, the basic RRT can be used in isolation as a path planner because
its vertices will eventually cover a connected component of Xfree, coming
arbitrarily close to any specified xgoal. The problem is that without any bias
toward the goal, convergence might be slow. This can be overcome by altering
the sampling strategy to concentrate some samples at or near xgoal.

RRT BIDIR(xinit, xgoal)
1 Ta.init(xinit); Tb.init(xgoal);
2 for k = 1 to K do

3 xrand ← RANDOM STATE();
4 if (EXTEND(Ta, xrand) =Trapped) then

5 if (EXTEND(Tb, xnew) =Reached) then

6 Return PATH(Ta, Tb);
7 SWAP(Ta, Tb);
8 Return Failure

Fig. 6. A bidirectional RRT-based planner.

The best performance has been obtained so far by conducting a bidirec-
tional search [49] using two RRTs, one from xinit and the other from xgoal;
a solution is found if the two RRTs meet. Figure 6 shows the RRT BIDIR
algorithm, which may be compared to the BUILD RRT algorithm of Fig. 3.
RRT BIDIR divides the computation time between two processes: 1) explor-
ing the state space; 2) trying to grow the trees into each other. Two trees,
Ta and Tb are maintained at all times until they become connected and a
solution is found. In each iteration, one tree is extended, and an attempt is
made to connect the nearest vertex of the other tree to the new vertex. Then,
the roles are reversed by swapping the two trees.

Through extensive experimentation over a wide variety of problems with
state spaces up to twelve dimensions, we have concluded that, when appli-
cable, the bidirectional approach is much more efficient than a single RRT
approach. One shortcoming of using the bidirectional approach for nonholo-
nomic and kinodynamic planning problems is the need to make a connection
between a pair of vertices, one from each RRT. For a planning problem that
involves reaching a goal region from an initial state, no connections are nec-
essary using a single-RRT approach. The gaps between the two trajectories
can be closed in practice by applying steering methods [31], if possible, or
classical shooting methods [8], which are often used for two-point boundary
value problems.



Algorithmic Design of Feasible Trajectories 13

5 Research Challenges

This section compares the algorithms presented in Sections 3 and 4, and
identifies key directions for future research. Dynamic programming and RRTs
offer complementary advantages, but each has its drawbacks.

5.1 Optimality vs. Feasibility

An advantage of the dynamic programming methods is that approximately-
optimal solutions are obtained. Even though the dynamic programming equa-
tion provides a powerful constraint that significantly reduces the amount of
work required to find optimal solutions, it is sometimes much easier to find
feasible, but non-optimal solutions. Although much of modern control theory
is concerned with optimal decision-making, this requirement is not necessary
in many robotics applications. It is certainly desirable in many instances; how-
ever, the additional computation cost might outweigh the benefits. Given the
complexity of the global constraints considered due to obstacles in the envi-
ronment, feasibility becomes challenging enough. This philosophy has been
followed through most classical algorithmic motion planning work due to the
difficulty of finding shortest paths (see the methods in [29]). Algorithms such
as RRTs provide solutions that only guarantee feasibility, but they can solve
problems that would be too challenging for dynamic programming. In many
cases, the solutions can be used in practice after performing some gradient-
based optimization techniques (such as those in [8]) on the result, to at least
obtain a locally-optimal solution. It remains to be seen whether it is worth-
while to pay the additional cost that appears to be required to obtain optimal
solutions, or if there there are ways to avoid this cost.

5.2 Random vs. Deterministic Sampling

All of the methods presented in this paper require some form of sampling
on the state space. One important issue is whether randomization offers any
advantages when applied to sampling strategies. Over the past decade of
algorithmic motion planning work, it has been argued by many that random-
ization is a key to overcoming the curse of dimensionality; however, in related
work [9,34], my co-authors and I have shown that deterministic sampling of-
fers performance advantages over random sampling. Excellent overviews of
deterministic sampling methods include [43,47]. The key idea is to view sam-
pling as an optimization problem in which a set of points is chosen to optimize
some criterion of uniformity (as opposed to a statistical test). One of the most
popular measures is discrepancy. Let µ(R) denote the Lebesgue measure of
subset R. If the samples in P are uniform in some ideal sense, then it seems
reasonable that the fraction of these samples that lie in any subset R should



14 Steven M. LaValle

be roughly µ(R) (divided by µ(X), which is simply one). SupposeX = [0, 1]n.
Define the discrepancy [54] to measure how far from ideal the point set P is:

D(P,R) = sup
R∈R

∣

∣

∣

∣

|P ∩R|

N
− µ(R)

∣

∣

∣

∣

(5)

in which | · | applied to a finite set denotes its cardinality, and R denotes the
set of all axis-aligned rectangular subsets of X.

