
Chapter 5

Motion Planning

by Lydia E. Kavraki and Steven M. LaValle

A fundamental robotics task is to plan collision-free
motions for complex bodies from a start to a goal po-
sition among a collection of static obstacles. Although
relative simple, this geometric path planning problem
is provably computationally hard [84]. Extensions of
this formulation take into account additional constraints
that are inherited from mechanical and sensor limita-
tions of real robots such as uncertainties, feedback and
differential constraints, which further complicate the de-
velopment of automated planners. Modern algorithms
have been fairly successful in addressing hard instances
of the basic geometric problem and a lot of effort is de-
voted to extend their capabilities to more challenging
instances. These algorithms have had widespread suc-
cess in applications beyond robotics, such as computer
animation, virtual prototyping, and computational biol-
ogy. There are many available surveys [36, 70, 91] and
books [23, 57, 60] that cover modern motion planning
techniques and applications.

This chapter first provides a formulation of the ge-
ometric path planning problem in Section 5.1 and
then introduces sampling-based planning in Section 5.2.
Sampling-based planners are general techniques applica-
ble to a wide set of problems and have been successful in
dealing with hard planning instances. For specific, often
simpler planning instances, alternative approaches exist
and are presented in Section 5.3. These approaches pro-
vide theoretical guarantees and for simple planning in-
stances they outperform sampling-based planners. Sec-
tion 5.4 considers problems that involve differential con-
straints, while Section 5.5 overviews several other ex-
tensions of the basic problem formulation and proposed
solutions. Finally, Section 5.7 addresses some important
and more advanced topics related to motion planning.

5.1 Motion Planning Concepts

This section provides a description of the fundamental
motion planning problem or else the geometric path plan-
ning problem. Extensions of this basic formulation to
more complicated instances will be discussed later in the
chapter and they will be revisited throughout this book.

5.1.1 Configuration Space

In path planning, a complete description of the geometry
of a robot A and of a workspace W is provided. The
workspace W = R

N , in which N = 2 or N = 3, is a
static environment populated with obstacles. The goal
is to find a collision-free path for A to move from an
initial position and orientation to a goal position and
orientation.

To achieve that, a complete specification of the loca-
tion of every point on the robot geometry, or a configu-
ration q, must be provided. The configuration space, or
C-space (q ∈ C), is the space of all possible configura-
tions. The C-space represents the set of all transforma-
tions that can be applied to a robot given its kinematics
as described in Chapter 1 (Kinematics). It was recog-
nized early on in motion planning research [104, 71] that
the C-space is a useful way to abstract planning prob-
lems in a unified way. The advantage of this abstraction
is that a robot with a complex geometric shape is mapped
to a single point in the C-space. The number of degrees
of freedom of a robot system is the dimension of the C-
space, or the minimum number of parameters needed to
specify a configuration.

Let the closed set O ⊂ W represent the (workspace)
obstacle region, which is usually expressed as a collec-
tion of polyhedra, 3D triangles, or piecewise-algebraic
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Figure 5.1: A robot translating in the plane: (a) a tri-
angular robot moves in a workspace with a single rect-
angular obstacle. (b) The C-space obstacle.

Figure 5.2: A two-joint planar arm: (a) links are pinned
and there are no joint limits. (b) The C-space.

surfaces. Let the closed set A(q) ⊂ W denote the set
of points occupied by the robot when at configuration
q ∈ C; this set is usually modeled using the same primi-
tives as used for O. The C-space obstacle region, Cobs, is
defined as

Cobs = {q ∈ C | A(q) ∩ O 6= ∅}. (5.1)

Since O and A(q) are closed sets in W , the obstacle
region is a closed set in C. The set of configurations that
avoid collision is Cfree = C \ Cobs, and is called the free
space.

Simple examples of C-spaces

Translating Planar Rigid Bodies: The robot’s
configuration can be specified by a reference point (x, y)
on the planar rigid body relative to some fixed coordi-
nate frame. Therefore the C-space is equivalent to R

2.
Figure 5.1 gives an example of a C-space for a triangular
robot and a single polygonal obstacle. The obstacle
in the C-space can be traced by sliding the robot
around the workspace obstacle to find the constraints
on all q ∈ C. Motion planning for the robot is now
equivalent to motion planning for a point in the C-space.

Planar Arms: Figure 5.2 gives an example of a two-
joint planar arm. The bases of both links are pinned, so

that they can only rotate around the joints and there are
no joint limits. For this arm, specifying the rotational
parameters θ1 and θ2 provides the configuration. Each
joint angle θi corresponds to a point on the unit circle
S

1 and the C-space is S
1×S

1 = T 2, the two-dimensional
torus as Figure 5.2 shows. For a higher number of links
without joint limits, the C-space can be similarly defined
as:

C = S
1 × S

1 × · · · × S
1. (5.2)

If a joint has limits, then each corresponding S
1 is often

replaced with R, even though it is a finite interval. If
the base of the planar arm is mobile and not pinned,
then the additional translation parameters must also be
considered in the arm’s configuration:

C = R
2 × S

1 × S
1 × · · · × S

1 (5.3)

Additional examples of C-spaces are provided in Sec-
tion 5.6.1, where topological properties of configuration
spaces are discussed.

5.1.2 Geometric Path Planning Problem

The basic motion planning problem, also known as the
Piano Mover’s problem [84], is defined as follows.
Given:

1. A workspace W , where either W = R
2 or W = R

3.

2. An obstacle region O ⊂ W .

3. A robot defined in W . Either a rigid body A or a
collection of m links: A1,A2, . . . ,Am.

4. The configuration space C (Cobs and Cfree are then
defined).

5. An initial configuration qI ∈ Cfree.

6. A goal configuration qG ∈ Cfree. The initial and
goal configuration are often called a query (qI , qG).

Compute a (continuous) path, τ : [0, 1] → Cfree, such
that τ(0) = qI and τ(1) = qG.

5.1.3 Complexity of Motion Planning

The main complications in motion planning are that it is
not easy to directly compute Cobs and Cfree and the di-
mensionality of the C-space is often quite high. In terms
of computational complexity, the Piano Mover’s problem
was studied early on and it was shown to be PSPACE-hard
by Reif [84]. A series of polynomial time algorithms for
problems with fixed dimension suggested an exponential
dependence on the problem dimensionality [92, 93]. A
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single exponential algorithm in the C-space dimension-
ality was proposed by Canny and showed that the prob-
lem is PSPACE-complete [19]. Although impractical, the
algorithm serves as an upper bound on the general ver-
sion of the basic motion planning problem. It applies
computational algebraic geometry techniques for model-
ing the C-space in order to construct a roadmap, a 1D
subspace that captures the connectivity of Cfree. Ad-
ditional details about such techniques can be found in
Section 5.6.3.

The complexity of the problem motivated work in path
planning research. One direction was to study subclasses
of the general problem for which polynomial time algo-
rithms exist [37]. Even some simpler, special cases of
motion planning, however, are at least as challenging.
For example, the case of a finite number of translating,
axis-aligned rectangles in R

2 is PSPACE-hard as well [42].
Some extensions of motion planning are even harder. For
example, a certain form of planning under uncertainty in
3D polyhedral environment is NEXPTIME-hard [18]. The
hardest problems in NEXPTIME are believed to require
doubly-exponential time to solve.

A different direction was the development of alterna-
tive planning paradigms that were practical under real-
istic assumptions. Many combinatorial approaches can
efficiently construct 1D roadmaps for specific 2D or 3D
problems. Potential field-based approaches define vec-
tor fields which can be followed by a robot towards the
goal. Both approaches, however, do not scale well in
the general case. They will be described in Section 5.3.
An alternative paradigm, sampling-based planning, is a
general approach that has been shown to be succesful in
practise with many challenging problems. It avoids the
exact geometric modeling of the C-space but it cannot
provide the guarantees of a complete algorithm. Com-
plete and exact algorithms are able to detect that no path
can be found. Instead sampling-based planning offers a
lower level of completeness guarantee. This paradigm is
described in the following section.

