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ABSTRACT. We consider coordination of multiple robots in a common environment,

each robot having its own (distinct) roadmap. Our primary contribution is a classifi-

cation of and exact algorithm for computing vector-valued — or Pareto — optima for

collision-free coordination. We indicate the utility of new geometric techniques from

CAT(0) geometry and give an argument that curvature bounds are the key distinguish-

ing feature between systems for which the classification is finite and for those in which

it is not.

1. INTRODUCTION

Managing a collection of automated guided vehicles (or AGVs) in a common workspace
is a canonical example of a coordination problem in robotics. Such coordination prob-
lems introduce challenges beyond those of simple obstacle avoidance and motion plan-
ning in single robot settings; robot-robot interactions must likewise be controlled.

In keeping with contemporary approaches to motion planning, we assume that each
robot possesses a precomputed roadmap approximation to its individual configura-
tion space. We do not, however, assume that there is a single roadmap for the entire
multi-agent configuration space: each robot has a roadmap which takes account of
workspace obstacles but not of the other robots.

Given this structure as an input, we consider the problem of optimal coordination with
respect to elapsed time (for concreteness; other cost functions are amenable to analy-
sis). The appropriate notion of optimality can differ from one application to another.
Settings in which average elapsed time or total elapsed time are common and often
appropriate (e.g., [21, 29, 38]). However, all such approaches scalarize the N distinct
pieces of cost function data.

Our perspective is to emphasize vector-valued optimization, preserving all cost func-
tion data. This notion of Pareto optimality [32, 35] is widely used in mathematical eco-
nomics to model individual consumers striving to optimize distinct economic goals. It
is more “faithful” to the system in the sense that no data is lost by scalarization.
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It is to be noted in particular that a successful classification of Pareto optima has several
benefits. First, it automatically yields the set of all optima for all (monotone) scalariza-
tions of the cost functions: see Lemma 1.1. Second, it allows the user to have a (hope-
fully small, finite) template of optimal coordinations which can be used for on-line
adaptation to changing needs and cost functions.

1.1. History. The problem of coordinating robots along fixed roadmaps can be con-
sidered as a special case of general motion planning for multiple robots. Previous
approaches to multiple-robot motion planning are often categorized as centralized or
decoupled. A centralized approach typically constructs a path in a composite configura-
tion space, which is derived from the Cartesian product of the configuration spaces of
the individual robots (e.g., [3, 4, 36]). A decoupled approach typically generates paths
for each robot independently, and then considers the interactions between the robots
(e.g., [8, 15, 31]).

The approach in [15] prioritizes the robots, and defines a sequence of planning prob-
lems for which each problem involves moving one robot while those with higher pri-
ority are considered as predictable, moving obstacles. This involves the construction
of two-dimensional path-time space [24] over which the velocity of the robot is tuned
to avoid collisions with the moving obstacles.

In [2, 6, 10, 34, 31, 37] robot paths are independently determined, and a coordination
diagram is used to plan a collision-free trajectory along the paths. The approaches in [2,
34] additionally consider dynamics. In [26, 40], an independent roadmap is computed
for each robot, and coordination occurs on the Cartesian product of the roadmap path
domains. The suitability of one approach over the other is usually determined by the
trade-off between computational complexity associated with a given problem, and the
amount of completeness that is lost. In some applications, such as the coordination of
AGVs, the roadmap might represent all allowable mobility for each robot.

In this paper, we focus on the multiplicity of Pareto optimal path coordinations among
cylindrical obstacles — those determined by pairwise collisions (see §1.4 below). In
[27], an approximate Dijkstra-like algorithm to find Pareto optimal solutions in this
context was given. To our knowledge, the only previously known exact solution is that
of [12], which applies only to the case of two robots that translate on acyclic roadmaps.

1.2. Coordination spaces. We assume that there are N robots, each having a roadmap
Γi (a graph within the C-space of the ith robot) precomputed independent of the other
robots. A roadmap coordination space of {Γi}N1 is a deleted product of the roadmaps:

(1.1) X := (Γ1 × · · · × ΓN )−O,

where O denotes an (open) obstacle set.

Throughout the paper, all coordination spaces are assumed to be piecewise linear (PL)
manifolds. This assumption rules out obstacle sets O which are too intricate to have
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a nice local structure or for which the system “locks up” in a singular configuration.
Certain results of this paper hold under much weaker technical assumptions (includ-
ing piecewise analytic or algebraic) [16].

A special example of a roadmap coordination space arises when all of the roadmaps
Γi are identical, and the obstacle set is an open neighborhood of {xi = xj : for some
i 6= j}. In this case, one can consider the workspace to be the graph itself, and the
roadmap coordination space is precisely the configuration space of N labeled objects
on the graph.

This example is particular in that all obstacles are defined by pairwise constraints on
positions. More generally, we say that the obstacle setO forX =

∏

Γi−O is cylindrical

if, for some collection of sets {∆i,j ⊂ Γi × Γj}i<j , it holds that O is of the form

(1.2) O =

{

(xk)
N
1 ∈

∏

k

Γk : (xi, xj) ∈ ∆i,j for some i < j

}

.

Physically, this means that whenever two robots experience an obstacle (e.g., collision),
the states of all other robots are irrelevant. For the algorithms in this paper, we require
each ∆i,j to be the interiors of disjoint PL subsets of Γi × Γj ; the mathematical results
we state hold in a much broader setting [16].

One of the important perspectives of this paper is that there is a significant difference
between computing optima for cylindrical versus non-cylindrical coordination spaces.

1.3. Pareto optimality. Pareto optimization is simply vector-valued optimization. In
the context of robotics applications, Pareto optimization arises when distinct robots
possess distinct goals and/or cost functions for evaluating performance. Each robot
wishes to optimize its cost function independently of the others.

Mathematically, this is characterized as follows. Given a parameterized path γ : [0, T ]→
X in a coordination space, each robot executes the projected path γi := Pi ◦ γ, where Pi

denotes projection onto the ith factor. Given cost functions {τi}N1 , the cost vector for γ
is the vector τ(γ) := (τi(γi))

N
1 .

