
1

Mapping and Pursuit-Evasion Strategies For a
Simple Wall-Following Robot

Anna Yershova, Benjaḿın Tovar, Max Katsev, Robert Ghrist, Steven M. LaValle

Abstract—This paper defines and analyzes a simple robot with
local sensors that moves in an unknown polygonal environment.
The robot can execute wall-following motions and can traverse
the interior of the environment only when following parallel
to an edge. The robot has no global sensors that would allow
precise mapping or localization. Special information spaces are
introduced for this particular model. Using these, strategies
are presented for solving several tasks: 1) counting vertices, 2)
computing the path winding number, 3) learning a combinatorial
map, called the cut ordering, that encodes partial geometric
information, and 4) solving pursuit-evasion problems.

I. I NTRODUCTION

Imagine designing motion strategies for a simple, low-
cost, differential-drive robot. The main objective in thispaper
is to investigate what kinds of global information can be
learned and what kinds of tasks can be accomplished with
as little sensing and actuation as possible. In a planar, indoor
environment, wall-following is a simple operation that is
easily accomplished using a contact sensor or short-range
infrared sensor. Suppose the walls are polygonal and the robot
approaches a vertex. If the interior angle at the vertex is greater
than π, then it is possible for the robot to move past the
wall by continuing to travel in the direction that the wheels
are pointing. This case is called areflex vertex. See Figure
1(a). These assumptions lead to a motion model that allows
following walls and occasionally extending beyond the wall
until another wall is contacted. Suppose that sensors can be
used to determine whether the robot is at a reflex vertex, a
convex vertex (interior angle less thanπ), the interior of an
edge, or the interior of the environment. This is shown in
Figure 1(b). The robot has no sensors that can measure precise
distances or angles.

Such a motion model is realistic for many low-cost, widely
available platforms, such as iRobot Roomba or Lego NXT. To
demonstrate the model, we purchased a Tamiya 70068 Wall-
Hugging Mouse for $15 US (see Figure 2(a)) and made minor

This work was supported in part by DARPA HR0011-05-1-0008, NSF
0535007, and ONR N000014-02-1-0488 grants.

Anna Yershova is with the Department of Computer Science, DukeUni-
versity, Durham, NC 27707, USA (e-mail: yershova@cs.duke.edu).

Benjaḿın Tovar is with the Department of Mechanical Engineer-
ing, Northwestern University, Evanston, IL 60208 USA (email: b-
tovar@northwestern.edu).

Max Katsev is with the Department of Computer Science, University of
Illinois, Urbana, IL 61801 USA (email: katsev1@uiuc.edu).

Robert Ghrist is with the Departments of Mathematics and Electri-
cal/Systems Engineering, University of Pennsylvania, Philadelphia, PA 19104
USA (email: ghrist@seas.upenn.edu).

Steven M. LaValle (corresponding author) is with the Department of
Computer Science, University of Illinois, Urbana, IL 61801 USA (email:
lavalle@uiuc.edu).

lfollow

rfollow
jump

(a)

reflex

convex

edgeinterior

(b)

Fig. 1. (a) The robot can execute three movements: following the wall when
it is to the right (RFOLLOW), following it on the left (LFOLLOW), and jumping
straight to the next wall, traveling past a reflex vertex(JUMP). (b) The robot
has a sensor that can distinguish between being in the interior, at a convex
vertex, at a convex vertex, or in the interior of an edge.

modifications. The entire hardware consists of: 1) batteries
connected by wire to two independent motors, each of which
drives a wheel, and 2) a binary force sensor connected to
a stiff whisker, which is used to switch off power to one
wheel when the whisker is pressed. No digital or analog
circuitry is used (only wires connect the motors, battery,
and sensor). By switching the default wiring, we modified
the mouse so that it has two operation modes: 1) when the
whisker is depressed, it turns slightly left, hugging a wall,
and 2) when the whisker is not depressed, it moves straight.
We performed several experiments in polygonal environments
constructed from cinder blocks, showing that the jump motion
of Figure 1(a) can be reliably executed. See Figure 2(b) and
2(c). The robot can alternatively follow the wall, which is
easily achieved in its original “as-is” wall-hugging setup. Of
course, these motions could be implemented in many other
ways; the main focus of this paper is to understand what can
be theoretically accomplished with such a cheap robot.

What kind of tasks can be accomplished with such a
simple model, when the robot is dropped into an unknown
environment? This question is answered from Sections IV to
VI, which represent the main technical contributions of this



(a) Tamiya mouse robot (before modification)

(b) (c)

Fig. 2. (a) A simple robot (costing $15 US). (b), (c) Two frames of a video
that shows the robot moving along a polygonal wall and “jumping” from a
reflex vertex.

paper. Before these are presented, related literature and basic
definitions are provided in Sections II and III, respectively.
Following this, Section IV shows that the robot can accomplish
two simple tasks: counting the number of vertices and deter-
mining the number of times the robot “wrapped around” the
boundary. It is furthermore established that apebble(common
in on-line exploration [3], [7], [17]) is required to accomplish
these tasks.

Section V considers a combinatorial mapping and localiza-
tion problem. Thecut orderingis introduced, which is a new
map that encodes precisely the geometric information that can
be learned using the simple robot. We introduce a strategy
that learns the cut ordering using a quadratic number of robot
motions in terms of the number of polygonal environment
edges. By building on the cut ordering, Section VI considers
the pursuit-evasion problem, which involves systematically
searching for an unpredictable moving target in the envi-
ronment. This problem is considerably difficult because the
environment is unknown, the robot cannot learn its precise
structure, and it must pin down an elusive moving target. We
introduce complete strategies for models that equip the robot
with moderately more powerful sensors, which still cannot
measure distances or angles. Completeness means that if a
solution exists, the algorithm must find it; otherwise, it must
report failure. We also introduce a strategy for the case of the
weakest sensors; however, it may or may not be complete.
It is based on conservatively approximating the pursuit status
at every step, which leads to strategies that are guaranteedto
find any and all unpredictable evaders. Finally, Section VII
describes numerous interesting questions and open problems
that are based on models considered in this paper. Parts of this
work appeared in preliminary form in [78].

II. RELATED WORK

At the highest level, there are numerous efforts in robotics
literature that attempt to accomplish tasks with as little sensing
as possible. Examples include sensorless manipulation [16],
[20], [22], [25], [49], bug strategies [32], [33], [40], [50], and
gap navigation trees: [38], [54], [28], [75]. On-line exploration
strategies make simple motion models and try to reduce the
amount of memory or total distance traveled [6], [13], [14],
[23], [24], [34], [35], [51], [60], [66].

Most of these works that aim at understanding minimal re-
quirements involve defining and analyzinginformation spaces
associated with the sensing and actuation models (see [41],
Chapter 11). The general idea is that the space of sensing and
actuation histories can be compressed into smaller spaces that
are used for filtering and planning, without requiring full state
estimation. The basic concept of an information space can be
traced back to work of Kuhn [36] in the context of game trees.
There, the nondeterministic information state is referredto as
an information set. After spreading throughout game theory,
the concept was also borrowed into stochastic control theory
(see [4], [37]). The terminformation state, I-state for short,
is used extensively in [1] in the context of sequential and
differential game theory. For further reading on information
spaces in game theory, see [1], [59]. In artificial intelligence
literature, I-states are referred to asbelief statesand are
particularly important in the study of Partially Observable
Markov Decision Processes (POMDPs). In robotics literature,
they have been calledhyperstates[26] and knowledge states
[21]. Concepts closely related to I-spaces also appear as
perceptual equivalence classesin [18] and the information
invariants in [17]. Information spaces were proposed as a
general way to represent planning under sensing uncertainty
in [2], [43], [44].

There are numerous related works on localization, mapping,
or both, often referred to as SLAM (Simultaneous Localization
and Mapping). Most of this work focuses on exploring an
information space that represents probability distributions over
all possible configurations and environments [8], [9], [11],
[15], [53], [62], [74], [77]. Aside from our previous paper
[78], the most related work is [70], in which thecombinatorial
visibility vector (cvv) is introduced as a sensing models that
allows a minimalist robot to count the number of holes in
an unknown polygonal environment. The model indicates the
numbers of environment vertices that are visible between each
depth discontinuity when performing an angular sweep. The
information is combinatorial; however, the sensing range is
unbounded. In Sections IV and V, we will consider localiza-
tion and mapping problems using sensors that have only local
range (for example, contact sensors).

Although mapping and localization is an important, basic
operation, we often want robots to solve more complex tasks,
such as tracking or searching for moving targets. Section VI
addresses a pursuit-evasion problem that involves finding an
unpredictable moving target in an unknown environment using
our robot with weak sensing and motion capabilities. Pursuit-
evasion problems in general were first studied in differential
game theory [1], [29], [30]. Pursuit-evasion in a graph was

2



introduced in [63], and related theoretical analysis appears in
[5], [39], [52]. Visibility-based pursuit-evasion was introduced
in [72], and the first complete algorithm appeared in [45].
An algorithm that runs inO(n2) for a single pursuer in a
simple polygon was given in [61]. Variations that consider
curved environments, beams of light, and other considerations
appear in [10], [12], [19], [42], [48], [56], [68], [69], [71],
[73], [76]. Pursuit-evasion in three dimensions is discussed in
[47]. Versions that involve minimal sensing and no prior given
map are most closely related to Section VI: [28], [31], [65],
[67], [78].

III. B ASIC DEFINITIONS

A. State, Action, and Observation Spaces

The robot is modeled as a point that can translate and rotate
in a simply connected polygonal environment. The configura-
tion space of the robot isSE(2), in which each configuration
is represented by(xp, yp, θ), with (xp, yp) ∈ R

2 as the robot
position andθ ∈ S1 as the orientation. It is assumed that the
environmentE ⊂ R

2, an obstacle-free region, is the closure
of a simply connected, bounded, polygonal open set. The
environment is unknown to the robot; therefore, letE be the set
of all possible environments. Let∂E denote the boundary of
E ∈ E . Note that eachE ∈ E can be encoded by specifying the
vertices along∂E in cyclic order. We make a general position
assumption by restrictingE only to include environments that
contain no three collinear vertices.

In addition to the robot, the environment may contain a
pebble, which is a special point that can be detected and moved
by the robot. This will help the robot to recognize when it
revisits a place. If the robot and pebble positions are identical,
then the robot may or may not be carrying the pebble. Let
Q = {0, 1} represent the set of values for a state variableq,
in which q = 1 means that the robot is holding the pebble;
otherwise,q = 0.