At first glance, the progression from deterministic to randomized, and
then back to deterministic might appear absurd; thus, some explanation is
required. There appear to be two prevailing reasons for the preference of
randomized methods over classical deterministic techniques: 1) they fight
the curse of dimensionality by allowing a problem to be solved without prior,
systematic exploration of all alternatives; 2) if the “problem maker” is viewed
as an opponent in a game, then one can often avoid defeat by employing a
random strategy (imagine defeating a deterministic strategy by designing a
problem that causes worst-case performance).

The first reason is often motivated by considering that a grid with a fixed
number of points per axis will require a number of points that is exponen-
tial in the dimension of the space. However, this result is not the fault of
grids or even deterministic sampling. It was proved long ago by Sukharev
[51] that any sampling method that constructs a good covering of the space
requires an exponential number of samples. The “goodness” is in terms of
point dispersion, as defined in Section 3.3, but using an `∞ metric. We be-
lieve the explanation for good performance of path planners in solving chal-
lenging high-dimensional problems is that they are able to either exploit
some greedy heuristics and/or find solutions to easier problems early by us-
ing low-resolution sampling. These benefits are independent of the issue of
randomization versus determinism. Thus, multiresolution, deterministic sam-
pling methods are certainly worth exploring in this context. We have already
taken steps in this direction in [40]. Randomization appears to be useful in the
RRT because it avoids the expensive computation of Voronoi region volumes;
however, it may be possible to construct a practical derandomized version.

The second reason (defeating an opponent) might be valid in the case of
“true” random numbers; however, any machine implementation generates a
deterministic sequence of pseudo-random numbers. These numbers are de-
signed to meet performance criteria that are based on uniform probability
densities; however, once it is understood that these numbers are determinis-
tic and being used to solve a particular task, why not design a deterministic
sequence that can solve the task more efficiently, instead of worrying about
statistical closeness to a uniform probability density? Even if we suppose that
true random numbers exist, it seems unlikely that practical examples drawn
from applications will contain state space constraints that are designed to
break a specific deterministic sampling strategy. Furthermore, randomiza-
tion can even be introduced back into a deterministic sampling strategy for



Algorithmic Design of Feasible Trajectories 15

precisely the reason of fooling an adversary while still maintaining quasi-
random sample distribution properties that are superior to pseudo-random
sampling [43].

5.3 Convergence Conditions

For the algorithms presented in this paper, there are many interesting issues
regarding conditions that guarantee convergence to a solution, if a solution
exists. In the case of dynamic programming, it is additionally important to
show that optimality is obtained. When considering dynamic programming
as an approximation of the cost-to-go function, it is possible to guarantee
convergence by specifying Lipschitz conditions. In the case of the dynamic
programming algorithm by Barraquand and Latombe from Section 3.4, it is
not clear whether convergence can be guaranteed if the algorithm is applied
to nonlinear systems other than those intended by the authors. In general,
for convergence of the algorithms, it appears that it would be useful to have
multiple, independent conditions of convergence for a given algorithm. For
example, suppose a trajectory design algorithm is known to converge if either
a Lipschitz condition is met, or if the system is controllable. It might be
possible to specify different rates of convergence depending on which of the
two conditions are met.

5.4 Designing Metrics

The primary drawback with the RRT-based methods is the sensitivity of
the performance on the choice of the metric, ρ. In [13], an RRT variant
was introduced that exhibits less sensitivity, but the problem still remains in
many instances. All of the results presented [38] were obtained by assigning
a simple, weighted Euclidean metric for each model (the same metric was
used for different collections of obstacles). Nevertheless, we observed that
the computation time varies dramatically for some problems as the metric is
varied. This behavior warrants careful investigation into the effects of metrics.
In general, we can characterize the ideal choice of a metric (technically this

could be called a pseudometric due to the violation of some metric properties).
Consider a cost or loss functional, L, defined as

L =

∫ T

0

l(x(t), u(t))dt+ lf (x(T )).

