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Abstract. Given a collection of robots sharing a common environment, assume that each possesses
a graph (a 1-d complex also known as a roadmap) approximating its configuration space and, further-
more, that each robot wishes to travel to a goal while optimizing elapsed time. We consider vector-valued
(or Pareto) optima for collision-free coordination on the product of these roadmaps with collision-type
obstacles. Such optima are by no means unique: in fact, continua of Pareto optimal coordinations are
possible.

We prove a finite bound on the number of optimal coordinations in the physically relevant case where
all obstacles are cylindrical (i.e., defined by pairwise collisions). The proofs rely crucially on perspectives
from geometric group theory and cat(0) geometry. In particular, the finiteness bound depends on the fact
that the associated coordination space is devoid of positive curvature.

We also demonstrate that the finiteness bounds holds for systems with moving obstacles following known
trajectories.

1. Introduction.

1.1. Motivation. In numerous settings, the coordination of multiple robots remains
a basic and challenging research issue. Autonomous guided vehicles (AGVs) are used in a
wide variety of industrial settings for problems such as material handling, palletizing, paper
roll handling, assembly, conveying, and people moving. Typically, AGVs reliably traverse
a fixed roadmap of paths in a complicated factory environment. Although the paths avoid
collisions with obstacles in the workspace, the efforts of numerous AGVs may have to be
coordinated in a way that avoids collisions between AGVs while at the same time maximizing
productivity.

If we wish to coordinate the motions of N robots in a common environment, what is an
appropriate notion of optimality? Minimizing the average time robots take to reach their
goal? Minimizing the time that the last robot takes? Such approaches are common (e.g.,
[19, 25, 34]) and may be appropriate in some cases; however, it is important to recognize
that scalarization of a vector of N criteria occurs in this process. Each robot has its own cost
function, e.g., elapsed time. These N criteria are then converted — often in an arbitrary
manner — into a single criterion to be optimized.

In this paper, we investigate the optimization problem for multiple robot coordination with-
out scalarizing the vector-valued cost function. This centers on the notion of Pareto optimal-
ity [29, 31], a concept which is widely used in mathematical economics to model individual
consumers striving to optimize distinct economic goals. This brand of optimization is richer
in the sense that no choice of scalarization is involved. In particular:

1. Any optimum of any scalarization of the vector-valued cost function (which is
monotone increasing in the components) is in fact one of the Pareto optima: see
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Lemma 2.6.
2. For settings in which priorities change over time, knowledge of the Pareto optima

allow for easy adaptation. This is particularly relevant in automation settings where
priority changes arise from, say, changing needs for parts delivery or output.

3. By filtering out all of the motion plans that are not worth considering and presenting
the user with a small set of the best alternatives, additional criteria, such as priority
or the amount of sacrifice one robot makes, can be applied to automatically select
a particular motion plan.

Given the desire to filter the space of all possible coordination schemes to a small set of
best cases independent of biases on the robots, we are certainly most interested in the cases
where this collection of optima is finite. A finiteness criterion is the principal result of this
paper.

1.2. Contributions. In §2 we will phrase the coordination problem as an optimal
path-planning problem on a roadmap coordination space X : a product of finite metric
graphs {Γi}

N
1 with obstacle sets removed. The optimization criteria are distinct for each

robot. Thus, the appropriate category of optimal paths are the so-called Pareto optimal
solutions. Roughly speaking, a path between fixed endpoints is locally Pareto optimal
if and only if deforming it to any path which decreases one of the goal times increases some
other goal time. A path is globally Pareto optimal if and only if any other path which
decreases one goal time increases some other. Paths are Pareto equivalent if and only
if they are connected by a 1-parameter family of paths which preserve all goal times; this
equivalence generates Pareto optimal classes. (See §2.2 for precise definitions).

Depending on the coordination space, inequivalent Pareto optimal classes may be isolated
or may appear in uncountable continuous families. Examples appear in §3. Most desirable
for classification and cataloging purposes are those coordination spaces which admit a finite
number of globally Pareto optimal classes.

The principal optimization result of this paper is that for coordination spaces which possess
‘cylindrical’ obstacles — those defined by pairwise collisions between robots — there is a
complete classification of locally Pareto optimal classes and a finite bound on the global
Pareto optima.