5.2 Sampling-based Planning

Sampling-based planners are described first because they
are the method of choice for a very general class of prob-
lems. The following section will describe other planners,
some of which were developed before the sampling-based
framework. The key idea in sampling-based planning is
to exploit advances in collision detection algorithms that
compute whether a single configuration is collision-free.

Given this simple primitive, a planner samples different
configurations to construct a data structure that stores
1D C-space curves, which represent collision-free paths.
In this way, sampling-based planners do not access the
C-space obstacles directly but only through the collision
detector and the constructed data structure. Using this
level of abstraction, the planners are applicable to a wide
range of problems by tailoring the collision detector to
specific robots and applications.

A standard for sampling-based planners is to provide
a weaker, but still interesting, form of completeness: if
a solution path exists, the planner will eventually find it.
Giving up on the stronger form of completeness, which
requires a solution to be found in finite time, these tech-
niques are able to solve in practice problems with more
than three degress of freedom that complete approaches
cannot address. More details on this weaker form of
completeness are provided in Section 5.6.2.

Different planners follow different approaches on how
to sample configurations and what kind of data struc-
tures they construct. Section 5.6.2 provides a deeper
insight on sampling issues. A typical classification of
sampling-based planners is between multi-query and
single-query approaches:

• In the first category, the planners construct a
roadmap, an undirected graph G that is precom-
puted once so as to map the connectivity properties
of Cfree. After this step, multiple queries in the
same environment can be answered using only the
constructed roadmap. Such planners are described
in Section 5.2.1.

• Planners in the second category build tree data
structures on the fly given a planning query. They
attempt to focus on exploring the part of the C-
space that will lead to solving a specific query as
fast as possible. They are described in Section 5.2.2.

Both approaches, however, make similar use of a colli-
sion checking primitive. The objective of a collision de-
tector is to report all geometric contacts between objects
given their geometries and transformations [68, 47, 69].
The availability of packages that were able to answer col-
lision queries in a fraction of a second was critical to the
development of sampling-based planners. Modern plan-
ners use collision detectors as a “black box”. Initially
the planner provides the geometries of all the involved
objects and specifies which of them are mobile. Then,
in order to validate a robot configuration, a planner pro-
vides the corresponding robot transformation and a col-
lision detector responds on whether the objects collide
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or not. Many packages represent the geometric models
hierarchically, avoid computing all-pairwise interactions
and conduct a binary search to evaluate collisions. Ex-
cept from configurations, a planner must also validate
entire paths. Some collision detectors return distance-
from-collision information, which can be used to infer
that entire neighborhoods in C are valid. It is often more
expensive, however, to extract this information; instead
paths are usually validated point-by-point using a small
stepping size either incrementally or by employing bi-
nary search. Some collision detectors are incremental by
design, which means that they can be faster by reusing
information from a previous query [68].

5.2.1 Multi-Query Planners:

Mapping the Connectivity of Cfree

Planners that aim to answer multiple queries for a cer-
tain static environment use a preprocessing phase during
which they attempt to map the connectivity properties
of Cfree onto a roadmap. This roadmap has the form of
a graph G, with vertices as configurations and edges as
paths. A union of 1D curves is a roadmap G if it satisfies
the following properties:

1. Accessibility: From any q ∈ Cfree, it is simple and
efficient to compute a path τ : [0, 1] → Cfree such
that τ(0) = q and τ(1) = s, in which s may be any
point in S(G). S(G) is the swath of G, the union of
all configurations reached by all edges and vertices.
This means that it is always possible to connect a
planning query pair, qI and qG to some sI and sG,
respectively, in S(G).

2. Connectivity Preserving: The second condition
requires that if there exists a path τ : [0, 1]→ Cfree

such that τ(0) = qG and τ(1) = qG, then there also
exists a path τ ′ : [0, 1]→ S(G), such that τ ′(0) = sI

and τ ′(1) = sG. Thus, solutions are not missed
because G fails to capture the connectivity of Cfree.

The Probabilistic Roadmap Method (PRM) approach
[50] attempts to approximate such a roadmap G in a
computationally efficient way. The preprocessing phase
of PRM, which can be extended to sampling-based
roadmaps in general, follows these steps:

1. Initialization: Let G(V, E) represent an undi-
rected graph, which initially is empty. Vertices of G
will correspond to collision-free configurations, and
edges to collision-free paths that connect vertices.

α(i)

Cobs

Cobs

Figure 5.3: The sampling-based roadmap is constructed
incrementally by attempting to connect each new sam-
ple, α(i), to nearby vertices in the roadmap.

2. Configuration Sampling: A configuration α(i) is
sampled from Cfree and added to the vertex set V .
α(·) is an infinite, dense sample sequence and α(i)
is the i-th point in that sequence.

3. Neighborhood Computation: Usually, a metric
is defined in the C-space, ρ : C × C → R. Vertices
q already in V are then selected as part of α(i)’s
neighborhood if they have small distance according
to ρ.

4. Edge Consideration: For those vertices q, which
do not belong in the same connected component of G
with α(i), the algorithm attempts to connect them
with an edge.

5. Local Planning Method: Given α(i) and q ∈
Cfree a module is used that attempts to construct
a path τs : [0, 1] → Cfree such that τ(0) = α(i)
and τ(1) = q. Using collision detection, τs must be
checked to ensure that it does not cause a collision.

6. Edge Insertion: Insert τs into E, as an edge from
α(i) to q.

7. Termination: The algorithm is typically termi-
nated when a predefined number of collision-free
vertices N has been added in the roadmap.

The algorithm is incremental in nature. Computation
can be repeated by starting from an already existing
graph. A general sampling-based roadmap is summa-
rized in Algorithm 1.

An illustration of the algorithm’s behavior is depicted
in Figure 5.3. To solve a query, qI and qG are connected
to the roadmap, and graph search is performed.
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Algorithm 1 SAMPLING-BASED ROADMAP

N: number of nodes to include in the roadmap
————————————————————————
G.init(); i← 0;
while i < N do

if α(i) ∈ Cfree then
G.add vertex(α(i)); i← i + 1;
for q ∈ neighborhood(α(i),G) do

if connect(α(i), q)) then
G.add edge(α(i), q);

endif
end for

end if
end while

For the original PRM [50], the configuration α(i) was
produced using random sampling. For the connection
step betweem q and α(i), the algorithm used straight line
paths in the C-space. In some cases a connection was not
attempted if q and α(i) were in the same connected com-
ponent. There have been many subsequent works that
try to improve the roadmap quality while using fewer
samples. Methods for concentrating samples at or near
the boundary of Cfree are presented in [2, 13]. Methods
that move samples as far from the boundary as possible
appear in [40, 67]. Deterministic sampling techniques,
including grids, appear in [61]. A method of pruning ver-
tices based on mutual visibility appears in [98] that leads
to a dramatic reduction in the number of roadmap ver-
tices. Theoretical analysis of sampling-based roadmaps
appears in [6, 61, 55] and is briefly discussed in Section
5.6.2. An experimental comparison of sampling-based
roadmap variants appears in [33]. One difficulty in these
roadmap approaches is identifying narrow passages. One
proposal is to use bridge test for identifying these [43].
For other PRM-based works, see [12, 16, 46, 66, 77]. Ex-
tended discussion of the topic can be found in [23, 60].