As examples, this could correspond to the distance traveled, the energy con-
sumed, or the time elapsed during the execution of a trajectory. The optimal
cost to go from x to x′ can be expressed as

ρ∗(x, x′) = min
u(t)

{

∫ T

0

l(x(t), u(t))dt+ lf (x(T ))

}

.



16 Steven M. LaValle

Ideally, ρ∗ would make an ideal metric because it indicates “closeness” as the
ability to bring the state from x to x′ while incurring little cost. For holonomic
planning, nearby states in terms of a weighted Euclidean metric are easy to
reach, but for nonholonomic problems, it can be difficult to design a good
metric. The ideal metric has appeared in similar contexts as the nonholonomic
metric (see [31]), the value function [52], and the cost-to-go function [2,32]. In
[21] excellent performance was obtained for designing helicopter trajectories
by using the cost-to-go for a hybrid system based on trim trajectories as the
RRT metric. Of course, computing ρ∗ is as difficult as solving the original
planning problem! It is generally useful, however, to consider ρ∗ because the
performance of RRT-based planners seems to generally degrade as ρ and ρ∗

diverge. An effort to make a crude approximation to ρ∗, even if obstacles are
neglected, will probably lead to great improvements in performance.

5.5 Constructing Motion Primitives

For the most challenging problems, many challenges remain. For example,
there is currently great interest in the design of motions of humanoid robots
and also human characters in computer graphics. These problems typically
have state spaces of more than 100 dimensions. One reasonable way to deal
with the complexity of these systems is to build a family of higher-level mo-
tion primitives. A single primitive might be applicable over a large region
of the state space due to Lie group symmetries. As an example, the work
in [21] develops a hybrid system for designing helicopter trajectories by se-
quencing trim trajectories. Each trim trajectory is an input function that
would typically be applied by a pilot, and can be considered as a mode of the
system. If certain conditions are met, it is possible to execute a transition
into another mode. When constructing higher-level primitives, it is impor-
tant to ensure that as much as possible of the expressiveness of the original
system is preserved. In the case of [21], it was established that the resulting
system is controllable (although not in the presence of global constraints on
X). In graphics work, researchers have begun to develop libraries of motion
primitives for human characters, and are designing search algorithms that
sequence these motions [41]. These efforts represent a promising direction of
research for handling larger systems that arise in robotics.

6 Conclusions

A summary of our approaches to the trajectory design problem in robotics
was presented. This problem considers both local and global constraints on
the state space. Approximately-optimal dynamic programming approaches
and heuristic-based Rapidly-exploring Random Tree approaches were dis-
cussed. Although there have been several successes, many interesting and
challenging questions remain in this area.



Algorithmic Design of Feasible Trajectories 17

Acknowledgments This work was funded in part by NSF CAREER IRI-
9875304 and NSF IIS-0118146. I am grateful for the help of Michael Branicky,
Peng Cheng, Prashanth Konkimalla, James Kuffner, Andrew Olson, and Libo
Yang.

References

1. A. Atramentov and S. M. LaValle. Efficient nearest neighbor searching for
motion planning. In Proc. IEEE Int’l Conf. on Robotics and Automation, pages
632–637, 2002.

2. T. Başar and G. J. Olsder. Dynamic Noncooperative Game Theory. Academic
Press, London, 1982.

3. J. Barraquand, B. Langlois, and J. C. Latombe. Numerical potential field tech-
niques for robot path planning. IEEE Trans. Syst., Man, Cybern., 22(2):224–
241, 1992.

4. J. Barraquand and J.-C. Latombe. Nonholonomic multibody mobile robots:
Controllability and motion planning in the presence of obstacles. Algorithmica,
10:121–155, 1993.

5. R. E. Bellman. Dynamic Programming. Princeton University Press, Princeton,
NJ, 1957.

6. R. E. Bellman and S. E. Dreyfus. Applied Dynamic Programming. Princeton
University Press, Princeton, NJ, 1962.

7. D. P. Bertsekas. Convergence in discretization procedures in dynamic program-
ming. IEEE Trans. Autom. Control, 20(3):415–419, June 1975.

8. J. T. Betts. Survey of numerical methods for trajectory optimization. J. of
Guidance, Control, and Dynamics, 21(2):193–207, March-April 1998.