Main Theorem: Let X be a cylindrical coordination space:

1. Fixing endpoints, the locally Pareto optimal path classes are in bijective correspon-
dence with homotopy classes of paths.

2. There is a finite bound on the number of globally Pareto optimal path classes.

The first statement implies that the set of Pareto optimal paths within a fixed homotopy
classes of paths is connected in this space of paths. The second statement means that only
a finite number of these local optima are in fact globally Pareto optimal. Proofs appear in
§5.

We furthermore extend the finiteness bound to a class of systems involving moving obstacles:
see §7. Remarkably, our techniques easily adapt to problems for which obstacles of varying
shape, speed, and trajectory can interfere with the robot motion.

The proof of the Main Theorem uses in an essential manner certain techniques from geo-
metric group theory: namely, the geometry of cat(0) spaces (see, e.g., [8]) and certain
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normal forms for groups acting on cat(0) cubical complexes (as in [26]). These tools are
applicable to the proof of the Main Theorem thanks to:

Main Lemma: Let X be a cylindrical coordination space. Then X is locally cat(0) .

This theorem is a broad generalization of the result by Abrams [1] that configuration spaces
of graphs are locally cat(0) in the product metric.

Though it falls outside the scope of this paper, the cat(0) techniques we develop here are
directly applicable to the problem of computing normal forms of Pareto optimal paths. See
[17] for an exact algorithm for computing Pareto optimal paths in a cylindrical coordination
space.

1.3. History. The problem of coordinating robots along fixed roadmaps can be consid-
ered as a special case of general motion planning for multiple robots. Previous approaches
to multiple-robot motion planning are often categorized as centralized or decoupled. A cen-
tralized approach typically constructs a path in a composite configuration space, which is
derived from the Cartesian product of the configuration spaces of the individual robots (e.g.,
[5, 6, 32]). A decoupled approach typically generates paths for each robot independently,
and then considers the interactions between the robots (e.g., [9, 15, 27]). The results of this
paper are for decoupled coordination.

The approach in [15] prioritizes the robots, and defines a sequence of planning problems
for which each problem involves moving one robot while those with higher priority are con-
sidered as predictable, moving obstacles. This involves the construction of two-dimensional
path-time space [20] over which the velocity of the robot is tuned to avoid collisions with
the moving obstacles.

In [3, 7, 11, 30, 27, 33] robot paths are independently determined, and a coordination
diagram is used to plan a collision-free trajectory along the paths. The approaches in [3, 30]
additionally consider dynamics. In [22, 35], an independent roadmap is computed for each
robot, and coordination occurs on the Cartesian product of the roadmap path domains. The
suitability of one approach over the other is usually determined by the trade-off between
computational complexity associated with a given problem, and the amount of completeness
that is lost. In some applications, such as the coordination of automated guided vehicles,
the roadmap might represent all allowable mobility for each robot.

2. Definitions.

2.1. Coordination spaces. This paper concerns the coordination of N robots, each
having a roadmap Γi (a graph within the configuration space of the ith robot) pre-computed
independently of the other robots. All graphs are assumed finite and possessed of an intrinsic
metric (inherited from the configuration space in which it resides).

Definition 2.1. A roadmap coordination space of graphs {Γi}
N
1 is any space of the

form

X =

(

N
∏

i=1

Γi

)

−O, (2.1)

where O denotes an (open) obstacle set.
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Assumption 2.2. For the remainder of the paper, all coordination spaces are assumed to
have obstacle sets which are sufficiently nice. Namely, the boundary of the obstacle set, ∂O,
is piecewise real-analytic and collared: there exists some embedding of ∂O × [0, 1] →֒ X
which takes ∂O × {0} → ∂O via the identity map.

This assumption rules out obstacle sets O for which the system “locks up” in a singular
configuration. The piecewise smoothness condition for ∂O is imposed to avoid discussions
of chattering and non-rectifiable paths.

Example 2.3. A special class of a roadmap coordination space arises when all of the graphs
Γi are identical and the obstacle set is an open neighborhood of the collision set {xi = xj :
for some xi ∈ Γi ; xj ∈ Γj ; i 6= j}. In this case, one can consider the workspace to be the
graph itself, and the roadmap coordination space is precisely the configuration space of N
labeled points on the graph.

