
Space-Filling Trees: A New Perspective on Incremental Search for Motion Planning

James J. Kuffner†‡ Steven M. LaValle§

†The Robotics Institute ‡Google, Inc. §Dept. of Computer Science
Carnegie Mellon University 1600 Amphitheatre Pkwy. Univ. of Illinois at Urbana-Champaign
Pittsburgh, PA, 15213 USA Mountain View, CA, 94043 USA Urbana, IL, 61801 USA
kuffner@cs.cmu.edu kuffner@google.com lavalle@uiuc.edu

Abstract— This paper introduces space-filling trees and ana-
lyzes them in the context of sampling-based motion planning.
Space-filling trees are analogous to space-filling curves, but have
a branching, tree-like structure, and are defined by an incre-
mental process that results in a tree for which every point in the
space has a finite-length path that converges to it. In contrast
to space-filling curves, individual paths in the tree are short,
allowing any part of the space to be quickly reached from the
root. We compare some basic constructions of space-filling trees
to Rapidly-exploring Random Trees (RRTs), which underlie a
number of popular algorithms used for sampling-based motion
planning. We characterize several key tree properties related
to path quality and the overall efficiency of exploration and
conclude with a number of open mathematical questions.

I. INTRODUCTION

We define and analyze an iterative process whereby a sin-
gle point in a continuous space is connected via a continuous
path to every other point in the space. The result is called
a space-filling tree, in which every path has finite length
and for every point in the space, there is at least one path
that converges to it. We are inspired by space-filling curves,
which started in the 19th century with Peano [1]. Some well-
known examples are the Hilbert curve [2], Morton curves [3],
and Sierpinski curves [4]; see [5]. The primary mathematical
motivation was to illustrate one of the bizarre consequences
of [0, 1] and [0, 1]2 having the same cardinality. Space-
filling curves have also gained much recognition due to their
fractal properties. Space-filling curves have a wide-range of
interesting applications in mathematics and geometry [6], [7],
biology and computer graphics [8], [9], cryptography [10],
image compression [11], and in indexing large datasets [12],
[13]. We believe there may be similar potential for space-
filling tree constructions.

Structures resembling space-filling trees are common in
nature. Mandelbrot showed many examples of naturally-
occurring fractal structures [14], such as the vascular net-
works of trees, ferns, leaves, and river deltas. Examples
in animal biology include the pulmonary network of the
lungs, and the blood vessel networks of animal circulatory
systems [15]. Lindenmayer systems (L-systems) [16] are
used in computer graphics for representing and generating
models of organic objects such as trees, bushes, flowers,
and seashells [8], [9] and in crop sciences for modeling
root systems and analyzing their absorption properties [17].
There are also potentially useful connections to industrial

T1 T2 T3

T4 T5 T6

Fig. 1. Six iterations of the square space-filling tree.

applications, such as designing electrical power, gas, or water
distribution systems for cities. Engineers already use the “H-
tree” or H-fractal in VLSI design as a clock distribution
network for routing timing signals to all parts of a chip
with equal propagation delays [18], as well in the analysis
of worst-case bounds for traveling salesman problems [19].
Fundamentally, searching continuous spaces is inherent to
computer science problems, such as optimization and data
mining. In robotics, path planning algorithms search a contin-
uous space for a path that enables a robot to move from one
configuration to another while avoiding collisions. One suc-
cessful family of approaches is based on Rapidly-exploring
Random Trees (RRTs) [20], which can be considered as
a Monte Carlo or stochastic variant of the trees mainly
studied here. Our work may provide additional insights to
recent studies on improved path qualty in RRTs[21], [22], by
introducing a new measure of overall tree quality, as opposed
to individual path quality. We believe that asymptotically
optimizing the overall tree length is important to efficient
exploration in motion planning. Although this paper does not
propose methods to apply space-filling constructions directly
to motion planning algorithms, we suspect that there may be
several interesting possibilities in that direction. At the very
least, space-filling trees may provide additional new tools for
analyzing tree-based incremental search algorithms.

Section II fully covers the basic cases such as trees that
fill square and triangular planar regions. These are the easiest
examples to understand and analyze. Section III will then
generalize it to other space-filling trees that have self-similar,
fractal structure. Section IV introduces a more general con-
struction, which iteratively extends the tree by connecting
each point in a dense sequence to the nearest tree vertex,
and provides a comparison to RRTs. Section V concludes
with questions and open problems for further consideration.

II. BASIC SPACE-FILLING TREES

A. Filling a Square
We will “fill” the 2×2 square, given by the set [−1, 1]2 ⊂

R2. Figure 1 shows six iterations of the construction that will
be described. We will show that path lengths from the start
to arbitrary points in the space are finite, unlike linear space-
filling curves such as the Hilbert curve. The construction we
use is also more efficient at covering the space in terms of
total path distances and maximum path length as compared
to an H-tree construction.