5.2.2 Single-Query Planners:

Incremental Search

Single-query planning methods focus on a single initial-
goal configuration pair. They probe and search the con-
tinuous C-space by extending tree data structures initial-
ized at these known configurations and eventually con-
necting them. Most single-query methods conform to the
following template:

1. Initialization: Let G(V, E) represent an undi-
rected search graph, for which the vertex set, V ,

qn

q0

Cobs

qs

α(i)

Figure 5.4: If there is an obstacle, the edge travels up to
the obstacle boundary, as far as allowed by the collision
detection algorithm.

contains a vertex for one (usually qI) or more con-
figurations in Cfree, and the edge set, E, is empty.
Vertices of G are collision-free configurations, and
edges are collision-free paths that connect vertices.

2. Vertex Selection Method: Choose a vertex
qcur ∈ V for expansion.

3. Local Planning Method: For some qnew ∈ Cfree,
which may correspond to an existing vertex in V
but on a different tree or a sampled configuration,
attempt to construct a path τs : [0, 1]→ Cfree such
that τ(0) = qcur and τ(1) = qnew. Using collision
detection, τs must be checked to ensure that it does
not cause a collision. If this step fails to produce a
collision-free path segment, then go to Step 2.

4. Insert an Edge in the Graph: Insert τs into E,
as an edge from qcur to qnew. If qnew is not already
in V , then it is inserted.

5. Check for a Solution: Determine whether G en-
codes a solution path.

6. Return to Step 2: Iterate unless a solution has
been found or some termination condition is satis-
fied, in which case the algorithm reports failure.

During execution, G may be organized into one or
more trees. This leads to: 1) unidirectional methods,
which involves a single tree, usually rooted at qI [64], 2)
bidirectional methods, which involves two trees, typically
rooted at qI and qG [64], and 3) multidirectional meth-
ods, which may have more than two trees [10, 101]. The
motivation for using more than one tree is that a single
tree may become trapped trying to find an exit through
a narrow opening. Traveling in the opposite direction,
however, may be easier. As more trees are considered it
becomes more complicated to determine which connec-
tions should be made between trees.
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Rapidly-Exploring Dense Trees

The important idea with this family of techniques is that
the algorithm must incrementally explore the properties
of the C-space. An algorithm that achieves this objec-
tive is the Rapidly-exploring Random Tree (RRT) [64],
which can be generalized to the Rapidly-exploring Dense
Tree (RDT) for any dense sampling, deterministic or
random [60]. The basic idea is to induce a Voronoi bias
in the exploration process by selecting for expansion the
point in the tree that is closest to α(i) in each iteration.
Using random samples, the probability that a vertex
is chosen is proportional to the volume of its Voronoi
region. The tree construction is outlined as:

Algorithm 2 RAPIDLY EXPLORING DENSE TREES

k: the exploration steps of the algorithm
————————————————————————
G.init(qI );
for i = 1 to k do

G.add vertex(α(i));
qn ← nearest(S(G), α(i));
G.add edge(qn, α(i));

end for

The tree starts at qI , and in each iteration, an edge and
vertex are added.

So far, the problem of reaching qG has not been ex-
plained. There are several ways to use RDTs in a plan-
ning algorithm. One approach is to bias α(i) so that qG

is frequently chosen (perhaps once every 50 iterations).
A more efficient approach is to develop a bidirectional
search by growing two trees, one from each of qI and
qG. Roughly half of the time is spent expanding each
tree in the usual way, while the other half is spend at-
tempting to connect the trees. The simplest way to con-
nect trees is to let the newest vertex of one tree be a
substitute for α(i) in extending the other. This tricks
one RDT into attempting to connect to the other while
using the basic expansion algorithm [53]. Several works
have extended, adapted, or applied RDTs in various ap-
plications [15, 32, 48, 101, 107]. Detailed descriptions
can be found in [23, 60].

Other Tree Algorithms

Planners based on the idea of expansive spaces are pre-
sented in [45, 44, 87]. In this case, the algorithm forces
exploration by choosing vertices for expansion that have
fewer points in a neighborhood around them. In [20],

Edge-Edge Vertex-Vertex Vertex-Edge

Figure 5.5: Voronoi roadmap pieces are generated in
one of three possible cases. The third case leads to a
quadratic curve.

additional performance is obtained by self-tuning ran-
dom walks, which focus virtually all of their effort on
exploration. Other successful tree-based algorithms in-
clude the Path Directed Subdivision Tree Algorithm [54]
and some of its variants [11]. In the literature, it is
sometimes hard to locate tree-based planners for ordi-
nary path planning problems as many of them (includ-
ing RRT) were designed and/or applied to more complex
problems (see Section 5.4.4). Their performance is still
excellent for a variety of path planing problems.

5.3 Alternative Approaches

Alternative approaches to the sampling-based paradigm
include potential-field based techniques and combinato-
rial methods that also produce roadmaps, such as cell
decompositions. These algorithms are able to elegantly
and efficiently solve a narrow class of problems, and are
much preferred over the algorithms of Section 5.2 in these
cases. Most of the combinatorial algorithms are of the-
oretical interest, whereas sampling-based algorithms are
motivated primarily by performance issues in challeng-
ing applications. Nevertheless, given some abstractions,
the combinatorial algorithms can be used to solve prac-
tical problems such as autonomous navigation of mobile
planar robots.

5.3.1 Combinatorial Roadmaps

Several algorithms exist for the case in which C = R
2 and

Cobs is polygonal. Most of these cannot be directly ex-
tended to higher dimensions; however, some of the gen-
eral principles remain the same. The maximum clear-
ance roadmap (or retraction method [80]) constructs a
roadmap that keeps paths as far from the obstacles as
possible. Paths are contributed to the roadmap from the
three cases shown in Figure 5.5, which correspond to all
ways to pair together polygon features. The roadmap
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Figure 5.6: The shortest-path roadmap includes edges
between consecutive reflex vertices on Cobs and also bi-
tangent edges.

can be made naively in time O(n4) by generating all
curves shown in Figure 5.5 for all possible pairs, com-
puting their intersections, and tracing out the roadmap.
Several algorithms exist that provide better asymptotic
running time [65], but they are considerably more diffi-
cult to implement. The best-known algorithm runs in
O(n lg n) time in which n is the number of roadmap
curves [95].

An alternative is to compute a shortest-path roadmap
[78], as shown in Figure 5.6. This is different than the
roadmap presented in the previous section because paths
may actually touch the obstacles, which must be allowed
for paths to be optimal. The roadmap vertices are the
reflex vertices of Cobs, which are vertices for which the
interior angle is greater than π. An edge exists in the
roadmap if and only if a pair of vertices is mutually vis-
ible and the line through them pokes into Cfree when
extended outward from each vertex (such lines are called
bitangents). An O(n2 lg n)-time construction algorithm
can be formed by using a radial sweep algorithm from
each reflex vertex. It can theoretically be computed in
time O(n2 +m), in which m is the total number of edges
in the roadmap [81].

Figure 5.7 illustrates the vertical cell decomposition ap-
proach. The idea is to decompose Cfree into cells that
are trapezoids or triangles. Planning in each cell is triv-
ial because it is convex. A roadmap is made by placing
a point in the center of each cell and each boundary be-
tween cells. Any graph search algorithm can be used
to quickly find a collision-free path. The cell decom-
position can be constructed in O(n lg n) time using the
plane-sweep principle [21, 27]. Imagine that a vertical

line sweeps from x = −∞ to x = ∞, stopping at places
where a polygon vertex is encountered. In these cases,
a cell boundary may be necessary above and/or below
the vertex. The order in which segments stab the ver-
tical line is maintained in a balanced search tree. This
enables the determination of the vertical cell boundary
limits in time O(lg n). The whole algorithm runs in time
O(n lg n) because there are O(n) vertices at which the
sweep line can stop (also, the vertices need to be sorted
at the outset, which requires time O(n lg n)).

