
A Visibility-Based Pursuit-Evasion ProblemLeonidas J. Guibas Jean-Claude Latombe Steven M. LaValle David Lin Rajeev MotwaniComputer Science DepartmentStanford UniversityStanford, CA 94305fguibas,latombe,lavalle,dlin,rajeevg@cs.stanford.eduAbstractThis paper addresses the problem of planning the motion of one or more pursuersin a polygonal environment to eventually \see" an evader that is unpredictable, hasunknown initial position, and is capable of moving arbitrarily fast. This problem was�rst introduced by Suzuki and Yamashita. Our study of this problem is motivated inpart by robotics applications, such as surveillance with a mobile robot equipped with acamera that must �nd a moving target in a cluttered workspace.A few bounds are introduced, and a complete algorithm is presented for computinga successful motion strategy for a single pursuer. For simply-connected free spaces,it is shown that the minimum number of pursuers required is �(lg n). For multiply-connected free spaces, the bound is �(ph+lgn) pursuers for a polygon that has n edgesand h holes. A set of problems that are solvable by a single pursuer and require a linearnumber of recontaminations is shown. The complete algorithm searches a �nite graphthat is constructed on the basis of critical information changes. It has been implementedand computed examples are shown.1 IntroductionThe general problem addressed in this paper is an extension or combination of problemsthat have been considered in several contexts. Interesting results have been obtained forpursuit-evasion in a graph, in which the pursuers and evader can move from vertex to vertexuntil eventually a pursuer and evader lie in the same vertex [17, 20]. The search number of agraph refers to the minimum number of pursuers needed to solve a pursuit-evasion problem,and has been closely related to other graph properties such as cutwidth [16, 18]. It has alsobeen shown that a graph can be searched monotonically (i.e., without recontamination) in[2, 12]. Pursuit-evasion scenarios in continuous spaces have arisen in a variety of applications1



such as air tra�c control [1], military strategy [11], and trajectory tracking [10]. This hasresulted in the formal study of general decision problems in which two decision makers havediametrically opposing interests. Classical pursuit-evasion games express di�erential motionmodels for two opponents, and conditions of capture or optimal strategies are sought [11].For example, in the classical Homicidal Chau�eur game, conditions of inevitable collisioncan be expressed in terms of the nonholonomic turning-radius constraints of the pursuer andevader. Although interesting decision problems arise through the di�erential motion models,geometric free-space constraints are usually not considered in classical pursuit-evasion games.Once these constraints are introduced, the problem inherits the additional complications thatarise in geometric motion planning.A region of capture is often associated with a pursuit-evasion problem, and the \capture"for our problem is de�ned as having the evader lie within a line-of-sight view from a pursuer.A moving visibility polygon in a polygonal environment adds geometric information thatmust be utilized, and also leads to connections with the static art gallery problems [19, 22].In the limiting case, art gallery results serve as a loose upper bound on the number of pursuersby allowing a covering of the free space by static guards, guaranteeing that any evader will beimmediately visible. Far fewer guards are needed when they are allowed to move and searchfor an evader; however, the required motion strategies can become quite complex. A closelyrelated art gallery variant is the watchman tour problem [5]. In this case a minimum-lengthclosed path is computed such that any point in the polygon is visible from some point alongthe path. In our case, however, the pursuers have the additional burden of ensuring that anevader cannot \sneak" to a portion of the environment that has already been explored. Theproblem that we consider and other variations have been considered previously in [6, 23].It was stated in [22] that it remained an interesting challenge to determine if a polygon issearchable by a single pursuer.Several applications can be envisioned for problems and motion strategies of this type.For example, suppose a building security system involves a few mobile robots with cameras orrange sensors that can detect an intruder. A patrolling route can be automatically computedthat guarantees that any mobile intruder will eventually be found. To optimize expenses,2



it would also be important to know the minimum number of robots that would be needed.Applications are not necessarily limited to adversarial targets. For example, the task mightbe to automatically locate another mobile robot, items in a warehouse or factory that mightget moved during the search process, or possibly even people in a search/rescue e�ort. Suchstrategies could be used by automated systems or by human searchers.Section 2 presents a precise mathematical formulation of the problem. Section 3 presentsseveral bounds on the number of required pursuers and related problems. Section 4 presentsgeneral concepts for reducing the problem to a �nite graph search and a complete algorithmfor computing a solution strategy for a given free space. Section 5 shows several examplesolution strategies that were computed using our implemented algorithm, and discusses someof the practical implementation issues. Conclusions are presented in Section 6.2 Problem De�nitionThe pursuers and evader are modeled as points that move in a polygonal free space, F . Lete(t) 2 F denote the position of the evader at time t � 0. It is assumed that e : [0;1)! Fis a continuous function, and the evader is capable of moving arbitrarily fast. The initialposition e(0) and the path e are assumed unknown to pursuers. Any region in F thatmight contain the evader will be referred to as contaminated; otherwise it will be referredto as cleared. If a region is contaminated, becomes cleared, and then becomes contaminatedagain, it will be referred to as recontaminated.Let i(t) denote the position of the ith pursuer at time t � 0. Let i represent a continuouspath of the ith pursuer of the form i : [0;1)! F . Let  denote a (motion) strategy, whichrefers to the speci�cation of a continuous path for every pursuer:  = f1; : : : ; Ng.For any point, q 2 F , let V (q) denote the set of all points in F that are visible from q(i.e., the linear segment joining q and any point in V (q) lies in F ). A strategy, , is a solutionstrategy if for every continuous function e : [0;1) ! F there exists a time t 2 [0;1) andan i 2 f1; : : : ; Ng such that e(t) 2 V (i(t)). This implies that the evader will eventuallybe seen by one or more pursuers, regardless of its path. Let H(F ) represent the minimumnumber of pursuers for which there exists a solution strategy for F .3



