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Abstract— In this work, we consider a problem where a robot
can move in a straight line inside a 2D rectangular room with
integer lengths until it hits any part of the wall of the room.
If the robot hits any part of a wall other than the corners or
any point of an opening, then the robot bounces off the wall
and follows a new direction in another straight line following
the laws of symmetric reflection. The robot needs to escape
through an opening on the wall that has a minimum length of
one unit. The robot can only escape through the opening if it
reaches any point of the opening with a non-zero angle.

We present an efficient algorithm for which the robot is
guaranteed to find the opening if there is any or declare that
there is none. We prove that the algorithm works if and only if
the sides of the rectangle are co-prime. As a by-product of our
main result, we also provide some interesting results related
to the coverage of the interior of the rectangle when the robot
follows similar algorithms to escape from the rectangular room.

I. INTRODUCTION

Given a 2D rectangular room and a robot with no sensors,
the goal is to find a possible opening on the walls, which
is not known to the robot. The robot is assumed to have
negligible dimensions and the length of the opening is at
least 1 unit. When the robot hits any point of the opening
with a positive angle then it can move through the opening
and escape from the room. We call it an “Escape Room”
problem.

The robot does not have any sensors and only uses one bit
of memory, similar to the robot used in some recent works
[1], [2], [3]. Since there are no environmental sensors, the
robot continues to move along a straight line until it hits a
wall other than any corner or any point of the opening. Once
it hits a wall, it reorients itself and starts to move in a new
direction. This is referred to as a bounce. In our case, the
robot always makes a symmetric bounce, where the angle
of incidence is always equal to the angle of reflection, see
Figure 1. The path that the robot follows while bouncing off
the sides of the rectangle is called a billiard path. Note that
if the width and height of the rectangle are integers, the path
is called an arithmetic billiard path.
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From a practical perspective this particular problem is
of significant importance. Consider a 2D closed rectangu-
lar room and there is one important feature (Example, an
opening) in the perimeter of the room which is continuous
and has a minimum length of unit size. The room is not
accessible by human, yet that important features need to
be discovered. For that we could send a robot inside the
rectangular room to discover that feature. Here we consider
a very inexpensive robot (may be just a small ball with
a motor) which just bounces back like a ball once it hits
any wall. If the robot has no sensor then it will just follow
the path of least resistance and uses the symmetric bounce
algorithm and continue moving in the new direction after
bounce. In our work we provide an algorithm which for a
particular class of rectangles (sides which are co-prime) the
robot is guaranteed to find the feature or declare that there
is none.

The robot stops if it hits any corner. Though, in some
cases, to derive our main result we hypothetically allow the
robot to start again when it hits a corner. However, our final
result is derived strictly with the condition that the robot
stops when it hits any corner.

1

α β

Fig. 1: An example of a symmetric bounce on the wall made
by the robot. α is the angle of incidence, β is the angle of
reflection. Here, α = β = π

4 . The discovered portion of the
wall is indicated by thick red line segment. The hit points
are indicated by a black dot.

Let a and b be the side lengths of a given rectangular room
such that a, b ∈ Z+, a ≤ b. The robot starts its movement
from a point on the vertical side which are at a distance y0 ∈
[0, a] from the nearest corner, with an angle of α ∈

[
0, π

2

]
counterclockwise from the vertical axis.

The opening cannot span across two walls. That means
if any point of the opening is touching a corner, then that
point is one end of the opening, and the other end would be
at least 1 distance away.

If the robot hits any point on a wall with a non-zero
angle, and doesn’t escape then it is guaranteed that there
is no opening that touches that hitting point. We call all
those hitting points visited points. If the distance between
two visited points is at most 1, then it is guaranteed that
there is no opening between these two visited points. That
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means the robot doesn’t need to visit those portions of the
wall. Those lengths of the wall which are guaranteed not to
have openings are called “discovered” points. From this, it
follows that if a visited point is less than one unit distance
away from any corner then the length between the corner
and that visited point is discovered.

II. ORGANIZATION OF THE PAPER

First, we discuss the related work in Section III. Then,
in Section IV we establish the framework to study the
case where the starting angle α = π

4 . We then discuss
some important results in Section V which form the basis
for our main result. Then, in Section VI, we discuss and
theoretically prove our main results when the lengths of the
rectangular room are co-prime. As a by-product of our main
result, we provide some additional interesting observations
in Section VII. Finally, we offer insights on the possible
directions and future steps in Section VIII.