5.3.2 Roadmaps in Higher Dimensions

It would be convenient if the methods of Section 5.3.1
directly extend into higher dimensions. Although this
unfortunately does not occur, some of the general ideas
extend. To consider a cell decomposition in higher di-
mensions, there are two main requirements: 1) each cell
should be simple enough that motion planning within
a cell is trivial; 2) the cells should fit together nicely.
A sufficient condition for the first requirement is that
cells are convex; more general shapes may be allowed;
however, the cells should not contain holes under any
circumstances. For the second requirement, a sufficient
condition is that the cells can be organized into a singu-
lar complex. This means that for any two d-dimensional
cells for d ≤ n, if the boundaries of the cells intersect,
then the common boundary must itself be a complete
cell (of lower dimension).

Figure 5.7: The roadmap derived from the vertical cell
decomposition.

In two-dimensional polygonal C-spaces, triangulation
methods define nice cell decompositions that are appro-
priate for motion planning. Finding good triangulations,
which for example means trying to avoid thin triangles,



8 CHAPTER 5. MOTION PLANNING BY LYDIA E. KAVRAKI AND STEVEN M. LAVALLE

is given considerable attention in computational geome-
try [27]. Determining the decomposition of a polygonal
obstacle region with holes that uses the smallest number
of convex cells is NP-hard [51]. Therefore, we are willing
to tolerate non-optimal decompositions.

In three-dimensional C-spaces, if Cobs is polyhedral,
then the vertical decomposition method directly extends
by applying the plane sweep recursively. For example,
the critical events may occur at each z coordinate, at
which point changes a 2D vertical decomposition over
the x and y coordinates are maintained. The polyhedral
case is obtained for a translating polyhedral robot among
polyhedral obstacles in R

3; however, for most interesting
problems, Cobs, becomes nonlinear. Suppose C = R

2×S
1,

which corresponds to a robot that can translate and ro-
tate in the plane. Suppose the robot and obstacles are
polygonal. For the case of a line-segment robot, an O(n5)
algorithm that is not too difficult to implement is given
in [89]. The approaches for more general models and C-
spaces are are extremely difficult to use in practice, they
are mainly of theoretical interest and they are summa-
rized in Section 5.6.3.

5.3.3 Potential Fields

A different approach for motion planning is inspired from
obstacle avoidance techniques [52]. It does not explicitly
construct a roadmap, instead it constructs a differen-
tiable real-valued function U : R

m → R, called a po-
tential function, that guides the motion of the moving
object. The potential is typically constructed so that
it consists of an attractive component Ua(q), that pulls
the robot towards the goal, and a repulsive component
Ur(q), that pushes the robot away from the obstacles as
Figure 5.8 shows. The gradient of the potential function
is the vector∇U(q) = DU(q)T = [ ∂U

∂q
1

(q), . . . , ∂U
∂q

m

(q)]T ,

which points in the direction that locally maximaly in-
creases U . After the definition of U , a path can be
computed by starting fom qI and applying “gradient de-
scent”:
1 q(0) = qI ; i = 0;
2 while ∇U(q(i)) 6= 0 do
3 q(i + 1) = q(i) +∇U(q(i))
4 i = i + 1
However, this gradient descent approach does not

guarantee a solution to the problem. Gradient descent
can only reach a local minimum of U(q), which may not
correspond to the goal state qG as Figure 5.9 shows.

A planner that makes uses of potential functions and
attempts to avoid the issue of local minima is the ran-

Figure 5.8: An attractive and a repulsive component de-
fine a potential function.

Figure 5.9: Two examples of the local minimum problem
with potential functions.

domized potential planner [7]. The idea is to combine po-
tential functions with random walks by employing mul-
tiple planning modes. In one mode, gradient descent is
applied until a local minimum is reached. Another mode
uses random walks to try to escape local minima. A
third mode performs backtracking whenever several at-
tempts to escape a local minimum have failed. In many
ways, this approach can be considered as a sampling-
based planner. It also provides the weaker complete-
ness guarantee but it requires parameter tuning. Recent
sampling-based methods achieve better performance by
spending more time exploring the space, rather than fo-
cusing heavily on a potential function.

The gradient of the potential function can be also used
to define a vector field, which assigns a motion for the
robot at any arbitrary configuration q ∈ C. This is an
important advantage of the approach, beyond its com-
putational efficiency, since it does not only compute a
single path, but a feedback control strategy. This makes
the approach more robust against control and sensing
errors. Most of the techniques in feedback motion plan-
ning are based on the idea of navigation functions [86],
which are potential functions properly constructed so as
to have a single minimum. A function φ : Cfree → [0, 1]
is called a navigation function if it:

• is smooth (or at least Ck for k ≥ 2)

• has a unique minimum at qG in the connected com-
ponent of the free space that contains qG,

• is uniformly maximal on the free space boundary

• and is Morse, which means that all its critical
points, such as saddle points, are isolated and can
be avoided with small random perturbations.
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Figure 5.10: Examples of sphere and star spaces.

Navigation functions can be constructed for sphere
boundary spaces centered at qI that contain only spher-
ical obstacles as Figure 5.10 shows. Then they can be
extended to a large family of C-spaces that are diffeo-
morphic to sphere-spaces, such as star-shaped spaces as
in Figure 5.10. A more elaborate description of strate-
gies for feedback motion planning will be presented in
chapters 35, 36 and 37.

Putting the issue of local minima aside, another major
challenge for such potential function based approaches is
constructing and representing the C-space in the first
place. This issue makes the applications of these tech-
niques too complicated for high-dimensional problems.

5.4 Differential Constraints

Robot motions must usually conform to both global and
local constraints. Global constraints on C have been con-
sidered in the form of obstacles and possibly joint lim-
its. Local constraints are modeled with differential equa-
tions, and are therefore called differential constraints.
These limit the velocities, and possibly accelerations,
at every point due to kinematic considerations, such as
wheels in contact, and dynamical considerations, such as
the conservation of angular momentum.

5.4.1 Concepts and Terminology

Let q̇ denote a velocity vector. Differential constraints
on C can be expressed either implicitly in the form
gi(q, q̇) = 0 or parametrically in the form ẋ = f(q, u).
The implicit form is more general but often more diffi-
cult to understand and utilize. In the parametric form, a
vector-valued equation indicates the velocity that is ob-
tained for a given q and u, in which u is an input, chosen
from some input space, U . Let T denote an interval of
time, starting at t = 0.

To model dynamics, the concepts are extended into
a phase space, X , of the C-space. Usually each point
x ∈ X represents both a configuration and velocity,

q
q̇ = 0

q̇ < 0

q̇ > 0

q̇ Xric

Xric

Xric

Xobs

Xric

Figure 5.11: The region of inevitable collision grows
quadratically with the speed.

x = (q, q̇). Both implicit and parametric representa-
tions are possible, yielding gi(x, ẋ) = 0 and ẋ = f(x, u),
respectively. The latter is a common control system def-
inition. Note that ẋ = (q̇, q̈), which implies that ac-
celeration constraints and full system dynamics can be
expressed.

Planning in the state space X could lead to a straight-
forward definition of Xobs by declaring x ∈ Xobs if and
only if q ∈ Cobs for x = (q, q̇). However, another in-
teresting possibility exists which provides some intuition
about the difficulty of planning with dynamics. This
possibility is based on the notion of a region of inevitable
collision, which is defined as:

Xric = {x(0) ∈ X | for any ũ ∈ U∞, ∃t > 0

such that x(t) ∈ Xobs},
(5.4)

in which x(t) is the state at time t obtained by integrat-
ing the control function ũ : T → U from x(0). The set
U∞ is a predefined set of all possible control functions.
Xric denotes the set of states in which the robot is ei-
ther in collision or, because of momentum, it cannot do
anything to avoid collision. It can be considered as an
invisible obstacle region that grows with speed.