For the remainder of this paper, we assume that each roadmap Γi is outfitted with
a metric such that the speed of the ith robot traveling along this graph at maximal
speed is exactly one; hence all admissible paths have speeds whose components are
bounded above by one. It will be assumed for simplicity that the cost functions τi agree
with elapsed time. This is an important and characteristic example. More general cost
functions are often interesting and important; we believe that a simple extension of our
methods covers such cases.

A path γ : [0, T ] → X is Pareto optimal iff τ(γ) is minimal with respect to the partial
order on vectors:

(1.3) τ(γ) ≤ τ(γ′)⇔ τi(γi) ≤ τi(γ
′

i)∀ i.
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The Pareto optima comprise the set of all optima for all monotone scalarizations (such
as, e.g., average time-to-goal and all non-linear generalizations thereof):

Lemma 1.1. For any scalarization f : R
n → R with ∂f/∂xi > 0, all minima of f ◦ τ are

Pareto optima.

Proof: Given any minimal path for f ◦ τ which is not Pareto optimal, deforming it to
a Pareto optimal path decreases some τi without increasing any of the others; hence it
decreases the f -value: contradiction. �

FIGURE 1. [left] The unique Pareto optimal path on a rectangle from
the lower-left to the upper-right corners; [right] an envelope of Pareto
optimal paths weaving through obstacles forms a single equivalence
class.

Pareto optimal paths are rarely unique. Two paths γ and γ′ are Pareto equivalent

iff they are homotopic through Pareto optimal paths which are equal in the partial
order; i.e., τ(γ) = τ(γ′). Fig. 1[right] illustrates a single Pareto optimal class with many
representatives.

1.4. Contributions. This paper does three things:

(1) We state a uniqueness result for locally Pareto optimal classes on a cylindrical
coordination space which depends only on the topology of the space, and not
on its geometry or PL structure.

(2) We give an exact algorithm for computing Pareto optima on such cylindrical
coordination spaces.

(3) We propose an explanation for why cylindrical coordination spaces are “easy”
while non-cylindrical spaces can be “hard.” This explanation is based on cur-
vature bounds.

The first contribution — the uniqueness result — is given in Section 2. In brief, every
path in a cylindrical coordination space between fixed endpoints is homotopic (fixing
the endpoints) to a unique class which is Pareto optimal among paths in its homotopy
class. From this result, one can show that only a finite number of these local optima
are in fact global. The proof of this result is outlined in Section 3.2. A complete proof
(with extensions) is given in a more technical paper [16].
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The second contribution — the exact algorithm — is the most technical portion of the
paper. The algorithm takes as its input the coordination space, the endpoints of the
path, and the homotopy class of the locally Pareto optimal path desired. In Section 4
we give an exact algorithm under the reasonable assumption that robots do not back-
track. The algorithm is output sensitive with respect to the complexity of the path it
computes. Fix the number of robots; let m denote the complexity of the obstacle set
O; and let p and p′ denote the complexities of the input and output paths respectively.
Algorithm 1 executes in O(p + m log mp + p′

√
m log m) time. An extension to arbitrary

paths involving backtracking is also given, along with examples in both cases.

The final contribution — an explanation for why these results hold — focuses on no-
tions of synthetic curvature as arises in Alexandrov geometry and geometric group
theory. This perspective is novel in robotics, but has a rich mathematical heritage and
an impressive list of achievements. Background material is outlined in Section 3.1 with
applications to the present problem sprinkled throughout the text.

2. CLASSIFYING LOCAL OPTIMA

2.1. Examples of Pareto optimal classes. We illustrate two key examples of simple
coordination spaces and Pareto optimal path classes.

Example 2.1. Consider the case where N = 2, Γ1 = Γ2 = [−2, 2], and O = {(x, y) :
x2 +y2 < 1}, which corresponds to a pair of identical disc-shaped AGV’s sliding along
interval roadmaps which intersect in the workspace at right angles. There are exactly
two Pareto optimal classes of paths from (−2,−2) to (2, 2), as illustrated in Fig. 2[left].
The difference between these two paths lies in which robot decides to pause in order
to allow the other to pass through the intersection.

FIGURE 2. [left] The case of two robots with a disc obstacle possesses
two Pareto optimal classes; [right] Three robots with a spherical obstacle
possesses a continuum of Pareto optimal classes.

Example 2.2. We modify the previous example by letting N = 3 and choosing O to be
a round open ball of radius 1 at the origin. By the symmetry of X about the diagonal
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of the cube, it is clear that there is a circle’s worth of paths which begin at (−2,−2),
trace a straight line which is tangent to O, and then exit this sphere tangentially with
slope one. The projection of this family of paths to the first two coordinates includes
as special cases the distinct Pareto optima of Example 2.1, as well as a continuum of
paths whose goal times interpolate between these two. Hence, there is a continuum of
Pareto optimal classes.

Neither of these examples is PL. In the case of Example 2.1, any PL approximation to
the coordination space yields exactly two Pareto optimal classes. In the case of Example
2.2, PL approximations to the space may possess only a finite number of Pareto optimal
classes. However, the number of such classes grows with the resolution of the PL
approximation, approaching infinity in the limit as the obstacle approaches a smooth
ball.

These two examples are key to understanding the results of this paper. Notice that the
former is cylindrical (all 2-d coordination spaces necessarily are) while the latter is not.
Notice also that in the cylindrical case, the two Pareto optima are in different homotopy
classes of path (one is not deformable to the other fixing the endpoints). On the other
hand, in the non-cylindrical example, all of the numerous, distinct Pareto optima are
homotopic as paths with fixed endpoints.

2.2. A classification statement. In [16] the following theorem is proved.

Theorem 2.3. Let X denote a cylindrical coordination space and let P denote a homotopy class
of paths on X with fixed endpoints. Then among all paths of P there exists a unique Pareto
optimal equivalence class.

We call such a class a locally Pareto optimal class, since they are Pareto optimal only
with respect to a fixed homotopy class. If one “cuts” the path and reconnects in a
different manner, the local Pareto optimum in this class may be a global improvement.
It follows that locally Pareto optimal paths on a cylindrical coordination space are in
bijective correspondence with homotopy classes of paths.

As such, the number of global Pareto optima is highly restricted, in sharp contrast to
Example 2.2. For example, if one should have a simply connected coordination space
X , then there exists a unique Pareto optimal class: remarkably, this one class of paths
minimizes any monotone scalarization of the goal times. More generally, Theorem 2.3
is the key to proving the following finiteness result [16]:

Theorem 2.4. On any cylindrical coordination space, there exists a finite number of Pareto
optimal classes.