We define a tree T to consist of a set V of vertices, each
of which is a point in [−1, 1]2, and a set E of edges, each
of which is a line segment that connects a pair of vertices.

A space-filling tree is actually defined as an infinite
sequence of trees, T = {T0, T1, T2, . . .}, in which each Ti

has associated vertices Vi and edges Ei. Furthermore, the
trees in T monotonically grow so that Vi ⊂ Vj and Ei ⊂ Ej

for all i < j.
Now consider the following process, which was used for

Figure 1. Initially, V0 = {(0, 0)}, yielding the root of the
tree, and E0 = ∅. Next, divide the 2 × 2 square into
four quadrants and place a vertex at the center of each
1 × 1 square. Let V �

1 denote this set of new vertices, V �
1 =

{(1/2, 1/2), (−1/2, 1/2), (−1/2,−1/2), (1/2,−1/2)}. An
edge is formed from every vertex in V �

1 to the root, yielding
four edges in E1. The tree T1 after one iteration is given by
V1 = V0 ∪ V �

1 and E1.
In the next iteration, each of the four 1 × 1 squares

is divided into quadrants, and a new vertex is placed at
the center of each quadrant. This is perfect symmetry with
respect to the previous iteration; the structure is simply scaled
by a factor of 1/2 and shifted. The set V �

2 of new vertices
contains all 16 ways to make points in which each coordinate
is ±1/4 or ±3/4. Let E�

2 be the set of new edges. For each
vertex v ∈ V �

2 , an edge is placed in E�
2 that connects v to

the vertex in V �
1 that lies at the center of the 1 × 1 square

that contains v. The tree T2 is given by V2 = V1 ∪ V �
2 and

E2 = E1 ∪ E�
2.

Each subsequent iteration proceeds in the same way. The
tree Ti+1 is constructed from Ti as follows. Each vertex
in v ∈ V �

i lies at the center of a square of width 1/2i−1.
That square is divided into quadrants, with a vertex being
placed into V �

i+1 for the center of each quadrant. An edge
is placed in E�

i+1 for each of these four vertices, connecting
it to v. The tree Ti+1 is given by Vi+1 = Vi ∪ V �

i+1 and
Ei+1 = Ei ∪ E�

i+1. Note that some edges in E�
i+1 may

overlap with parts of edges in Ei.

Now that the incremental process has been defined, sup-
pose it is iterated indefinitely, resulting in a sequence Tsquare
of trees. We will next study the properties of Tsquare.

For any sequence T of trees, let V ∗ = ∪i∈NVi, in which
N is the set of natural numbers. A tree sequence T is called
space-filling in a space X if for every x ∈ X , there exists a
path in the tree that starts at the root and converges to x. This
convergence can be stated in terms of the vertices along the
path from the root to x. For many x ∈ X , this convergence
may occur only in the limit, rather than actually reaching x.

Theorem 1: Tsquare is a space-filling tree.

Proof: To establish the theorem, we argue that for any
point p ∈ [−1, 1]2, there exists a sequence of vertices in
V ∗ that converges to it. Without loss of generality, assume
p ∈ [0, 1]2. The arguments below extend by symmetry to the
other three quadrants.

For any (x, y) ∈ V ∗, let bx and by denote the binary dec-
imal representations of x and y, respectively. For example,
if x = 3/16, then bx = .0011. Assume that bx and by are
written canonically so that the rightmost bit is always 1. Let
|bx| denote the length of the representation, which is 4 in the
case of x = 3/16. Note that if p ∈ V �

i , then |bx| = |by| = i.
Every V �

i contains 22i vertices, of which 22i−2 are in [0, 1]2.
These are all first-quadrant points that can be expressed as
(j/2i, k/2i) for any odd j, k ∈ {1, 2, 3, . . . , 2i}.

The tree already reaches any p ∈ V ∗; therefore, consider
any point p ∈ [0, 1]2 \ V ∗. Let vi be the vertex in V �

i that is
closest to p. Consider the sequence ṽ = (v1, v2, . . .). Each
vi can be considered as the closest approximation to p for
which the number of bits needed for each coordinate is i.
We observe that �p − vi� < 1/2i−1 for every i. Therefore,
ṽ is a sequence that converges to p.

For any point p ∈ [−1, 1]2, we use Tsquare and explicitly
define a continuous path from (0, 0) to p. The path will
be parameterized by distance along the curve. Suppose
p �∈ V ∗. From the proof of Theorem 1, use the sequence
ṽ = (v1, v2, . . .) of vertices that converge to p. We will
define a path π : [0,

√
2) → (−1, 1)2. Let v0 = (0, 0).