Section 3 presents some bounds on H(F ) for classes of free spaces, and also shows thatsome polygons for which H(F ) = 1 only admit solutions in which a region becomes contam-inated a linear number of times, regardless of the initial placement of the pursuers. Section4 addresses the problem of computing a solution strategy, , for a given F .3 Worst-Case BoundsSeveral new bounds are presented in this section. For a simply-connected free space, F , withn edges, it is shown that H(F ) = �(lgn). For a free space, F , with h holes, it is shown thatH(F ) = �(ph + lgn). For the case of problems in which H(F ) = 1, it is shown that thesame region can require recontamination as many as 
(n) times. This result is surprisingbecause pursuit-evasion in a graph is known not to require any recontaminations [12]. In[23] a free space was given that requires two recontaminations, which at least establishedthat recontamination is generally necessary for visibility-based pursuit evasion.Consider the problem of determining the minimum number of pursuers, H(F ), requiredto �nd an evader in a given free space F . This number will generally depend on both thetopological and geometric complexity of F . In [23] a class of simple polygons is identi�edfor which a single pursuer su�ces (referred to as \hedgehogs"). Some interesting upper andlower bounds on H(F ) are presented in terms of free space properties such as \bushiness"and reex vertices in [25]. For any F that has at least one hole, it is clear that at least twopursuers will be necessary; if a single pursuer is used, the evader could always move so thatthe hole is between the evader and pursuer. In some cases subtle changes in the geometrysigni�cantly a�ect H(F ). Consider for example, the problems in Figure 1. Although theproblems are similar, only the problem in the lower right requires two pursuers.Consider H(F ) for the case of simply-connected free spaces. Let n represent the numberof edges in the free space, which is represented by a simple polygon in this case. A logarithmicworst-case bound can be established:Theorem 1 For any simply-connected free space F with n edges, H(F ) = O(lgn).Proof: The proof is built on the following observation. Suppose that two vertices of F areconnected by a linear segment, thus partitioning F into two simply-connected, polygonal4



Figure 1: Four examples are shown that have similar geometry. The example in the lowerright requires two pursuers, while the other three examples require only one.components, F1 and F2. If H(F1) � k and H(F2) � k for some k, then H(F ) � k + 1because the same k pursuers can be used to clear both F1 and F2. This requires placing astatic (k + 1)th pursuer at the edge common to F1 and F2 to keep F1 cleared after the kpursuers move to F2 (assuming arbitrarily that F1 is cleared �rst).In general, if two simply-connected polygonal regions share a common edge and can eachbe cleared by at most k pursuers, then the combined region can be cleared at most k + 1pursuers. Recall that for any simple polygon, a pair of vertices can always be connected sothat polygon is partitioned into two regions, each with at least one third of the edges of theoriginal polygon [4]. This implies that F can be recursively partitioned until a triangulationis constructed, and each triangular region only requires O(lgn) recombinations before F isobtained (i.e., the recursion depth is logarithmic in n). Based on the previous observationand the fact that each triangular region can be trivially searched by a single pursuer, H(F ) =O(lgn). 2A similar logarithmic bound was also obtained in [25]. The remaining question for simply-connected free spaces is whether there actually exist problems that require a logarithmicnumber of pursuers. Some results from graph searching will �rst be described and utilizedto construct di�cult worst-case problem instances. Let Parsons' problem refer to the graph-5