The intuition for this result is that, via Theorem 2.3, there is one locally Pareto optimal
class per homotopy class of paths. In the case where there is an infinite number of
homotopy classes of paths, all but a finite number of these “wrap” around a hole in
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the space multiple times. This wrapping is wasteful — it forces each robot to expend
more time to reach its goal — and hence is strictly worse than a homotopy class which
does not wind about. (cf. Example 2.1, in which additional loops about the central hole
would certainly be wasteful.)

With this finiteness result, it is reasonable to tabulate representatives of the Pareto opti-
mal classes for a given system. The problem remains, however, which representatives
to use and how to compute them. This is the subject of the remainder of the paper.
The techniques used to prove Theorem 2.3 are necessary for answering both questions.
As such, we present the requisite mathematical background for utilizing these tools,
followed by the algorithms used to compute representatives.

3. CURVATURE AND OPTIMAL COORDINATION

3.1. CAT(0) geometry. There are many notions of curvature applicable to a space out-
fitted with a geometry (a Riemannian metric): scalar curvature, section curvature, Ricci
curvature, etc. Discrete curvatures for PL domains have also been explored. But the
notion of curvature that is used in the proof of Theorem 2.3 is quite a bit more general.

Let X denote a metric space (a space outfitted with a means of measuring distances
between points) for which the notion of a geodesic makes sense: that is, for any pair of
points p, q ∈ X , there exists a path γ from p to q whose length is equal to the distance
between p and q. It is not assumed that this path is unique. All the coordination spaces
we consider are Euclidean domains and hence satisfy this property [7].

For such spaces as this, an old notion of curvature (developed by, among others, Alexan-
drov and Toponogov) uses triangles to bound curvature from above. Consider three
points p, q, and r in X and three shortest paths pq, qr, and pr in X forming a geodesic
triangle T . In the Euclidean plane, the sum of the three angles of T would equal exactly
π. However, if this triangle were drawn on the surface of a round sphere, the sum of
the angles would be strictly larger than π. Conversely, a geodesic triangle drawn on
a hyperbolic plane (a “saddle” surface) would have the sum of the angles strictly less
than π.

Roughly speaking, one says that X is CAT(0) if for every geodesic triangle between
any set of points p, q, r, the sum of the angles is no greater than π. For example, all
simply connected subsets of the Euclidean plane are CAT(0) . Furthermore, all con-
vex sets of arbitrary dimension are likewise CAT(0) ; thus, the CAT(0) condition is a
generalization of both two-dimensionality and convexity.

To make this precise for a general space X requires a little more care: angles are not
so easily measured, since our only assumption on X is that shortest paths exist. One
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proceeds by comparison triangles.1 For each triple of points p, q, r ∈ X , draw the
triangle in X with geodesics pq, qr, and rp. Let p′, q′, and r′ denote three points in the
Euclidean plane forming a triangle whose respective edges equal in length those in X .
Choose a pair of points s and t on the edges of the geodesic triangle in X and consider
the corresponding points s′ and t′ in the plane. The CAT(0) inequality for X is the
following: for every p, q, r in X , and for every s, t, one has d(s, t) ≤ ‖s′− t′‖, where ‖ · ‖
denotes the Euclidean norm in the plane: see Figure 3. A geodesic space X is CAT(0) if
the CAT(0) inequality holds for each geodesic triangle in X .

p

q

r

s

t

p′

q′

r′

s′

t′

FIGURE 3. The coordination space of Example 2.1 is locally
CAT(0) [left] since small triangles are no “fatter” than their pla-

nar counterparts [center], whereas that of Example 2.2 is not locally
CAT(0) [right].

One says that the space X is nonpositively curved if it is locally CAT(0) — that is, if
sufficiently small geodesic triangles have total angle no greater than π. All subsets of
the Euclidean plane are nonpositively curved, regardless of whether they are simply
connected or not. In fact, it is easy to show that a space X is CAT(0) if and only if it is
both nonpositively curved and simply connected.

The application of CAT(0) geometry to coordination spaces begins with the following
important result [16]:

Lemma 3.1. Cylindrical coordination spaces are nonpositively curved.

The proof of this result requires techniques from CAT(0) geometry which fall outside
the scope of this paper: see [16] for a complete proof.

3.2. Geodesics and left-greedy paths. A simple result about CAT(0) spaces with im-
portant applications is the following:

Lemma 3.2. Between any two points in a CAT(0) space X there exists a unique geodesic.

1The term CAT(0) comes from the mathematicians’ names Cartan, Alexandrov, Toponogov. However,

it can also be thought of as comparare ab triangulos — to compare from triangles.
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The result is standard. We include a proof for the sake of exposition.

Proof: Let p, q ∈ X be points for which there are two shortest paths γ and γ′. Choose
a point r at the midpoint of the path γ′. Then the two halves of γ′ are geodesic paths
from p to r and r to q respectively. Thus, γ and γ′ together give a geodesic triangle
in X . Drawing the comparison triangle in the Euclidean plane yields a degenerate
line segment, since γ and γ′ have the same length. The CAT(0) inequality implies that
γ = γ′. �

Corollary 3.3. In any fixed homotopy class of paths between points in a space of nonpositive
curvature, there exists a unique shortest path.

Proof: This uses a simple construction from topology which will be useful in the re-
mainder of the paper. Given a connected space X , the universal cover of X is a con-

nected and simply-connected space X̃ together with a projection map P : X̃ → X
which is a homeomorphism on sufficiently small open sets. For example, the universal
cover of the circle is the real line, with the projection map being P : x → e2πix. Any
space X with which we are concerned possesses a universal cover which is unique up
to a type of symmetry: see [19, Ch. 1] for a complete treatment.