Under the general heading of planning under differen-
tial constraints, there are many important categories of
problems that have received considerable attention in re-
search literature. The term nonholonomic planning was
introduced for wheeled mobile robots [58]. A simple ex-
ample is that a car cannot move sideways, thereby mak-
ing parallel parking more difficult. In general, a nonholo-
nomic constraint is a differential equality constraint that
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Two stages Four stages

Figure 5.12: A reachability tree for the Dubins car with
three actions. The kth stage produces 3k new vertices.

cannot be integrated into a constraint that involves no
derivatives. Most nonholonomic constraints that appear
in robotics are kinematic, and arise from wheels in con-
tact [59]. Nonholonomic constraints may also arise from
dynamics.

If a planning problem involves constraints on at least
velocity and acceleration, the problem is often referred
to as kinodynamic planning [29]. Usually, the model ex-
presses a fully-actuated system, which means that it can
be expressed as q̈ = h(q, q̇, u), in which U contains an
open set that includes the origin of R

n (here, n is the
dimension of both U and C). It is possible for a prob-
lem to be nonholonomic, kinodynamic, both, or neither;
however, in modern times, the terms are not used with
much precision.

Trajectory planning is another important term, which
has referred mainly to the problem of determining both a
path and velocity function for a robot arm (e.g., PUMA
560). In the treatment below, all of these will be referred
to as planning under differential constraints.

5.4.2 Discretization of Constraints

The only known methods for complete and optimum
planning under differential constraints in the presence
of obstacles are for the double integrator system with
X = R [79] and X = R

2 [17]. To develop planning algo-
rithms in this context, several discretizations are often
needed. For ordinary motion planning, only C needed to
be discretized; with differential constraints, T and pos-
sibly also U require discretization, in addition to C (or
X).

Discretization of the differential constraints is one of

s

ṡ

0 1

Sobs

Figure 5.13: An illustration of the bang-bang approach
to computing a time-optimal trajectory. The solution
trajectory is obtained by connecting the dots.

the most important issues. To solve challenging planning
problems efficiently, it is often necessary to define motion
primitives for the particular dynamical system [32, 35,
83]. One of the simplest ways to discretize the differential
constraints is to construct a discrete-time model, which
is characterized by three aspects:

1. The time interval, T , is partitioned into intervals
of length ∆t. This enables stages to be assigned,
in which stage k indicates that (k − 1)∆t time has
elapsed.

2. A finite subset Ud of the action space U is chosen.
If U is already finite, then this selection may be
Ud = U .

3. The action u(t) must remain constant over each
time interval.

From an initial state, x, a reachability tree can be formed
by applying all sequences of discretized actions. Figure
5.12 shows path of this tree for the Dubins car, which is
a kinematic model of a car that drives in the plane at
unit speed and cannot move in reverse. The edges of the
tree are circular arcs and line segments. For general sys-
tems, each trajectory segment in the tree is determined
by numerical integration of ẋ = f(x, u) for a given u. In
general, this can be viewed as an incremental simulator
that takes an input and produces a trajectory segment
according to ẋ = f(x, u).

5.4.3 Decoupled Approach

A popular paradigm for trajectory planning and other
problems that involve dynamics is to decouple the prob-
lem into first planning a path and then computing a tim-
ing function along the path by performing a search in the
space spanned by (s, ṡ), in which s is the path parame-
ter and ṡ is its first derivative. This leads to a diagram
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such as the one shown in Figure 5.13, in which the upper
region Sobs must be avoided because the corresponding
motion of the mechanical system violates the differential
constraints. Most methods are based on early work in
[41, 96], and determine a bang-bang control, which means
that they switch between accelerating and decelerating
at full speed. This applies to determining time-optimal
trajectories (optimal once constrained to the path). Dy-
namic programming can be used for more general prob-
lems [97].

For some problems and nonholonomic systems,steering
methods have been developed to efficiently solve the two-
point boundary value problem [59, 88]. This means that
for any pair of states, a trajectory that ignores obstacles
but satisfies the differential constraints can be obtained.
Moreover, for some systems, the complete set of optimal
trajectories has been characterized [5, 100]. These con-
trol based approaches enable straightforward adaptation
of the sampling-based roadmap approach [103, 94]. One
decoupled approach is to first plan a path that ignores
differential constraints, and then incrementally trans-
form it into one that obeys the constraints [31, 59].

5.4.4 Kinodynamic Planning

Due to the great difficulty of planning under differential
constraints, many succesful planning algorithms that ad-
dress kinodynamic problems directly in the phase space
X are sampling-based.

Sampling-based planning algorithms proceed by ex-
ploring one or more reachability trees. Many parallels
can be drawn with searching on a grid; however, reach-
ability trees are more complicated because they do not
necessarily involve a regular lattice structure. The ver-
tex set of reachability trees is dense in most cases. It is
therefore not clear how to exhaustively search a bounded
region at a fixed resolution. It is also difficult to design
approaches that behave like a multiresolution grid, in
which refinements can be made arbitrarily to ensure res-
olution completeness.

Many algorithms attempt to convert the reachability
tree into a lattice. This is the basis of the original kino-
dynamic planning work [29], in which the discretize-time
approximation to the double integrator, q̈ = u, is forced
onto a lattice as shown in Figure 5.14. This enables an
approximation algorithm to be developed that solves the
kinodynamic planning problem in time polynomial in the
approximation quality 1/ǫ and the number of primitives
that define the obstacles. Generalizations of the meth-
ods to fully-actuated systems are described in [60]. Sur-

q̇

q

Figure 5.14: Reachability graph from the origin is shown
after three stages (the true edges are actually parabolic
arcs when acceleration or deceleration occurs). Note that
a lattice is obtained, but the distance traveled in one
stage increases as |q̇| increases.

prisingly, it is even possible to obtain a lattice for some
underactuated, nonholonomic systems [82].

If the reachability tree does not form a lattice, then
one approach is to force it to behave as a lattice by im-
posing a regular cell decomposition over X (or C), and
allowing no more than one vertex per cell to be expanded
in the reachability graph; see Figure 5.15. This idea
was introduced in [8]. In their version of this approach,
the reachability graph is expanded by dynamic program-
ming. Each cell is initially marked as being in collision
or being collision-free, but not yet visited. As cells are
visited during the search, they become marked as such.
If a potential new vertex lands in a visited cell, it is not
saved. This has the effect of pruning the reachability
tree.

Other related approaches do not try to force the reach-
ability tree onto a lattice. RRTs were designed to expand
the tree in a way that is biased toward covering as much
new territory as possible in each iteration [63]. Planners
that are based on the concept of expansive trees attempt
to control the density of vertices in the tree by analyz-
ing neighborhoods [44]. The Path-Directed Subdivision
Tree planner expands a tree, while building an adaptive
subdivision of the state space, so as to avoid resampling
the same regions of the space [54, 56]. Such approaches
can be biased to accelerate the expansion of the tree to-
wards a goal, while still providing the weaker probablistic
completeness guarantee [11].
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a. b.

Figure 5.15: a) The first four stages of a dense reacha-
bility graph for the Dubins car; b) one possible search
graph, obtained by allowing at most one vertex per cell.
Many branches are pruned away. In this simple example,
there are no cell divisions along the θ axis.

5.5 Extensions and Variations

A brief overview of other important extensions to the
basic motion planning problem are presented in this sec-
tion.

5.5.1 Closed Kinematic Chains

In many cases, the robot may be consist of links that
form closed loops. This arises in many important appli-
cations. For example, if two arms grasp an object, then
a loop is formed. A humanoid robot forms a loop if both
legs touch the ground. For parallel robots, loops are in-
tentionally designed into the robot [73]; a classic example
is the Stewart-Gough platform. To model closed-chain
problems, the loops are broken so that a kinematic tree
of links is obtained. The main complication is that con-
straints on C of the form h(q) = 0 are introduced, which
require that the loops are maintained. This causes great
trouble for most planning algorithms because without
loops a parameterization of C was available. The closure
constraints restrict the planning to a lower-dimensional
subset of C for which no parameterization is given. Com-
puting a parameterization is generally difficult or impos-
sible [26], although there has been recent progress for
some special cases [74].