Let X be the state space, which encodes all possible
configurations for the robot and the pebble in the environment.
Possible configurations of the robot are a subset ofSE(2),
whereas for the pebble are a subset ofR

2. If E were given in
advance, then a reasonable choice for the state space would
be X ⊂ SE(2) × R

2 × Q, which could be parametrized in
particular asX = E2×S1×Q. For the problems in this paper,
however, the environment is unknown and properties of it are
discovered as the robot moves. Therefore, the state space is
defined as:

X ⊂ SE(2)× R
2 ×Q× E . (1)

For a particular state, we require that both the position of the
robot and the pebble to be inside the environment.

The robot sensors are modeled as follows. LetY be an
observation space, which is a set of possible sensor readings.
A sensor mappingh : X → Y is defined that indicates what
the sensor is supposed to observe from statex ∈ X. Two
sensors mappings are defined. For the first one, thetouch
sensor, consider the robot’s position(xp, yp) ∈ E. Every
environmentE can be partitioned into four sets: 1) the interior
of E, 2) the interior of an edge along∂E, 3) a convex vertex
(interior angle less thanπ), and 4) a reflex vertex (interior

angle greater thanπ). The touch sensorht : X → Yt yields
an observation that correctly determines which of these four
sets contains(xp, yp). The observation space is

Yt = {INTERIOR, EDGE, CONVEX, REFLEX}. (2)

The second sensor mapping,pebble sensor, considers the
position of the robot and the pebble inE. The pebble sensor
hq : X → {0, 1} indicates withhq(x) = 1 if the robot and
pebble positions are identical; otherwise,hq(x) = 0. These
two sensors are combined into a single sensor mappingh :
X → Yt × {0, 1}, which yieldsy = h(x) from anyx ∈ X.

An action spaceU is defined to model robot motions. Each
action u ∈ U causes the robot to move until some internal
termination condition is met. This results in a set of discrete
stages, in which stagei = 1 is the initial stage, and stagei = k
is the resulting stage afterk− 1 actions have been applied. A
state transition functionf : X × U → X is defined, which
yields a new statexk+1 whenuk ∈ U is applied from some
xk ∈ X.

For the robot model in this paper,U is defined as the set
of the following actions (the first three were shown in Figure
1(a)).

1) u = RFOLLOW, which traverses an edge in the coun-
terclockwise direction until either the next vertex or
the pebble is reached. This action can only be applied
when the robot is making contact with∂E, and during
execution, the edge transversed is to the right of the
robot.

2) u = LFOLLOW, which traverses an edge in the clock-
wise direction until a vertex or the pebble is reached.
Analogously toRFOLLOW, the edge is to the left of the
robot, and the robot is in contact with∂E.

3) u = JUMP, which is applicable only from a reflex vertex.
Assume that the robot arrived at the reflex vertex after
traversing a wall. Whenu = JUMP is applied, the robot
continues to move straight into the interior ofE until
∂E is hit again.

4) u = GRAB, which picks up the pebble, enabling the
robot to carry it. This action can only be applied if the
robot and pebble are at the same position.

5) u = DROP, which places the pebble at the current robot
position.

6) u = INIT , which applies from any configuration and
terminates whenever the robot reaches any vertex of
∂E. Imagine the robot uses a standard differential-
drive mechanism. The robot can move straight from the
interior of E until a wall is hit and then follow the wall
in an arbitrary direction (sayRFOLLOW) until a vertex
is reached. Assume that once the vertex is reached, the
wheels are pointing in the direction parallel to the wall
that was just traversed.

B. Information Spaces

Although we assume that the statespace is known, the
particular state will be, in general, unknown to the robot.
Therefore, we need to be precise about what information the
robot has available. In general, such information is calledan

3



information stateor I-state for short. For further details and
alternative formulations of information spaces, see Chapter 11
of [41].

This most direct and basic I-state will be called thehistory
I-state, and is defined at stagek as

ηk = (u1, . . . , uk−1, y1, . . . , yk), (3)

which is simply the sequence (or “memory”) of all actions
taken and observations received up to stagek. The set of all
possibleηk for all possiblek is called thehistory I-spaceand
is denoted byIhist.

Although Ihist is natural because it arises directly from
the problem, it is difficult to analyze, due in part to the linear
growth of I-state components with respect tok. This motivates
the construction of mappings that attempt to projectIhist
down to a “smaller” space that will be more manageable for
analysis and computation. LetIder be any set and consider a
mappingκ : Ihist → Ider. In general,Ider is called aderived
I-space and κ is called aninformation mappingor I-map.
Ideally, Ider and κ should be chosen so that aninformation
transition functioncan be defined:

κ(ηk+1) = fder(κ(ηk), uk, yk+1). (4)

This means thatκ(ηk) can be computed incrementally
without storing elements ofIhist. The derived I-stateκ(ηk),
which is usually smaller, can be used together withuk and
yk+1 to obtainηk+1. An example of this occurs in the Kalman
filter, in which the current mean, covariance, action, and
observation are sufficient for obtaining the new mean and
covariance, rather than referring back to the complete history
I-state. In one trivial case,κ is the identity function, which
yields

ηk+1 = fhist(ηk, uk, yk+1), (5)

based on simply insertinguk andyk+1 into ηk to obtainηk+1.
If a mapping of the form in (4) exists, then a kind of filter

can be made that essentially “lives” inIder, rather thanIhist.
The goal in the coming sections will be to chooseIder and
κ carefully so that the derived I-space can be analyzed and
the derived I-states contain information that is sufficientfor
solving a specified task.

IV. COUNTING WINDINGS AND VERTICES

Now we consider basic filtering problems, which includes
determining simple properties of the robot path and the
environment. The concepts in this section are somewhat
straightforward; however, they serve to illustrate the technical
definitions and concepts of Section III, which are critical for
later sections.

We consider a model in which only the actionsINIT ,
RFOLLOW, and LFOLLOW are available, and that the pebble
is fixed at some vertex. This brings a couple of restrictions.
First, the robot can sense the pebble, but it cannot manipulate
it. Second, it can move from vertex to vertex, but cannot jump
and cannot determine whether a vertex is convex or reflex. To
simplify the expressions below, assume that in an initial stage
i = 0, u0 = INIT is successfully applied so that robot is
already at a vertex ofE.

A. Determining the Winding Number

The first task is to determine the number of times that the
robot haswrapped around ∂E. This is called thewinding
number, and is the number of times the robot has traveled
around∂E by systematically eliminating all reversals. In a
continuous setting, this is obtained by taking the shortest
path within its homotopy class. The winding number can
be positive, negative, or zero. A positive winding number
means that the robot wrapped counterclockwise around∂E,
and negative means clockwise.

We now introduce derived I-spaces to compute interesting
statistics based on the history I-state. For this, letui ∈ U be the
action applied at stagei. Forui, let ai = 1 if ui = LFOLLOW,
ai = −1 if ui = RFOLLOW, andai = 0 otherwise.

The I-map

κ1(ηk) =
k−1∑

i=1

|ai| (6)

indicates the total number of edges traversed by the robot. The
right side refers toai, which is derived fromui, and is included
in ηk, the argument toκ1. Note thatκ1 can be implemented
recursively as a filter:

κ1(ηk+1) = κ1(ηk) + |ak|, (7)

which is in the form of (4). Hence, it is possible to “live”
in a derived I-space that indicates only the number of actions
taken.

The I-map

κ2(ηk) =

k−1∑

i=1

ai (8)

yields the distance traveled after eliminating all reversals. This
is called thecombinatorial distance, and is the number of
edges in the shortest path among all those homotopic to the
actual path taken by the robot, with the start and end points
fixed.

If yi is the observation at stage i, then letwi = 1 if the
pebble is detected, andwi = 0 otherwise. The I-map

κ3(ηk) =
k∑

i=1

wi (9)

yields the number of times the pebble has been contacted. Let
κ4(ηk) be the smallesti for which wi = 1.

Proposition 1 The winding number at stagek > κ4(ηk) is
given by

κ5(ηk) =

k−1∑

i=κ4(ηk)+1

wi(ai−1 + ai)/2, (10)

using the pebble location as the base point.

Proof: Consider a path that monotonically traverses∂E
counterclockwisem times, starting and stopping from a vertex
other than the base point. The term(ai−1 + ai)/2 yields 1
during the entire execution. Each time the pebble is crossed,
wi = 1. The pebble is crossedm times, and (10) therefore

4



yields the correct winding number. Now suppose that the
monotonic path starts and stops at the pebble. The sum in (10)
does not count the first pebble contact; however, the last pebble
contact is counted once; hence, the correct winding number is
obtained. By similar arguments, a clockwise monotonic path
yields −m because(ai−1 + ai)/2 yields −1 each time the
pebble is crossed.

Now consider non-monotonic paths. If a reversal occurs
at the pebble, then(ai−1 + ai)/2 yields 0, which is correct
because the pebble was not crossed. If a path crosses the
pebble counterclockwise and the next crossing is clockwise,
then the corresponding two terms in (10) cancel, once
again preserving the correct winding number. After all such
cancellations occur,κ5(ηk) reports the correct winding
number. �

B. Counting Polygon Vertices

Now suppose that the robot needs to count the number
of vertices that lie along∂E. One possibility is to move
counterclockwise until the pebble is encountered twice and
make an I-map that subtracts the stage indices at which the
pebble is contacted. To make the problem more interesting,
consider how to make an I-map that does not constrain the
robot to a particular path but allows it to nevertheless infer
the number of vertices. In this case, a kind of passive filter is
obtained for obtaining the vertex count.

As an intermediate step, define

κ6(ηk) =

k−1∑

i=κ4(ηk)+1

ai, (11)

which indicates the combinatorial distance relative to thefirst
encounter of the pebble. Letκ7(ηk) be the minimumi ≤ k
such thatκ5(ηi)κ6(ηi) 6= 0, or 0 if there is no suchi.

Proposition 2 Let i = κ7(ηk), and κ8(ηk) = |κ6(ηi)|. If
κ8(ηk) 6= 0, thenκ8(ηk) is the number of vertices in∂E.

Proof: If κ8(ηk) is zero, then either the combinatorial
distanceκ6(ηk) from the first encounter of the pebble is
zero, or the winding numberκ5(ηk) is zero. The first time
κ5(ηk)κ6(ηk) is different from zero occurs when the robot
encounter the pebble after winding around∂E exactly once,
and the result follows. �

C. Termination Issues

A pebble was used in the models above because the robot
cannot solve the tasks without it (assuming the rest of the
model remains fixed), as established by the following propo-
sition:

Observation 3 Without a pebble, it is impossible to compute
the winding number or count the number of environment
vertices.