III. RELATED WORK

Multiple works have been focused on the coverage path
planning problems which determine whether all the points in
the free space are covered by the given robot [4]. There are
several applications for the studies on coverage path planning
problems; for example, see [5], [6]. Some applications are
lawn mowing and milling [5] where the path has a thickness,
and the goal is to find the shortest path of the robot such that
it covers the whole interior of the given polygon.

Several studies have tackled the problem of navigating a
bouncing robot and considered it a combinatorial problem.
Sinai [7] analyzed the dynamic system which is formed by
the motion of a material point and proved that such a system
is ergodic; in contrast, Boldrighini et al. [8] looked at the
computational aspects of bouncing by viewing the system
as a billiard ball bouncing inside a polygon and following
the rules of reflection. Some studies have explored random
bouncing within a polygon, as opposed to following the laws
of physics [3]. Tokarsky [9] examined the possible shots on
a polygonal billiard table to reach a target point, finding that
not all points can be reached unless the bouncing rule is
random. Aronov et al. [10] studied the diffuse and specular
paths of the rays emanating from a point assuming that an
edge of the polygon is a mirror. Recently, Perucca et. al. [11]
studied the properties of arithmetic billiard paths.

IV. PRELIMINARIES

We give some definitions and important preliminary lem-
mas in this section. Throughout this paper, the robot always
starts with an angle π

4 with the sides.

Lemma 1. Consider the robot starts its motion from a point
on the boundary of the rectangular room with the angle of π

4 .
If the robot hits the same point twice, then the path repeats.

Proof. From the laws of symmetric reflection and the fact
that rectangle sides are either parallel or perpendicular to
each other, it follows that for every bounce on the wall, the
angle of incidence and the angle of reflection is π

4 . Thus, if

the robot hits a point twice then it will always use the angle
π
4 to move away from that point. From the same point, if
the robot uses the same direction then it arrives at the same
set of points going further. Thus, the path repeats.

Definition 1. Within the rectangular room, if the robot
bounces on any vertical side, it changes the direction of its
horizontal movement either from left to right or right to left.
Every such change of horizontal direction is called a switch.
The complete movement from one vertical side to another
vertical side is called a traversal.

It follows from Definition 1 that starting from a vertical
side if the robot makes k switches, it makes k+1 traversals.

Lemma 2. Consider the robot starting its motion from a
corner of the rectangular room with angle π

4 . If the sides
of the rectangle are co-prime, the robot hits another corner
after a + b − 2 number of bounces. Out of that total a − 1
number of bounces will be on the horizontal sides and the
total of b−1 number of bounces will be on the vertical sides.

Fig. 2: Arithmetic Billiard Bounce

Proof. The path followed by the reflection on a wall is
equivalent to the straight path taken by the robot going
through the wall on the rectangle that is created by the
reflection of the actual rectangle about the wall (unfolding
the rectangle about the wall). Refer to Figure 2. Here, the
rectangle is reflected about the vertical side a times, and
each of these reflected rectangles is again reflected about the
horizontal side b times. This way all the combined unfolded
rectangles, will create a square of side length (a · b).

If the robot starts from one corner of that square with
side length (a · b) at an angle π

4 , then it will hit the corner
of that square which is diagonally opposite to the starting
corner. The path that goes from one corner to its diagonally
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opposite corner in the square of length (a · b), is equivalent
to the path that the robot follows in the original rectangle,
where it starts from one corner at an angle π

4 with the sides
and after bouncing on the walls it lands on another corner
of the rectangle. In this case, the robot crosses the vertical
lines b− 1 times or equivalently reflects b− 1 times on the
horizontal (longer) side and similarly a − 1 times on the
vertical (shorter) side. Thus, there are a total (a + b − 2)
number of bounces without counting the initial and starting
corner points. Because those sides a and b are co-prime, a
square cannot be formed smaller than the sides a · b. That
means, in this case, the robot first hits any corner only after
the (a+ b− 2) bounce.

Now we prove that when the robot first hits a corner then
it will not be the corner from where it started. If the robot
hits the same corner then it has to reflect an even number
of times both horizontally and vertically, but because a and
b are co-prime, one of them must be odd. Thus, when the
robot first hits any corner it cannot be the corner from where
it started.