Sampling-based approaches can generally be adapted
to handle closed chains. The main difficulty is that the
samples α(i) over C are unlikely to be configurations that
satisfy closure. In [106], both RRTs and PRMs were

adapted to closed chains. RRTs performed much better
because a costly optimization was required in the PRM
to move samples onto the closure subspace; RRTs on the
other hand, do not require samples to lie in this subspace.
By decomposing chains into active and passive links, fol-
lowed by inverse kinematics computations, performance
was dramatically improved for PRMs in [38]. This idea
was further improved by the introduction of the Random
Loop Generator (RLG). Based on this, some of the most
challenging closed-chain planning problems ever solved
appear in [25].

5.5.2 Manipulation Planning

In most forms of motion planning, the robot is not al-
lowed to touch obstacles. Suppose instead that it is ex-
pected to interact with its environment by manipulating
objects. The goal may be to bring an object from one
place to another, or to rearrange a collection of objects.
This leads to a kind of hybrid motion planning prob-
lem, which mixes discrete and continuous spaces. There
are discrete modes that correspond to whether the robot
is carrying a part [1]. In the transit mode, the robot
moves toward a part. In the transfer mode, it carries the
part. Transitions between modes require meeting spe-
cific grasping and stability requirement. One important
variant of manipulation planning is assembly planning, in
which the goal is to fit a collection of pieces together to
make an assembled product [49]. Most motion planning
work makes limiting assumptions on the kinds of inter-
action that can occur between the robot and the objects.
For richer models of manipulation, see [72].

5.5.3 Time-Varying Problems

Suppose that the workspace contains moving obstacles
for which their trajectories are specified as a function
of time. Let T ⊂ R denote the time interval, which
may be bounded or unbounded. A state, X , is defined as
X = C ×T , in which C is the usual C-space of the robot.
The obstacle region in X is characterized as

Xobs = {(q, t) ∈ X | A(q) ∩ O(t) 6= ∅}, (5.5)

in which O(t) is a time-varying obstacle. Many planning
algorithms can be adapted to X , which has only one
more dimension than C. The main complication is that
time must always increase along a path through X .

For the easiest version of the problem, there is no
bound on the robot speed. In this case, virtually any
sampling-based algorithm can be adapted. Incremental
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Figure 5.16: A time-varying example with linear obstacle
motion.

searching and sampling methods apply with little mod-
ification, except that paths are directed so that forward
time progress is made. Using bidirectional approaches is
more difficult for time-varying problems because the goal
is usually not a single point due to the time dependency.
Sampling-based roadmaps can be adapted; however, a
directed roadmap is needed, in which every edge must be
directed to yield a time-monotonic path.

If the motion model is algebraic (i.e., expressed with
polynomials) then Xobs is semi-algebraic. This enables
cylindrical algebraic decomposition to apply. If Xobs is
polyhedral as depicted in Figure 5.16, then vertical de-
composition can be used. It is best to first sweep the
plane along the T axis, stopping at the critical times
when the linear motion changes.

There has been no consideration so far of the speed at
which the robot must move to avoid obstacles. It is ob-
viously impractical in many applications if the solution
requires the robot to move arbitrarily fast. One step
towards making a realistic model is to enforce a bound
on the speed of the robot. Unfortunately, the problem
is considerably more difficult. Even for piecewise-linear
motions of obstacles in the plane, the problem has been
established to be PSPACE-hard [102]. A complete algo-
rithm based on the shortest-path roadmap is presented
in [85].

An alternative to defining the problem in C × T is to
decouple it into a path planning part and a motion timing
part. A collision-free path in the absence of obstacles is

first computed. A search in a two-dimensional space is
then performed to determine the timing function (or time
scaling) for the path.

5.5.4 Multiple Robots

A simple extension to the basic motion planning problem
can be made to handle multi-body robots by including
robot self-intersections; however, it is important to spec-
ify the pairs of bodies for which collision is unacceptable.
For example, consecutive links in a robot arm are allowed
to touch.

Substantial attention has been devoted to the prob-
lem of planning for multiple robots. Suppose there are
m robots. A state space is defined that considers the
configurations of all robots simultaneously,

X = C1 × C2 × · · · × Cm. (5.6)

A state x ∈ X specifies all robot configurations, and may
be expressed as x = (q1, q2, . . . , qm). The dimension of
X is N , which is N =

∑m
i=1 dim(Ci).

There are two sources of obstacle regions in the state
space: 1) robot-obstacle collisions, and 2) robot-robot col-
lisions. For each i such that 1 ≤ i ≤ m, the subset
of X that corresponds to robot Ai in collision with the
obstacle region, O, is

X i
obs = {x ∈ X | Ai(qi) ∩ O 6= ∅}. (5.7)

This models the robot-obstacle collisions.
For each pair, Ai and Aj , of robots, the subset of X

that corresponds to Ai in collision with Aj is

X ij
obs = {x ∈ X | Ai(qi) ∩Aj(qj) 6= ∅}. (5.8)

Both (5.7) and (5.8) will be combined in (5.9) to yield
Xobs. The obstacle region in X is

Xobs =

(

m
⋃

i=1

X i
obs

)

⋃





⋃

ij, i6=j

X ij
obs



 . (5.9)

Once these definitions have been made, any general-
purpose planning algorithm can be applied because X
and Xobs appear no different from C and Cobs, except
that the dimension, N may be very high. Approaches
that plan directly in X are called centralized. The high
dimensionality of X motivates the development of decou-
pled approaches that handle some aspects of the planning
independently for each robot. Decoupled approaches are
usually more efficient, but this usually comes at the ex-
pense of sacrificing completeness. An early decoupled
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Figure 5.17: The obstacles that arise from coordinating
m robots are always cylindrical. The set of all 1

2m(m−
1) axis-aligned 2D projections completely characterizes
Xobs.

approach is prioritized planning [30, 105], in which a path
and timing function is computed for the ith robot while
treating the first i−1 robots as moving obstacles as they
follow their paths. Another decoupled approach is fixed-
path coordination [99], in which the paths are planned
independently for each robot, and then their timing func-
tions are determining by computing a collision-free path
through an m-dimensional coordination space. Each axis
in this space corresponds to the domain of the path of
one robot. Figure 5.17 shows an example. The idea has
been generalized to coordination on roadmaps [34, 62].

5.5.5 Uncertainty in Predictability

If the execution of the plan is not predictable, then feed-
back is needed. The uncertainty may be modeled either
implicitly, which means that the plan is able to respond
to unexpected future configurations, or explicitly, which
means that the uncertainty is precisely characterized and
analyzed in the development of a plan. As we have poten-
tial function based approaches are one way of achieving
feedback motion planning.

A plan can be represented as a vector field over Cfree,
in which each vector indicates the required velocity. The
integral curves of the field should flow into the goal with-
out leaving Cobs. If dynamics are a concern, then the

vector field can be tracked by a acceleration-based con-
trol model:

u = K(f(q)− q̇) +∇q̇f(q) (5.10)

in which K is a scalar gain constant. Alternatively, a vec-
tor field may be designed directly on the phase space, X ;
however, there are not methods to compute such fields
efficiently under general conditions. This can also be
considered as a feedback control problem with implicit,
nonlinear constraints on X .

If the uncertainty is modeled explicitly, then a game
against nature is obtained, in which the uncertainty is
caused by a special decision maker called nature. The
decisions of nature can either be modeled nondetermin-
istically, which means that a set of possible actions is
specified, or probabilistically, which means that a prob-
ability distribution or density is specified over the na-
ture actions. Under nondeterministic uncertainty, worst-
case analysis is usually performed to select a plan; under
probabilistic uncertainty, expected-case analysis is usu-
ally performed. Numerous approaches exist for such
problems, including value iteration, Dijkstra-like algo-
rithms, and reinforcement learning algorithms [60].