ε

εFigure 2: A corridor of this shape disconnects second-order visibility between the two en-trances, and can be used to construct geometric equivalents of Parsons' problem for planargraphs.searching problem presented in [17, 20]. The task is to specify the number of pursuersrequired to �nd an evader that can execute continuous motions along the edges of a graph.Instead of using visibility, capture is achieved when one of the pursuers \touches" the evader.Let G represent a graph, and S(G) represent the number of needed pursuers, referred to asthe search number of G.The following lemma implies that a geometric realization of any planar graph instancecan be constructed:Lemma 1 For every planar graph, G, there exists a polygonal free space F such that Par-sons' problem on G is equivalent to the visibility-based pursuit evasion problem on F .Proof: Since G is planar, a geometric representation exists in the plane in which pointsin <2 correspond to vertices in G, and linear segments between the points correspond toedges in G. Consider the corridor structure shown in Figure 2. Every linear segment in thegeometric representation of G can be replaced by a corridor of su�cient length as shownin Figure 2. Furthermore, there exists an � > 0 such that no pair of corridors intersect,except near the points that correspond to vertices of G. Portions of the corridor edges canbe removed at corridor junctions to prevent overlap. Let F refer to the resulting polygon,which represents a network of bent corridors.The next task is to show that searching F is equivalent to searching G. Recall that anysuccessful Parsons' search strategy can be speci�ed by the traversal of a sequence of edges6



for each pursuer. If the sequence of bent corridors is explored that corresponds to the edgesof a solution strategy for G, then F will be successfully searched. This is true since usingvisibility to \see" an evader in a corridor is at least as powerful as attempting to \touch" anevader in a continuous graph edge.Next consider whether any solution strategy for F can be used to equivalently searchG. The corridor piece from Figure 2 is intentionally bent in four places, which causes alladvantages of visibility to be lost. Suppose this corridor is connected at both ends to othercorridors, and that pursuers are placed at each end (at positions q1 and q2). For this corridor,V (V (q1)) and V (V (q2)) are disjoint; V (V (q)) represents the set of all points from which atleast one point in V (q) is visible. Although both pursuers can see into the corridor, oneof the pursuers must travel into the middle of the corridor at some point to search for theevader. It must travel far enough so that the entrance to the corridor is no longer visible(leaving the entrance \unguarded"). The central portion of each corridor will corresponddirectly to an edge in G, since a central portion (edge) can be explored only by leaving ajunction (vertex) unguarded.Consider any given motion strategy  that is a solution for F . Suppose there are Npursuers. For each i 2 f1; : : : ; Ng, it will be shown that i can be used to determine asequence of edges for the ith pursuer in G. Without loss of generality, it can be assumedthat i only traverses the centers of the corridors (i.e. equal distance is maintained betweenthe corridor walls). Thus, i can be characterized by indicating how far into a corridorthe ith pursuer travels, at which point it performs a reversal, which corridor it selects at ajunction, etc. Suppose i travels from junction to junction, with reversals only being madeat junctions. In this case, every corridor in F that is cleared will cause the correspondingedge in G to be cleared. If  is a solution strategy for this case, then a corresponding solutionstrategy for G is implied. Suppose that i actually causes reversals to occur in a corridor(i.e., not at a junction). If the pursuer changes direction but still traverses the full lengthof the corridor (it must change direction at least twice), then the corresponding edge in Gwill still be cleared. If the pursuer returns to the originating junction, then there are twopossible cases. If the pursuer travels far enough to clear the central portion of the corridor,7



then the originating junction is left unguarded. The corresponding edge in G can be clearedby moving the pursuer from the originating vertex (which corresponds to the originatingjunction in F ), across the edge in G to the edge's other vertex, and back to the originatingvertex. If the pursuer does not travel far enough into the corridor to clear the central portion,then this portion of i does not make progress, and can be discarded (i.e., no correspondingstrategy portion needs to be considered for G). Thus any solution strategy, , for F can beused to determine a corresponding solution strategy for G. 2A theorem from [20] will be useful for proving Theorem 2, which provides a logarithmiclower bound on the number of pursuers needed to successfully search a simply-connectedfree space:Lemma 2 (Parsons) Let G be a tree. Then S(G) � N+1 if and only if there exists a vertexin G whose removal separates G into at least three components, G1, G2, and G3, such thatS(Gi) � N for i 2 f1; 2; 3g.Theorem 2 There exist simply-connected free spaces F with n edges such that H(F ) =
(lgn).Proof: Using Lemma 2, a tree, G, can be constructed recursively that has a constantbranching factor of three, height N � 1, and requires N pursuers (an example is given in[20]). By Lemma 1, an equivalent geometric instance can be constructed for each N . Figure3 depicts these geometric instances, for which H(F ) = 
(lgn) 2Theorem 1 and Theorem 2 together imply a tight logarithmic bound, H(F ) = �(lgn).Next consider the class of problems for which F has h holes. Both upper and lowerbounds are established on H(F ) which are proportional to ph.Theorem 3 For any free space F with n edges and h holes, H(F ) = O(ph + lgn).Proof: Divide the pursuers into two groups: O(ph) pursuers will be used to reduce thepolygon to simply-connected components, and O(lgn) pursuers will be used to clear eachcomponent. Construct an arbitrary triangulation of F . Let a trichromatic triangle be de�nedas a triangle that touches three distinct connected components of the boundary of F . Using8