The universal cover of any nonpositively curved space is a CAT(0) space under the
lifted metric [7]. Given points p, q ∈ X and a corresponding point p̃ ∈ P−1(p), any fixed
homotopy class of paths in X from p to q corresponds to the set of all paths between
p̃ and some fixed q̃ ∈ P−1(q). The projection P preserves lengths of paths since P
locally preserves lengths. Lemma 3.2 thus implies that there is a unique shortest path

on X̃ . �

This does not imply Theorem 2.3, but is rather a prototype. The heart of Theorem 2.3 is
in showing that a certain type of path in X (here called a left-greedy path) is unique up
to homotopy. Recall Figure 1[left] — the unique geodesic in this case (the diagonal) is
not Pareto optimal. Both the shortest path and the Pareto optimal path are geodesics in
the ℓ∞ metric: these minimize total elapsed time of the system. The set of ℓ∞ geodesics
on X between fixed endpoints is almost always a continuous envelope of paths. The
Pareto optimal path in Figure 1[left] is the path on the “left” edge of the envelope. This
is the canonical example of a left-greedy path.

The definition of left-greedy paths in [16] uses a discrete version, based on a cubical ap-
proximation and a result by Niblo and Reeves on normal cube paths in CAT(0) cubical
complexes [30]. In order to avoid unpleasant details about spatial discretization, we
give an equivalent “smooth” version which is better suited to the algorithms of the
next section.

Assume first that X is a simply connected cylindrical coordination space with p, q ∈ X .
Let γ be a path from p to q. For any point y = (yk)

N
1 ∈ X on the path γ, consider

the N distinct hyperplanes at y: Hk(y) is defined to be the connected component of
{x ∈ X : xk = yk}. Since X is CAT(0) , hyperplanes always separate X .
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We say that a path from q to p is left-greedy if it crosses hyperplanes between p and q
as quickly as possible. More specifically, for any y ∈ γ and all k = 1...N , the tangent
vector to the path, γ̇(y), satisfies the following:

(1) IfHk(y) separates p from q in X , then the kth component of γ̇(y) is nonzero and
is positive/negative so as to point from p to q;

(2) If q ∈ Hk(y), then the kth component of γ̇(y) is zero;
(3) All components of γ̇(y) are maximized with respect to the speed constraints of

1 and the obstacle constraints.

In the case where X is not simply connected, one extends the definition of left-greedy
by lifting X to the universal cover (see proof of Corollary 3.3) and working with paths
on this simply connected space as above. The following result is proved in [16], using
Lemma 3.1 and a result of Niblo and Reeves [30]:

Theorem 3.4. There exists a unique left-greedy path in each homotopy class of a cylindrical
coordination space.

The proof of Theorem 2.3 consists of showing that any Pareto optimal path is Pareto
equivalent to the left-greedy path in its homotopy class.

4. ALGORITHMS

We now consider the algorithmic problem of computing exact Pareto optimal paths. In
this section, we give an efficient algorithm for deforming a path to its Pareto optimal
representative. The input to the algorithm is a collision-free path γ; the output is the
Pareto optimal path γ′ homotopic to γ. We know from Section 3.2 that it suffices to
compute the unique left-greedy path homotopic to γ.

The central idea is to take advantage of the cylindrical structure of the obstacle set.

Indeed, X , which is itself N -dimensional, can be fully described by a set of
(

N
2

)

projec-
tions, each containing only the pairwise collision regions for two of the robots. More
precisely, we define the projection Xi,j forRi andRj as

(4.1) Xi,j = (Γi × Γj)−∆i,j .

From such projections the original space may be realized by extruding the obstacles
across the remaining N − 2 dimensions. We exploit this structure by constructing γ′

directly in X using geometric operations only on the projections.

To simplify the presentation, we first describe an algorithm for the case in which the
robots cannot backtrack along their paths, then outline the extension to allow back-
tracking. The former appears in Section 4.1; the latter in Section 4.2. Finally, Section 4.3
discusses the complexity of computing the set of all Pareto optimal solutions.
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CCW

(3)
(1)

(2) (3)
(3)

(4)

FIGURE 4. [left] A sample 2-d coordination space and a collision-free
path within it. [right] The left-greedy deformation of this path, showing
each of the 4 types of velocity changes described in the text. Dashed
lines indicate the critical events. The deformed path γ′ cannot cross any
critical event.

4.1. Computing monotone Pareto optimal paths. A path is monotone if it is nonde-
creasing in each dimension. Monotonicity is equivalent to the requirement that robots
may not “back up” along their paths. Throughout Section 4.1, we assume that the
given γ can be deformed into a monotone path.

In a coordination space with PL obstacles, left-greedy coordinations will themselves be
PL. Our algorithm builds a path by starting with a single point at the initial position
and adding linear path segments sequentially until the goal is reached. Each of these
linear path segments corresponds to a portion of the coordination in which all of the
robots maintain constant velocity. Changes of velocity can be characterized in one of
four ways (as illustrated in Figure 4):

(1) stopping to avoid a future collision (when a projection of the path reaches a
horizontal or vertical minimum of some obstacle around which it may not go
without changing the homotopy class of the original path),

(2) restarting from case 1 when the obstacle has been reached,
(3) stopping, slowing or speeding up when the path initiates or breaks contact with

some coordination space obstacle, and
(4) stopping each robot that reaches its goal.

Each iteration of the algorithm has three parts: determining which of these events will
occur next, adding a segment to the output coordination advancing to this point, and
determining the left-greedy velocity at which to continue. The method is summarized
in Algorithm 1; elaboration follows.

4.1.1. Next Event Computation. In each projection, a monotone path will appear as a
polygonal chain without self-intersection connecting the lower left to the upper right
of the projection. Such a projected path will divide the projection into two parts – one
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Algorithm 1 EXACTLEFTGREEDYMONOTONE(X , γ)

Require: γ is a collision-free coordination in X whose left-greedy representative is
monotone.

1: x0 ← xinit

2: W ← ∅
3: O ← OBSTACLEREGIONS(X )
4: R← OBSTACLEORIENTATIONS(O, γ)
5: E ← CRITICALEVENTS(O, γ)
6: t← 0
7: while xt 6= xgoal do

8: t← t + 1
9: v ← MAXIMALVELOCITY(x, W,O)

10: e← NEXTEVENT(x, v, R, E,O)
11: W ← UPDATEWAITFORSET(p, e, W )
12: xt ← xt−1 + v · e.time
13: end while

14: return (x0, . . . , xt)

above γ and one below. We label each obstacle according to this subdivision. Obstacles
above γ receive a counterclockwise (CCW) label; obstacles below γ are labeled clock-
wise (CW). A crucial observation is that if γ is homotopic to some monotone path, then
these orientations fully identify the homotopy class of γ. Therefore if we construct γ′

in such a way that it induces the same orientations on the obstacles as γ, we can be
certain that γ′ is homotopic γ.

