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Abstract

Autonomous Observers are mobile robots that co-
operatively perform wision tasks. Their design
raises new issues in motion planning, where vis-
thility constraints and motion obstructions must
be simultaneously taken into account. This paper
presents the concept of an Autonomous Observer
and tts applications. It discusses three problems in
motion planning with visibility constraints: model
butlding, target finding, and target tracking.

1 Introduction

We are interested in mobile robots which au-
tonomously perform vision tasks such as building
3-D models of unknown environments and find-
ing/tracking unpredictable targets in cluttered en-
vironments. We call such robots Autonomous Ob-
servers (AOs for short). Multiple AOs may team
up to accomplish tasks more quickly or to achieve
goals that no AO could attain alone. E.g., it may
not be possible for a single AO to reliably find a
fast-moving target in a cluttered environment.

In the military domain, AOs may help assess
the situation in a building by detecting potentially
hostile targets and track their motions. In oper-
ating rooms, surgeons often operate by watching
graphic displays of key tissues; AOs could auto-
matically maintain visibility of the tissues in spite
of obstructions caused by people and complex me-
chanical instruments. In robotics, researchers at
one institution may want to conduct an experi-
ment using hardware at another institution; AOs
could be used to gather and transmit crucial real-
time information over the Internet, allowing the
remote researchers to effectively monitor their ex-
periment. Other applications include remote mon-
itoring of manufacturing operations in an assembly
plant, search/rescue in a potentially hostile envi-
ronment, and supervision of automated construc-

tion efforts in space.

AOs must execute motion strategies in which
vistbility and motion obstructions are simultane-
ously taken into account. In other words, they
must not only avoid colliding with obstacles, an
already well studied problem; they must also move
so as to satisfy some visibility constraints. E.g., in
the model building task, the AOs must eventually
see the entire environment; in target finding, one
AO must eventually see the target; and in target
tracking, at least one AO must see the target at
any one time. Concurrently, it is often desirable
to minimize the number of AOs used. Note the re-
lation with art-gallery problems (O’Rourke 1997),
where the goal is to compute the locations of a
minimal number of fixed guards that can collec-
tively see all points in a given environment. In
our case, AO mobility makes it possible to signif-
icantly reduce this number. Target tracking has
an obvious connection to visual tracking of a mov-
ing object in an image sequence (Hutchinson et al.
1996). But, while the goal of the latter problem is
to track the object as long as it is vistble in the im-
ages, AOs must move to avoid potential visual ob-
struction by obstacles and keep the target in their
field of view. Planning AO motions also relates to
sensor placement (Briggs and Donald 1997) and
active sensing (Maver and Bajcsy 1993).

In this paper we present our ongoing research
on three specific planning problems related to the
design of a team of AOs: 1) model building, ii)
target finding, and iii) target tracking. This se-
quence of problems corresponds to the following
scenario: AQs are dropped into an unknown envi-
ronment, of which they first have to build a model,
then they have to find a target hiding among view-
obstructing obstacles; finally, they must track this
target’s motions. However, the results obtained
for each problem can be used independently. For
lack of space, we only outline the main features of



our approach for each problem and we show some
experimental results. To give a better sense of the
sort of algorithmic issues involved, we present one
problem — target finding — in more detail.

2 Model Building

A basic task for an AO is to build a model of an
environment using vision sensing. We wish this
model to be usable for a variety of purposes, in-
cluding future navigation (e.g., for target finding
and tracking) and generation of realistic graphi-
cal renderings for virtual walkthrough operations.
The model constructed by our AOs combines 2-D
and 3-D geometry with texture maps.

A classical problem in automatic model build-
ing is known as the nezt-best-view problem (Banta
et al. 1995; Maver and Bajcsy 1993; Pito 1995):
Where to place the sensor next to maximize the
amount of information that will be added to the
partial model built so far? But existing techniques
do not ideally suit AOs. One reason is inherent
to the next-best-view problem itself: 1t is a local
planning problem (Kakusho et al. 1995), so that
a sequence of next-best views to build a complete
model may yield too many sensing operations. In
our case, each sensing operation is rather expen-
sive: it requires acquiring 3-D and texture data,
and merging this data with the current model.
Hence, we wish to minimize the total number of
operations. Moreover, a limitation of most next-
best-view techniques is that they assume precise
localization of the sensor. With our AOs, local-
ization uncertainty must be taken into account.
Finally, due to physical obstructions, a next-best-
view technique may not suggest viewing positions
that are accessible to the AOs.