Fig. 3: Perpetual Bounce

We can also demonstrate this bouncing process in an
alternative way. If the robot starts from one corner. then at
every bounce, the robot moves a distance away horizontally
from the corner. Thus, if the side b was a multiple of a then
the robot would hit one corner, which is not possible as a and
b are co-prime. There would be some remainder when b is
divided by a. Hence, the robot will hit the other vertical side
and then bounce back. This bouncing on the vertical side is
equivalent to continuing in a straight line through the wall
inside the unfolded rectangle, which was created reflecting
the rectangle about the wall. Refer to Figure 3. Thus, if it
finishes total k traversals then the robot would have gone
through the k unfolded rectangles of size b, which is again
equivalent to 1 traversal of a rectangle of horizontal side k ·b.
If k = a, then there is no remainder as then k · b is divided
by a. Hence, the robot will hit the corner of the rectangle of
side length a ·b after a traversals or a−1 switch. Thus, there
will be a total of a−1 bounces on the vertical (shorter) sides,
before it hits the corner. Because a and b are co-prime, if
k < a, then there will be a remainder if (k · b) is divided by
a. Hence the robot will not hit the corner before a traversals
or equivalently a− 1 bounce on the vertical side. Similarly,
there are a · b/a = b numbers of a sized vertical shifts from
the original corner in the a · b side rectangle. Thus, there are
total b− 1 bounces on the horizontal (longer) sides.

If the robot starts from a side and after several bounces and
traversals come back to the same vertical sides from where
it started, then the robot needs to make traversals an even

number of times. Moreover, if the robot needs to move back
exactly to the corner from where it started, then it needs to
bounce off horizontal walls an odd number of times.

If a is even then it makes traversals an even number of
times. However, because a and b are co-prime, then if a is
even then b cannot be even and b − 1 cannot be odd; thus,
it cannot bounce an odd number of times before it hits the
corner. Thus, when the robot hits the corner the first time
it cannot go back to the starting corner when the sides are
co-prime.

V. MAIN RESULTS

From the previous discussions, it follows that if the robot
is allowed to continue after it hits a corner with π

4 angle, it
will trace back the path and eventually arrive at the original
starting point. Hence, we derive the following observation.

Observation 1. Starting from a corner of a rectangular
room, if we deviate from our original condition and allow
the robot to continue after it hits a corner with π

4 angle, it
will come back to the original starting point after 2 · (b− 1)
number of horizontal bounces and 2 · (a − 1) number of
vertical bounces counting from the start. Thus, if we include
the bounces on the corner that the robot first hits, it will
return to the original corner after 2 · (a + b − 2) + 1 =
2 · (a+ b)− 3 number of total bounces.

From the above discussion, it follows that if the numbers
a and b are not co-prime, then using the perpetual reflected
rectangles (unfolded rectangles about the reflection walls) a
square would form with sides

(
a·b
g

)
. Thus, starting from a

corner the robot will hit a corner at
(

a+b
g

)
− 2 bounce and

come back to the initial corner after 2
(

a+b
g

)
− 3 bounce.

Lemma 3. If the robot starts from a vertical side and then
hits the other vertical side at a distance r from a corner, the
maximum distance between any two closest visited points on
any side is max{2r, 2(a− r)}.

Fig. 4: Distance between visited points

Proof. Consider the robot hits a vertical side coming from
a horizontal side, we denote that horizontal side by AB and
the other horizontal side which is opposite to AB as CD;
we denote the vertical side as BC. We denote the corner
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where BC and AB meet as B, and the corner where BC
and CD meet as C.

Let the hitting point on BC be at a distance r from the
corner B. It follows that the last point on AB before hitting
the vertical side BC is also r distance away from the corner
B. Hence, the last point H the robot hit on CD must be
r + a distance away from the corner C. Refer to Figure 4.

After hitting the vertical side BC the robot will move to
the side CD and will hit a point G at a − r distance from
the corner. Thus, the distance between the points H and G is
(a+ r)− (a− r) = 2r, and the distance of the point G from
the previous visited point N on CD is 2a− 2r = 2(a− r).
Therefore, the distance from any corner to the nearest visited
point is less than the max{2r, 2(a−r)}. This process is also
similar to the horizontal sides as well. For any horizontal
side, the maximum distance between the two nearest visited
points after one switch is max{2r, 2(a − r)}. Furthermore,
the maximum distance from any corner to the adjacent visited
points is max{r, (a− r)}. It also follows that the maximum
distance between any two visited points on the vertical side
is max{r, (a−r)}. Combining these, the maximum distance
between the two nearest visited points after one switch is
max{2r, 2(a− r)}.