To assign an orientation to an obstacle in ∆i,j , we need to determine whether it is above
or below γ inXi,j . Since γ dividesXi,j into two regions with PL boundaries, computing
the orientation for each obstacle is a planar point location problem. Let m denote the
total complexity of the obstacle regions. Then these point location queries can be solved
for all obstacles in optimal O(p + m log p) time using recursive triangulation methods
[25].

One concrete way to think of these orientations is as a priority scheme for scheduling
the robots. Consider an obstacle in Xi,j . This obstacle represents a region that cannot
be occupied by both Ri and Rj at once. The orientation induced by γ determines a
priority for these robots with respect to this collision region. A CW orientation dictates
thatRj should pass through this collision region first and as a result, whenRi reaches
the boundary of the collision region, it should stop and wait for Rj to pass through.
The reverse is true for CCW-oriented obstacles –Rj should wait at the boundary of the
collision region forRi to pass.

To facilitate building γ′ with orientations identical to γ, we extend a ray downward
from the horizontal minimum of each CW obstacle. These rays mark the “last chance”
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for a monotone path to pass over these obstacles without breaking homotopy with γ.
Similarly, leftward rays from vertical minima of CCW obstacles indicate the final op-
portunities to pass under these obstacles. We call the collection of all such rays a set of
“critical events.” When γ reaches a critical event in some Xi,j , the corresponding robot
should be stopped, preventing γ′ from crossing the critical event. As the algorithm
proceeds, it maintains a set W of ordered triples (i, j, a) in order to track which robots
are stopped in this way and when each is permitted to restart. An element (i, j, a) ∈W
indicates that Ri is stopped waiting for Rj to reach the point a along Γj . Elements are
added to W at events of type 1 and removed at events of type 2.

Now we can describe the NEXTEVENT procedure from Algorithm 1. Computing the
next event involves a ray-shooting query in each projection. In Xi,j , extend a ray start-
ing from the current position in the direction determined by ratio of velocities for Ri

and Rj . The first critical event or obstacle intersected by this ray represents the next
event in Xi,j . This computation can be done in time O(

√
m log m) using the algorithm

of [11]. To find the next event for the entire N -robot system, repeat this process across

all
(

N
2

)

projections and select the earliest event from among these.

4.1.2. Computing local left greedy velocities. Constructing a left greedy path implies that
each robot should maintain the fastest collision-free velocity consistent with W , which
may constrain some robots to have zero velocity. Given W and a point x in coordina-
tion space, we want to compute a vector v = (v1, . . . , vN ) of velocities. In this section
we will show that this is equivalent to finding the maximum feasible velocity for each
robot independently and describe a single linear program that finds all of these max-
ima.

The velocity vector v is constrained in four ways:

(1) Global velocity constraints induced by our model: 0 ≤ vi ≤ 1 for each 0 ≤ i ≤
N .

(2) For each (i, j, a) ∈W , vi = 0.
(3) For each obstacle boundary edge e containing x, let Xi,j be the projection con-

taining e and let m denote the slope of e. Then in order to prevent an immediate
collision, we have the constraint

(4.2) vi −mvj ≤ 0

if x is below the obstacle or

(4.3) vi −mvj ≥ 0

if x is above the obstacle.
(4) For each robotRi that has reached its goal, vi = 0.

It remains for us to determine what objective function to maximize. Consider the fam-
ily of linear programs L1, . . . , LN with identical constraint sets defined by (1)-(4) above
and in which the objective in Li is to maximize vi. Let Li(j) denote the value assigned
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to vj by an optimal solution to Li. Observe that Li(i) is the maximum feasible value
for vi.

Lemma 4.1. Selecting v = (L1(1), L2(2), . . . , LN (N)) satisfies (1)-(4).

Proof: Suppose some constraint is violated. Constraints of forms (1), (2) and (4) are
certainly satisfied. Without losing generality, choose i and j so that vi − mvj ≤ 0
is a violated constraint of form (3), so that Li(i) − mLj(j) > 0. Since Lj(j) is the
maximum feasible value for vj , we have Li(j) ≤ Lj(j). In a monotone path we will
have m ≥ 0, so we may substitute to find Li(i) −mLi(j) > 0, violating a constraint in
Li and contradicting the definitions of Li(i) and Li(j). �

Finally, note that (L1(1), L2(2), . . . , LN (N)) is the optimal solution to the linear pro-
gram with objective function

∑

i vi. Thus, we can compute the desired velocity by
solving a single linear program in N variables and O(N2) constraints. For fixed N ,
such a program can be solved in constant time. In practice, the number of constraints
is the sum of the cardinality of W and the number of obstacles x touches; this value
can be expected to be reasonably small.

4.1.3. Analysis. Recall that N denotes the number of robots and m the total complexity
of the pairwise obstacle regions. Let denote p the number of linear segments in γ. We
consider N fixed. Our algorithm is output sensitive in the sense that the run time is a
function of the complexity p′ of the locally Pareto optimal path generated.

We can generate the critical events using a straightforward generalization of the stan-
dard vertical decomposition algorithm in [13] in time O(m log m). Each iteration of
loop on lines 6-12 adds an additional segment to γ′. We have already argued that each
such iteration can be completed in time O(

√
m log m). The preprocessing steps of gen-

erating critical events and assigning obstacle orientations takes time O(p + m log m +
m log p). Therefore, Algorithm 1 executes in O(p+m log mp+p′

√
m log m) time in total.

Finally, we bound p′. The number of velocity changes of types 1, 2, and 3 can each be
bounded by m; there are exactly N events of type 4. Therefore p′ < 3m+N and we may

state the time complexity of the algorithm for fixed N as O(p + m log mp + m
3

2 log m).