For each i ∈ N the path is defined over the interval
[
√
2(2i−1 − 1)/2i−1,

√
2(2i − 1)/2i] as

π(s) = (1− α)vi−1 + αvi (1)

in which α = (s/
√
2 − (2i−1 − 1)/2i−1)/2i. Note that the

path does not actually “reach” p, but instead converges to it.
We will nevertheless say that τ is a path to p. For the case
in which p ∈ V ∗, we imagine that ṽ is truncated to a finite
sequence that actually reaches p for some v ∈ V �

k . In this
case, the function (1) and its domain are limited to i from 1
to k, rather than using an infinite number of segments.

Now that the space filling property has been established,
it is next interesting to consider how efficiently this is
accomplished. For example, the classical Hilbert space-filling
curve has the property that the length of the curve doubles
(asymptotically) in each iteration. Also in each iteration, the
distance from the furthest away points in [−1, 1]2 from the

curve is cut in half. As the iterations increase, the path length
tends to infinity.

The next theorems establish remarkable properties of
Tsquare. Theorem 2 says that no paths are longer than√
2, rather than tending to infinity as in the Hilbert curve.

Theorem 3 implies that the total length of all edges grows
asymptotically in each iteration by a factor of 2, just as in
the case of the Hilbert curve.

Theorem 2: For every p ∈ [−1, 1]2, there exists a path
in Tsquare that converges to p and has length no more than√
2. Furthermore, the path length equals

√
2 if and only if

p �∈ V ∗.
Proof: Suppose p �∈ V ∗. In that case, consider the path τ ,
defined in (1), using the sequence ṽ of vertices that converges
to p. Note that each segment of that path is exactly half the
length of the previous segment. The total length is therefore
expressed as an infinite sum

�

i∈N

√
2/2i =

√
2
�

i∈N
2−i

, (2)

in which the right sum is the classical geometric series with
ratio 1/2. The sum converges to 1, and the path length is√
2.
For the case in which p ∈ V ∗, the path stops at some

vertex v ∈ V �
k for some k. The total length is expressed

using only the first k terms of (2), which is strictly less than√
2.

Now consider the total length of all edges in Tsquare.
For overlapping edges, we count them only once. Imagine
that the tree is built from electrical wire and we would like
to know how much total wire is used. Clearly, an infinite
amount of wire is needed; however, it is interesting to know
the rate of wire consumption with respect to the iterations.
The next theorem characterizes this.

Theorem 3: The combined length of the union of all edges
in Ti is 4

√
2

3

�
2i − 2−i

�
.

Proof: Let �i denote the combined path length in Ti. By
exploiting symmetry over the four quadrants of [−1, 1]2,
the length in each quadrant is �i/4. We therefore derive an
expression for �i/4:

�i/4 =

√
2

2
+ 3

�√
2

4

�
+ 11

�√
2

8

�
+ · · ·+Ni

�√
2

2i

�
,

in which Ni is the number of new branches that are added
at iteration i. The expression for Ni can be derived by
recursion. The first three iterations are illustrated in Figure 2.

The new branches at each iteration (illustrated in red)
are half the length of the branches added in the previous
iteration. From T1 to T2, three new branches of length

√
2/4

are added. From T2 to T3, a total of eleven new branches
of length

√
2/8 are added. Because of edge overlap, the

number of branches Ni added at iteration i is one less
than the nominal four branches for each quadrant of each
branch added at the previous iteration Ni−1. This yields the

Fig. 2. Successive iterations (T1, T2, and T3) of a square space-filling
tree. Only the quadrant [0, 1]2 with the root at the bottom-left corner is
illustrated. The remaining quadrants are symmetrical. New branches (red)
are half the length of the branches added in the previous iteration.

recurrence Ni = 4Ni−1− 1 with base case N1 = 1. Solving
the recurrence in closed form yields

Ni =
22i−1 + 1

3
.

The combined path length �i/4 can be expressed as the sum

�i/4 =
i�

j=1

Nj

√
2

2j
.

This sum represents adding up all edges of a fixed height in
the tree. In the first iteration, a single edge of length

√
2/2

is produced. In the second iteration, 3 edges of length
√
2/4

are formed, and in general, at iteration i, Ni branches of
length

√
2/2i are added.

Substituting the closed form of Ni into the sum yields

�i/4 =
i�

j=1

�
22j−1 + 1

3

� √
2

2j
.

By factoring out the constant
√
2/3, we obtain

�i/4 =

√
2

3

i�

j=1

�
22j−1 + 1

2j

�
.

Splitting the sum into two terms gives

�i/4 =

√
2

3

i�

j=1

2j−1 +
i�

j=1

1

2j

 .

Each of the two sums can be simplified to their known
closed-form equivalents:

i�

j=1

2j−1 = 2i − 1, and

i�

j=1

1

2j
= 1− 2−i

.

Finally, by substitution and simplification we obtain:

�i/4 =

√
2

3

�
2i − 2−i

�
.

Note that the construction in this section could be trans-
formed into another space by using a well-behaved mapping,
such as a Lipschitz continuous function from the square
into the desired space. The same applies to constructions
in Section III. These transformations, however, may destroy
self-similarity and distort path lengths.