These remarks led us to address model building
in a different way. Assume for a moment that we
are given a 2-D map describing the geometry of
a horizontal cross-section of the environment at
approximately the height of an AO’s camera. An
art-gallery algorithm computes the positions that
the AOs must visit to eventually see the entire 2-D
environment. We refine this approach as follows:
(1) The fact that the entire 2-D environment is
visible from a set of positions does not in gen-
eral entail that the entire 3-D environment is also
visible. But this is almost true for many indoor
environments. Some “holes” remain in the model
built, but these are usually small and they can be
filled by adding a few sensing operations at loca-
tions computed using a next-best-view technique.!

1Since a wheeled AO is not a free-flying device, some
holes cannot be eliminated. This can be dealt with by lim-

(c) (d)
Figure 1: Computed AO positions in a 2-D map:
(a) with no constraints; (b) with a minimum in-
cidence of 60 degrees. The portions of walls seen
from two AQO positions are shown in solid lines in

(¢)-(d).

(2) Art-gallery algorithms use the simple “line-of-
sight” visibility model: one point sees another if
the line segment between them does not cross any
However, imperfections in vision sen-
sors require that we use a more realistic definition
taking distance and incidence into account. This
yields new variants of the art-gallery problems.
(3) Art-gallery algorithms strive to minimize the
number of positions to be visited by AOs. But 3-D
sensing at these positions can yield partial mod-
els that have very small overlap between them.
Uncertainty in AO localization requires that 3-D
data from two partial models be aligned by partial
shape matching before they are merged. Minimal
overlap between the two models is needed.
(4) The 2-D model must be built in the first place.
We do this by letting AOs navigate in the environ-
ment, each using a simple laser range sensor pro-
jecting a horizontal plane of light to obtain the en-
vironment’s 2-D contour. Since this form of sens-
ing is fast, the number of sensing operations is not
critical, and a next-best-view technique is suitable
to select on-line the successive viewing positions.
We are currently implementing this approach
and experimenting with it. The planning compo-
nent of our software computes the AO positions
from a given polygonal map. Since the classical
art-gallery problem is NP-complete, we have opted
for a randomized algorithm that works as follows:
First, it guesses many AQO positions at random.
Each position determines portions of the bound-
ary of the 2-D map that an AO can see under
the given distance and incidence constraints. The

obstacle.

iting virtual walkthroughs to viewing positions that could

be achieved by an AO.
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Figure 2: 3-D/texture model.

map’s boundary is then partitioned into segments,
each visible from the same subset of AO positions
and labelled by this subset. If a segment has an
empty label, more AO positions are picked. Fi-
nally, a greedy set-cover algorithm prunes the AO
positions and selects a subset of them needed to
see the entire boundary.? Fig. 1 shows an example
of AO positions computed by our software under
incidence constraints only.

In addition to this planning component, our
software also includes the construction of a partial
3-D/texture model at a given AO’s position, and
the fusion of multiple partial models. Fig. 2 shows
the graphic rendering of a model constructed from
two different positions. The scene is a pile of boxes
with a book on the foreground and a whiteboard
as a background.

3 Target Finding

Suppose that a model for the environment F' is
available. The target-finding problem is to plan a
motion strategy for the AOs to eventually see a
target. This strategy must be such that, as the
AOs move, their visibility region (i.e., the region
that they collectively see) deforms and sweeps F so
that the target has eventually no remaining place
where to hide. Non-geometric pursuit-evasion
problems have been studied in graphs (e.g., (Par-
sons 1976)). A problem similar to ours is analyzed
in (Crass et al. 1995).

In the following, we assume that the target is
unpredictable, has unknown initial position, and
can move arbitrarily fast. (Hence, time is irrele-
vant.) F'is an arbitrary 2-D polygon with n edges
and h holes, where each of the AOs and target
is modelled as a point. The visibility model is the
line-of-sight model N denotes the minimal number
of AOs needed for the existence of a guaranteed
strategy.

2Set cover is NP-hard, but can be approximated within
a log factor by a greedy algorithm.

EJEJE]

Figure 3: Geometry and number of AOs.
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Figure 4: Critical event in information space.

Number of AOs. Clearly, N > 1 if h > 0, since
the target can always hide behind a hole to avoid
being seen by a single AO. However, even when
h = 0, small geometric differences may affect N;
e.g., in Fig. 3 the rightmost environment requires
two AQOs, while the other two require a single
AO. We have established the following worst-case
bounds on N (Guibas et al. 1997):

- For simply-connected environments (h = 0),
N = O(lgn); there exist environments such that
N = Q(lgn).