Proof: Consider an infinite sequence of regular polygons
in which the number of verticesn increases incrementally
from n = 3. Imagine that we place the robot in one of the
regular polygons, without indicating which one it is. The
robot is capable of taking counterclockwise or clockwise
steps along∂E, but it has no additional information that it
can use to infer which polygon it is traveling in. Hence, it
cannot count the number of vertices or the winding number if
presented with this sequence of possible environments. Since
this sequence is a strict subset ofE , it is not possible for the
robot to compute the winding number or count the number
of environment vertices. �

V. L EARNING THE ENVIRONMENT STRUCTURE

This section considers what can be learned about the
environment using the actuation and sensing model defined
in Section III. We now use the complete set of actions, the
touch sensor, and the pebble sensor. We introduce a new
combinatorial map, called thecut ordering, which precisely
characterizes what can be learned about the environment and
how the robot can localize itself combinatorially.

A. The Cut Ordering

Consider the paths traversed by theJUMP action from
Section III and Figure 1(a). Each path can be viewed as a
directed segment that starts at a reflex vertex and ends at a
point on∂E. Each such segment will be referred to as acut. If
the robot is following the wall to the left (theLFOLLOW action)
before JUMP is applied, then it is called aleft cut. Suppose
that the vertices along∂E are enumerated fromv1 to vn in
counterclockwise order. For a reflex vertexvi, the terminal
point of the left cut on∂E is denoted as̀i and is called the
cut endpoint. Similarly, if the robot is following the wall to the
right and jumps, then aright cut is obtained. The cut endpoint
is denoted asri. See Figure 3 for a simple example. Note that
every cut endpoint isvisible from its associated reflex vertex.
Two points inE are said to be (mutually) visible if the line
segment that joins them is completely contained inE.

The set of all cuts ofE together with∂E, is called the
cut arrangement ofE. The combinatorial structure of a cut
arrangement is determined by the order in which the cuts
intersect in the interior ofE, and by the order in which the
endpoints of the cuts appear in∂E.

The general position assumption introduced in Section III-A
guarantees that no cut endpoint lands on another vertex. At this
point, to simplify further presentation we also assume thatno
two cut endpoints land on each other. This implies that a point
in ∂E cannot be collinear with two or more edges, if a cut
emanates from each of the edges.

Let M be the complete collection of all vertices and all
endpoints of cuts from reflex vertices. If an environment
boundary hasn vertices,m < n of which are reflex, thenM
containsn+ 2m points. Thecut orderingof an environment
E is the cyclic permutation ofM that is consistent with
the ordering of all points inM as they appear along∂E in

5



v2

v3

`5

`2 r5

r2

v1v6

v4

v5

Fig. 3. An environment that has two reflex vertices and four associated cuts.

counterclockwise order. For the example in Figure 3, the cut
ordering is

(v1, v2, v3, `5, r2, v4, v5, v6, `2, r5). (12)

Since the ordering is cyclic, it can be equivalently expressed
by starting from any element ofM . Furthermore, the vertex
numbering over∂E is arbitrary. Assuming that vertices are
named consecutively in counterclockwise order fromv1 to
vn, there aren possible ways to name vertices depending on
which vertex is calledv1. Two cut orderings are said to be
equivalentif the cyclic ordering is preserved after relabeling
the vertices. For example, if in Figure 3 we relabelv3 to be
v1 and enumerate the other vertices in counterclockwise order,
then (12) becomes

(v1, `3, r6, v2, v3, v4, `6, r3, v5, v6). (13)

This can be made more similar in appearance to (12) by
cyclically shifting each index by two to obtain:

(v5, v6, v1, `3, r6, v2, v3, v4, `6, r3). (14)

If two cut orderings are not equivalent, they are calleddistinct.
The cut ordering can be visualized geometrically by defining

a cut diagram as shown in Figure 4(a) for the polygon in
Figure 4(b). Take the points inM and point them around a
circle in their proper cyclic order. Connect each reflex vertex
vi with a line segment to each of̀i and ri. This clearly
identifies some points along∂E that are mutually visible. The
cut diagram is closely related to other structures for encoding
geometric information in polygons, such as the visibility graph
[55], [57], the chord diagram [72], the visibility obstruction
diagram [46], and the link diagram [19].

Note that the cut diagram indicates segment crossing infor-
mation from the original polygon, even though it is constructed
entirely from the cut ordering:

Proposition 4 For any environmentE, each pair of cuts
intersects if and only if their corresponding segments intersect
in the cut diagram.

Proof: Consider any pair of segments,ss′ and tt′, with
distinct endpoints{s, s′, t, t′} ∈ ∂E. They intersect in the
interior ofE if and only if the cyclic ordering of the endpoints

`5

r3

v1

v3

v5
r1

`5

r1

v8
v9

v2 v1

v3

v5

v7

r3

v4

v6

(a) (b)

Fig. 4. The cut diagram indicates which cuts intersect, but it does not
preserve the combinatorial structure of the cut arrangement.The segments in
(a), which is a partial cut diagram, intersect differently from the actual cuts
in E, which is shown in (b); note that in (a),prp passes to the left of the
intersection of the other two segments; however, in (b), the corresponding cut
passed to the left.

along ∂E alternates betweens or s′ and t or t′. Examples
are(s, t, s′, t′) and(s, t′, s′, t). If the cyclic ordering obtained
by traveling around∂E is (s, s′, t, t′), for example, then the
segments do not intersect. Likewise, the intersections of pairs
of segments in the cut diagram are completely determined
from the cyclic ordering of endpoints around the circle. Since
the cut diagram preserves the cyclic ordering of endpoints
along∂E, the cuts intersect inE if and only if they intersect
in the cut diagram. �

Note however, that the cut diagram does not recover the full
combinatorial structure of the cut arrangement ofE. In other
words, the cell decomposition induced by the cut arrangement
does not necessarily correspond to the cell decomposition
induced by the cut diagram. An example is shown in Figure 4.

B. Derived I-Spaces

Suppose that some actions have been executed by the robot
and some sensor observations have been obtained. Afterk
stages, this results in a history I-stateηk, as given in (3). To
construct derived I-spaces, recall the state spaceX ⊂ SE(2)×
R

2 × P × E . Based onηk, we would like to reason about the
set of possible current statesxk ∈ X. It turns out that the cut
ordering provides a convenient way to characterize these sets.

Recall the collectionE of all environments, as defined in
Section III. EveryE ∈ E has a unique associated cut ordering,
once the equivalence described in Section V-A is taken into
account. LetC denote the set of all possible distinct cut
orderings, for anyn ≥ 3 vertices andm < n reflex vertices.
Since eachE ∈ E maps to a cut ordering, it is natural to ask
whether the mapping fromE to C is onto. This is not the case,
as many cut orderings are not realizable. For example, let a
reflex chainrefer to a sequence of consecutive reflex vertices
along∂E. By simple geometry, it is clear that the cut endpoint
of a vertexv along a reflex chain cannot appear between the
vertices of the same chain. The edges incident tov block the
cuts.

Note that for our problem, numerous environments have the
same cut ordering. The preimages of the mapping fromE to C

6



partitionE into equivalence classes of polygonal environments
that produce the same cut ordering. Polygons within a class
may have quite different scales, relative edge lengths, and
angles between edges.

Let the power set ofC be denoted asIco, which is a derived
I-space under an I-mapκco : Ihist → Ico. To defineκco,
let κco(ηk) be the set of all cut orderings that are consistent
with all of the data inηk. As will be seen shortly, the cut
ordering is incrementally constructed fromηk by moving the
robot according to a specified plan. At any given time, apartial
cut ordering has been learned. The set of all cut orderings into
which the partial cut ordering can be embedded formsκco(ηk).
Intuitively, κco(ηk) corresponds to all full cut orderings that
could possibly be obtained by extending the current, partial
cut ordering.

Therefore, a kind of localization and mapping problem
arises. The problem is to construct a sequence of actions (or
plan) that always results in a unique cut ordering, regardless
of the particular initial configuration or environmentE ∈ E .
Expressed differently, the goal is to obtain|κco(ηk)| = 1 after
some numberk of stages (the particulark may depend on the
initial state).

C. Learning the Cut Ordering

Consider the following strategy1:

Strategy 1 Learning the cut ordering

Description: Initially, the robot executesINIT , drops a pebble
using DROP, and executes a sequence ofLFOLLOW actions
until the pebble is reached again. As shown in Section IV,
the numbern of vertices can easily be counted. Furthermore,
the touch sensor can be used to determine the location of each
reflex vertex. Let the vertices be enumerated during execution,
starting from1 at the pebble, and letF (E) ⊂ {v1, . . . , vn}
be the recorded set of reflex vertices ofE.

To construct the cut ordering, the robot needs to determine
where every left and right cut endpoint reaches∂E. The
precise location need not be determined; however, the cut
ordering requires determining only the cyclic permutation
of all vertices and cut endpoints. For eachvi ∈ F (E),
the robot must determinèi and ri. The method proceeds
inductively. To determinèi, the robot executesu = LFOLLOW

actions until vertexvi is reached and then executesJUMP.
After arriving on ∂E, the robot executes a sequence ofm
LFOLLOW actions until the pebble is reached. The robot infers
that `i is between vertexvn−m+1 (modn) and vn−m(modn).
Similarly, the location ofri is determined by a sequence of
u = RFOLLOW actions to reach vertexvi, followed by aJUMP

action, and finally a concluding sequence ofm RFOLLOW

actions to reach the pebble.
Based on the construction so far, the robot knows only

the edges on which the cut endpoints lie; however, it does

1We intentionally use the wordstrategyrather thanalgorithm to emphasize
that the state (E, robot position, and pebble position) is unknown to the robot;
therefore, it is not aninput to an algorithm in the usual sense.

not know the ordering of the cut endpoints within an edge.
To determine this ordering, a comparison operation can be
executed for each pair of cuts that have endpoints on the
same edge. For the first cut, its correspondingJUMP action
is executed and a pebble is dropped usingDROP at the cut
endpoint. For the second cut, its correspondingJUMP action
is executed. Following this, the robot executesRFOLLOW. If
the pebble is encountered, then the first cut endpoint is to
the right of the second one; otherwise, the order is reversed.

Proposition 5 The robot can learn the cut ordering associ-
ated withE usingO(n2) actions andO(n) space, in which
n is the number of vertices in∂E.