III. OTHER SELF-SIMILAR SPACE-FILLING TREES

The space-filling tree Tsquare of Section II-A clearly has
self-similarity, making it a fractal, much like the Sierpinski
triangle, Cantor sets, and numerous other constructions.
This section introduces several other self-similar space-filling
trees.

A. Filling a cube

We can easily generalize Tsquare to fill a cube [−1, 1]n ⊆
Rn for any positive integer n. Whereas the square was
divided into quadrants in each iteration, we now divide
[−1, 1]n into 2n orthants. Once again, we initially have V0 =
{(0, 0)}. The vertices in V �

1 are the centers of the 2n orthants.
These are all points of the form (±1/2,±1/2, · · · ,±1/2).
This results in 2n edges in E1 (there were 2n = 4 for
Tsquare). Proceeding incrementally, each v ∈ V �

i lies at the
center of a cube of width 1/2i−1. The result is a sequence
Tcube that fills [−1, 1]n. Figure 3 illustrates the space-filling
tree for the case of n = 3.

Fig. 3. Subdivision scheme (left) and the third iteration of the space-filling
tree (right) for the 3-dimensional cube, [−1, 1]3.

The theorems of Section II-A cleanly generalize:

Theorem 4: Tcube is a space-filling tree.

Proof: The proof proceeds in the same manner as the
proof of Theorem 4. The sequence ṽ is formed by the
sequence of closer and closer approximations to p ∈ [0, 1]n

by considering binary representations for all n coordinates.

Theorem 5: For every p ∈ [−1, 1]n, there exists a path
in Tcube that converges to p and has length no more than√
n. Furthermore, the path length equals

√
n if and only if

p �∈ V ∗.

Proof: The proof is nearly identical to that of Theorem
2. The edge length is again divided by 2 in each iteration.
Therefore, the same geometric series is obtained. It is scaled
by

√
n (generalized from

√
2), which can be seen by con-

sidering the path length from the root to any corner of the
cube.

Theorem 6: The combined length of the union of all edges
in Tcube increases asymptotically as O(2(n−1)i), with the

combined length of the union of all edges in Ti given exactly
by 2n

√
n

2n−1

�
2(n−1)i − 2−i

�
.

Proof: Let �i denote the combined path length in Ti.
Following the proof of Theorem 3, we exploit symmetry
across the orthants. First, we derive the number of branches
Ni added at each iteration i.

Because of edge overlap, Ni is one less than the nominal
2n branches for each orthant of each branch added at the
previous iteration Ni−1. The general recurrence is Ni =
bNi−1−c, in which b = 2n is the constant nominal branching
factor of the tree and c is the constant number of overlapping
branches discounted at each iteration. For the case of our
method of constructing Tcube, we have c = 1. As before, the
base case for the recursion is N1 = 1, and solving in closed
form yields

Ni =
(b− c− 1)bi−1 + c

b− 1
.

For the square (n = 2), we have b = 4 and c = 1, which
yields a formula that matches the result of the recursive
derivation in Theorem 2. For the case of n = 3, we have
b = 8 and c = 1; therefore,

Ni =
6 ∗ 8i−1 + 1

7
.

For the general case, we have b = 2n and c = 1, and the
general formula for the number of branches added to Tcube
at iteration i is

Ni =
(2n − 2)2n(i−1) + 1

2n − 1
.

We now derive the combined path length �i/2n as the
combined sum of all edges in Ti as

�i

2n
=

i�

j=1

Nj

√
n

2j
.

This sum represents adding up all edges of a fixed height
in the tree. At iteration i, Ni branches of length

√
n/2i are

added. Substituting the closed form of Ni into the sum yields

�i

2n
=

i�

j=1

�
(2n − 2)2n(i−1) + 1

2n − 1

� √
n

2j
.

By factoring out the constant
√
n/(2n − 1), we obtain

�i

2n
=

√
n

2n − 1

i�

j=1

�
(2n − 2)2n(i−1) + 1

2j

�
.

Splitting the sum into two terms gives

�i

2n
=

√
n

2n − 1

i�

j=1

�
(2n − 2)2n(i−1)

2j

�
+

i�

j=1

1

2j

 .

Each of the two sums can be simplified to the closed-form
equivalents:

i�

j=1

�
(2n − 2)2n(i−1)

2j

�
= 2(n−1)i − 1

T1 T2 T3

T4 T5 T6

Fig. 4. Six iterations of the triangle space-filling tree.

and
i�

j=1

1

2j
= 1− 2−i

.

Finally, through substitution and simplification we obtain:

�i

2n
=

√
n

2n − 1

�
2(n−1)i − 2−i

�
.

We verify that for n = 2, we obtain the same formula
derived in Theorem 3. This general result proves that the
combined length of the union of all edges in Tcube increases
asymptotically as O(2(n−1)i).