4.1.4. Computed Examples. We have implemented a simplified version of Algorithm 1.
In particular, we perform both the point-location step and the next event selection us-
ing the obvious quadratic time algorithms. Our implementation is in C++ on Linux
and experiment times shown are for a 2.55GHz processor. Figure 5 illustrates a simple
coordination problem with n = 3 for which we found the set of three Pareto optima by
exhaustively enumerating monotone homotopy classes. These coordinations took ap-
proximately 0.3 seconds to compute. Figure 7 shows two more complex coordination
problems solved by our implementation – one in which 8 robots translate left-to-right,
and a “swap” problem in which 20 robots switch sides.
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R1 R3

R2 X1,3 X2,3

X1,2

FIGURE 5. [left] A coordination problem with 3 robots. [center] The
three projections of this problem’s coordination space. The initial state
is the lower-left corner of each; the goal is in the upper right. An exam-
ple left-greedy path is shown. [right] The full 3-d coordination space.

t = 0 t = 3 t = 6 t = 9 t = 12 t = 15 t = 18 t = 21

FIGURE 6. Workspace snapshots of the three Pareto optima for the
problem in Figure 5.

4.2. Dealing with nonmonotonicity. We now relax the monotonicity requirement. The
primary difficulty to be overcome is that obstacle orientations are no longer sufficient
to determine a path’s homotopy class. Indeed, one may revisit obstacles numerous
times in opposite orientations.

To collate this data, extend rays upward and downward from each obstacle vertex that
is a horizontal local extremum and do the same mutatis mutandis for vertical local ex-
trema. For each ray ri, assign a symbol ai to represent the action of crossing this ray

in the forward direction and let a−1

i denote crossing the ray backward. The homotopy
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FIGURE 7. Two complex coordination problems; [left] for 8 robots, the
37 optimal coordinations were computed in 171.6 seconds by an exhaus-
tive search of monotone classes; [right] for 20 robots, a single coordina-
tion was computed in 1.53 seconds.

BA

FE

G H

C D

BA

FE

G H

C D

FIGURE 8. A 2-d coordination space in which a nonmonotonic solution
path is needed. Dashed lines indicate the critical events. [left] A sample
path with crossing sequence c1 = ACB−1DBB−1E−1GHF . [right] The
optimized path has crossing sequence c2 = CAB−1DE−1GFH . In the
group L, c1 and c2 are equivalent.

class of a path is completely determined by the sequence in which it crosses these crit-
ical events (extending our earlier usage of the term) and the direction of each crossing.
That is, a path’s homotopy class is uniquely determined by its representation in the lan-

guage L = {ai, a
−1

i }∗. Conversely, if two paths are homotopic, then by continuously
deforming one into the other, the crossing sequence will change by

• a transposition when the deformation passes an intersection point between a
pair of critical events,
• a transposition when the order of successive events in unrelated projections is

reversed, or
• cancellation of a crossing with its inverse.

Thus, we treat inverses in the usual way and admit commutativity between symbols
corresponding to events in unrelated projections and between intersecting events in
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the same projection. We consider L with these relations as a group under word con-
catenation.

The length of the strings representing a homotopy class of a path can vary if there are
“extraneous” elements that can be eliminated by commuting one or more pairs of sym-
bols and canceling a symbol with its inverse. Since any extraneous crossings represent
extra path length and so can only increase overall cost, any path that is cost-optimal
up to homotopy will have a minimal length crossing sequence within its homotopy
class. Such a minimal sequence dictates for each robot the order in which critical events
should be crossed in a left-greedy path.

Given the crossing sequence for γ, we want to compute its minimal-length equivalent
sequence. This can be accomplished using a simple algorithm that partitions the word
by left-to-right sweep into maximal substrings in which each symbol commutes with
each other. We call each such substring a syllable. Since X has dimension N , any
mutual intersection of orthogonal hyperplanes will have degree at most N ; hence the
length of each syllable is bounded above by N . The word is minimized by shifting
symbols to the left and canceling each symbol with its inverse when they appear in the
same syllable. Details appear in Algorithm 2. To analyze this algorithm, let L denote
the length of the word. Each iteration of the loop on lines 15-25 cancels at least one pair
of symbols, so that loop executes O(L) times. Each iteration makes O(N2) comparisons
for each of the O(L) pairs of adjacent syllables. As a consequence, the run time of the
algorithm is quadratic in L. The word length L has complexity Θ(pm), in which p is
the complexity of γ and m is the total complexity of the obstacle regions.

In light of this analysis, it is a simple matter to extend Algorithm 1 to optimize non-
monotone paths. Having computed the minimal crossing sequence from γ, we can
build γ′ segment-by-segment, enforcing the sequence of critical event crossings pre-
scribed for each robot. Each robot should stop rather than cross any event other than
the next prescribed for it in the sequence. At each step, the correct direction for each
robot (i.e., forward or backward) is determined by the direction required to reach the
next event for that robot in the sequence. Algorithm 3 describes this process more pre-
cisely. Aside from the additional preprocessing time required for word reduction in L,
the complexity is unchanged.

4.3. Complexity of enumeration. Coordination of large numbers of robots under tight
constraints is computationally challenging.

Example 4.2. Consider the generalization of Example 2.1 with Γi = [−2, 2] for i = 1...N

and having
(

N
2

)

obstacles, each of the form x2
i + x2

j < 1 for i < j. The two Pareto
optimal classes from Example 2.1 generalize (by the cubical symmetry of the space) to
yield 2N−1 optimal classes between opposite corners in this coordination space.
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Algorithm 2 MINIMIZEWORD(a1a2 · · · al)

1: {Divide the word into syllables.}
2: i← 1
3: L← 1
4: for i← 1 . . . l do

5: if COMMUTESWITHALL(ai, SL) then

6: SL ← APPEND(SL, ai)
7: else

8: L← L + 1
9: SL ← ai

10: end if

11: end for

12:

13: {Shift left to cancel until the word is minimized.}
14: p← TRUE
15: while p do

16: p← FALSE
17: for i← 1 . . . L do

18: for each a in Si do

19: if COMMUTESWITHALL(a, Si−1) then

20: (Si, Si−1)← LEFTSHIFTANDCANCEL(a, Si, Si−1)
21: p← TRUE
22: end if

23: end for

24: end for

25: end while

26: return CONCATENATE(S1, S2, . . . , SL)

This general type of obstacle set – N intersecting cylindrical regions – can be realized
physically by an AGV system with N disc-like robots sliding along intervals, the collec-
tion of which have an N -fold intersection at their midpoints. In the example depicted
in Figure 9[left], each Xi,j contains a single elliptical obstacle. The exponential com-
plexity of this coordination problem is intuitively clear: since everyone cannot pass
through the shared center at the same time, they must proceed through one at a time.
There are a factorial number of ways so to do.