Proof: Using Strategy 1, the number of actions is bounded
above byO(n2) since there areO(n) actions executed for
each cut and there are at mostO(n) cuts. There are exactly
two cuts per reflex vertex; hence, the cut ordering and the
strategy useO(n) space. �

This is clearly optimal in space, and it appears to be
asympotically optimal in the number of actions because the
robot has such weak sensors that it must traverse a linear
number of edges to determine each cut endpoint.

The next proposition determines whether the pebble sensor
is required for learning the cut ordering ofE:

Observation 6 Without sensing a pebble, the robot cannot
construct the cut ordering.

Proof: As in Observation 3, there exist polygons for which
the robot cannot determine whether it has returned to a
previous vertex. In the present setting, consider any convex
polygon. There are no cuts and no additional information
that can be used to recognize that the robot has returned to
the initial vertex after winding around the polygon boundary.
Hence, it cannot infer the number of vertices in∂E, which
is needed to construct the cut ordering. �

It turns out that the cut ordering associated withE is the
maximum amount of information that the robot can gather
about reachable positions in the environment:

Proposition 7 Once the cut ordering has been learned, no
additional combinatorial information regarding the cut ar-
rangement ofE can be obtained.

Proof: Consider the set of all possible action sequences,
applied in some particular environmentE, together with the
points inE reached. After each action, the robot terminates at
a particular point along∂E. Let Z be the set of all possible
positions along∂E that can be reached by an action. The
elements ofZ correspond directly to vertices ofE and all
cut endpoints. Once the cut ordering has been learned, the
cut ordering predicts precisely which point inZ will be
reached by applying any action sequence from any initial
position in Z. Thus, no “surprises” can be obtained by
further exploration. The sensors are not powerful enough to

7



1

2

3
6

7

10

13
14 15

18

1

2

3

6

7

10

13

14

1518

(a) (b)

Fig. 5. For the given environment, the cut diagram with all of the cuts
generated by our program, is shown on the left.

learn any information regarding precise distances; therefore,
the ordering of points inZ along ∂E is the most that can
be obtained. Therefore, the cut ordering corresponds to the
maximal amount of combinatorial information about the cut
arrangement ofE. �

The strategy was implemented in simulation, and a com-
puted example is shown in Figure 5.

VI. SOLVING PURSUIT-EVASION PROBLEMS

Now consider the challenging task of winning a pursuit-
evasion game. The robot is apursuer that must find one or
moreevadersthat are initially hidden and move unpredictably
throughE. The robot has all of the sensors and actions defined
in Section III.

A. Extending the Models

An additional sensor is needed to detect evaders. For now,
assume there is only one evader. The coming approach will
actually find all evaders if there are many; however, there
is no need to complicate the notation at this stage. The
evader is modeled as a point that starts at some unknown
(xe, ye) ∈ E and moves arbitrarily fast along a continuous,
time-parametrized path that is unknown to the robot. The state
space is extended from (1) to obtain

X ⊂ SE(2)× R
2 × R

2 × P × E . (15)

in which we included an additionalR2 to represent(xe, ye) ∈
E. A detection sensor, hd : X → {0, 1} yields hd(x) = 1 if
and only if the robot position(xp, yp) and the evader position
(xe, ye) are mutually visible in the particularE ∈ E . Note
that the detection sensor provides no information about the
structure ofE; it yields only a single bit of information. The
robot must rely on whatever information it can learn aboutE,
which is precisely the cut ordering from Section V.

The task is to compute a sequence of actions, called aplan,
that guarantees that the evader will be detected, regardless of
the particular environment, the initial position of the robot
(pursuer), the initial evader position, and the path taken by
the evader.

v3

v1

S(xp, yp)

(xp, yp)

V (xp, yp)

`5

v5

Fig. 6. When the robot is at some position(xp, yp), the detection sensor
detects the evader if it lies in the visible regionV (xp, yp) ⊆ E. The shadow
regionS(xp, yp) is the complement, which corresponds to places where the
evader cannot be detected from(xp, yp).

B. Solution Using a Gap Sensor

The planning problem is complicated by the challenge of
maintaining the status of the pursuit as the robot moves. This
corresponds to computing a derived I-state that indicates the
set of states that are possible given the history I-state. This
section gives the robot a sensor that enables it to exactly
maintain the status and leads to acompleteplanning strategy.
This means that the strategy computes a solution if one exists;
otherwise, it reports failure after a finite number of steps.
The given sensor is too powerful in this context; therefore,
Sections VI-C through VI-E weaken the sensing requirement
until the robot is left only with its binary detection sensorand
the sensors of Section III.

Suppose the robot is at(xp, yp) ∈ E and letV (xp, yp) ⊆ E
denote thevisibility region, which is the set of all points visible
from (xp, yp). The evader is detected if and only if(xe, ye) ∈
V (xp, yp). Let theshadow regionS(xp, yp) = E \ V (xp, yp)
be the set of positions where the evader is undetected. Figure 6
shows a simple example. One reasonable way to represent the
pursuit status would be to maintain the set of possible hiding
places for the evader. This means thatS(xp, yp) should be
partitioned into two regions: 1) places where the evadermight
be, and 2) places where the evadercannotbe.

Looking at Figure 6, it should be clear that ifS(xp, yp)
is nonempty, then it must have a finite number of connected
components, given that evader moves arbitrarily fast. Let these
be calledshadow components. Imagine placing a label of1 on
each shadow component that might contain the evader, and0
on the remaining shadow components. This is sufficient for
characterizingany pursuit status that might arise. For every
shadow component, either all points are possible locationsfor
the evader or none of them are. There is no need for multiple
labels within a component. This observation forms the basis
of the pursuit-evasion strategies in [27], [42].

To proceed further, some terminology is needed. Traveling
counterclockwise around∂E, the right cut of a reflex vertex
that is immediately preceded by a convex vertex is called
a right inflection. The left cut of a reflex vertex that is

8



b

`1

v1

a

`1

v1

b

a

(a) Appear (b) Disappear

a

b

a

b

(c) Split (d) Merge

Fig. 7. The four types of events in terms of shadow components.

immediately followed by a convex vertex is called aleft
inflection; the dashed line in Figure 7(a) shows an example.
Note that if both neighboring vertices of a reflex vertex along
∂E are convex, then both of its cuts are inflections.

Now we define the important notion of a bitangent. A line
is tangentto a reflex vertexv if it containsv and both edges
incident tov lie on the same side of the line. Abitangentis a
maximal line segment contained inE, and whose supporting
line is tangent at two distinct, mutually visible reflex vertices,
sayvi andvj . Since a bitangent is a maximal line segment, its
endpoints are in∂E. Let bi,j ∈ ∂E denote the endpoint of the
bitangent that is closest tovi. Likewise, letbj,i ∈ ∂E denote
the endpoint closest tovj . Any bitangent can be divided into
three segments, connecting: 1)bi,j andvi, 2) bj,i andvj , and
3) vi andvj . The first two are calledbitangent rays, and are
illustrated by the dashed lines in Figure 7(c).

Now imagine having a powerful sensor that detects when a
topological change occurs inS(xp, yp). If the pursuer moves
along a path, one of four topologicaleventsmay occur in
S(xp, yp) (assuming general position forE):

1) Appear: A shadow component appears, which is caused
by crossing an inflection as shown in Figure 7(a).

2) Disappear: A shadow component disappears, which
is caused by crossing an inflection ray in the other
direction; see Figure 7(b).

3) Split: A shadow component separates into two, which
is caused by crossing a bitangent ray, which is shown
in Figure 7(c).

4) Merge: Two shadow components merge into one, which
is caused by crossing a bitangent ray in the other
direction; see Figure 7(d).

The sensor will be called agap sensor, as defined in
[41], [75]. The name has the following motivation. Imag-
ine sweeping radially to measure the distance to∂E from
(xp, yp). Every discontinuity in distance, as a function of
angle, corresponds to a unique shadow component. Therefore,

maintaining topological changes inS(xp, yp) requires sensing
the discontinuities, calledgaps. The precise distance and angle
is not needed; it is only assumed that as the pursuer moves
it can track the gaps (in other words, as the gaps move over
time, it knows the correspondence between previous gaps and
current ones). For the split and merge events, it is furthermore
assumed that the sensor indicates precisely which gaps were
involved in the split or merge (for example, gapsa and b
merged intoc).

The gap sensor can then be used to define a filter that
incrementally maintains the correct labels on the shadow
components. If a component disappears, its label disappears
along with it. If a component appears, it receives a0 label
because the area was just visible and the evader cannot be
hiding there. If a component splits, the new components
receive the same label. The final case is more interesting. If
two components merge, then the new component receives a1
label if either (or both) of the two components have a1 label.
Note that if the same components are involved in a merge
followed by a split, then the labels may change from0 and1
to 1 and1. Thus, the evader can find new hiding places after
every merge.

We are now ready to describe a complete pursuit-evasion
strategy based on the gap sensor:

Strategy 2 Pursuit with the gap sensor

Description: Assume that the pursuer has learned the cut
ordering using the Strategy 1. A derived I-spaceIgap and
information transition function will now be described (recall
(4)). At each stage, the following are recorded, as a derivedI-
state: 1) the position of the pursuer in the cut ordering, and2) a
label of0 or 1 for each component ofS(xp, yp). As described
above, the labels indicate whether each shadow component
may contain the evader.

Initially, all shadow components (or gaps) receive1 labels.
The initial position, together with the label assignment, corre-
spond to an element ofIgap. The planning strategy proceeds
by exhaustively exploringIgap. Consider traveling from any
κ(η1) ∈ Igap to anotherκ(η2) ∈ Igap. Based on the position
in the cut ordering and the action that was applied, the next
position in the cut ordering is known. Furthermore, based on
the labels assigned inη1, the pursuer can use the gap sensor
to determine the resulting labels after moving to the new
position. The strategy searchesIgap until it finds any I-state
for which all labels are0. The corresponding action sequence
guarantees that the evader will be detected regardless of its
initial position or motion. The complexity of the search method
is exponential in the polygon size, in the same manner as for
the algorithm in [27]; however, in practice, the implemented
algorithm appears to terminate much more quickly, even on
complicated examples (a behavior also observed in [27]).

Proposition 8 The systematic search overIgap of Strategy 2
finds a pursuit plan for the robot whenever one exists; other-
wise, it reports failure after a finite number of steps.