5.5.6 Sensing Uncertainty

Consider solving tasks such as localization, map build-
ing, manipulation, target tracking, and pursuit-evasion
(hide-and-seek) with limited sensing. If the current con-
figuration or state is not known during execution, then
the problem is substantially more difficult. Information
is obtained from sensors, and the problem naturally lives
in an information space or I-space (see Chapter 11 of
[60]). The state may include the configuration, veloci-
ties, or even the map of the environment (e.g., obstacles).
The most basic I-space is the set of all histories that
can be obtained during execution, based on all sensing
observations, actions previously applied, and the initial
conditions. The goal in developing efficient algorithms in
this context is to determine information mappings that
reduce the I-space size or complexity so that plans that
can be computed that use information feedback. The tra-
ditional way to use the information state is for estimating
the state. This is sufficient for solving many tasks, but
it is often not necessary. It may be possible to design
and execute successful plans without ever knowing the
current state. This can lead to more robust robot sys-
tems which may also be cheaper to manufacture due to
weaker sensing requirements. For more material related
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to this topic, see the chapter included in Section C of
this book.

5.6 Advanced Issues

We cover here a series of more advanced issues, such
as topics from topology and sampling theory, and how
they influence the performance of motion planners. The
last section is devoted to computational algebraic geom-
etry techniques that achieve completeness in the general
case. Rather than being a practical alternative, these
techniques serve as an upper bound on the best asymp-
totic running time that could be obtained.

5.6.1 Topology of Configuration Spaces

Manifolds

One reason that the topology of a C-space is important,
is because it effects its representation. Another reason is
that if a path-planning algorithm can solve problems in
a topological space, then that algorithm may carry over
to topologically equivalent spaces.

The following definitions are important in order to de-
scribe the topology of C-space. A map φ : S → T is
called a homeomorphism if φ is a bijection and both φ
and φ−1 are continuous. When such a map exists, S
and T are said to be homeomorphic. A set S is a n-
dimensional manifold if it is locally homeomorphic to
R

n, meaning that each point in S possesses a neighbor-
hood that is homeomorphic to an open set in R

n. For
more details, see [14, 39].

In the vast majority of motion planning problems,
the configuration space is a manifold. An example of
a C-space that is not manifold is the closed unit square:
[0, 1]×[0, 1] ⊂ R

2, which is a manifold with boundary ob-
tained by pasting the one-dimensional boundary on the
two-dimensional open set (0, 1)×(0, 1). When a C−space
is a manifold, then we can represent it with just n pa-
rameter, in which n is the dimension of the configuration
space. Although an n-dimensional manifold can be rep-
resented using as few as n parameters, due to constraints
it might be easier to use a representation that has higher
number of parameters, e.g. the unit circle S

1 can be rep-
resented as S

1 = {(x, y)|x2 + y2 = 1} by embedding S
1

in R
2. Similarly T 2 can be embedded in R

3.

Representation

Embeddings to higher-dimensional spaces can facilitate
many C-space operations. For example, the orientation
of a rigid body in space can be represented by a n × n
matrix of real numbers. The n2 matrix entries must sat-
isfy a number of smooth equality constraints, making the
manifold of such matrices a submanifold of R

m2

. One ad-
vantage is that these matrices can be multiplied to get
another matrix in the manifold. For example, the orien-
tation of a rigid-body in n-dimensional space (n = 2 or 3)
is described by the set SO(n), the set of all n×n rotation
matrices. The position and orientation of a rigid body is
represented by the set SE(n), the set of all n× n homo-
geneous transformation matrices. These matrix groups
can be used to (a) represent rigid-body configurations,
(b) change the reference frame for the representation of
a configuration and (c) displace a configuration.

There are numerous parameterizations of SO(3) [22]
but unit quaternions correctly preserve the C-space
topology as S

1 represents 2D rotations. Quaternions
were introduced in Chapter 1. There is, however, a two-
to-one correspondence between unit quaternions and 3D
rotation matrices. This causes a topological issue that is
similar to the equivalence of 0 and 2π for 2D rotations.
One way to account for this is to declare antipodal (oppo-
site) points on S

3 to be equivalent. In planning, only the
upper hemisphere of S

3 is needed, and paths that cross
the equator instantly reappear on the opposite side of S

3,
heading back into the northern hemisphere. In topology,
this is called a real projective space: RP

3. Hence, the
C-space of a 3D body capable only of rotation is RP

3. If
both translation and rotation are allowed, then SE(3),
of set of all 4 × 4 homogeneous transformation matrices
yields:

C = R
3 × RP

3, (5.11)

which is six-dimensional. A configuration q ∈ C can
be expressed using quaternions with seven coordinates,
(x, y, z, a, b, c, d), in which a2 + b2 + c2 + d2 = 1.

5.6.2 Sampling Theory

Since the most succesful paradigm for motion planning
today is the sampling-based framework, presented in Sec-
tion 5.2, sampling theory becomes relevant to the motion
planning problem.

Metrics in Configuration/State spaces

Virtually all sampling-based methods require some no-
tion of distance on C. For example, the sampling-based
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Type of Robot C-space Representation
Mobile robot translating in the plane R

2

Mobile robot translating and rotating in the plane SE(2) or R
2 × S1

Rigid body translating in the three-space R
3

A spacecraft SE(3) or R
3 × SO(3)

An n-joint revolute arm T n

A planar mobile robot with an attached n-joint arm SE(2)× T n

Table 5.1: Some common robots and their C-spaces

roadmap method selects candidate vertices to connect
a new configuration given a distance-defined neighbor-
hood. Similarly, the rapidly-exploring dense trees ex-
pands the tree from the nearest node of the tree to
a newly sampled configuration. Usually, a metric, ρ :
C × C → R, is defined, which satisfies the standard ax-
ioms: nonnegativity, reflexivity, symmetry, and the tri-
angle inequality.

Two difficult issues that arise in constructing a met-
ric are: 1) the topology of C must be respected, and 2)
several different quantities, such as linear and angular
displacements, must be compared in some way. To illus-
trate the second issue, consider defining a metric ρz for
a space constructed as Z = X × Y as

ρz(z, z′) = ρz(x, y, x′, y′) = c1ρx(x, x′) + c2ρy(y, y′).
(5.12)

Above, c1 and c2 are arbitrary positive constants that
indicate the relative weights of the two components. For
a 2D rotation, θi, expressed as ai = cos θi and bi = sin θi,
a useful metric is:

ρ(a1, b1, a2, b2) = cos−1(a1a2 + b1b2). (5.13)

The 3D equivalent is obtained by defining

ρ0(h1, h2) = cos−1(a1a2 + b1b2 + c1c2 + d1d2), (5.14)

in which each hi = (ai, bi, ci, di) is a unit quater-
nion. The metric is defined as ρ(h1, h2) =
min(ρ0(h1, h2), ρ0(h1,−h2)), by respecting the required
identification of antipodal points. This computes the
shortest distance in R

4, for a path constrained to the
unit sphere.

In some algorithms, defining volume on C may also be
important. In general, this leads to a measure space, for
which the volume function (called measure) must sat-
isfy axioms that resemble the probability axioms, but
without normalization. For transformation groups, one
must be careful to define volumes in a way that is invari-
ant with respect to transformations. Such volumes are

called Haar measure. Defining volumes via balls using
the metric definitions (5.13) and (5.14) actually satisfy
this concern.

Probabilistic vs. Deterministic Sampling

The C-space may be sampled probabilistically or deter-
ministically. Either way, the requirement is usually that
a dense sequence, α, of samples is obtained. This means
that in the limit as the number of samples tends to in-
finity, the samples get arbitrarily close to every point in
C. For probabilistic sampling, this denseness (with prob-
ability one) ensures probabilistic completeness of a plan-
ning algorithm. For deterministic sampling, it ensures
resolution completeness, which means that if a solution
exists, the algorithm is guaranteed to find it; otherwise,
it may run forever.