B. Filling a Triangle
Figure 4 shows a space-filling tree Ttri over a triangular

region. To define the incremental construction, we divide the
triangular region into smaller triangles, instead of quadrants.
Initially, the root vertex is placed at the triangle center, yield-
ing V0. The triangle is then subdivided into four triangles.
For V �

1 , we obtain four vertices, one for the center of each
smaller triangle; however, one of the vertices coincides with
the root. The other three vertices in V �

1 are connected to the
root to form E1. This process continues in the same way by
exploiting the symmetries of the subdivision. An interesting
difference can be observed in Figure 4 in comparison to
Figure 1. In each step of the subdivision, the central triangle
appears “upside down” with respect to the others. This causes
an interesting orientation change in that part of the tree. This
was not obtained for the square case because all smaller
squares are axis aligned.

Theorems 1 to 3 can again be adapted. To establish that
Ttri is space-filling, a sequence ṽ is constructed by using
the sequence of refined triangles that contain p, rather than
squares. This results in a converging sequence of vertices for
any point in the triangle.

Now consider the length of the path to each point. If the
height of the equilateral triangle h = 1 and the tree is defined
to be rooted at the center of the triangle, then the length of
each edge in T1 is 1/3. In general, for a triangle of side
length L, the length of added edges in T1 will be L

2
√
3

, or h/3

(exactly 1/3 of the height). As with the case of the square,
each of the subtriangles is exactly half the size of the triangle
in the previous iteration. Thus, subsequently added edges are
reduced in length by a factor of two at each iteration.

Theorem 7: For every p contained in an equilateral trian-
gle of height h, there exists a path in Ttri that converges to
p and has length no more than 2h/3. Furthermore, the path
length equals 2h/3 if and only if p �∈ V ∗.

Proof: The proof follows that of Theorem 2, as the edge
length is again divided by 2 in each iteration. The distance
di from the root at the center of the tree to a leaf vertex of
Ti is bounded by the sum:

di ≤
h

3

�
1 +

1

2
+

1

4
+

1

8
+ · · ·+ 1

2i

�
.

Let dmax be the upper bound on the length of the path to
any point p inside the triangle from the root. Note that dmax

is the limit of the sum:

dmax =
h

3
lim
i→∞

i�

j=0

1

2i
.

The closed-form of the sum is 2; therefore, the result is
dmax = 2h/3.

Note the perfect correspondence with the
√
2 limit for

the square case, which was the distance from the center of
the square to a corner. For the general case of a cube of
dimension n and side length 2L, the upper bound on dmax,
the length of the path to any point p ∈ [−L,L]n inside the
cube from the root asymptotically approaches

√
nL. In the

case of an equilateral triangle of height h, the distance from
the center to a corner is exactly 2h/3, which is analogous to
this result.

We now derive the sum total length of all edges in Ti for
the equilateral triangle case.

Theorem 8: The combined length of the union of all edges
in Ttri increases asymptotically as O(2i), with the combined
length of the union of all edges in Ti given exactly by
h
�
5
32

i−1 − 2
32

1−i
�

for a triangle of height h.

Proof: Let �i denote the combined path length in Ti. First,
we derive the number of branches Ni added at each iteration
i. Each triangle is divided into four equal subtriangles, with
the terminal vertex of each edge added in the previous
iteration becoming the center point of four new subtriangles
at the next iteration. Thus, the total number of subtriangles at
iteration i is given by 4i. Although Ttri has a nominal con-
stant branching factor of 4, due to the coincident subsequent
vertex at the center and overlap between edges, the structure
of Ti can be expressed entirely with vertices of degree 1, 3,
4, or 6. The initial tree T0 contains only a single vertex in the
center. The first three iterations are illustrated in Figure 5.

The new branches at each iteration (illustrated in red)
are half the length of the branches added in the previous
iteration. The first iteration adds three branches of length h/3
yielding T1 (thus Ni = 3). The subsequent iteration, T2, adds

Fig. 5. Successive iterations (T1, T2, and T3) of a triangle space-filling
tree. New branches (red) are half the length of the branches added in the
previous iteration. From T1 to T2, twelve new branches are added, and from
T2 to T3, twenty-two new branches are added.

three branches of length h/6 to each of the four vertices of
T1 for a total of twelve additional edges (N2 = 12). From
T2 to T3, a total of forty-two new branches of length h/12
are added (N3 = 42). All subsequent iterations follow the
general recurrence

Ni+1 = 3Ni + 2(4i −Ni − 4i−2),

which is valid for i > 2. The first term represents the 3
edges added to each terminal vertex of each edge added at
the previous iteration, whereas the second term represents
the 2 edges added to the remaining vertices (4i−Ni) minus
the number of vertices that have already achieved degree 6
(4i−2). Solving the recurrence in closed form in terms of Ni

and simplifying gives

Ni = 10(4i−2) + 2,

in which i ≥ 2. We now derive the combined path length �i

in Ti as the sum length of all edges added at each iteration:

�i = T1ei +
i�

j=2

Njej .