9



`1 r1

R1 L1

v1

`1 r1

R1 activeL1 active

neither
active

v1

(a) (b)
r1

R1 active

neither
active

both

`2

L2 active

v2v1

L3

`3

R1

active active

active
both

r1

v2

v1 v3

(c) (d)

Fig. 8. (a) There are two primitives associated with every reflex vertex. In
this example,R1 is the primitive obtained after the robot crossesr1 to the
right. Likewise,L1 is the primitive obtained after crossing̀1 to the left. (b)
Every reflex vertexi dividesE into three regions, based on whetherLi, Ri,
or neither is active. (c) and (d) show cases in which various left and right
primitives are active

Proof: The set of possible positions in the cut ordering
is finite. Furthermore, the set of all possible labelings is
finite. Therefore,Igap is finite. Systematic search explores
every I-state inIgap that is reachable from the initial state.
Therefore, the strategy either finds a solution inIgap or
terminates in finite time after exhausting the reachable subset
of Igap. If the method does not find a solution, then no
solution exists because all possible action sequences are tried
and the pursuit status is correctly maintained at every step. �

C. Solution Using a Bitangent Sensor

Section VI-B described a clean solution to the pursuit-
evasion problem; however, it is not fully satisfying because
the gap sensor seems much more powerful than the sensors
of Section III. This section considerably weakens the sensing
assumption and nevertheless results in a complete strategy.
The idea is to introduce a sensor that indicates split and
merge information when a bitangent ray is crossed. This
model is much closer to information that is inferred using
the basic model from Section III. As shown in Section V,
the robot can determine which inflection rays were crossed,
but it cannot determine which bitangent rays were crossed
without additional sensing. Section VI-E presents a pursuit-
evasion strategy that works without sensing bitangent rays,
but it remains open to show whether the strategy is complete.

Consider the set of all possible shadow components ob-
tained by varying(xp, yp) over all ofE. There is a finite total
number of distinct shadow components. Figure 8 shows several
cases that lead to what will be calledprimitive shadow com-
ponents, orprimitives for short. Every primitive corresponds

d v1

`1 r1 `3 r3`2 r2

c

h

i

a b

e

f g

v2

v3

Position Partition ofA
a {{L3}, {L2}, {L1}}
b {{L3}, {R1}}
c {{R3}, {R2}, {R1}}
d {{L3}, {L2, L1}}
e {{L3, L2, L1}}
f {{L3, L2}, {R1}}
g {{L3}, {R2, R1}}
h {{R3, R2}, {R1}}
i {{R3, R2, R1}}

Fig. 9. The partitions ofA(xp, yp) are shown from nine different locations.

to an inflection, as defined in Section VI-B. For each reflex
vertexvi, if it has a right inflection, the associated primitive is
denoted byRi. Likewise, if it has a left inflection, the primitive
is Li.

If (xp, yp) ∈ E lies to the right of a right inflection, then the
corresponding primitive is calledactive. Likewise, if (xp, yp)
lies to the left of a left inflection, the corresponding primitive
is also called active. Figure 8 shows cases in which various left
and right primitives are active. Note that the complete set of
primitives can be inferred from the cut ordering. Furthermore,
the setA(xp, yp) of primitives that are active from(xp, yp)
can be determined from any position along the boundary of
the cut ordering from the reading given by the touch sensor.
Thus,A(xp, yp) is known after the completion of any action
RFOLLOW, LFOLLOW, or JUMP.

So far the discussion has characterized the appearance and
disappearance of gaps from Section VI-B in terms of inflection
crossings. These crossings can fortunately be inferred from the
cut ordering. The next challenge is to characterize the effect of
splitting or merging gaps now that we do not have a gap sensor.
The result of splits and merges will be encoded as a partition
of A(xp, yp), which is denoted asπ(A). This is illustrated in
Figure 9. Recall from Section VI-B that crossing a bitangent
may cause shadow components to merge. A pair of primitives
may merge into one component, which may eventually merge
into another component. Any shadow component obtained by
one or more merges is called acompound. Every compound
can be uniquely described by listing all primitives that were
merged to obtain it. See Figure 9.

The example in Figure 9 involves onlyisolated reflex
vertices. For consecutive reflex vertices, the situation isslightly
more complicated, but not problematic. Figure 10 shows an
example in which there are two consecutive reflex vertices,
v1 and v2. When the pursuer is in positiona, primitive L2

10



`2

`1

b

a

v2
v1

Fig. 10. An illustration of a sliding primitive.

v2

v1

v4

v6

v8v7

v9 v12

v11 v13

b12,9

v10

b9,12

v5

v3

Fig. 11. When the pursuer crosses the bitangent ray, as shown in the right,
the bitangent sensor indicates: 1)v9 and v12 form the bitangent, 2)v12 is
closer, and 3) the other bitangent ray ends betweenv5 andv6.

is active. However, when it passes to positionb, note that the
gap (boundary of the shadow component) makes a jump from
vertex v2 to v1. This will be called asliding primitive. The
reflex vertexv2, which generatedL2, is now in the interior
of the shadow component. The shadow component that exists
when the pursuer is atb is essentially the same component
asL2. Therefore, it can continue to be calledL2 (rather than
changing its name toL1). When using the gap sensor, this
jump from v2 to v1 was in fact not even detectable.

Now consider keeping track of the pursuit status, as done
in Strategy 2. As before, there is a label of0 or 1 for each
shadow component. In Section VI-B, the shadow component is
expressed as a gap. Here, the shadow component is expressed
as a set of primitives. Each shadow component is therefore
expressed as a subset ofA(xp, yp), and all components of
S(xp, yp) together yield a partition ofA(xp, yp).

In this section, the gap sensor is replaced by abitangent
sensor. Unlike the gap sensor, it cannot detect the crossing
of an inflection; this is closer to the models defined in
Section III. Thus, the appearance or disappearance of a gap
is not sensed, which is equivalent to being unable to sense
whether a particular primitive becomes active or is deactivated.
However, it is assumed that “perfect” information regarding a
bitangent is sensed. In particular, whenever a bitangent ray is
crossed, it is assumed that the pursuer immediately knows: the
pair of reflex vertices,vi, vj that contribute to the bitangent, 2)
which reflex vertex is closest, and 3) the location of the other
bitangent ray endpoint in the cut ordering. See Figure 11.

This information is sufficient for determining which active
primitives split or merge:

Proposition 9 When a bitangent ray is crossed, the infor-
mation provided by the bitangent sensor is sufficient for
determining precisely which primitives split or merge.

Proof: To determine which primitives split and merge,
the following procedure can be followed. First, determine
which of the two events (split or merge) of the primitives
associated withvi and vj occurs. This can be done using
the cut ordering by determining the direction in which a cut
is crossed (clockwise or counterclockwise). Without loss of
generality, assume that the bitangent ray crossed has endpoints
at vi andbij . Next, consider the two different intervals of∂E
with endpoints atvj andbji. Choose the interval that does not
contain vi. Determine the active primitives associated with
all of the reflex vertices lying in the interval. This is the first
set of the active primitives participating in the current split
or merge. The second set contains all of the active primitives
lying in the intersection of an interval of∂E betweenvi
and vj and an interval betweenvi and bji. Here choose the
intervals that do not containbij . The exact partition of the
primitives within these sets into compounds is not determined
yet, however, the two compounds resulting from the current
split or merge is now determined. �

A complete pursuit-evasion strategy can now be described:

Strategy 3 Pursuit with the bitangent sensor

Description: As in strategy 2, assume that the pursuer has
learned the cut ordering. Consider the initial state. The set
A0 of initial active primitives is determined using the pursuer
position in the cut ordering. The partition ofA(xp, yp) into
compounds and primitives is not known initially, but this will
not cause trouble. It can be assumed without harm that no
primitives in A(xp, yp) are merged into compounds. Every
primitive is initially given a label of1 to indicate that the
corresponding shadow region might contain the evader.

Let A be the current active set, letπ(A) be the current
partition, and letl(π(A)) be the assigned labels.

Suppose that the pursuer executes an action,LFOLLOW,
RFOLLOW, or JUMP. At the end of the action, it uses the
new position in the cut ordering to compute the new active
set,A′. Any primitives that became active during the action
execution are assigned0 labels before considering any new
merges. The detected bitangents are used to determine required
splits and merges that are made when going fromπ(A) to
π(A′). Regarding the labels, the rules from Strategy 2 apply.
The 0 label is preserved in a merge only if both components
have the0 label. The pursuer position in the cut ordering,
together withA, π(A), and l(π(A)), constitute a derived I-
state. The update just described is the information transition
function on a derived I-space,Ibit.

Now that the information transitions have been determined,
any systematic search can be used onIbit to find an I-state in
which all labels are0.

Proposition 10 The systematic search overIgap of Strategy 3

11



finds an strategy for the pursuer whenever one exists; other-
wise, it reports failure after a finite number of steps.

Proof: If the strategy records the pursuit status in exactly the
same way as Strategy 2, then clearly it is complete because
both would systematically exploreIgap. Although the new
strategy does not directly use the gaps, labels are instead
placed on elements ofπ(A). Rather than maintaining the gap
events, operations are maintained in primitives. The cut order-
ing indicates which inflections are crossed, and hence which
primitives become active or non-active during execution; this
is equivalent to indicating whether gaps appear or disappear.
Using Proposition 9, the bitangent detector indicates which
primitives split or merge, which is equivalent to knowing
which gaps split or merge.

Using these equivalences, one complication remains: the
initial compounds are not given. This can be handled by
(incorrectly) assuming that there are no compounds. This
implies that every active primitive can be assigned a unique
label. Clearly this is not accurate if they truly belong to a
compound that cannot be detected by the sensors initially.
However, this is not a problem because all active primitives
are initially assigned a1 label. As they merge to form
compounds, the resulting pursuit status is the same, with or
without correctly obtaining the initial compounds. �

D. Solution Using Pebble Visibility Sensor

An even less powerful, but nonetheless sufficient sensor is
a pebble visibilitysensor,hp(x) : X → {0, 1}. It is analogous
to the evader detection sensor, yieldinghp(x) = 1 if and
only if the robot position and the pebble position are mutually
visible in the environmentE. Such a sensor provides enough
information to find all bitangents and determine the location
of bitangent endpoints in the cut ordering, therefore allowing
Strategy 3 to be executed without the bitangent sensor.

The approach proceeds by carefully studying the relative
positions of points along∂E. For any s, t ∈ ∂E, let
(s, t) denote the open interval of∂E obtained by traveling
counterclockwise froms to t. Similarly, let [s, t] denote the
corresponding closed interval.

Let F (E) denote the set of all reflex vertices ofE. For
any pairvi, vj ∈ F (E), let B(i, j) indicate whether there is a
bitangent betweenvi andvj . Thus,B can be considered as a
binary-valued function or logical predicate.