In practice, a large class of coordination spaces arise by assigning as illegal states O those
configurations for which there is a collision between robots in the common workspace. For
such an system, the obstacle set O has a very particular “cylindrical” structure since all
collisions are determined by pairwise data.

Definition 2.4. A coordination space X is said to be cylindrical if O is of the form

O =
⋃

i<j

{

(xk)N
1 ∈

N
∏

k=1

Γi : (xi, xj) ∈ ∆i,j

}

, (2.2)

for some (open) sets ∆i,j ⊂ Γi × Γj where 1 ≤ i < j ≤ N .

That is to say, a cylindrical coordination space is one for which illegal states are determined
by pairwise configurations. If two robots have collided, it makes no difference what the
positions or configurations of the remaining robot are — this state still counts as an illegal
“collision” state.

Configuration spaces of graphs are examples of cylindrical coordination spaces, since the
obstacle set O is the union of (neighborhoods of) sets of the form {xi = xj : i 6= j}.
Non-cylindrical coordination spaces arise when the legality of a potential collision between
two robots is dependent upon the configuration of a third: e.g., hallways in the workspace
through which two but not three robots can squeeze.

2.2. Pareto optimality. Pareto optimization refers to optimization of vector-valued
functions [28]. In the context of robotics applications, Pareto optimization arises when
distinct robots possess distinct goals and cost functions for evaluating performance. Each
robot wishes to optimize its cost function independently of the others.

Mathematically, this is characterized as follows. Given a parameterized path γ : [0, T ]→ X
in a coordination space, each robot executes the projected path γi = proji ◦γ, where proji

denotes projection onto the ith factor. Given cost functions {τi}, i = 1...N , the cost vector
for γ is the vector τ(γ) = (τi(γi))

N
i . The case in which τi measures elapsed time from start

to goal is an important and characteristic example, though more general cost functions are
allowed.

Assumption 2.5. We restrict attention to parameterized paths which are admissible,
meaning that velocity vectors have all components bounded above by one. There are no
restrictions on acceleration: only velocity is bounded. It will be assumed for simplicity that
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the cost functions τi agree with elapsed time. To change the velocity bound or the cost
function, one can perform a simple re-scaling of the geometry of the coordination space.1

A path γ : [0, T ] → X is pareto optimal iff τ(γ) is minimal with respect to the partial
order on vectors:

τ(γ) ≤ τ(γ′)⇔ τi(γi) ≤ τi(γ
′

i) ∀ i = 1 . . . N. (2.3)

The local Pareto optima comprise the set of all optima for all monotone scalarizations (such
as, e.g., average time-to-goal and non-linear generalizations thereof):

Lemma 2.6. For any scalarization f : R
n
→ R with ∂f/∂xi > 0, all minima of f ◦ τ are

global Pareto optima.

Proof: Given any minimizer for f ◦ τ which is not globally Pareto optimal, there exists a
path which decreases some τi without increasing any of the others; by monotonicity, this
decreases the f -value of the path. Contradiction. ⋄

Fig. 2.1. [left] The unique locally and globally Pareto optimal path between corners of a rectangle with
regards to elapsed time; [right] an envelope of Pareto optimal paths weaving through obstacles forms a single
equivalence class.

In some cases, locally Pareto optimal paths are unique. In the rectangular coordination
space of Fig. 2.1[left], there is a unique locally (and globally) Pareto optimal path. The
diagonal of the rectangle is not locally Pareto optimal unless the rectangle is a square.

Locally Pareto optimal paths are usually not unique. Two paths γ and γ′ are pareto
equivalent iff they are homotopic through locally Pareto optimal paths which are equal in
the partial order; i.e., τ(γ) = τ(γ′). Fig. 2.1[right] illustrates a single locally Pareto optimal
class with many representatives. We show in §3 that certain roadmap coordination spaces
admit a continuum of locally/globally Pareto optimal classes.

2.3. A little topology. Experts can safely bypass this brief primer of the topological
concepts used throughout the paper. See, e.g., [18] for a comprehensive treatment.