At iteration i, Ni branches of length ei =
2h
3 2−i are added.

Substituting T1e1 = h and the closed form of Ni and ei into
the sum and splitting the sum into two terms yields

�i = h+
2

3
h

10
i�

j=2

2j−4 + 2
i�

j=2

2−j

 .

Each of the two sums can be simplified to the closed-form
equivalents:

i�

j=2

2j−4 =
2i+1 − 4

24
and

i�

j=2

2−j =
1

2
− 2−i

.

Finally, by substitution we obtain

�i = h+
2

3
h

�
10

�
2i+1 − 4

24

�
+ 2

�
1

2
− 2−i

��
,

which after further simplification reduces to

�i = h

�
5

3
2i−1 − 2

3
21−i

�
.

We see that the combined length of the union of all edges
in Ttri increases asymptotically as O(2i).

C. Honeycombs and Spatial Subdivisions

It is not surprising that many space-filling tree construc-
tions are possible given the number of shapes that can be
used to tile regions of space. In the previous examples, we
relied on base shapes (square, cube, and triangle) that could
easily be subdivided into smaller, self-similar regions.

Patterns of space-filling or close-packing polyhedral or
higher-dimensional cells without gaps are called honey-
combs. Although the cubic tiling is notable as the only
regular honeycomb in Rn for n > 2, there are numerous non-
regular honeycomb subdivisions [23], [24]. By connecting
the centers of honeycomb cells to recursively subdivided
close-packing shapes, it is possible to construct a rich variety
of space-filling trees. We illustrate this concept with the ex-
amples of the regular tetrahedron and the regular octahedron
in R3.

Tetrahedral and octahedral shapes yield alternating re-
cursive spatial subdivisions, which can be generalized into
space-filling tree construction techniques for both shapes.
A regular tetrahedron of side length L can be subdivided
into four smaller tetrahedra and a single octahedron, all of
uniform side length L/2. Figure 6 illustrates this subdivision
scheme. A regular octahedron of side length L can be
subdivided into six smaller octahedra and eight tetrahedra all
of uniform side length L/2, which is illustrated in Figure 7.
Note that each of these subdivision schemes requires the
other in order to be iterated. The alternating recursive
iterations allow us to start with any size base shape and
construct a space-filling tree. We begin by defining a single
root vertex at the center of the original shape. At each
iteration, we add branches that connect each vertex to new
vertices defined at the centers of each of the subshapes.
Smaller tetrahedra use the tetrahedron subdivision scheme,
whereas smaller octahedra use the octahedron subdivision
scheme. The process can be iterated indefinitely.

Intuitively, if the vertices of each Ti lie at the centers
of the subshapes that are completely contained within the
original shape and form a close-packing, increasingly fine-
grained subdivision will gradually fill the original shape. As
before, Theorems 1 to 3 can be adapted to yield a converging
sequence of vertices for any point inside the original shape
for which the total length from the root is finite. Although
we do not derive the exact formulas here, the scaling factors
for both the tetrahedron and octahedron are again 1/2, which
produces a similar exponential growth rate for the combined
length of the union of all edges.

IV. OTHER SPACE-FILLING TREES

In addition to the basic constructions presented in Sections
II and III, an even larger variety of space-filling trees
can be imagined. Suppose that we start with any bounded
path-connected region R of some metric space. Consider
a countably infinite set Y of points that is dense1 in R.

1From topology, a set Y is dense in X if the closure of Y is X . This
implies that there are no open sets in X that do not contain at least one
point in Y .

(a) (b) (c) (d)

Fig. 6. Subdivision of the Tetrahedron: (a) base primitive; (b) first
subdivision into one central octahedron and four corner tetrahedra; (c)
exploded view of first subdivision; (d) second subdivision iteration.

(a) (b) (c) (d)

Fig. 7. Subdivision of the Octahedron: (a) base primitive; (b) first
subdivision into six octahedra and eight tetrahedra; (c) exploded view of
first subdivision; (d) second subdivision iteration.

Suppose the points in Y have been ordered into a sequence
γ : N → Y , in which γ(i) yields the ith point in the
sequence. We refer to γ as a dense sequence of points.

Now designate any point x ∈ R as the root vertex, and
then connect x to every point in γ via any finite-length path
that maps into R. As a simple example, suppose R is a unit
disc in R2, centered at the origin. Using a dense set Y and
sequence γ of points in R, we connect every γ(i) to (0, 0)
by a continuous path. Clearly this makes a tree. If possible
(i.e. if R is a geodesic metric space.), we may connect x

to each γ(i) along the shortest possible path. This yields
optimal distance to every point in the dense set, which seems
wonderful. However, this tree is not space-filling because
there is not a path that converges to points outside of Y .
We can present a sequence of entire paths whose endpoints
get closer and closer to some p ∈ R \ Y ; however, it is not
achieved by a single path.