The following proposition establishes a necessary (but not
sufficient) condition forB(i, j):

Proposition 11 For any E ∈ E and anyvi, vj ∈ F (E), if
B(i, j), thenvi 6∈ (rj , `j) and vj 6∈ (ri, `i).

Proof: If B(i, j), then ∂E must be tangent to the line
throughvi andvj , precisely atvi andvj . If vi ∈ (rj , `j), then
the line throughvi and vj is not tangent atvj (informally,
when looking from vi, there is no gap anchored atvj).
Similarly, if vj ∈ (ri, `i), then the line throughvi and vj is
not tangent atvi. �

For any pair,vi, vj ∈ F (E), let C(i, j) be a predicate
indicating that they satisfy Proposition 11. IfC(i, j), then
vi and vj are called abitangent candidate. Note thatB(i, j)
impliesC(i, j), butC(i, j) does not necessarily implyB(i, j).
Why? Even thoughvi andvj are in the right positions along
∂E for a bitangent, they might not be mutually visible.

It will be convenient to make a notational convention
regarding each pairvi, vj ∈ F (E). SupposeC(i, j) for some
vi, vj ∈ F (E). If vj ∈ [vi, ri], then the bitangent is called
right-handed. If vj ∈ [`i, vi], then it is calledleft-handed.
Note that if vj ∈ [ri, `i], then it cannot be a bitangent. If
the bitangent is right-handed, then we can swapvi andvj to
obtain one that is left handed; hence, we can always write it in
a canonical way. From now on, assume that the pairvi, vj is
always chosen so that the bitangent candidate is right-handed.

Consider the following strategy:

Strategy 4 Locating bitangent endpoints

Description: Supposevi andvj form a right-handed bitangent
candidate. To determine whether there is a bitangent, the robot
navigates tovj , DROPs the pebble, and navigates tovi. If
C(i, j) andhp(x) = 1, thenB(i, j).

To learn the position ofbi,j in the cut ordering, the robot
executes severalLFOLLOW actions repeatedly. Immediately
after it leavesvi, hp(x) becomes0. The endpointbi,j is the
first point aftervi, wherehp(x) = 1.

This allows the robot to find the position ofbi,j relative to
the vertices ofE, but not to the cut endpoints. To determine the
exact ordering, the robot moves to each cut endpointc that lies
on the same edge asbi,j and executes theRFOLLOW action. If
at any moment during this step (including the departure point,
c) hp(x) = 1, thenbi,j is on the right ofc; otherwise,bi,j is
on the left ofc.

By replacingLFOLLOW with RFOLLOW and vice versa, the
same method can be used to determine the position ofbj,i.
Repeating these steps for all candidate bitangents, the robot
can learn the positions of all bitangent endpoints.

Proposition 12 Using Strategy 4 the pursuer learns the posi-
tions of bitangent endpoints in the cut ordering.

Proof: The method used in Strategy 4 to find the bitangent
endpoints is based on two facts.

The first is that for anys ∈ (bi,j , vi), pointss andvj are not
mutually visible. Otherwise, the segment froms to vj would
intersect the bitangent line in two places, betweenbi,j andvi,
and also atvj , which is impossible.

The second fact is that there existst ∈ (vj , bi,j) such that
for all s ∈ (t, bi,j), the pointss and vj are mutually visible.
The existence of sucht follows from the general position
assumption.

�

The information provided by Strategy 4 is enough to
generate the same output as the bitangent sensor did in

12



ri

vj
bi,j

`i
s

vi

t

Fig. 12. For any mutually visible pointss, t ∈ ∂E, for which t ∈ (vi, vj)
ands ∈ (`i, vi), it follows that s ∈ (`i, bi,j), and thatbij ∈ (s, vi).

Section VI-C. Therefore, the following strategy has the same
property of completeness as Strategy 3:

Strategy 5 Pursuit with the pebble visibility sensor

Execute Strategy 4 to locate bitangent endpoints. Next, execute
Strategy 3 using obtained information instead of a bitangent
sensor to determine split and merge events.

E. Solution With No Special Sensors

Now we return to the original sensing model, which was
presented in Section III. The only additional sensor is the
simple binary detection sensor of Section VI-A. It would be
convenient to follow the approach of Strategy 3; however,
without the bitangent sensor or pebble sensor, the pursuer is
unable to obtain information about split and merge events.
Nevertheless, based on information in the cut ordering, the
pursuer can reason about where bitangentsmight be. For such
candidates, the pursuer also constructs anapproximationto
the bitangent ray endpoints. Using this approach, the pursuer
pretends that it receives all necessary bitangent information
and applies a strategy similar to Strategy 3.

SupposeC(i, j) for somevi, vj ∈ F (E). If B(i, j), then
where could the bitangent endpointsbi,j and bj,i possibly lie
along∂E? It will be important to make a conservative approx-
imation. Upper bounds will be determined on their locations.
A simple conservative bound is given by the following:

Proposition 13 For any E ∈ E and anyvi, vj ∈ F (E), if
B(i, j), thenbi,j ∈ [`i, vi]∩ [`j , vi] andbj,i ∈ [vj , ri]∩ [vj , rj ].

Proof: If bi,j appears beforèi, then an edge incident tovi
must be at least partially visible fromvj , which contradicts
the assumptionB(i, j). Similarly, if bi,j appears beforèj ,
then an edge incident tovj must be at least partially visible
from vi. Similar arguments apply forbj,i. �

Using information from the cut ordering, a tighter bound
on the location ofbi,j can be obtained. See Figure 12.

Proposition 14 For any E ∈ E , any vi, vj ∈ F (E), and any
mutually visible pair of pointss, t ∈ ∂E such thats ∈ [`i, vi]
and t ∈ [vi, vj ], if B(i, j), thenbi,j ∈ [s, vi].

Proof: The proposition follows from the simple fact that
the segment froms to t must intersect the bitangent line
somewhere betweenvi and vj . This implies thats must
hit ∂E before bi,j . Otherwise, the segment froms to t
would intersect the bitangent line in two places, which is
geometrically impossible. �

Similarly, there is a symmetric equivalent that corresponds
to the other bitangent endpoint,bj,i:

Proposition 15 For any E ∈ E , any vi, vj ∈ F (E), and any
mutually visible pair of pointss, t ∈ ∂E such thats ∈ [vj , rj ]
and t ∈ [vi, vj ], if B(i, j), thenbj,i ∈ [vj , s].

Now we can use Propositions 13 to 15 to obtain approximate
locations ofbi,j andbj,i. Let these be denoted asb̂i,j ∈ ∂E and
b̂j,i ∈ ∂E, respectively. Applying Proposition 13, we obtain
an initial approximation of̂bi,j = `i or b̂i,j = `j , depending
on which is closest tovi in counterclockwise order. Similarly,
we obtain b̂j,i = ri or b̂j,i = rj , whichever is reached first
after traveling counterclockwise fromvj .

These approximations can be improved by looking for any
cuts that satisfy Proposition 14. Each cut is a candidate for
the pair s, t, if either the reflex vertex or the cut endpoint
lies in (vi, vj). Among all cuts that satisfy Proposition 14,
pick the cut for whichs is closest forvi in counterclockwise
order. In this case, let̂bi,j = s. Similarly, b̂j,i can be obtained
by applying Proposition 15 on every possible cut. With these
approximations, we now state the strategy for our original
sensor model:

Strategy 6 Pursuit with the pebble and the contact sensors

Description: Strategy 3 is executed by assuming thatC(i, j)
impliesB(i, j) every time in the worst case and by usingb̂i,j
and b̂j,i instead ofbi,j andbj,i.

To argue the correctness of Strategy 6, first we introduce
the following lemma:

Lemma 16 For a single action LFOLLOW, RFOLLOW, or
JUMP, the labeling of shadow components in Strategy 3 is
invariant with respect to the order in which inflections and
bitangents are crossed.

Proof: First we note that any appear or disappear event not
involved in a split or merge can be placed in any order without
affecting the labeling. Likewise, any disjoint merges or splits
can be swapped.

Since theRFOLLOW, LFOLLOW, and JUMP motions each
produce a linear motion, it is impossible to cross the same
bitangent ray or inflection more than once. Therefore, appear
and disappear events of the same primitive, as well as split

13



a h
b

c
d

f
e

g

Fig. 13. Between any pair of reflex chains, there are at most four bitangents,
and the contributing reflex vertices are sorted froma to h along∂E as shown.

and merge events of the same compound can not occur simul-
taneously after execution of a single action. Consider now a
situation in which a single merge or split appears together with
the appear or disappear event of the same primitive. Due to the
geometry of the inflections and bitangents used in Proposition
14, the appear or disappear event must occur before the merge
event, and the appear or disappear event must occur after the
split event. This guarantees that the order of such events is
fixed, and can not affect the labeling.

Now consider there are multiple splits and/or merges which
occur during a single action. The order of multiple splits does
not matter; the same label propagates to the final components.
Similarly, the order of multiple merges does not matter
because all resulting components will share the same label in
the end. The only difficulty appears if multiple merges occur
together with multiple splits of the compounds consisting of
the same primitives. However, this is not possible, since an
approximation of a bitangent ray can cross a straight line
only once. Thus regardless of the crossing order, the resulting
partition π(A), after applying the action, is invariant. �

Proposition 17 If Strategy 6 finds a pursuit plan, then the
strategy is correct.

Proof: In the current setting, the order in which inflections
and bitangents are crossed while executing a single action,
such as LFOLLOW, cannot be determined. Lemma 16 is
useful here, since it states that the labeling is invariant
with respect to this order. Furthermore, all events due to
inflection crossings are detected, as in Strategy 3. The only
danger of having an incorrect plan is therefore associated
with bitangents. With a perfect bitangent detector, we have
Strategy 3, which always returns correct plans. In the current
setting, merges may potentially be applied too liberally.
For eachC(i, j) a merge is performed that approximates
conservatively the set of potential locations for the evader.
This implies that if a plan forces all labels to zero, then the
evader cannot escape detection. �

The only remaining question is whether the strategy is
complete: Does it return a solution for any cut ordering

1

2

3

6

7

10

13

14

1518

1

2

3

6

7

10

13

14

1518

(a) (b)

1

2

3

6

7

10

13

14

1518

1

2

3

6

7

10

13

14

1518

(c) (d)

Fig. 14. Computed example for pursuit-evasion. Shaded regions are shadow
regions in which an evader might be. Note that from (a) to (b), the robot
travels along the boundary of a shadow region, neverthelessthe labeling of
the shadow region cannot be updated until the action ends. Figures (c) and
(d) show the last steps of the plan.

for which there exists a guaranteed solution? The trouble
with establishing completeness is that we have to consider
all possible environments that could be realized from a cut
ordering. Since we have made a conservative approximation
to bitangents, we must consider worst-case environment that
realize as many bitangents as possible. Is it possible that for
any cut ordering, all bitangent candidates are realized? This
was an open conjecture in [78], and the following proposition
implies that the conjecture is false:

Proposition 18 Between any pair of reflex vertex chains, there
are at most four bitangents.