For probabilistic sampling, samples are selected ran-
domly over C, using a uniform probability density func-
tion. To obtain uniformity in a meaningful way, the Haar
measure should be used. This is straightforward in many
cases; SO(3) however is tricky. A uniform with respect
to Haar measure random quaternion is selected as fol-
lows. Choose three points u1, u2, u3 ∈ [0, 1] uniformly at
random, and let [4]

h = (
√

1− u1 sin 2πu2,
√

1− u1 cos 2πu2,√
u1 sin 2πu3,

√
u1 cos 2πu3).

(5.15)

Even though random samples are uniform in some
sense, they are also required to have some irregular-
ity to satisfy statistical tests. This has motivated the
development of deterministic sampling schemes that of-
fer better performance [76]. Instead of being concerned
with randomness, deterministic sampling techniques are
designed to optimize criteria, such as discrepancy and
dispersion. Discrepancy penalizes regularity in the sam-
ple, which frequently causes trouble in numerical inte-
gration. Dispersion gives the radius of the largest empty
(not containing samples) ball. Thus, driving dispersion
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down quickly means that the whole space is explored
quickly. Deterministic samples may be irregular neigh-
borhood structure (appearing much like random sam-
ples), or regular neighborhood structure, which means
that points are arranged along a grid or lattice. For
more details in the context of motion planning, see [60].

5.6.3 Computational Algebraic Geome-

try Techniques

Sampling-based algorithms which provide good practical
performance at the expense of achieving only a weaker
form of completeness. On the other hand, complete al-
gorithms, which are the focus of this section, are able to
deduce that there is no solution to a planning problem.

Complete algorithms are able to solve virtually any
motion planning problem as long as Cobs is represented
by patches of algebraic surfaces. Formally, the model
must be semi-algebraic, which means that it is formed
from unions and intersections of roots of multivariate
polynomials in q, and for computability, the polynomials
must have rational coefficients (otherwise roots may not
have finite representations). The set of all roots to poly-
nomials with rational coefficients is called real algebraic
numbers and has many nice computational properties.
See [9, 19, 75, 90] for more information on the exact rep-
resentation and calculation with real algebraic numbers.
For a gentle introduction to algebraic geometry, see [26].

To use techniques based on algebraic geometry, the
first step is to convert the models into the required poly-
nomials. Suppose the models the robot, A, and obsta-
cles, O, are semi-algebraic (this includes polyhedral mod-
els). For any number of attached 2D or 3D bodies, the
kinematic transformations can be expressed using poly-
nomials. Since polynomial transformations of polyno-
mials yield polynomials, the transformed robot model is
polynomial. The algebraic surfaces that comprise Cobs

are computed by carefully considering all contact types,
which characterize all ways to pair a robot feature (faces,
edges, vertices) with an obstacle feature [28, 57, 60, 71].
This step already produces too many model primitives
to be useful in most applications.

Once the semi-algebraic representation has been ob-
tained, powerful techniques from algebraic geometry can
be exploited. One of the most widely-known algorithms,
cylindrical algebraic decomposition [3, 9, 24], provides the
information needed to solve the motion planning prob-
lem. It was originally designed to determine whether
Tarski sentences, which involve quantifiers and polyno-
mials, are satisfiable, and to find an equivalent expres-

sion that does not involve quantifiers. The decomposi-
tion produces a finite set of cells over which the signs of
the polynomials remain fixed. This enables a systematic
approach to satisfiability and quantifier elimination. It
was recognized by Schwartz and Sharir [90] that it also
solves motion planning.
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Figure 5.18: a) A face that is modeled with four algebraic
primitives, b) a cylindrical algebraic decomposition of
the face.

The method is conceptually simple, but there are
many difficult technical details. The decomposition is
called cylindrical because the cells are organized into ver-
tical columns of cells, as shown in Figure 5.18 for a 2D
example. There are two kinds of critical events, shown
in Figure 5.19. At critical points, rays are extended in-
definitely in both vertical directions. The decomposition
differs from the vertical decomposition in Figure 5.7 be-
cause there the rays were only extended until the next
obstacle was hit. Here, columns of cells are obtained.

In n dimensions, each column represents a chain of
cells. The first and last cells are n-dimensional and un-
bounded. The remaining cells are bounded and alternate

Folding over Intersection

Figure 5.19: Critical points occur either when the sur-
face folds over in the vertical direction or when surfaces
intersect.
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between being (n − 1)-dimensional and n dimensional.
The bounded n-dimensional cells are bounded above and
below by the roots of single multivariate polynomials.
This makes it simple to describe the cells and their con-
nectivity. To compute this cell decomposition, the algo-
rithm constructs a cascading chain of projections. In the
first step, Cobs is projected from R

n to R
n−1. This is fol-

lowed by a projection into R
n−2. This repeats until R is

obtained with a univariate polynomial that encodes the
places at which all critical boundaries need to be placed.
In a second phase of the algorithm, a series of liftings
is performed. Each lifting takes the polynomials and
cell decomposition over R

i and lifts them via columns
of cells to R

i+1. A single lifting is illustrated in Figure
5.18.b. The running time of the full algorithm depends
on the particular methods used to perform the algebraic
computations. The total running time required to use
cylindrical algebraic decomposition for motion planning
is bounded by (md)O(1)n

, in which m is the number of
polynomials to describe Cobs (a huge number), and d is
the maximum algebraic degree.1 The main point to re-
member is that the algorithm is doubly-exponential in
the dimension of C (even the number of cells is doubly-
exponential).

Although performing the cylindrical decomposition is
sufficient for solving motion planning, it computes more
information than is necessary. This motivates Canny’s
roadmap algorithm [19], produces a roadmap directly
from the semi-algebraic set, rather than constructing a
cell decomposition along the way. Since there are doubly-
exponentially many cells in the cylindrical algebraic de-
composition, avoiding this construction pays off. The
resulting roadmap method of Canny solves the motion
planning problem in time that is again polynomial in
the number of polynomials and polynomial in the alge-
braic degree, but is only singly-exponential in dimension
[19].

The basic idea is to find silhouette curves in R
2 of

Cobs in R
n. The method finds zero-dimensional critical

points and one-dimensional critical curves. The critical
curves become roadmap edges, and the critical points
are places at which the algorithm recursively finds sil-
houettes of (n−1) dimensional slices of Cobs. These con-
tribute more critical points and curves. The curves are
added to the roadmap, and the algorithm recurses again
on the critical points. The recursive iterations terminate

1It may seem odd for O(·) to appear in the middle of an expres-
sion. In this context, it means that there exists some c ∈ [0,∞)
such that the running time is bounded by (md)c

n

. Note that an-
other O is not necessary in the front of the whole formula.

at n = 2. Canny showed that the resulting union of crit-
ical curves preserves the connectivity of Cobs (and hence,
Cfree). Some of the technical issues are: the algorithm
works with a stratification of Cobs into manifolds; there
are strong general position assumptions that are hard to
meet; paths are actually considered along the boundary
of Cfree; the method does not produce a parameterized
solution path. For improvements to Canny’s algorithm
and many other important details, see [9].

5.7 Conclusions and Further

Reading

The brief survey given here hardly does justice to mo-
tion planning, which is a rich and active research field.
For more details, we recommend consulting two recent
textbooks [23, 60]. In addition, see the classic textbook
of Latombe [57], the classic papers in [91], and the re-
cent surveys in [36, 70]. Furthermore, consult the related
handbook chapters that were indicated throughout this
chapter. Good luck with the literature!



Bibliography

[1] R. Alami, J.-P. Laumond, and T. Siméon. Two ma-
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