9. M. Branicky, S. M. LaValle, K. Olsen, and L. Yang. Quasi-randomized path
planning. In Proc. IEEE Int’l Conf. on Robotics and Automation, pages 1481–
1487, 2001.

10. F. Bullo. Series expansions for the evolution of mechanical control systems.
SIAM J. Control and Optimization, 40(1):166–190, 2001.

11. J. Canny, A. Rege, and J. Reif. An exact algorithm for kinodynamic planning
in the plane. Discrete and Computational Geometry, 6:461–484, 1991.

12. J. F. Canny. The Complexity of Robot Motion Planning. MIT Press, Cambridge,
MA, 1988.

13. P. Cheng and S. M. LaValle. Reducing metric sensitivity in randomized trajec-
tory design. In Proc. IEEE/RSJ Int’l Conf. on Intelligent Robots and Systems,
pages 43–48, 2001.

14. P. Cheng and S. M. LaValle. Resolution complete rapidly-exploring random
trees. In Proc. IEEE Int’l Conf. on Robotics and Automation, pages 267–272,
2002.

15. M. Cherif. Kinodynamic motion planning for all-terrain wheeled vehicles. In
IEEE Int. Conf. Robot. & Autom., 1999.

16. C. Connolly, R. Grupen, and K. Souccar. A Hamiltonian framework for kino-
dynamic planning. In Proc. of the IEEE International Conf. on Robotics and
Automation (ICRA’95), Nagoya, Japan, 1995.

17. D. F. Delchamps. Stabilizing a linear system with quantized output record.
IEEE Trans. Autom. Control, 35(8):916–926, 1990.



18 Steven M. LaValle

18. B. Donald and P. Xavier. Provably good approximation algorithms for optimal
kinodynamic planning: Robots with decoupled dynamics bounds. Algorithmica,
14(6):443–479, 1995.

19. B. R. Donald, P. G. Xavier, J. Canny, and J. Reif. Kinodynamic planning.
Journal of the ACM, 40:1048–66, November 1993.

20. Th. Fraichard and C. Laugier. Kinodynamic planning in a structured and
time-varying 2d workspace. In IEEE Int. Conf. Robot. & Autom., pages 2:
1500–1505, 1992.

21. E. Frazzoli, M. A. Dahleh, and E. Feron. Real-time motion planning for agile
autonomous vehicles. AIAA Journal of Guidance and Control, 25(1):116–129,
2002.

22. L. J. Guibas, D. Hsu, and L. Zhang. H-Walk: Hierarchical distance computa-
tion for moving convex bodies. In Proc. ACM Symposium on Computational
Geometry, pages 265–273, 1999.

23. D. Hsu, J.-C. Latombe, and R. Motwani. Path planning in expansive configu-
ration spaces. Int. J. Comput. Geom. & Appl., 4:495–512, 1999.

24. L. E. Kavraki, P. Svestka, J.-C. Latombe, and M. H. Overmars. Probabilistic
roadmaps for path planning in high-dimensional configuration spaces. IEEE
Trans. Robot. & Autom., 12(4):566–580, June 1996.

25. R. Kindel, D. Hsu, J.-C. Latombe, and S. Rock. Kinodynamic motion planning
amidst moving obstacles. In IEEE Int. Conf. Robot. & Autom., 2000.

26. J. J. Kuffner and S. M. LaValle. RRT-connect: An efficient approach to single-
query path planning. In Proc. IEEE Int’l Conf. on Robotics and Automation,
pages 995–1001, 2000.

27. R. E. Larson. A survey of dynamic programming computational procedures.
IEEE Trans. Autom. Control, 12(6):767–774, December 1967.

28. R. E. Larson and J. L. Casti. Principles of Dynamic Programming, Part II.
Dekker, New York, NY, 1982.

29. J.-C. Latombe. Robot Motion Planning. Kluwer Academic Publishers, Boston,
MA, 1991.

30. J.-P. Laumond. Finding collision-free smooth trajectories for a non-holonomic
mobile robot. In Proc. Int. Joint Conf. on Artif. Intell., pages 1120–1123, 1987.

31. J. P. Laumond, S. Sekhavat, and F. Lamiraux. Guidelines in nonholonomic
motion planning for mobile robots. In J.-P. Laumond, editor, Robot Motion
Plannning and Control, pages 1–53. Springer-Verlag, Berlin, 1998.