Given a topological space X, a path is a (continuous) map α : [0, 1] → X. Two paths α
and α′ sharing identical endpoints are said to be homotopic if there exists a continuous
1-parameter family of paths {αt}

1
0 satisfying (1) α0 = α; (2) α1 = α′; and (3) αt has the

same endpoints for all t.

1The assumption about potentially unbounded acceleration is not so easily skirted. The results of this
paper are unknown in that case.
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Topologists keep track of different homotopy classes of paths by computing a more general
object: the fundamental group. Given a fixed basepoint x0 ∈ X, the fundamental group,
π1(X,x0), is defined to be the set of homotopy equivalence classes of paths in X which have
endpoints at x0. The group operation is concatenation of paths: α ∗ β means “do α then
do β.” This is well-defined (since all endpoints are x0) and yields a group operation with
identity element the contractible loops in X. For path-connected spaces, π1(X,x0) is
independent of the basepoint x0 (up to isomorphism of groups) and one may unambiguously
denote the fundamental group π1(X). A simply connected space X is one which is
connected and has π1(X) a trivial group.

Any space X which has a reasonably nice local structure (e.g., a cell complex) and a non-
trivial fundamental group can be “unwrapped” to a larger simply connected space which is
locally indistinguishable from X. The universal cover of X, X̃, is defined to be a simply
connected space along with a projection map p : X̃ → X which is locally a homeomorphism.
For example, the universal cover of the circle S1 is R with the projection p : x 7→ x mod 1.

3. Examples. We illustrate a few examples of simple coordination spaces and globally
Pareto optimal path classes.

Example 3.1. Consider the case where N = 2, Γ1 = Γ2 = [−2, 2], and O = {(x, y) :
x2 + y2 < 1}, which corresponds to a pair of identical disc-shaped robots sliding along
interval roadmaps which intersect in the workspace at right angles. There are exactly two
globally Pareto optimal classes of paths from (−2,−2) to (2, 2), as illustrated in Fig. 3.1[left].
The difference between these two paths lies in which robot decides to pause in order to allow
the other to pass through the intersection. Note also that this is a cylindrical coordination
space and hence satisfies the Main Theorem above.

Fig. 3.1. The case of two disc-like robots translating along edges [left] yields a 2-d coordination space
with a disc obstacle possessing two globally Pareto optimal classes [center]; Three robots with a spherical
obstacle possesses a continuum of globally Pareto optimal classes [right].

Example 3.2. We modify the previous example by letting N = 3 and choosing O to be
a round ball of radius 1 at the origin. By the symmetry of X about the diagonal of the
cube, it is clear that there is a circle’s worth of paths which begin at (−2,−2), trace a
straight line which is tangent to O, and then exit this sphere tangentially with slope one.
The projection of this family of paths to the first two coordinates includes as special cases
the distinct Pareto optima of Example 3.1, as well as a continuum of paths whose goal times
continuously interpolate the two. Hence, there is a continuum of globally Pareto optimal
classes.

6



Note that the symmetry in these problems is not crucial: the number of globally Pareto
optima in both examples is robust to small perturbations inO. Note as well that the obstacle
set in Example 3.2 is not generated by pairwise collisions of the robots; the obstacle set is
determined by the positions of all three robots.

Example 3.3. Coordination problems without the fixed path constraint can have continua
of optima more easily than in the fixed path case. Consider the problem of translating
two unit squares in the plane in such a way as to exchange their positions. Assume that
the squares are centered at (−1, 0) and (1, 0). It is straightforward to exhibit a continuous
family of distinct globally Pareto optimal classes. Extrema of this family consist of those
coordinations for which one square translates exclusively in the horizontal direction, while
the other square moves vertically in order to get out of the way. The intermediate coordina-
tions involve one square translating up by an amount 0 < h < 1 and the other translating
down by a total amount 1 − h. This example works with arbitrary translations, or with
translations restricted to coordinate axis directions.

4. Discretization. Coordination spaces come equipped with a natural geometry as a
subset of a (flat) product of metric graphs. For the remainder of this paper, we consider the
path metric — the distance between points is defined in terms of the length of a shortest
path (geodesic) between the points. Our tools for dealing with coordination spaces stem
from knowledge of the geometry of the path metric.