T1 T2 T3

T4Figure 3: Systematic construction of simply-connected free spaces that require 
(lgn) pur-suers.at most O(h) trichromatic triangles, F can be partitioned into simply-connected componentswhose boundaries are comprised of the boundary of F and edges of trichromatic triangles.To establish this, form a planar graph by placing a vertex in each hole of F and one vertexoutside of F . For every trichromatic triangle edge joining two boundaries, form an edgefor this graph by joining the vertices corresponding to these boundaries by a path alongthe trichromatic edge, in the obvious way. From the planarity of this graph we can easilyargue that the overall number of trichromatic edges, and therefore of trichromatic triangles,is O(h).Consider the dual graph of the triangulation, which has O(n) edges and vertices. Takethe subgraph induced by taking only the vertices that correspond to trichromatic trianglesin the original triangulation. The planar graph separator theorem [15] implies that at mostO(ph) edges can be chosen to partition the graph into two portions with at least one thirdof the edges on each side of the partition. Each edge in the induced subgraph corresponds toa simply-connected region of F that can be cleared with O(lgn) pursuers by Theorem 1. Infact, the same set of pursuers can be used for each simply connected component. The O(ph)9



Figure 4: An instance from a sequence of problems that requires a number of pursuers thatis at least proportional to the square root of the number of holes.pursuers then form a barrier that maintains the cleared areas obtained by other pursuers oneither side, much in the same way as the partitioning edges in the proof of Theorem 1. Theplanar graph separator theorem can be applied recursively to the remaining portions of Fon either side of a barrier, and the free space can be cleared using the same progression asfor Theorem 1. At the ith level of recursion, at most 23 as many pursuers will be needed toform a barrier in comparison to the (i� 1)th level of recursion. The free space is reduced tosimply-connected components that can be cleared using O(lgn) pursuers. The total numberof pursuers needed to form barriers is O(ph+q23h+q49h+ � � �) = O(ph). Thus, F can becleared using at most O(ph + lgn) pursuers. 2Theorem 4 There exist free spaces F with n edges and h holes such that H(F ) = 
(ph+lgn).Proof: For any positive integer k, a planar graph of cutwidth k can be constructed usingO(k2) vertices and edges. Recall that the cutwidth, CW (G), is the minimum cutwidth takenover all possible linear layouts of G. A linear layout of G is a one-to-one function mappingthe vertices of G to integers, and the cutwidth for a particular layout is the maximum overall i of the number of edges connecting vertices assigned to integers less than i to verticesassigned to integers as large as i. De�ne a sequence of planar graphs, G1; G2; : : :. Let thevertices of Gk correspond to the set of all points with integer coordinates, (i; j), such that10



0 � i; j � k. Let Gk connect vertices v and w by an edge if and only if v adn w are distance1 apart (i.e., a standard four-neighborhood). The cutwidth of Gk is k.It is established in [16] that for all graphs G, the search number S(G) is related byS(G) � CW (G) � bdeg(G)=2c � S(G), in which deg(G) is the maximum vertex degree ofG. Because deg(Gk) = 4, S(G) � k � 2S(G). Using Lemma 1, geometric instances of Gksuch as the one shown in Figure 4 can be constructed. Both Gk and each geometric instancerequire 
(k) pursuers. There is a quadratic number of holes in each geometric instance;hence, H(F ) = 
(ph). This corridor structure can be combined with the structure fromTheorem 2 to yield an example that requires 
(ph+ lgn) pursuers. 2Theorem 4 and Theorem 3 together imply a tight bound, H(F ) = �(ph+ lgn).The �nal theorem of this section pertains to the case of free spaces that can be searchedby a single pursuer. A similar result is also obtained in [6]. It states that there exist examplesthat require recontaminating some portion of the free space a linear number of times. Thisresult is surprising because for Parsons' problem it was shown in [12] that no recontaminationis necessary (a shorter proof of this appears in [2]). Theorem 5 establishes that a linearnumber of recontaminations can be needed, and it still remains open to determine whetherthe number of recontaminations can be bounded from above by a polynomial, which wouldimply that the problem of deciding whether H(F ) = 1 lies in NP .Theorem 5 There exists a sequence of simply-connected free spaces with H(F ) = 1 suchthat 
(n) recontaminations are required for n edges.Proof: It will be shown that the example in Figure 5 requires k � 2 recontaminations byvisiting the point a 2 F a total of k � 1 times to repeatedly clear the \peak." Without lossof generality, consider the set of strategies that can be speci�ed by identifying the sequenceof points, a; b1; : : : ; bk; c1; : : : ; ck, that are visited. Assume that the shortest-distance path istaken between any pair of points.We claim that if all legs are initially contaminated, then they must be visited in oneof two orders: (b1; c1; b2; c2; : : : ; bk; ck) or (ck; bk; ck�1; bk�1; : : : ; c1; b1). To refute this claim,consider visiting bi for some 1 < i < k, followed by a visit to another \leg", say bj (or cj).11
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Figure 5: A linear number of recontaminations is required. Although this polygon can besearched by a single pursuer, the peak must be visited k � 1 times.If any legs between bi and bj are contaminated, then bi will become recontaminated. Ingeneral, any legs that are cleared will be recontaminated if a non-neighboring leg is clearednext. This prevents the pursuer from making progress toward clearing the entire free space.Thus, the legs must be explored in order.Because of symmetry, consider visiting the legs from left to right without loss of generality.Assume that the peak is initially contaminated. The points b1 and c1 can be visited to clearthe leftmost set of legs; however, these will get contaminated when b2 is visited. By travelingfrom c1 to a to b2, the leftmost set of legs remain cleared because the peak is cleared. When c2is visited, the leftmost three legs remain cleared; however, the peak becomes recontaminated.Thus, a will have to be visited again before clearing b3. By induction on i for 1 < i � k,the peak will have to be cleared by visiting a each time between visits to ci and bi+1. Thisimplies that a will be visited k � 1 times, resulting in k � 2 recontaminations. 2
12