There nevertheless exists a simple way to convert any
dense sequence into a space-filling tree. Rather than con-
necting every point in Y to the root, we connect each γ(i)
to the nearest vertex in Vi−1. Ideally, this connection should
be along the shortest possible path (if it exists). In this case,
the ith vertex vi is simply vi = γ(i). The ith edge ei is
produced by connecting vi to vj in which

j = argmin
k∈{1,...,i−1}

ρ(vi, vk) (3)

and ρ is the distance metric on R.
Using the general process described in (3), numerous con-

structions can be imagined, leading to many open questions
regarding path lengths. The properties of the resulting space-
filling tree depend heavily on the particular sequence γ.
The tree will generally not have self-similarity unless the
appropriate symmetries exist in γ.

The method of (3) can even be applied as an alternative
way to construct Tsquare. We need only to define γ as the

(a) (b)

(c) (d)

Fig. 8. Example of a Rapidly-exploring Random Tree (RRT) in [−1, 1]2

after: (a) 100 samples; (b) 500 samples; (c) 1000 samples; (d) 5000 samples.

centers of the squares that are constructed in each iteration.
Hence, γ(1) = (0, 0), and γ(2) through γ(5) are the four
points of the form (±1/2,±1/2) (the particular order these
four does not matter). The next iteration is simulated by
assigning the centers of the 16 squares of width 1/2 from
γ(6) to γ(21). The process continues in this way indefinitely.

Now suppose that γ is obtained as the result of uniform
random sampling in R. The sequence is dense almost surely.
Using this to construct the tree generates what is referred to
as a Rapidly-exploring Random Tree (RRT) [20]. Figure 8
shows an example. The RRT is space-filling with probability
one. The RRT has been particularly useful in recent years
for searching high-dimensional spaces for path planning,
optimization, and control problems.

As in previous sections, consider the lengths of paths in
the tree. Figure 9 illustrates the distribution of values for the
average path length and the maximum path length for an RRT
rooted at the center of [−1, 1]2 after 1000 iterations. The path
length is defined as sum of the total edge lengths to reach
any given point on the tree from the root. The histograms
were computed over 1000 independent trials using point-
to-edge distances for RRT growth which removes any slight
geometric variations in the tree structure due to discretization
of the RRT step size [25].

The average path length from the center of the square to
any point on the RRT had a mean of 1.3028 and a median of
1.2766, whereas the maximum from among all possible paths
in the tree had a mean of 2.7206 and a median of 2.6736
over 1000 trials. This compares to the worst-case path length
of

√
2 ≈ 1.4142 for the square space-filling tree. Although

the maximum path length for an RRT in the worst-case is

Fig. 9. Distribution of values for the average path length (red), and
maximum path length (blue) for a Rapidly-exploring Random Tree (RRT)
in [−1, 1]2 after 1000 samples (N = 1000 trials).

theoretically unbounded, these data show that the average or
expected value is rather small (less than twice

√
2).

V. CONCLUSIONS

We introduced an incremental construction called a space-
filling tree and provided several examples. Although it is
straightforward to construct trees for which the set of vertices
is dense, the distinguishing feature of a space-filling tree is
that for every point in the space, there is a finite-length path
that converges to it. The two main properties to analyze are:
1) the lengths of individual paths in the tree, and 2) how the
total length of all edges increases incrementally. We have
presented a basic comparative analysis to an RRT, which
can be considered as stochastic variants of space-filling
trees. Many open problems remain, primarly exploring how
space-filling tree concepts can be applied to designing and
analyzing motion planning algorithms. One key challenge is
how to incorporate obstacles into space-filling constructions.
There are a number of classical planning algorithms that
rely on recursive spatial subdivisions, such as quadtrees and
octrees. Perhaps there exist methods for constructing space-
filling trees applied recursively on cells of free space that
result in deterministic planning methods with useful path
quality or resolution-completeness properties. For example,
could a sampling-based planner like an RRT be improved
using space-filling tree constructions? How would such an
algorithm scale with dimension, in terms of the expected
number of samples required to get within an epsilon dis-
tance to an arbitrary point in free space? Can the basic
constructions for the square or triangle be generalized to a
decomposition of Voronoi cells or simplicial complexes of n-
dimensional tetrahedral cells? Are there additional heuristics
or efficient distance metrics that could be leveraged for goal-
directed search using a space-filling tree?