- For multiply-connected environments (h > 0),
N = O(\/E + lgn); there exist environments such
that N = Q(Vh +1gn).

Note that the art-gallery problem in an n-sided
polygon with A holes requires [(n + h)/3] static
guards (O’Rourke 1997).

In (Guibas et al. 1997) we also show that com-
puting N for a given environment is NP-hard.

Single-AO Planner. The NP-hardness of com-
puting N led us to investigate and develop a com-
plete planner for the case of a single AO.

Let V(q) be the AO’s visibility region at posi-
tion ¢ in F'. Each edge of V(q) borders either an
obstacle or free space. We call each edge bordering
free space a gap edge and we associate a binary la-
bel with it: if the portion of free space that borders
the gap edge is contaminated (i.e., may contain the
target), then the label is 1; otherwise, it is 0. Let
B(gq) denote the circular sequence of the labels of
the gap edges in V(g). We call (¢, B(q)) the AO’s
information state.

Let the AO move along a closed-loop path start-
ing and ending at ¢. The information state at g
may change only if gap edges appear or disappear
during the AO’s motion. To illustrate, consider
Fig. 4 where the AO is approaching the end of
a corridor. If the closed-loop path on the left is



Figure 5: Target-finding strategy (example 1).

executed, the end of the corridor remains contam-
inated. If the path on the right is executed, a gap
edge disappears and reappears, but with a differ-
ent label (0 instead of 1).

We say that a subset S of F' is conservative if
no motion of the AO within S can cause a gap
edge to appear or disappear. The critical places
at which edge visibility changes form an arrange-
ment of lines that decompose F' into conservative
cells. Such a decomposition has already been used
in robot localization (Guibas et al. 1995; Talluri
and Aggarwal 1996); it generates O(n?) cells for a
simple polygon. To obtain conservative cells only,
slightly fewer lines are needed than in a pure edge-
visibility decomposition (Guibas et al. 1997).

A directed information state graph G is built
and searched using this cell decomposition. For
each cell &, a set of vertices are included in G for
each possible labeling of the gap edges. An arc
connects two vertices v; and v; of G if the two
corresponding cells x; and &; are adjacent and if
the information state of v; is obtained from the
information state in v; when the AO crosses the
boundary between ; and ;. E.g., in the case
shown in the lower right of Fig. 4, assume that the
gap edge on the left is initially labelled by 0 and
the gap edge on the right is labelled by 1. Let the
first bit denote the leftmost gap edge label. The
corresponding arcs of the information state graph
are (k;,01) to (x;,0), and (x;,0) to (x;,00). In
other situations, if two gap edges are merged into
one, the new gap edge receives the label 1 if any of
the original gap edges is labelled by 1. The search
terminates when an information state is reached
in which all labels are 0. Our planner uses the
Dijkstra’s search algorithm with an edge cost that
is the shortest distance between the centers of the
two cells.

Experimental results. The planner is written

b
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Figure 6: Target-finding strategy (example 2).

in C4++ and runs on an SGI Indigo2 Workstation
with a 200 Mhz MIPS R4400 processor. Fig. 5
shows a path computed by this planner. The edge-
visibility decomposition displayed in (a) contains
888 cells yielding an information state graph with
103,049 vertices. The path is the concatenation of
the three bold lines in frames (b)-(d). The gray
region is the visibility polygon at the AO’s position
attained in each frame (thick point); black regions
are contaminated areas, while white regions are
cleared areas (other than the visibility polygon).
The total computation time is 171.63s. There are
130 conservative cells and the complete informa-
tion state graph contains 1727 vertices. Fig. 6
shows another example which took 10.73s to com-
pute. The environment yields 246 conservative
cells and an information state graph with 18,830
vertices. Note that the AO must clear the “beak”
at the top-left multiple times.

The planner is efficient in practice, but we have
not established its precise complexity. Examples
can be constructed that yield an exponential num-
ber of information states; but, whether all these
states may have to be considered to generate a
path remains an open question. Fig. 6 shows, how-
ever, that there exist environments in which the
same region is recontaminated Q(n) times.