Lemma 4. Consider x, y ∈ Z+ which are co-prime and
x < y. Let R be the collection of all the remainders of p · y
mod x, ∀p ∈ {1, . . . , x}. Then, R = {0, . . . , x− 1}.

Proof. If p = x then, (p · y mod x) = 0. Here, x, y are co-
primes. So, ∀p ∈ {1, . . . , x− 1}, x > (p · y mod x) > 0.
The number of members of the collection R is x, where one
of the member of R is 0 and the other members can range
from 1 to x− 1. In order to guarantee that the members of
R are all the integers from 0 to x− 1, it must be shown that
the x− 1 number of non-zero members of the collection R
are unique. This in turn follows that R = {0, . . . , x− 1}.

If the non-zero members of R are not unique then there
exists at least two members within R which are same.
Without loss of generality, let (q1 · y mod x) = (q2 · y
mod x) = r, where q1, q2 ∈ {1, . . . , x− 1}, which implies
q1 · y = n1 ·x+ r and q2 · y = n2 ·x+ r, where n1, n2 ∈ N.
Which again implies (q1− q2) · y = (n1−n2) ·x. Here, it is
clear that if q1 > q2, then n1 > n2. We define, q := (q1−q2),
which means q ∈ {1, . . . , x− 1}. Thus, in that case q · y is
divisible by x, i.e, q · y mod x = 0, which is impossible.
Thus, the members of R are unique and they are integers
ranging from 0 to x− 1. Thus, R = {0, . . . , x− 1}.

Thus, if the robot made the traversal a times then ya = (a·
k) mod a = 0. Thus, after a number of traversals there will
be no remainder and the robot will hit a corner. Moreover,
the robot will encounter different remainders for every switch
of every hit on the vertical side as per Lemma 4. Thus, for
every hit on the vertical sides the distances from the nearest
corners will be unique before encountering a corner. In other
words, the starting point for every traversal will be unique.

Lemma 5. If the robot starts from a corner, when it hits
a corner, the maximum distance between the two adjacent

visited points is 2.

Proof. If the robot performs k number of traversals, then it is
equivalent to one traversal within the rectangle with vertical
side a and horizontal side (k · b).

When a robot bounces on the horizontal sides, in each
bounce it moves a distance horizontally. Suppose the robot
starts from a corner of a vertical side L and moves to the
opposite vertical side R, which is (k · b) away from the side
L. If the robot does not hit any corner of R, then the last
bounce of the robot on a horizontal side just before it hits
R will be some distance away from R. Let that distance be
r, which is given by r = (k · b) mod a.

Let the robot start from a corner and reach another corner
with a number of traversals. This is equivalent to 1 traversal
in the rectangles with vertical side a and horizontal side
(k · b), for each k ∈ {1, . . . , a}, which will generate a
number of different remainders or a − 1 number of unique
non-zero remainders, as per Lemma 4. In every traversal, the
maximum distance between two adjacent points will decrease
by twice the changes in the remainder.

Hence, at the end when the robot hits the corner, the
difference between the encountered remainders will be one;
thus the maximum distance between two adjacent visited
points will be 2 · 1 = 2.

Lemma 6. If y0 is not an integer, then the robot can not hit
any corner.

Proof. Refer to Figure 2. Considering that one corner of the
rectangle is the origin and its adjacent sides are the axes. If
the robot starts from the origin with an angle π

4 with the
sides, then within the 2D space it will always touch the
points with integer coordinates. If it starts from any integer
distance away from the corner, then it will also always
touch the points with integer coordinates; however, if it
starts from a fractional distance away from the corner and
travels with an angle π

4 , then it can never touch the points
with integer coordinates. Since the corners are the points
with integer coordinates, starting from a fractional distance
away from the corner with an angle π

4 , the robot will never
touch any corners.

This can also be demonstrated analytically: if the robot
starts at y0 distance away from the corner and yk is the
distance from its nearest corner after k traversals, then it is
given by yk = k · b+ y0 − a · n, where n is an integer and
given by

⌊
b+y0

a

⌋
. Here, k, b, n, a are all integers. Thus, if

y0 is not an integer, then yk can never be an integer, and no
corner can be reached.