Proof: See Figure 13. Consider two mutually visible discs,
which are approximated by numerous tiny edges and reflex
vertices. Along the reflex chain of one disc, at most one of the
left cuts can be tangent to the other disc. Likewise, at most
one right cut can be tangent to the other disc. By symmetry,
there are at most two more bitangents by considering left and
right cuts from the second disc to the first one. �

Thus, there may be numerous bitangent candidates that do
not produce actual bitangents. It remains an interesting open
question to establish completeness of the strategy. We have
been unable to construct an example for which a pursuit plan
exists and the algorithm is unable to solve it.

The pursuit-evasion strategy was implemented in simula-
tion. Two computed examples are shown in Figures 14, and
15. Using only the cut ordering and the strategy for pursuit-
evasion, the robot generates the plan for finding all of the

14



Fig. 15. Computed solution path for detecting the evaders.

evaders in the environment. The computed solution paths are
shown.

VII. C ONCLUSIONS

This paper has developed and analyzed I-spaces associated
with a simple robot that follows walls, jumps from reflex
vertices, and carries a pebble. Each of Sections IV to VI
presented problems that were progressively more complicated.
In Section IV, simple I-spaces arose from a robot that can
only follow walls and sense a fixed pebble. In that case, the
robot can count the number of vertices and how many times it
wrapped around the polygon; however, without the pebble we
proved that it cannot even accomplish these tasks. In Section
V, the robot gained the ability to classify the vertex type,
jump from reflex vertices, and also move a pebble. The cut
ordering was introduced as the precise characterization ofwhat
can be learned about the environment under this model. A
strategy for learning the cut ordering was presented and the
method was proved to be complete in the sense that no further
information about the environment can possibly be acquired
by the robot. In Section VI, the robot was equipped with an
additional sensor that enabled it to detect any evaders thatare
within its field of view. Assuming the existence of sensors that
can determine bitangent structure, complete pursuit-evasion
strategies were presented in Sections VI-B and VI-C. Even
without such sensors, Section VI-D introduced a complete
pursuit-evasion algorithm that only needs to detect pebbles us-
ing the same visibility sensors that detects evaders, rather than
requiring direct bitangent sensing. Finally, when we do not
even give robot this ability, Section VI-E presented a pursuit-
evasion strategy that computes plans that are guaranteed tofind
any evaders; however, it remains an open problem to prove its
completeness.

Many other open questions and possible future research
directions remain. In terms of information spaces, two general
directions are: 1) developing filters, and 2) planning in I-
spaces. It is important to develop minimalist,combinatorial
filters that incrementally maintain small amounts of necessary
information using I-maps and derived I-spaces. These compute
important statistics to solving tasks, but do not tell the robot
how to move. Furthermore, these do not need to perform
state estimation, as in classical filtering. Once such filters
are developed, the challenge is to develop planning strategies
that manipulate derived I-states to accomplish some task.
The remainder of this section presents interesting filtering
and planning questions that extend naturally from the work
presented in this paper.

Consider the tasks that were solved across Sections IV to
VI. In what minimal ways does the robot model need to be

extended to accomplish each of these tasks for the case in
which E is a polygonal region with arbitrarily many holes?
What if the number of holes is fixed in advance? Some recent
work that uses models similar to ours shows how to count
holes in such environments [70].

Numerous models can be studied by allowing uncertainties
in actuation and/or sensing. For example, what if there are
known probabilities associated with misclassifying vertices?
When the robot jumps, what if it does not precisely move in
a direction parallel to the edge from which it departs? What
if the robot cannot even move in a straight line?

Another direction involves departing from polygonal mod-
els. In some sense, there is nothing particularly special about
vertices. What kinds of models and solution can be developed
in the case of a smooth environment? What if the environment
is piecewise smooth? In such settings, we could use additional
markers or landmarks that could be arbitrarily placed in the
environment. Where do landmarks need to be placed and what
needs to be sensed about them to accomplish to learn the
structure of the environment or perform pursuit-evasion tasks?

Some standard questions arise, which are straightforward to
formulate, but extremely challenging to address. What happens
when the robot is modeled as a rigid body, as opposed to
a point? This brings configuration space obstacles into the
analysis. In the simplest case, the robot may be a disc, which
yields symmetries with respect to robot orientation. More
generally, the robot may be a rotating polygonal body. A
three dimensional version of the problems presented in this
paper can also be posed. In this case, we would be confronted
with the known complexity of three-dimensional visibility
computations [58], [64]. To further complicate matters, wall
following obtains a second degree of freedom; how can the
robot be forced to reach a particular vertex?

Numerous complexity questions arise in the context of this
work. As sensing and actuation become simpler, how does the
complexity increase in terms of the number of actions and
the amount of computation? What are the precise upper and
lower complexity bounds for accomplishing the tasks in this
paper? Understanding tradeoffs between sensing, actuation,
and computation are crucial to the development of robotic
systems that use reduced amounts of sensing and actuation.

Finally, there is the important connection between the pre-
sented work and the development of robotic systems that can
accomplish tasks with less information. The models used here
are inspired by the success of commercial systems such as the
Roomba vacuum cleaning robot. However, substantial work
remains to adapt the models and strategies presented in this
paper. What adaptations to the models are most appropriate in
experimental robot systems? What kinds of failures must be
accounted for in practice? Can versions that take probabilistic
sensing errors into account be developed?

Acknowledgments

This work was supported in part by the DARPA SToMP pro-
gram (DSO HR0011-07-1-002), MURI/ONR Reduced Infor-
mation Spaces (N00014-09-1-1052), and NSF grant 0904501
(IIS robotics).

15



REFERENCES

[1] T. Başar and G. J. Olsder.Dynamic Noncooperative Game Theory, 2nd
Ed. Academic, London, 1995.

[2] J. Barraquand and P. Ferbach. Motion planning with uncertainty:
The information space approach. InProceedings IEEE International
Conference on Robotics & Automation, pages 1341–1348, 1995.

[3] M. A. Bender, A. Fernandez, D. Ron, A. Sahai, and S. Vadhan.
The power of a pebble: Exploring and mapping directed graphs.In
Proceedings Annual Symposium on Foundations of Computer Science,
1998.

[4] D. P. Bertsekas.Dynamic Programming and Optimal Control, Vol. I,
2nd Ed. Athena Scientific, Belmont, MA, 2001.

[5] D. Bienstock and P. Seymour. Monotonicity in graph searching. Journal
of Algorithms, 12:239–245, 1991.

[6] A. Blum, P. Raghavan, and B. Schieber. Navigating in unfamiliar
geometric terrains. InProceedings ACM Symposium on Computational
Geometry, pages 494–504, 1991.

[7] M. Blum and D. Kozen. On the power of the compass (or, why mazes
are easier to search than graphs). InProceedings Annual Symposium on
Foundations of Computer Science, pages 132–142, 1978.

[8] W. Burgard, A. B. Cremers, D. Fox, D. Ḧahnel, G. Lakemeyer,
D. Schulz, W. Steiner, and S. Thrun. The interactive museum tour-
guide robot. InProceedings AAAI National Conference on Artificial
Intelligence, pages 11–18, 1998.

[9] J. Castellanos, J. Montiel, J. Neira, and J. Tardós. The SPmap: A
probabilistic framework for simultaneous localization and mapping.
IEEE Transactions on Robotics & Automation, 15(5):948–953, 1999.

[10] W.-P. Chin and S. Ntafos. Optimum watchman routes.Information
Processing Letters, 28:39–44, 1988.

[11] H. Choset and K. Nagatani. Topological simultaneous localization and
mapping (T-SLAM). IEEE Transactions on Robotics & Automation,
17(2):125–137, 2001.

[12] D. Crass, I. Suzuki, and M. Yamashita. Searching for a mobile intruder
in a corridor – The open edge variant of the polygon search problem. In-
ternational Journal Computational Geometry & Applications, 5(4):397–
412, 1995.

[13] A. Datta, C. A. Hipke, and S. Schuierer. Competitive searching in
polygons–beyond generalized streets. In J. Staples, P. Eades, N. Katoh,
and A. Moffat, editors,Algorithms and Computation, ISAAC ’95, pages
32–41. Springer-Verlag, Berlin, 1995.

[14] X. Deng, T. Kameda, and C. Papadimitriou. How to learn an
unknown environment I: The rectilinear case. Available from
http://www.cs.berkeley.edu/∼christos/, 1997.

[15] G. Dissanayake, P. Newman, S. Clark, H. F. Durrant-Whyte,and
M. Csorba. A solution to the simultaneous localisation and mapbuilding
(SLAM) problem. IEEE Transactions on Robotics & Automation,
17(3):229–241, 2001.

[16] B. R. Donald. The complexity of planar compliant motion planning
under uncertainty. InProceedings ACM Symposium on Computational
Geometry, pages 309–318, 1988.

[17] B. R. Donald. On information invariants in robotics.Artificial
Intelligence Journal, 72:217–304, 1995.

[18] B. R. Donald and J. Jennings. Sensor interpretation andtask-directed
planning using perceptual equivalence classes. InProceedings IEEE
International Conference on Robotics & Automation, pages 190–197,
1991.

[19] A. Efrat, L. J. Guibas, S. Har-Peled, D. C. Lin, J. S. B. Mitchell, and
T. M. Murali. Sweeping simple polygons with a chain of guards.In
Proceedings ACM-SIAM Symposium on Discrete Algorithms, 2000.

[20] M. A. Erdmann. On motion planning with uncertainty. Master’s thesis,
Massachusetts Institute of Technology, Cambridge, MA, August 1984.

[21] M. A. Erdmann. Randomization for robot tasks: Using dynamic
programming in the space of knowledge states.Algorithmica, 10:248–
291, 1993.

[22] M. A. Erdmann and M. T. Mason. An exploration of sensorless
manipulation.IEEE Transactions on Robotics & Automation, 4(4):369–
379, August 1988.