Multi-AO Planner. In theory, the techniques
used in the single-AO planner also apply when
N > 1, but they are likely to result in a very
inefficient planner. Instead, we have developed a
greedy multi-AQO planner. This planner first plans
for one AO, using the single-AO algorithm. If it
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Figure 7: Target-finding strategy with two AOs.

succeeds, the problem is solved. Otherwise, the
planner clears as many cells as possible. The visi-
bility polygon of the AO at its final position par-
titions F' into components. The planner recur-
sively treats each contaminated component as a
new environment. Let N’ be the number of AOs
needed to clear the component that requires the
most AOs; N = N’ + 1, since a subset of the N’
AOs can also be used for clearing each of the other
components in sequence.

This planner always returns a motion strategy.
If this strategy uses one or two AQOs, it is optimal;
otherwise, a plan with fewer AOs may perhaps
exist. Fig. 7 shows an example generated by the
planner. In (a)—(b), the first AO clears as many
cells as possible, leaving two contaminated compo-
nents that are cleared by a second AO in (c)-(d).

Current Work. We are studying two variations
of the target-finding problem. In one we incorpo-
rate a more realistic visibility model in which the
field of view of each AO is a cone with bounded
depth. In the other we explore 3-D extensions
that yield efficient algorithms. Other important
variants include the cases where the target has
bounded velocity and AO localization is imperfect;
but such variants are more difficult to handle. For
instance, when the target’s velocity is bounded,
time plays a critical role in AO strategies.

4 Target Tracking

Once a target has been found, the next step is
to maintain visibility by appropriately moving the
AOs, again taking visibility and motion obstruc-
tions into account. Unlike in target finding, time is
now critical. The faster the planner and the more
efficient the motion strategies, the better. This led
us to develop two planning algorithms, depending
on target predictability:

(1) For fully predictable targets, we have devel-
oped an off-line planner that computes an optimal
solution for a given criterion (LaValle et al. 1997).

Figure 8: Optimal target tracking strategies.

Fig. 8 shows two examples computed by this plan-
ner. The target is displayed as a black disc and the
AO as a white disc. In (a), the tracking trajectory
minimizes the total distance traveled, while in (b)
it minimizes the time during which the AO does
not see the target under the additional constraint
that the AO’s speed 1s only half that of the target.
(2) For partially predictable targets (e.g., we may
only know their maximum speed), we have de-
signed an on-line planner. In one variant, this
planner maximizes the probability that the target
will remain in view at the next time step. In an-
other variant, it maximizes the minimum time in
which the target could escape the visibility region.

Our general approach for a single AO is the fol-
lowing. We represent each of the AO and target by
a point, and we model its motions using discrete-
time transition equations. Let each time step be
of length 6. We denote the position of the AO
(resp. the target) at time k6 by qi (resp. t). The
transition equation for the AO is gx4+1 = f(qx, %),
where ¢ 1s an action chosen from some given ac-
tion space ®. Constraints such as bounded veloc-
ity can be encoded in f. Similarly. the equation
for the target is 541 = g(tg,0r), where 0y is an
action taken from some space ©. When the target
only partially pedictable, the AO knows © (and,
possibly, a probabilistic distribution over ©), but
it does not know in advance the specific actions 6y,
performed by the target.

At every time step the on-line planner computes
a K-step motion strategy that optimizes a certain
criterion over the next K time steps and the AO
performs the first step of this strategy. In practice
we take K = 1, as the cost of the computation
increases dramatically with K. E.g., in the sec-
ond variant of the on-line planner, the action ¢
is computed at each step in order to maximize the
distance between #; (as measured by the AO) and
the boundary of the visibility region of the AO at
its future position ¢x41. This choice, which corre-
sponds to trying to minimize the time to escape,
yields AO’s motions that tolerate small errors in



Figure 10: Target-tracking snapshots.

measuring t;. It also easily extends to multiple
AOs; we then maximize the distance between tg
and the boundary of the union of the visibility re-
gions of the AOs at their future positions.

We have implemented these planners and per-
formed numerous successful experiments both in
simulation and with a real AO. Fig. 9 shows our
experimental setup (the robot at the forefront is
the AO; the other robot, with a distinctive “hat,”
is the target). Fig. 10 shows a run as it appears
on the user’s display (the gray disc is the target
and the black disc the AO).

5 Conclusion

Motion planning with visibility constraints has re-
ceived little attention so far, despite the fact that
it has many potential applications. In this paper
we presented three problems encountered in our
AO project: model building, target finding, and
target tracking. Our research combines theoreti-
cal investigation of planning problems with partly-
idealized visibility models to produce guaranteed
algorithms and pragmatic tradeoffs between algo-
rithmic rigor and model realism to construct effec-
tive systems for realistic experimental setups.
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