32. S. M. LaValle. A Game-Theoretic Framework for Robot Motion Planning. PhD
thesis, University of Illinois, Urbana, IL, July 1995.

33. S. M. LaValle. Rapidly-exploring random trees: A new tool for path planning.
TR 98-11, Computer Science Dept., Iowa State University, Oct. 1998.

34. S. M. LaValle and M. S. Branicky. On the relationship between classical grid
search and probabilistic roadmaps. In Proc. Workshop on the Algorithmic
Foundations of Robotics (to appear), December 2002.

35. S. M. LaValle and P. Konkimalla. Algorithms for computing numerical opti-
mal feedback motion strategies. International Journal of Robotics Research,
20(9):729–752, September 2001.

36. S. M. LaValle and J. J. Kuffner. Randomized kinodynamic planning. In Proc.
IEEE Int’l Conf. on Robotics and Automation, pages 473–479, 1999.

37. S. M. LaValle and J. J. Kuffner. Rapidly-exploring random trees: Progress and
prospects. In Workshop on the Algorithmic Foundations of Robotics, 2000.



Algorithmic Design of Feasible Trajectories 19

38. S. M. LaValle and J. J. Kuffner. Rapidly-exploring random trees: Progress and
prospects. In B. R. Donald, K. M. Lynch, and D. Rus, editors, Algorithmic and
Computational Robotics: New Directions, pages 293–308. A K Peters, Wellesley,
MA, 2001.

39. M. C. Lin and J. F. Canny. Efficient algorithms for incremental distance com-
putation. In IEEE Int. Conf. Robot. & Autom., 1991.

40. S. R. Lindemann and S. M. LaValle. Incremental low-discrepancy lattice meth-
ods for motion planning. In Submitted to IEEE International Conference on
Robotics and Automation, 2003.

41. C. K. Liu and Z. Popovic. Synthesis of complex dynamic character motion
from simple animations. In SIGGRAPH, 2002.

42. A. Marigo, B. Piccoli, and A. Bicchi. Reachability analysis for a class of quan-
tized control systems. In Proc. IEEE Conf. on Decision and Control, 2000.

43. J. Matousek. Geometric Discrepancy. Springer-Verlag, Berlin, 1999.
44. E. Mazer, G. Talbi, J. M. Ahuactzin, and P. Bessière. The Ariadne’s clew

algorithm. In Proc. Int. Conf. of Society of Adaptive Behavior, Honolulu, 1992.
45. B. Mirtich. V-Clip: Fast and robust polyhedral collision detection. Technical

Report TR97-05, Mitsubishi Electronics Research Laboratory, 1997.
46. R. M. Murray and S. Sastry. Nonholonomic motion planning: Steering using

sinusoids. Trans. Automatic Control, 38(5):700–716, 1993.
47. H. Niederreiter. Random Number Generation and Quasi-Monte-Carlo Methods.

Society for Industrial and Applied Mathematics, Philadelphia, USA, 1992.
48. C. O’Dunlaing and C. K. Yap. A retraction method for planning the motion

of a disc. Journal of Algorithms, 6:104–111, 1982.
49. I. Pohl. Bi-directional and heuristic search in path problems. Technical report,

Stanford Linear Accelerator Center, 1969.
50. J. H. Reif. Complexity of the mover’s problem and generalizations. In Proc. of

IEEE Symp. on Foundat. of Comp. Sci., pages 421–427, 1979.
51. A. G. Sukharev. Optimal strategies of the search for an extremum. U.S.S.R.

Computational Mathematics and Mathematical Physics, 11(4), 1971. Translated
from Russian, Zh. Vychisl. Mat. i Mat. Fiz., 11, 4, 910-924, 1971.

52. S. Sundar and Z. Shiller. Optimal obstacle avoidance based on the Hamilton-
Jacobi-Bellman equation. IEEE Trans. Robot. & Autom., 13(2):305–310, April
1997.

53. G. J. Toussaint, T. Başar, and F. Bullo. Motion planning for nonlinear underac-
tuated vehicles using hinfinity techniques. Coordinated Science Lab, University
of Illinois, September 2000.

54. H. Weyl. Über die Gleichverteilung von Zahlen mod Eins. Math. Ann., 77:313–
352, 1916.