Lemma 7. Suppose that the robot starts its motion from a
point on one of the vertical sides at a distance y0 > 0 from
the corner on the boundary of a rectangular room with the
angle of π

4 . If y0 is not an integer, then it comes back to the
starting position after 2 · (a+ b)− 1 bounces, out of which
2 ·b bounces are on the horizontal edges and 2 ·a−1 number
of bounces are on the vertical edges.
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Proof. If we refer to Figure 2, then the path starting from
the corner and the path starting from the y0 are parallel.
The path from the corner starts and returns to point A, and
when the path is plotted on the reflected rectangles (unfolded
rectangles) the path goes straight to point A′′. The path
starting from y0 starts at point O and when the path is plotted
on the reflected rectangles the path goes straight to the point
0′′. Now, AA′′||OO′′. Thus, A′′O′′ = AO = y0. That means
the path comes back to the original point which is on the
vertical side and at a distance y0 from the corner. However,
in this case, the path OO′′ crosses the horizontal lines two
more times and the vertical lines one more time than the path
AA′′ and also misses the corner point D′. This path makes
a total of 2(b− 1)+ 2 = 2b number of crossings or bounces
on the horizontal (longer) sides and 2(a− 1) + 1 = 2a− 1
crossings or bounces on the vertical (shorter) sides. Thus, it
will take a total of 2(a + b) − 1 bounces before the robot
returns to its original position and will not hit any corner
during these bounces.

VI. DISCOVERING THE WHOLE BOUNDARY

In the worst case scenario, the robot needs to discover the
entire boundary before it can escape through the opening or
declare there is no opening. In this section, we discuss an
algorithm that guarantees the whole boundary of the rectan-
gle is discovered by the robot. Unless otherwise specified we
assume the sides of the rectangular room are co-prime.

Theorem 1. If the robot starts from a point on a vertical
side of the rectangular room at a distance 1

2 from the corner,
with an angle π

4 , the robot discovers the whole perimeter of
the room.

Proof. If a robot starts from a point on a vertical side at a
distance 1

2 from the corner, with angle π
4 , the robot after a

number of traversals will reach the non-starting vertical side
at a point which is 1

2 distance away from the corner.
At that time the maximum distance between the two

adjacent visited points is 2. Thus, it will complete a traversal
back to the original position and for that, it will create the
maximum distance between two adjacent points as 2 · 12 = 1.

Hence, each visited point will cover 1
2 length on each

side and two adjacent visited points will combine the total
1
2 + 1

2 = 1 length, which is the maximum distance between
them. It follows that the adjacent visited points from each
corner will be separated by a distance of 1

2 < 1. Thus, the
robot will discover the whole perimeter.

From the above results, it follows that if a robot starts from
a point on a vertical side at a distance 1

2 from the corner,
with an angle of π

4 then the robot will come back to the
initial point after 2(a + b) − 1 bounces. This ensures that
the maximum distance between two adjacent visited points
is 1 only if a, b are co-prime, otherwise, the robot will return
to the original position, repeating the loop earlier than the
required 2(a + b) − 1 bounces. This causes the maximum
distance between two adjacent visited points to be greater
than 1, meaning the whole perimeter will not be discovered.

Thus, we then create our main result by modifying the
previous theorem.

Theorem 2. If the robot starts from a point on a vertical
side of the rectangular room, at a distance of 1

2 from any
corner, with an angle of π

4 , then the robot discovers the whole
perimeter if and only if the sides are integer and co-prime.

Theorem 3. If the robot starts with the angle of π
4 , from a

point at a distance 1
2 on any vertical side from any corner of

a rectangular room, it travels a distance of 2
√
2 · a · b when

it finishes discovering the whole perimeter.

Proof. Refer to Figure 2, which shows the total distance
covered by the robot when it starts 1

2 distance away from
a corner and returns to the starting point. This traversal is
equivalent to the distance when the robot starts from a corner
hits another corner and returns to the starting point. This is
equivalent to the distance covered by the robot starting from
a corner and hitting another corner of a rectangle of vertical
side a and horizontal side (2 · a · b).

Here, when the robot moves from one point on the
perimeter to the next point on the perimeter (called a step) in
the rectangle of size (2·a·b)×a the robot moves horizontally
and vertically a distances in each step. That means in every
step the robot covers a total of

√
2·a distance. Horizontally it

covers (2 ·a ·b) distance when it hits a corner and it covers a
distance in each step. So it finishes (2 ·b) steps when it hits a
corner. Thus, the total distance the robot covers from starting
and back to the starting point is (2 ·b) ·a

√
2 = 2

√
2 ·a ·b.