4 Computing a Solution StrategyWhile Section 3 addressed worst-case bounds over certain problem classes, this section coversconcepts and algorithms for computing a solution strategy for a given free space. NP-hardness is established in Section 4.1. Section 4.2 de�nes an information space for a singlepursuer, and provides a general method for handling this space combinatorially. Section4.3 presents a complete algorithm for the case in which H(F ) = 1 that computes a solutionstrategy by decomposing F into convex cells that each prevent critical changes in information.This algorithm is quite e�cient in practice, and was used to compute the examples shownin Section 5. The case in which H(F ) > 1 is discussed in Section 4.4.4.1 Complexity of the General ProblemA complete algorithm must compute a solution strategy for a given number of pursuers, ifsuch a strategy exists. It is natural to compare the notion of completeness for this problem tocompleteness for the basic motion planning problem (i.e., the algorithm will �nd a collision-free path if such a path exists [3]). One important di�erence, however, is that the minimumnumber of pursuers is crucial, but does not have a correspondence for the basic path planningproblem. A variety of simple, heuristic algorithms can be developed that require morepursuers than necessary (for example, place a static pursuer inside of each cell of a convexdecomposition of F ). The problem becomes most di�cult when the minimum number ofpursuers is requested.The problem of determining the minimum number of pursuers is intractable if P 6= NP :Theorem 6 Computing H(F ) is NP-hard.Proof: It is shown in [18] that Parsons' problem for a planar graph with maximum vertexdegree 3 is NP-complete (i.e., computing the search number, S(G) ). By Lemma 1, equivalentgeometric instances can be constructed, which implies that computing H(F ) is NP-hard. 24.2 Identifying Critical Information ChangesDuring the execution of a strategy, the pursuers must identify the contaminated region. Ata given time, this important piece of information generally depends on the initial positions13



of the pursuers and their history of past positions, up to the given time. As pursuers move,this information changes continuously; however, to develop a complete algorithm we will onlybe interested in tracking times in which the pursuers' information changes combinatorially.This section de�nes an information space that corresponds to the knowledge of the pursuers,and presents a general scheme for partitioning the information space into equivalence classesof information. This is inspired in part by a standard approach used in motion planning,which is to preserve completeness by using a decomposition of the con�guration space thatis constructed by analyzing critical events. For example, in [21] a cell decomposition isdetermined by analyzing the contact manifolds in a composite con�guration space that isgenerated by the positions of several disks in the plane. Section 4.3 presents a completealgorithm that uses this concept for the case of H(F ) = 1.Assume that a search is performed by a single pursuer; the concepts in this section canbe extended to multiple pursuers with minor adaptation [14]. Let q 2 F represent thecurrent pursuer position. Let S � F represent the set of all contaminated points in F . Let� = (q; S) represent an information state. The set of all possible information states will bereferred to as the information space. The information space is a standard representationaltool for problems that have imperfect state information, and has been useful for other motionplanning problems [7, 13].Suppose that a strategy is parameterized with a time interval t 2 [0; tf ] for some �xedtf > 0. For a �xed strategy, , and an initial set of contaminated points, S(0), a path inthe information space is obtained. At a given 0 < t � tf the set of contaminated points,S(t), can be determined from the history f(t0)jt0 2 [0; t]g. Let 	(�; ; t0; t1) represent theinformation state that will be obtained by starting from information state �, and applyingthe strategy  from t0 to t1. The function 	 can be thought of as a \black box" that producesthe resulting information state when a portion of a given strategy is executed.The next de�nition describes an information invariance property, which when satis�edallows the information space to be partitioned into equivalence classes. A connected setD � F is conservative if 8� such that q 2 F , and 8 : [t0; t1]! D such that  is continuousand (t0) = (t1) = q, then the same information state, � = 	(�; ; t0; t1), is obtained. This14