[23] S. P. Fekete, R. Klein, and A. N̈uchter. Online searching with an au-
tonomous robot. InProceedings Workshop on Algorithmic Foundations
of Robotics, Zeist, The Netherlands, July 2004.

[24] Y. Gabriely and E. Rimon. Competitive complexity of mobile robot
on line motion planning problems. InProceedings Workshop on
Algorithmic Foundations of Robotics, pages 249–264, 2004.

[25] K. Y. Goldberg. Orienting polygonal parts without sensors. Algorith-
mica, 10:201–225, 1993.

[26] K. Y. Goldberg and M. T. Mason. Bayesian grasping. InProceedings
IEEE International Conference on Robotics & Automation, 1990.

[27] L. J. Guibas, J.-C. Latombe, S. M. LaValle, D. Lin, and R. Motwani.
Visibility-based pursuit-evasion in a polygonal environment. Interna-
tional Journal of Computational Geometry and Applications, 9(5):471–
494, 1999.

[28] L. Guilamo, B. Tovar, and S. M. LaValle. Pursuit-evasionin an unknown
environment using gap navigation trees. InProceedings IEEE/RSJ
International Conference on Intelligent Robots and Systems, 2004.

[29] O. Hájek. Pursuit Games. Academic, New York, 1975.
[30] R. Isaacs.Differential Games. Wiley, New York, 1965.
[31] T. Kameda, M. Yamashita, and I. Suzuki. On-line polygon search by a

seven-state boundary 1-searcher.IEEE Transactions on Robotics, 2006.
To appear.

[32] I. Kamon and E. Rivlin. Sensory-based motion planning with global
proofs. IEEE Transactions on Robotics & Automation, 13(6):814–822,
December 1997.

[33] I. Kamon, E. Rivlin, and E. Rimon. Range-sensor based navigation in
three dimensions. InProceedings IEEE International Conference on
Robotics & Automation, 1999.

[34] M.-Y. Kao, J. H. Reif, and S. R. Tate. Searching in an unknown environ-
ment: An optimal randomized algorithm for the cow-path problem.In
SODA: ACM-SIAM Symposium on Discrete Algorithms, pages 441–447,
1993.

[35] J. M. Kleinberg. On-line algorithms for robot navigation and server
problems. Technical Report MIT/LCS/TR-641, MIT, Cambridge,MA,
May 1994.

[36] H. W. Kuhn. Extensive games and the problem of information. In H. W.
Kuhn and A. W. Tucker, editors,Contributions to the Theory of Games,
pages 196–216. Princeton University Press, Princeton, NJ,1953.

[37] P. R. Kumar and P. Varaiya. Stochastic Systems. Prentice-Hall,
Englewood Cliffs, NJ, 1986.

[38] Y. Landa and R. Tsai. Visibility of point clouds and exploratory path
planning in unknown environments.Communications in Mathematical
Sciences, 6(4):881–913, December 2008.

[39] A. S. Lapaugh. Recontamination does not help to search a graph.Journal
of the ACM, 40(2):224–245, April 1993.

[40] S. L. Laubach and J. W. Burdick. An autonomous sensor-based path-
planning for planetary microrovers. InProceedings IEEE International
Conference on Robotics & Automation, 1999.

[41] S. M. LaValle. Planning Algorithms. Cambridge University Press,
Cambridge, U.K., 2006. Also available at http://planning.cs.uiuc.edu/.

[42] S. M. LaValle and J. Hinrichsen. Visibility-based pursuit-evasion: The
case of curved environments.IEEE Transactions on Robotics and
Automation, 17(2):196–201, April 2001.

[43] S. M. LaValle and S. A. Hutchinson. An objective-based stochastic
framework for manipulation planning. InProceedings IEEE/RSJ/GI
International Conference on Intelligent Robots and Systems, pages
1772–1779, September 1994.

[44] S. M. LaValle and S. A. Hutchinson. An objective-based framework for
motion planning under sensing and control uncertainties.International
Journal of Robotics Research, 17(1):19–42, January 1998.

[45] S. M. LaValle, D. Lin, L. J. Guibas, J.-C. Latombe, and R. Motwani.
Finding an unpredictable target in a workspace with obstacles. InPro-
ceedings IEEE International Conference on Robotics and Automation,
pages 737–742, 1997.

[46] S. M. LaValle, B. Simov, and G. Slutzki. An algorithm for searching a
polygonal region with a flashlight.International Journal of Computa-
tional Geometry and Applications, 12(1-2):87–113, 2002.

[47] S. Lazebnik. Visibility-based pursuit evasion in three-dimensional
environments. Technical Report CVR TR 2001-01, Beckman Institute,
University of Illinois, 2001.

[48] J.-H. Lee, S. Y. Shin, and K.-Y. Chwa. Visibility-basedpursuit-evasions
in a polygonal room with a door. InProceedings ACM Symposium on
Computational Geometry, 1999.

[49] T. Lozano-Ṕerez, M. T. Mason, and R. H. Taylor. Automatic synthesis
of fine-motion strategies for robots.International Journal of Robotics
Research, 3(1):3–24, 1984.

[50] V. J. Lumelsky and A. A. Stepanov. Path planning strategies for a point
mobile automaton moving amidst unknown obstacles of arbitrary shape.
Algorithmica, 2:403–430, 1987.

[51] M. S. Manasse, L. A. McGeoch, and D. D. Sleator. Competitive
algorithms for on-line problems. InProceedings ACM Symposium on
Theory of Computing, pages 322–333, 1988.

[52] B. Monien and I. H. Sudborough. Min cut is NP-complete foredge
weighted graphs.Theoretical Computer Science, 58:209–229, 1988.

16



[53] M. Montemerlo, S. Thrun, D. Koller, and B. Wegbreit. FastSLAM: A
factored solution to the simultaneous localization and mapping problem.
In Proceedings AAAI National Conference on Artificial Intelligence,
1999.

[54] L. Murphy and P. Newman. Using incomplete online metric mapsfor
topological exploration with the gap navigation tree. InProceedings
IEEE International Conference on Robotics & Automation, 2008.

[55] N. J. Nilsson. A mobile automaton: An application of artificial
intelligence techniques. In1st International Conference on Artificial
Intelligence, pages 509–520, 1969.

[56] S. Ntafos. Watchman routes under limited visibility.Computational
Geometry: Theory and Applications, 1:149–170, 1992.

[57] J. O’Rourke.Art Gallery Theorems and Algorithms. Oxford University
Press, New York, 1987.

[58] J. O’Rourke. Visibility. In J. E. Goodman and J. O’Rourke, editors,
Handbook of Discrete and Computational Geometry, 2nd Ed., pages
643–663. Chapman and Hall/CRC Press, New York, 2004.

[59] G. Owen.Game Theory. Academic, New York, 1982.
[60] C. H. Papadimitriou and M. Yannakakis. Shortest paths without a map.

Theoretical Computer Science, 84:127–150, 1991.
[61] S.-M. Park, J.-H. Lee, and K.-Y. Chwa. Visibility-based pursuit-evasion

in a polygonal region by a searcher. Technical Report CS/TR-2001-161,
Dept. of Computer Science, KAIST, Seoul, South Korea, January 2001.

[62] R. Parr and A. Eliazar. DP-SLAM: Fast, robust simultaneous local-
ization and mapping without predetermined landmarks. InProceedings
International Joint Conference on Artificial Intelligence, 2003.

[63] T. D. Parsons. Pursuit-evasion in a graph. In Y. Alavi and D. R. Lick,
editors,Theory and Application of Graphs, pages 426–441. Springer-
Verlag, Berlin, 1976.

[64] M. Pocchiola and G. Vegter. The visibility complex.International
Journal Computational Geometry & Applications, 6(3):279–308, 1996.

[65] S. Rajko and S. M. LaValle. A pursuit-evasion bug algorithm. In Pro-
ceedings IEEE International Conference on Robotics and Automation,
pages 1954–1960, 2001.

[66] N. Rao, S. Kareti, W. Shi, and S. Iyenagar. Robot navigation in unknown
terrains: Introductory survey of non-heuristic algorithms. Technical
Report ORNL/TM-12410:1–58, Oak Ridge National Laboratory, July
1993.

[67] S. Sachs, S. Rajko, and S. M. LaValle. Visibility-basedpursuit-evasion
in an unknown planar environment.International Journal of Robotics
Research, 23(1):3–26, January 2004.

[68] B. Simov, S. M. LaValle, and G. Slutzki. A complete pursuit-evasion
algorithm for two pursuers using beam detection. InProceedings IEEE
International Conference on Robotics and Automation, pages 618–623,
2002.

[69] B. Simov, G. Slutzki, and S. M. LaValle. Pursuit-evasionusing beam
detection. InProceedings IEEE International Conference on Robotics
and Automation, 2000.

[70] S. Suri, E. Vicari, and P. Widmayer. Simple robots with minimal
sensing: From local visibility to global geometry.International Journal
of Robotics Research, 27(9):1055–1067, September 2008.

[71] I. Suzuki, Y. Tazoe, M. Yamashita, and T. Kameda. Searching a polyg-
onal region from the boundary.International Journal on Computational
Geometry and Applications, 11(5):529–553, 2001.

[72] I. Suzuki and M. Yamashita. Searching for a mobile intruder in a
polygonal region.SIAM Journal on Computing, 21(5):863–888, October
1992.

[73] I. Suzuki, M. Yamashita, H. Umemoto, and T. Kameda. Bushiness and a
tight worst-case upper bound on the search number of a simple polygon.
Information Processing Letters, 66:49–52, 1998.

[74] S. Thrun, W. Burgard, and D. Fox.Probabilistic Robotics. MIT Press,
Cambridge, MA, 2005.

[75] B. Tovar, R Murrieta, and S. M. LaValle. Distance-optimal navigation in
an unknown environment without sensing distances.IEEE Transactions
on Robotics, 23(3):506–518, June 2007.

[76] M. Yamashita, H. Umemoto, I. Suzuki, and T. Kameda. Searching for
a mobile intruder in a polygonal region by a group of mobile searchers.
Algorithmica, 31:208–236, 2001.

[77] B. Yamauchi, A. Schultz, and W. Adams. Mobile robot exploration
and map-building with continuous localization. InProceedings IEEE
International Conference on Robotics & Automation, pages 3715–3720,
2002.

[78] A. Yershova, B. Tovar, R. Ghrist, and S. M. LaValle. Bitbots: Simple
robots solving complex tasks. InProceedings AAAI National Conference
on Artificial Intelligence, 2005.

17