Example 4.3. Consider a problem with N = 2n robots formed by combining n indepen-
dent copies of the system in Example 2.1. Each of these subsystems generates 2 Pareto

optimal solutions; the combined system has 2N/2 Pareto optimal solutions.

Example 4.3 is depicted in Figure 9[right].
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Algorithm 3 EXACTLEFTGREEDYNONMONOTONE(X , γ)

Require: γ is a collision-free coordination in X .
1: x0 ← xinit

2: W ← ∅
3: O ← OBSTACLEREGIONS(X )
4: E ← EXTENDEDCRITICALEVENTS(O, γ)
5: cγ ← CROSSINGSEQUENCE(E, γ)
6: cγ′ ← MINIMIZEWORD(cγ , E)
7: t← 0
8: while xt 6= xgoal do

9: t← t + 1
10: v ← MAXIMALVELOCITYNONMONOTONE(x, W,O, cγ′)
11: e← NEXTEVENT(x, v, R, E,O)
12: W ← UPDATEWAITFORSET(p, e, W )
13: xt ← xt−1 + v · e.time
14: end while

15: return (x0, . . . , xt)

FIGURE 9. Two coordination problems for AGV-like systems. For each,
the number of Pareto optimal solutions is exponential in the number of
robots.

5. DISCUSSION

5.1. Conclusions and extensions. It comes as no surprise that the enumeration of all
Pareto optima is of high complexity: coordination is inherently difficult, and Lemma 1.1
implies that such an enumeration is akin to determining all minima for all monotone
scalarizations of the cost functions. The algorithms we present are effective enough
to be useful in factory AGV systems, where in practice the tracks have relatively low
degree of intersection.

Although our examples and simulations are for convex PL robots sliding by rigid trans-
lation in the plane, our setting is much more general. In particular, our coordination
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spaces are for arbitrary roadmaps (not merely paths) in arbitrary C-spaces. Hence, one
can have fully 3-d robots with internal degrees of freedom, nonholonomic constraints,
or whatever one wishes, so long as the precomputed roadmap is one-dimensional.

Additional extensions of this work are possible. For example, [16] gives a proof of the
finiteness bound and uniqueness result for more general roadmap coordination sys-
tems having moving workspace obstacles. Briefly, given a time-parameterized set of
obstacles which move through the workspace, one builds an augmented coordination
space which includes the parameterization variable (time) as an additional spatial vari-
able. Since the methods we employ are topological in nature, they adapt very well to
this setting. This is very robust: there are no assumptions on the moving obstacles’
shapes or speeds.

A very worthwhile open problem is to prove the uniqueness and finiteness bounds for
roadmap coordination systems which include acceleration bounds. Note that we have
both assumed and made generous use of the fact that robots can start and stop instan-
taneously. Replacing this with acceleration bounds (both positive and negative) can
invalidate many (and in some cases all) left-greedy paths. As such, it is highly nontriv-
ial to classify the Pareto optimal equivalence classes for these systems. We believe but
have no proof that the finiteness bounds still hold in the bounded acceleration case.

5.2. Curvature: easy versus hard. The entire program of classifying and computing
Pareto optima hinges on the fact that left-greedy paths are unique up to homotopy
on a cylindrical coordination space. This result, however, rests on the deeper founda-
tion of CAT(0) geometry and the theorem that such cylindrical coordination spaces are
nonpositively curved. As Examples 2.1 and 2.2 forcefully demonstrate, the difference
between spaces with positive curvature and those without form the boundary between
“easy” and “hard” classification problems for Pareto optima.

This is but one example of a truth broadly acknowledged in geometry, topology, and
geometric group theory: hard problems become simpler upon restricting to systems
without positive curvature. For example, it is possible to associate to a an arbitrary al-
gebraic group a space whose geometry and topology “mirrors” certain algebraic prop-
erties of the group (similar in spirit to the manner in which C-space geometry mirrors
the robotic system it represents). One can therefore consider groups which are devoid
of positive curvature: see, e.g., the seminal work of Gromov [17]. It is well known
that certain problem which are formally unsolvable for arbitrary groups (e.g., the word
problem) become solvable when restricted to the subclass of groups whose spaces are
nonpositively curved. Indeed, several algebraic problems experience a significant drop
in complexity when restricted to hyperbolic groups [14].

We envision a similar cat(0) principle in robotics problems: difficult problems should ex-
perience a drop in complexity when restricted to systems with an underlying CAT(0) geometry.
This has already been observed in shape-planning problems for metamorphic robots
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[1], with further demonstration in the present work. It is likely, however, that a great
many additional problems in robotics can benefit from this perspective. We outline
two such instances for which progress seems likely.

Shortest paths. Consider the problem of motion planning via path planning in C-
space. In many cases, optimal motion planning corresponds to the shortest path prob-
lem. It is a well-established fact that the shortest path problem on a compact PL Eu-
clidean domain is “easy” is dimension two and “hard” in higher dimensions. Specif-
ically, it is polynomial (in the complexity of the domain) in dimension two [20] and
NP-hard in dimension three [9]. Perhaps not coincidentally, all compact two dimen-
sional Euclidean domains are nonpositively curved. We further note that by paying
careful attention to the constructions of Canny and Reif, it can be shown that the PL do-
mains they construct in their NP hardness proof can be made to be simply connected;
however, there is a great deal of positive curvature implicit in their constructions.

Recent work of Mitchell and Sharir [28] claims that one can achieve an NP-complete
result within a class of spaces which are cylindrically deleted, and hence nonpositively
curved, but which have a (large) fundamental group (as measured by the number of
generators). In retrospect, this is perhaps not surprising: one can construct a symmet-
ric 3-d space with many homotopy classes of shortest paths. By perturbing this space
slightly, it becomes very difficult to tell which of the vestigial homotopy classes con-
tains the shortest path. In [28], the authors also claim to show a poly-time algorithm
for certain 3-d spaces which are CAT(0) (and some which are not).