4.1. Nonpositive curvature. Let (X, d) denote a complete metric space for which
local geodesics exist: between any two sufficiently close points p, q ∈ X, there exists a path
in X whose length is equal to d(p, q). The notion of curvature bounds for such spaces is
classical and can be found in the work of, e.g., Alexandrov (see [8] for references and a
comprehensive introduction). We repeat that it is not necessary for X to be a manifold,
much less smooth. In this ‘synthetic’ approach to geometry, one interrogates a space with
geodesic triangles.

For each triple of points p, q, r ∈ X, draw the triangle in X with geodesics pq, qr, and rp.
Let p′, q′, and r′ denote three points in the Euclidean plane E

2
forming a comparison

triangle whose edges have length d(p, q), d(q, r), and d(r, p) respectively. Choose a pair
on point s and t on the edges of the geodesic triangle in X; then, consider the corresponding
points s′ and t′ in E

2
. The cat(0) inequality2 for X is the following: for every p, q, r in

X, and for every s, t, one has d(s, t) ≤ ‖s′ − t′‖, where ‖ · ‖ denotes the Euclidean norm in

E
2
.

Definition 4.1. A complete geodesic space X is cat(0) if the cat(0) inequality holds
for each geodesic triangle in X. A geodesic space X is nonpositively curved or npc if
it is locally cat(0) : that is, if the cat(0) inequality holds for sufficiently small geodesic
triangles in X.

Otherwise said, X has nowhere positive curvature if small geodesic triangles in X are “no
fatter” than similar triangles in the Euclidean plane. By assigning the appropriate definition
of angles in a geodesic metric space [8], this condition translates into saying that the sum
of the angles of a geodesic triangle in an NPC space is no larger than π. It is a standard
fact that X is cat(0) if and only if it is NPC and simply-connected [8].

2The term “CAT” is Gromov’s, used in deference to the work of Cartan, Alexandrov, and Toponogov.
Alternately, one can take this as comparare ab triangulos (“to compare by triangles”).
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Fig. 4.1. The coordination space of Example 3.1 is NPC [left] since triangles are “skinnier” than their
Euclidean counterparts [center]; whereas that of Example 3.2 is not NPC [right].

The existence of some metric of nonpositive curvature on a space X implies several strong
results about the topology and geometry of X. For example [8]: (1) the universal cover of
X is contractible; (2) the fundamental group π1(X) has no torsional elements; and, most
importantly for our purposes, (3) geodesics on X are unique up to homotopy, fixing the
endpoints.

The problem of determining when a space is cat(0) or NPC is surprisingly easy for piecewise-
Euclidean cube complexes: that is, spaces build from Euclidean cubes glued together along
faces. Since the individual cubes are flat, any nonzero curvature, if it exists in the com-
plex, must be focused along the faces and detectable at the vertices of the cube complex.
Intuitively, positive curvature arises whenever there is a convex “corner” in the complex.

More specifically, let v denote a vertex of a cube complex X. The number and types of
cubes in X which have a corner at v are encoded in a combinatorial object called the link
of v, see e.g. [8] for details. The following result of Gromov (which we have translated into
simpler language for clarity) characterizes nonpositive curvature in terms of this structure,
and is therefore called the link condition:

Theorem 4.2 (Gromov’s link condition). A piecewise Euclidean cube complex is NPC
if and only if the following holds for each vertex v. Given any set of K ≥ 3 edges of X
incident to v, any pair of which are part of a square in X, then all K edges are part of a
K-dimensional cube with corner at v.

This is illustrated for several 2-d complexes in Fig. 4.2. The intuition behind this theorem is
that positive curvature in a cube complex is entirely determined by the presence of a ‘sharp’
corner.

Fig. 4.2. Vertices detect curvature for a cube complex: from left to right; positive, zero, and negative
curvature in 2-d cube complexes. The link condition holds for the latter two of these complexes.
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4.2. Discretized coordination spaces. The key step in our analysis of cylindrical
coordination spaces is a spatial discretization of them into cubical complexes. Discretized
configuration spaces have recently been used in other robotics contexts [1, 2, 16].

Consider a coordination space X for roadmaps {Γi}. For simplicity, assume that all the edge
lengths of the graphs Γi are rationally related. Because of this, one may choose a length

δ > 0 so that all edge lengths are integer multiples of δ. Denote by Γ
(n)
i the graph obtained

from Γi by subdividing it into edges of length 2−nδ.