In addition to these questions specific to applications for
motion planning, there are numerous possibilities for other
space-filling tree constructions, leading to a wide range
of open questions from a pure mathematics perspective.
For example, what shapes can be filled with self-similar
structures? Which constructions are optimal with respect to
path lengths or total edge lengths? What constructions can

be made that optimize vertex degree? In summary, we hope
that space-filling tree concepts will become useful in many
diverse fields, and this paper has attempted to provide a solid
introduction and framework from which to build upon.
Acknowledgments: Kuffner has been supported in part by Google Research,
NSF grant EEC-0540865, the CMU Quality of Life Technology Center,
and the Digital Human Research Center (AIST Tokyo) Japan. LaValle is
supported in part by NSF grant 0904501 (IIS Robotics), NSF grant 1035345
(CNS Cyberphysical Systems), DARPA SToMP grant HR0011-05-1-0008,
and MURI/ONR grant N00014-09-1-1052.

REFERENCES

[1] G. Peano, “Sur une courbe, qui remplit toute une aire plane,” Math.
Ann, vol. 36, pp. 157–160, 1890.

[2] D. Hilbert, “Über die stetige abbildung einer linie auf ein
flächenstück,” Math. Ann, vol. 38, pp. 459–460, 1891.

[3] G. Morton, “A computer oriented geodetic data base and a new
technique in file sequencing,” 1966.

[4] W. Sierpinski, “Sur une nouvelle courbe countinue qui remplit toute
une aire plane,” Bull. Acad. Sci. de Cracovie (Sci. math. et nat., Serie
A), pp. 462–478, 1912.

[5] H. Sagan, Space-Filling Curves. Springer-Verlag, 1994, iSBN
0387942653.

[6] A. Butz, “Space filling curves and mathematical programming,” In-
formation and Control, vol. 12, pp. 314–330, 1968.

[7] M. Mokbel, W. Aref, and I. Kamel, “Analysis of multi-dimensional
space-filling curves,” GeoInformatica, vol. 7, pp. 179–209, 2003.

[8] P. Prusinkiewicz, “Simulation modeling of plants and plant ecosys-
tems,” Communications of the ACM, vol. 43, no. 7, pp. 84–93, 2000.

[9] P. Prusinkiewicz and A. Lindenmayer, The Algorithmic Beauty of
Plants. Springer-Verlag, 1990, iSBN 978-0387972978. Online at:
http://algorithmicbotany.org/.

[10] Y. Matias and A. Shamir, “A video scrambling technique based on
space filling curves,” in Advances in Cryptology (CRYPTO’87), 1987.

[11] B. Moghaddam, K. Hintz, and C. Stewart, “Space-filling curves for
image compression,” in Proc. of the SPIE, 1991, pp. 414–421.

[12] T. Asano, D. Ranjan, T. Roos, and E. Welzl, “Space-filling curves and
their use in the design of geometric data structures,” in Theoretical
Computer Science. Elsevier, 1997.

[13] J. Lawder and P. King, “Using space-filling curves for multi-
dimensional indexing,” in Lecture notes in computer science.
Springer, 2000.

[14] B. Mandelbrot, The Fractal Geometry of Nature. W.H. Freeman,
1982.

[15] T. Nonnenmacher, G. Losa, and E. Weibel, Eds., Fractals in Biology
and Medicine. Birkhäuser, 1993.

[16] A. Lindenmayer, “Mathematical models for cellular interaction in
development, parts i and ii,” J. Theore. Biol., vol. 18, pp. 280–315,
1968.

[17] M. Bohn, J. Novais, R. Fonseca, R. Tuberosa, and T. Grift, “Genetic
evaluation of root complexity in maize,” Acta Agronomica Hungarica,
vol. 54, no. 3, pp. 291–303, 2006.

[18] S. Browning, “The tree machine: A highly concurrent computing
environment,” Ph.D. dissertation, California Inst. of Technology, 1980.

[19] M. Bern and D. Eppstein, “Worst-case bounds for subadditive geo-
metric graphs,” in 9th ACM Symp. on Comp. Geometry, 1993, pp.
183–188.

[20] S. M. LaValle and J. J. Kuffner, “Randomized kinodynamic planning,”
Int’l Journal of Robotics Research, vol. 20, no. 5, pp. 378–400, May
2001.

[21] S. Karaman and E. Frazzoli, “Incremental sampling-based algorithms
for optimal motion planning,” in Proceedings Robotics: Science and
Systems, 2010.

[22] O. Nechushtan, B. Raveh, and D. Halperin, “Sampling-diagram au-
tomata: A tool for analyzing path quality in tree planners,” in Proceed-
ings Workshop on Algorithmic Foundations of Robotics, December
2010.

[23] M. Deza and M. Shtogrin, “Uniform Partitions of 3-space, their
Relatives and Embedding,” European J. of Combinatorics, vol. 21,
no. 6, pp. 807–814, 2000.

[24] B. Grünbaum, “Uniform tilings of 3-space,” Geombinatorics, vol. 4,
pp. 49–56, 1994.

[25] S. M. LaValle, Planning Algorithms. Cambridge, U.K.: Cambridge
University Press, 2006, also available at http://planning.cs.uiuc.edu/.