It remains an open question whether the complexity of the shortest path problem al-
ways drops from NP-hard to P in the subclass of CAT(0) domains. The fact that there
is a unique shortest path eliminates most of the known proofs of NP-hardness.

Pursuit-evasion. There is a large variety of problems involving a pursuer chasing an
evader in a domain [5, 18, 22, 33, 39]. Among the many possibilities, an evader can
have bounded or unbounded velocity, the pursuer can know or not know where the
evader is, and the method of capture can be either line-of-sight visibility or physical
intersection [capture]. Given a fixed set of rules and a fixed Euclidean domain, one
wants to know the existence of a strategy for which the pursuer will always win re-
gardless of the evader’s strategy, with probabilistic wins being also of recent interest
[23].

In various formulations of the pursuit problem, it is possible to win in (simply-connected)
two dimensional domains but not always possible to win in three dimensional do-
mains. In such cases, the CAT(0) principle suggests that restricting to higher dimen-
sional domains which have a CAT(0) geometry would be the right category of domains
on which to search for a pursuit strategy.

In both of these settings — shortest path and pursuit problems — the obstructions
arise in dimension three. As such, attention is focused on problems fixed in these
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dimensions. If indeed it is the case that a CAT(0) restriction is the right generalization,
then it holds hope that these problems will have computable solutions within this class
for arbitrary dimensions. This is the case for the work of this paper, and we hope that
it will be the case in other problems as well that the curse of dimensionality is mitigated
by the CAT(0) principle.
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[5] T. Başar and G. J. Olsder. Dynamic Noncooperative Game Theory. Academic Press, London, 1982.

[6] Z. Bien and J. Lee. A minimum-time trajectory planning method for two robots. IEEE Trans. Robot. &

Autom., 8(3):414–418, June 1992.

[7] M. Bridson and A. Haefliger, Metric Spaces of Nonpositive Curvature, Springer-Verlag, Berlin, 1999.

[8] S. J. Buckley. Fast motion planning for multiple moving robots. In IEEE Int. Conf. Robot. & Autom.,

pages 322–326, 1989.

[9] J. Canny and J. Reif. Lower bounds for shortest path and related problems. In Proc. 28th Ann. IEEE

Symp. Found. Comp. Sci., 49–60, 1987.

[10] C. Chang, M. J. Chung, and B. H. Lee. Collision avoidance of two robot manipulators by minimum

delay time. IEEE Trans. Syst., Man, Cybern., 24(3):517–522, 1994.

[11] B. Chazelle, H. Edelsbrunner, M. Grigni, L. J. Guibas, J. Hershberger, M. Sharir, and J. Snoeyink. Ray

shooting in polygons using geodesic triangulations. Algorithmica, 12:54–68, 1994.

[12] H. Chitsaz, J. M. O’Kane, and S. M. LaValle. Exact Pareto-optimal coordination of two translating

polygonal robots on an acyclic roadmap. In Proc. IEEE International Conference on Robotics and Au-

tomation, 2004.

[13] M. de Berg, M. van Kreveld, M. Overmars, and O. Schwarzkopf. Computational Geometry: Algorithms

and Applications. Springer, Berlin, 1997.

[14] D. Epstein et al. Word Processing in Groups. Jones & Bartlett Publishers, Boston MA, 1992.

[15] M. Erdmann and T. Lozano-Perez. On multiple moving objects. In IEEE Int. Conf. Robot. & Autom.,

pages 1419–1424, 1986.

[16] R. Ghrist and S. M. LaValle. Nonpositive curvature and Pareto optimal motion planning. Preprint,

www.math.uiuc.edu/∼ghrist/pareto.pdf
[17] M. Gromov. Hyperbolic groups. In Essays in Group Theory (ed. S. Gersten), Mathematical Sciences

Research Institute Publications 8 (Springer, New York, 1987) 75–263.

[18] L. J. Guibas, J.-C. Latombe, S. M. LaValle, D. Lin, and R. Motwani. Visibility-based pursuit-evasion

in a polygonal environment. International Journal of Computational Geometry and Applications, 9(5):471–

494, 1999.

[19] A. Hatcher. Algebraic Topology. Cambridge University Press, 2001.

[20] J. Hershberger and S. Suri. An optimal algorithm for Euclidean shortest paths in the plane. SIAM J.

Comput., 28(6):2215-2256, 1999.



COMPUTING PARETO OPTIMAL COORDINATIONS ON ROADMAPS 23

[21] H. Hu, M. Brady, and P. Probert. Coping with uncertainty in control and planning for a mobile robot.

In IEEE/RSJ Int. Workshop on Intelligent Robots and Systems, pages 1025–1030, Osaka, Japan, November

1991.

[22] R. Isaacs. Differential Games. Wiley, New York, NY, 1965.

[23] V. Isler, S. Kannan, and S. Khanna. Randomized pursuit-evasion with limited visibility. In Proc. ACM-

SIAM Symp. on Discrete Algorithms, 1053–1063, 2004.

[24] K. Kant and S. W. Zucker. Toward efficient trajectory planning: the path-velocity decomposition. Intl.

J. Robotics Research 5(3), 72–89, 1986.

[25] D.G. Kirkpatrick. Optimal search in planar subdivisions. SIAM J. Comput., 12(1):28–35, 1983.

[26] S. M. LaValle and S. A. Hutchinson. Path selection and coordination of multiple robots via Nash

equilibria. In Proc. 1994 IEEE Int’l Conf. Robot. & and Autom., pages 1847–1852, May 1994.

[27] S. M. LaValle and S. A. Hutchinson. Optimal motion planning for multiple robots having indepen-

dent goals. IEEE Trans. on Robotics and Automation, 14(6):912–925, December 1998.

[28] J. Mitchell abd M. Sharir. New results on shortest paths in three dimensions. In Proc. 20th ACM Symp.

on Comp. Geom., 124–133, 2004.

[29] J. Miura and Y. Shirai. Planning of vision and motion for a mobile robot using a probabilistic model of

uncertainty. In IEEE/RSJ Int. Workshop on Intelligent Robots and Systems, pages 403–408, Osaka, Japan,

May 1991.

[30] G. A. Niblo and L. D. Reeves. The geometry of cube complexes and the complexity of their funda-

mental groups. Topology, 37(3):621–633, 1998.
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