Definition 4.3. For each n ≥ 0, denote by X (n) ⊂ Γ
(n)
1 × · · · × Γ

(n)
N the maximal closed

subcomplex of the product cubical complex which does not intersect the obstacle set O. This
cubical complex is called the stage-n discretized coordination space.

The cubical nature of these spaces forms a convenient structure with which to manipulate
paths. Our strategy is to approximate locally Pareto optimal paths with paths which follow
along the diagonals of cubes in X (n) for n sufficiently large. Working with these cube paths
will allow us to skirt such technical issues as regularity of paths, etc. The following result
is crucial:

Theorem 4.4. Cylindrical coordination spaces are NPC.

Proof: By assumption, all coordination spaces in this paper are complete geodesic metric
spaces under the path metric. We begin by showing that X (n) converges to X in the
Hausdorff sense: i.e., given any point p ∈ X and an ǫ > 0, there exists an M > 0 such that
an ǫ-neighborhood of p intersects X (n) for all n > M . This is certainly true for p in the
interior of X , since p is bounded away from O. Since X is collared, points in the boundary
of X are limits of points in the interior, and convergence follows.

It is known that a complete NPC space which is the Hausdorff limit of NPC spaces is itself
NPC (see [8, Lemma II.3.10(1)], which is stated for cat(0) spaces — apply this to the
universal covers of X and X (n) to obtain the result). Hence, it suffices to show that X (n) is
NPC.

Since these are cubical complexes, Gromov’s link condition is necessary and sufficient to show
NPC. Therefore, let v be any vertex of X (n). Assume that there is a collection of K ≥ 3
edges {ei}

K
1 incident to v which pairwise bound squares in X (n). Each ei corresponds to an

edge of Γα(i) for some indexing α satisfying α(i) 6= α(j) for all i 6= j. The square bound by
edges ej and ek corresponds to a square in

Γα(j) × Γα(k) −∆α(j),α(k)

for each j and k. By the cylindrical structure of the holes in X , the product of the edges
{ei} is a K-dimensional cube in

∏m
1 Γα(i) which does not intersect ∆α(j),α(k) for any pair

j, k. This therefore defines a K-dimensional cube in X (n) spanning the edges. The link
condition is satisfied. ⋄

Theorem 4.4 generalizes a number of known results about NPC configuration spaces, espe-
cially the results of [1] about configuration spaces of points on graphs, and more general
“colored” configuration spaces of graphs.3

3This proof is simpler than that of Abrams in that it requires no direction computation of the homotopy
groups of the Hausdorff limit.
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4.3. Cube paths. The spatial discretization of coordination spaces extends to a dis-
crete version of paths. The following notion of discrete paths is crucial to future proofs.

Definition 4.5. Let X denote a cubical complex. A cube path from vertices v0 to vN in
X is an ordered sequence of closed cubes C = {Ci}

N
1 of X which satisfy (1) Ci∩Ci+1 = {vi},

a vertex; and (2) Ci is the smallest cube of X containing vi−1 and vi. A cube path is said
to be normal if in addition ∀i (3) Ci+1 ∩ St(Ci) = vi, where St(Ci) is the star of Ci (all
cubes in X, including Ci, which have Ci as a face).

To each cube path is associated a PL (piecewise linear) path in X given by the chain of
straight line segments from vi to vi+1 for i = 0...N − 1. Roughly speaking, a normal cube
path is one which uses the highest dimensional cubes as early as possible in the path. 4

This hints at the intuition of normal paths as locally Pareto optimal, an intuition which
we demonstrate is entirely justified. The key fact about normal cube paths is that, like
geodesics on an NPC space, they are unique up to homotopy:

Fig. 4.3. Examples of normal cube paths (with the diagonals highlighted).

Corollary 4.6. Any cube path between vertices of X (n) is homotopic to a unique normal
cube path.

Proof: This is true for any NPC cube complex via Prop. 3.3 of [26]. By Theorem 4.4, this
holds for X (n). ⋄

5. Topological bounds on Pareto optima. In this section we demonstrate a unique-
ness result for locally Pareto optimal classes. The strategy of our proof is to show that any
locally Pareto optimal path class in X contains a representative which is a limit of normal
cube paths in X (n). For the remainder of the paper, X will denote a cylindrical roadmap
coordination space.