implies that the information state cannot be altered by moving along closed paths in D.Just as in the case of motions in a conservative �eld, the following holds:Lemma 3 If D is conservative then for any two continuous paths, 1; 2, mapping into Dsuch that 1(t0) = 2(t0) and 1(t1) = 2(t1) then 	(�; 1; t0; t1) = 	(�; 2; t0; t1), for any �.Proof: Select any third continuous trajectory, 3 : [t0; t1] ! D, such that 3(t0) = 1(t1)and 3(t1) = 1(t0) (i.e., heading in the opposite direction). Form a new trajectory, 132, byconcatenating the trajectories 1, 3, and 2 in the following manner:132(t) = 8><>: 1(3(t� t1)) If t < t1 + t2�t133(3(t� t1 � t2�t13 )) If t1 + t2�t13 � t � t1 + 2 t2�t132(3(t� t1 � 2 t2�t13 )) If t > t1 + 2 t2�t13 :Note that the information state does not depend on the speed of the pursuer. The resultinginformation state will be 	(�; 1; t0; t1) because 3 followed by 2 forms a closed-loop path,and thus yields the same information state by conservativity of D. Note that 1 followed by3 is also a closed-loop path, which implies that 2 must bring the information state from �to 	(�; 1; t0; t1). Hence, 	(�; 1; t0; t1) = 	(�; 2; t0; t1). 2Thus, the information state that results from moving between q1 2 D and q2 2 D isinvariant with respect to the chosen path, assuming the pursuer remains in D.4.3 A Complete Algorithm for a Single PursuerSince the general problem is NP-hard, it is worth focusing on the complete algorithm forthe case of a single pursuer. This implies that F is simply-connected, otherwise at least twopursuers would be required. The basic idea is to partition the free space into conservativeregions, and perform a search on the resulting equivalence classes in the information space.This algorithm has been implemented and tested on a variety of examples; some of theseexamples are shown in Section 5.Representing the information state A useful representation of the information statewill be de�ned for the case of a single pursuer. Suppose the pursuer is at a position q 2 F .Note that the edges in the visibility polygon, V (q), generally alternate between being part of15
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"0" or "1"

Figure 6: Binary labels can be used to encode the information state.

Figure 7: Ray shooting is performed for three general cases to form the conservative regions.the boundary of F and crossing the interior of F. Let each edge that enters the interior of Fbe referred to as a gap edge. Consider associating a binary label with each gap edge. If theportion of the free space that borders the gap edge is contaminated, then it is assigned a \1"label; otherwise, it is assigned a \0" label, indicating that it is clear. Let B(q) denote a binaryvector of gap edge labels, with one label for each gap edge in the visibility polygon. Notethat each component of the contaminated region is bounded by a simple polygon that mustcoincide with exactly one gap edge from V (q) that has the \1" label. Thus, the speci�cationof the pair (q; B(q)) uniquely characterizes the information state.A decomposition of F into conservative regions Let D represent a collection ofconvex regions that de�ne a partition of F . The boundaries of regions in D are obtainedby extending rays from edges in F , and from certain pairs of vertices, as shown in Figure16