VII. FURTHER OBSERVATIONS

Fig. 5: Simulating bounce of a robot inside a rectangle

Observation 2. If the opening length is 2 then the robot can
start from a corner and by the time the robot hits the first
corner the whole perimeter of the rectangle is discovered.

Proof. This observation follows directly from Lemma 5.
Refer to the thin lines in Figure 5. These thin lines represent
the path where the robot starts from a corner A and it ends at
another corner C. In this case, as per Lemma 5, the distances
between the adjacent visited points are 2, and the distances
between any corner and its closest visited points are 1. So,
the whole perimeter will be visited.

Observation 3. Consider that the rectangle is divided into
unit squares. If the robot starts from one corner, by the time
it hits the first corner it passes through all the squares.
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Proof. The path between two consecutive points on the
longer sides is called a step. It follows that in every step,
the robot passes through a number of squares. We know that
the robot hits the first corner after b number of steps on the
horizontal side. Thus, when it hits the first corner it passes
through a total of a · b squares. After every switch, the robot
follows a new set of squares. Thus, it will pass through a
total of a · b squares when it hits the first corner. There are
a · b unique squares in the rectangle of sides a and b. Thus,
the robot will pass through all the unit squares by the time
it hits the first corner. Refer to Figure 5.

Observation 4. Consider that the rectangle is divided into
unit squares and the opening length is 1

2 . By the time the
robot discovers the whole boundary, it passes through all
the squares four times.

Proof. In Theorem 2 we have demonstrated that the whole
boundary is discovered when the robot starts from a smaller
side at 1

2 distance away from a corner. We call this algorithm
the “half-start algorithm”. When the robot starts from one
corner, we call the algorithm the “corner algorithm”. We refer
to Figure 2 and from there it is clear that half of the total path
covered by the ”half-start algorithm” is the same as the path
covered by the ”corner algorithm”. Also, the paths covered
by these two algorithms are parallel to each other when
the rectangle is unfolded in accordance with the bounces.
We have demonstrated that the robot passes through all the
unit squares following the corner-algorithm. Thus, the robot
should also pass through all the unit squares following the
half-start algorithms within half of its total path. However,
in the corner algorithm, the robot covers the full length of
the diagonals of a unit square and only the half length of
the diagonal using the half-start algorithm, yet because their
length is the same, the half-start algorithm must pass through
each unit square twice within half of the time it takes to
discover the whole boundary. The half-start algorithm never
repeats before it finishes the discovery of the perimeter. Thus,
each half of the path covered by the robot, using the half-
start algorithm, will pass each square two times uniquely.
This concludes that the robot must pass through each square
total of four times when it finishes discovering the whole
boundary.

Observation 5. By the time the robot discovers the whole
boundary of the given rectangle, the maximum radius of the
biggest circle that can be fit inside the rectangle through
which the robot never passed through, is 1

2
√
2

.

Proof. From the previous observations (4) it follows that the
path of our proposed algorithm passes through each of the
midpoints of each square. Those paths in a unit square will
create a square of length 1

2

√
2. So the diameter of the biggest

circle that can be fit inside that square would be the same
as its side, i.e. 1√

2
. So its radius would be 1

2
√
2

.

VIII. FUTURE WORK AND CONCLUSION

In this work, we have studied minimalist robots which fol-
low the billiard path movement in a rectangular environment

with an opening of length one unit. We have proposed an
algorithm in which it is guaranteed that the robot will either
escape through the opening or declare there is no opening
of the rectangle when the width and height of the rectangle
are co-prime. Following this, we have also found interesting
observations mentioned in section VII.

This work is a pillar for ergodic dynamic system designs
explained in [12], [13], [14], [15] for wild bodies, namely
bouncing robots. More precisely, we are interested to know
what path the robot would follow when the lengths of the
room are not co-prime, or if the shape of the room is a
parallelogram or any arbitrary polygon instead of a rectangle.
Another interesting problem is to consider other types of
strategies for bouncing, for example, the robot bounces off
the obstacle not in a symmetric way. Another interesting
question is to analyze the coverage of the inside of the room
instead of the boundary.
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