The geometry on X is that defined by the path metric: the metric distance between points
of X is defined to be the length of a geodesic path between the points. Unless otherwise
noted, the default notion of length is the standard length obtained by integrating the ℓ2

norm of the velocity vectors over the path. Other notions of length are useful. Given a
velocity vector, the ℓ∞ norm of that vector is the usual definition: in this case, the maximal
speed of the AGV’s is traveling at that instant. The ℓ∞ length of a path in X is the integral
of the ℓ∞ norm of the velocity vectors over the path. This ℓ∞ length measures the total
elapsed time that the AGV’s take to execute the coordination implied by the path. As such,

4These paths are called “normal” in [26] since they are used to generate normal forms for languages of
fundamental groups acting on cat(0) cube complexes.
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ℓ∞ geodesics between points correspond to “fastest” coordinations.

Lemma 5.1. Any ℓ∞ geodesic path on X can be C0- and ℓ∞-approximated by a cube path
in X (n) for n sufficiently large.

Proof: Given an ℓ∞ geodesic α, those portions of the curve which lie near ∂O may not be
in X (n). However, given the embedded collar Φ : ∂O× [0, 1] →֒ X from Assumption 2.2, the
curve α can be pushed in to the interior of X by increasing the second coordinate of Φ. This
yields a curve β which avoids ∂O, is freely homotopic to α, and is both C0 and ℓ∞-close.

We next approximate β by a cube path. Since the image of β is compact, there exists an
ǫ > 0 so that a tube of radius ǫ about the image of β does not intersect ∂O. Choose n so
that the grid size δ = 2−n is less than ǫ. Modify β so that its endpoints are at vertices of
X (n). Consider the vertex v0 = β(0) and the ℓ∞ balls Br = B∞

r (v0) of radius r about v0 in
X (n). Let w1 = β ∩ ∂Bδ and w2 = β ∩ ∂B2δ.

v0v0v0

w1

w2w2w2
v1

Fig. 5.1. Approximation of a path by a cube path.

Let F = Bδ(v
0) ∩ Bδ(w

2). Clearly, w1 ∈ F and for any x ∈ F it holds that the PL path
v0 → x → w2 is of the same ℓ∞ length as the restriction of β to this neighborhood. We
claim that F contains a vertex of the grid structure on X (n). To see this, note that F is a
subset of some face of Bδ defined by the set of all points x = (xi) such that

xi ∈ [v0
i − δ, v0

i + δ] ∩ [w2
i − δ, w2

i + δ] ; i = 1 . . . N (5.1)

Since these intervals have the same length, it follows that either v0
i −δ or v0

i +δ lies within the
intersection for each i. Therefore, F contains a gridpoint v1 of X (n), and we may replace
the segment of the path β with a PL path from v0 to v1 to w2. Repeat the argument
inductively, beginning at the vertex v1 and considering the ℓ∞ balls about v1 of radius δ
and 2δ.

Marching along yields a PL path passing through vertices of X (n) which are sequentially
of ℓ∞-distance δ. This is therefore a cube path in X (n). This completes the proof of the
lemma, as all modifications are homotopies within a neighborhood of the initial path α. ⋄

Lemma 5.2. Let α be a locally Pareto optimal path on X . One can find homotopic cube
paths with endpoints close to those of α such that all the goal times approximate those of
α.

Proof: Any locally Pareto optimal path is a concatenation of paths which go from the at-
tainment of the ith goal to the (i + 1)st goal. Each of these subpaths is an ℓ∞ geodesic
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Algorithm 1 LeftGreedy(C)

Require: C = {Ci}
m
1 is an ℓ∞-geodesic cube path

1: while C is not normal do

2: for i = 1...m do

3: Z ← Ci+1 ∩ St(Ci)
4: Ci+1 ← Ci+1/Z
5: Ci ← Ci × Z
6: end for

7: end while

whose ℓ∞-length contributes to the elapsed time. Applying Lemma 5.1 inductively to these
subpaths gives a path which approximates all the elapsed times. ⋄

A simple algorithm, LeftGreedy, converts a cube path C into a normal cube path by sweep-
ing along C from left to right, comparing the star of each cube with its neighbor to the right
(line 3), and shifting the common directions to the left cube (lines 4-5).