7. Each edge is extended in any direction possible, and each pair of vertices is extendedoutward only if both directions are free along the line drawn through the pair. A similardecomposition has been used for robot localization in [9, 24], and generates O(n3) regions inthe worst case.The following statement yields an important property that will allow us to explore theinformation space combinatorially:Lemma 4 Each region in D 2 D is conservative.Proof: Consider representing the information state using (q; B(q)), and let a pursuer moveusing any continuous, closed-loop path  : [t0; t1]! D. We intend to establish that B(q) attime t1 will be the same as at time t0, regardless of the choice of . Recall that each labelin B(q) corresponds to a connected component of F n V (q).Let q1; q2 2 D denote two distinct pursuer positions. There is a one-to-one correspondencebetween gap edges in V (q1) and V (q2), and each corresponding edge pair, say E1 and E2,shares a common vertex. If this were not true, then a ray of the form indicated in Figure 7would lie between q1 and q2, implying that q1 and q2 do not both lie in D.Each gap edge borders a connected component of F n V (q), which may or may notbe comtaminated. While following any continuous path  : [t0; t1] ! D, the connectedcomponents of F n V (q) will deform; however, it is impossible to change to the topology ofF n V (q) (i.e., the same number of connected components will be maintained). This impliesthat no components are split or merged; therefore, the gap edge for each component mustretain the same label. Thus, it is impossible to change B(q) by moving the pursuer insideof D. 2Figure 8 illustrates how the regions are conservative by showing a single pursuer thatis approaching the end of a corridor. If the closed-loop motion on the left is executed, theend of the corridor remains contaminated. This implies that although the information statechanges during the motion, the original information state is obtained upon returning. Duringthe closed-loop motion on the right, the gap edge disappears and reappears. In this case,the resulting information state is di�erent. The gap edge label is changed from \1" to \0".17
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a critical boundary
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Figure 8: A critical event in the information space can only occur when edge visibilitychanges.A directed graph of information equivalence classes The regions in D and theirnatural adjacency relationships de�ne a �nite, planar graph, G. Each vertex ofG correspondsto a region D 2 D and an edge is de�ned if the boundaries of two regions have a one-dimensional intersection. A path in F can be constructed from a path in G by connectingcentroids of adjacent regions inD by linear segments. Vertices inGmust sometimes be visitedmultiple times in a solution strategy because B(q) can be distinct each time. Initially, thepursuer will be in some position with all gap edges labeled with \1". The goal is to �nd anysequence of vertices in G that leaves the pursuer at some position with all gap edges labeledwith \0".A directed information graph, GI , can be derived from G. For each vertex in G, a setof vertices are included in GI , one for each possible labeling of the gap edges. For example,suppose a vertex in G represents some region D, and there are 2 gap edges for B(q) at anyq 2 D. Four vertices will be included in GI that all correspond to the pursuer in D; however,each vertex represents a unique possibility for B(q): \00", \01", \10", or \11". Let a vertexin GI be identi�ed by specifying the pair (q; B(q)).To complete the construction of GI , the set of edges must be de�ned. This requiresdetermining the appropriate gap edge labels as the pursuer changes regions. This in turnrequires certain correspondences between gap edges to be made in advance, as indicated in18
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Figure 9: The correspondences between gap edges from di�erent neighboring conservative re-gions can be directly determined. The information states are updated when moving betweenregions by using this correspondence.Figure 9. Suppose the pursuer moves from qi 2 Di to qj 2 Dj. For the simple case shown inthe lower right of Figure 8, assume that the gap edge on the left initially has a label of \0"and the gap edge on the right has a label of \1". Let the �rst bit denote the leftmost gapedge label. The �rst transition is from \01" to \0", and the second transition is from \0"to \00". The directed edges in GI are given by the transition from (qi;\01") to (qj;\0") andfrom (qj;\0") to (qi;\00").There are four possible cases that occur in general: a gap edge disappears, a gap edgeappears, two or more gap edges merge into one, a gap edge splits into two or more. If a gapedge appears, it always receives a \0" label. If any n gap edges are merged, the merged gapedge will receive a \1" label if any of the original gap edges have a \1" label. If a gap edge19



splits, the new gap edges will obtain the value of the original gap edge.This completes the de�nition of a directed graph that captures the information spacecombinatorially. Any vertex in GI of the form (q; B(q)) such that B(q) = \00� � �0" representsa goal vertex. The initial vertex can be given, or selected arbitrarily such that B(q) =\11� � �1". A standard graph search algorithm can be employed to �nd a path in GI betweeninitial and goal vertices. The next theorem establishes the completeness of this approach.Theorem 7 An algorithm that will �nd any path to a goal vertex from an initial vertex inGI is complete for the visibility-based pursuit-evasion problem in the case of H(F ) = 1.Proof: The algorithm is complete if the existence of any solution strategy implies that apath exists in GI between initial and goal vertices. Let fD1; : : : ; Dng denote the sequenceof regions in D that are traversed by any given solution strategy, . Each Di correspondsto a vertex in G, and fD1; : : : ; Dng corresponds to a path in G. This in turn correspondsto a path in GI. By Lemma 3 and Lemma 4, the information state does not depend on thepath chosen within each region, Di. From this and the fact that  is a solution strategy, thevertex obtained at the end of the corresponding path in GI is a goal vertex. 24.4 Multiple pursuersIn general, the conservative region concept that was presented in Section 4.1 can be applied toyield a decomposition of the 2N -dimensional space that encodes the positions of the pursuers.Due to the hardness of the general problem, however, it still remains challenging to developand implement a practical algorithm even for the case of two pursuers. A decompositionmust be constructed for the case of N pursuers such that the edges in the union of the Nvisibility polygons do not change (edges to not vanish or appear). Conservative regions wereformed for the case of H(F ) = 1 by avoiding the critical changes in visibility (Figure 7), andone would hope that a Cartesian product of planar regions could be formed to directly de�neconservative regions for multiple pursuers; however, as Figure 10 indicates, the conservativeregions can be considerably more complicated for the two pursuer case. Gap edges fromtwo di�erent visibility polygons can intersect in such a way that it is possible to execute aclosed-loop path that changes the information state while keeping both pursuers within their20
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Figure 10: This example shows that the information state can be changed by a closed looppath without crossing a critical boundary, of the type shown in Figure 7. There are twogap edges for each pursuer; however, each gap edge can maintain two di�erent labels. Forexample, Region 2 could be clear, while Region 4 could be contaminated. Furthermore,Region 1 can be cleared without causing any gaps edges to change critically (for example,by moving the left robot toward the right and returning).regions in D. For the example in Figure 10, suppose the pursuer on the left moves towardthe right and returns, while the pursuer on the right remains stationary. This will causeRegion 1 to be cleared. This constraint de�nes a three-dimensional algebraic manifold in <4.The algebraic constraints that correspond to these types of cases signi�cantly increase theimplementation di�culty and add numerous conservative regions, which will dramaticallyhinder e�ciency.5 Computed ExamplesThe algorithm from Section 4.3 is implemented in C++ and executed on an SGI Indigo2workstation with a 200 Mhz MIPS R4400 processor. The computation times and otherparameters for several examples are listed in Figure 11. The implementation uses the quad-edge structure from [8] to maintain the topological ordering of the regions. The informationgraph GI is searched using Dijkstra's shortest path algorithm, where the edge cost is takenas the distance between adjacent cell centroids. The solution is computed by traversing fromcell centroid to cell centroid, causing the computed path for the pursuer to be jagged in most21



Problem Edges Nodes in Gc Nodes in GI Precomp. Searching Total Time(Cells) (Information) Time (sec) Time (sec)Fig. 12 28 25 200 0.04 0.02 0.06Fig. 13 68 130 1727 0.44 0.12 0.56Fig. 14 46 237 8787 0.53 1.59 2.12Fig. 15 65 246 18830 0.87 9.86 10.73Fig. 16 70 888 103049 3.00 168.63 171.63Figure 11: Various statistics are shown for the computed examples.cases. In some applications, it might be appropriate to employ smoothing algorithms to thepath to respect additional problem constraints.Figures 12-16 show several computed examples. Due to a large number of conservativecells, Figures 14-16 are illustrated with the cell decompositions in separate diagrams fromthe solution diagrams. Figure 14 shows the hookpin example described in [23]. Note that theleftmost pin is recontaminated twice, and the pins are visited in the same order as mentionedin [23]. Figure 15 is an instance of the sequence described in Section 3 that requires a linearnumber of recontaminations. The region near the top of the �gure is recontaminated 3times. The �nal example generated a large number of conservative cells, which signi�cantlyincreased computation time.6 ConclusionsA visibility-based planning problem has been identi�ed in this paper that involves searchingfor an unpredictable evader in a polygonal environment. This task can represent a basicoperation in a variety of robotic applications, such as surveillance with mobile robots. Otherpotential applications include search-rescue operations and military strategy.Several bounds were obtained. A tight logarithmic bound on the number of neededpursuers was shown for the case of a simply-connected free space. A tight square-root boundwas expressed in terms of the number of holes for multiply-connected free spaces. A fewopen problems remain, such as determining whether a polynomial-time algorithm exists todecide whether H(F ) = 1. 22
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a. b. c.Figure 12: A computed solution trajectory is shown in three frames. The black area repre-sents the contaminated region, and the white area represents the cleared region. The thickcurve shows a portion of computed trajectory, which is continued in each frame. The shadedregion indicates the visibility region at the �nal time step of the indicated portion of thetrajectory. The thin lines in the cleared region indicate the cell boundaries. In the �nalsnapshot, there is no place remaining where the evader could be hiding.
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�����a. b. c.Figure 13: Another computed example.Information space concepts were used to provide a natural characterization of the uniqueproblem states. The visibility-based pursuit-evasion problem was established as NP-hard.The general concept of partitioning the information space on the basis of critical informationchanges was introduced to develop a complete algorithm. For the case in which H(F ) = 1,the algorithm was implemented, and several examples were shown that were computed in afew seconds or less on a standard workstation. Considerable issues remain for the case inwhich H(F ) = 2, and in general, approximation algorithms might provide the only hope ofobtaining practical solutions to many problems.Several variations and extensions of the problem are worth exploring. For a variety of23
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d. e. f.Figure 14: This di�cult example requires two recontaminations of the leftmost corridor.problems, such as visual searching using mobile robots, one can assume initial positions forthe pursuers. In addition to a visibility region, each pursuer could have a region of capture,and the task could be to capture the evader using one or more pursuers. The problem can bemade more challenging by strengthening the model to include a bounded velocity, or possiblystochastic prediction. The topological issues could become signi�cantly more complex for3-D free spaces. The conservative cell and edge-visibility concepts could be applied forthe 3-D case, but considerable challenges would be faced to produce an e�cient algorithm.Another problem variation is to consider a limited viewing angle, or a set of viewing raysas considered in [23]. A limited viewing angle can realistically occur in applications, andthe problem can be extended to planning strategies that sweep viewing angles in addition tomoving the pursuers. Finally, a cost functional could be de�ned, leading to problems suchas �nding the evader in minimum time.
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