Lemma 5.3. Given a locally Pareto optimal cube path C, LeftGreedy(C) is a normal cube
path which is Pareto equivalent to C.

Proof: Since common directions are shifted to the left, each sweep through C for which
Ci+1 ∩ St(Ci) 6= {vi} for some i strictly decreases the positive integer-valued function

∑

i i ·
dim(Ci); hence, convergence.

To argue that LeftGreedy can be executed through Pareto equivalence, note first that the
shifting process of lines 4-5 results in a homotopic path, since all modifications take place
within St(Ci)∪Ci+1. If the jth coordinate xj reaches its goal at vertex vi of C, then all sub-
sequent vertices vk (k ≥ i) lie within the hyperplane of X having the same jth coordinate.
Hence, in line 3, the common factor Z is trivial in the jth coordinate for vi and beyond.
Thus, the time-to-goal for xj is unchanged by steps 4-5. ⋄

We now may prove the Main Theorem:

Theorem 5.4. Locally Pareto optimal path classes on X are in bijective correspondence
with homotopy classes of paths (fixing the endpoints).

Proof: Existence of a locally Pareto optimum does not rely on the cylindrical nature of X ,
but rather on the fact that it is compact and piecewise real-analytic. Via Lemma 2.6 applied
to each homotopy class, the existence of a locally Pareto optimal path is guaranteed by the
existence of a path which minimizes some monotone scalarization of the cost function, e.g.,
average time-to-goal. For fixed endpoints, this scalar function is positive and bounded below
over the space of piecewise real-analytic paths in a given homotopy class.

The classification theorem relies on the cylindrical nature of X . Assume there are two
locally Pareto optimal paths, α and α′, which are homotopic. Approximate these paths by
cube paths C and C′ on X (n) for some large n via Lemma 5.2. The approximations C and
C′ are homotopic in X to α and α′ respectively: we claim that C and C′ are homotopic in
X (n). Since α and α′ are homotopic in X , there exists a map of a closed disc into X whose
boundary is sent to α ∗ (α′)−1 (that is, the loop obtained by concatenating loop α with the
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reverse of the loop α′). The collar Φ from Assumption 2.2 which is used to push α and α′

into the interior of X (n) also pushes this spanning disc into the interior. Thus, the paths C
and C′ are homotopic within X (n).

Feed these cube paths into the algorithm LeftGreedy. Via Lemma 5.3, the outputs are
normal cube paths which are Pareto equivalent to C and C′ respectively. By Corollary 4.6,
C and C′ are the same path and hence have the same output times. Therefore, α and α′

have output times which are arbitrarily close. ⋄

This implies that the locally Pareto optimal classes are “discrete” and cannot arise in con-
tinua as in the non-cylindrical case. It does not automatically follow that there is a bound
on the number of globally Pareto optimal paths, since any cylindrical coordination space X
which is not simply connected must have a countably infinite number of homotopy classes
of paths. However, since the obstacle set is collared, the fundamental group of X is finitely
generated, and, apart from this finite collection of generators, all other paths “wrap around”
a loop multiple times. One rightly suspects that such repetition makes everyone’s arrival
times later, and thus cannot be a globally Pareto optimal solution. We make this intuition
rigorous below.

Theorem 5.5. The number of globally Pareto optimal paths between fixed endpoints on X
is finite.

Proof: Fix endpoints and consider {γi}
∞

1 an infinite collection of non-equivalent globally
Pareto optimal paths. By Theorem 5.4, all these are in different homotopy classes. The
endpoints of these paths in the universal cover must be an unbounded discrete set, whose
ℓ∞ lengths tend uniformly to infinity, after taking a subsequence and reordering.

Denote by {T j
i }

j=1..N
i=1..∞ the j = 1..N goal times of the path γi. By the pidgeonhole principle,

one may assume (after taking a subsequence) that for some k, T k+1
i ≥ T k

i + i for all i. By
compactness of X , the set of points {γi(T

k
i )} has an accumulation point xk. Likewise, the

set of points {γi(T
k+1
i )} has an accumulation point xk+1. For all i large, a small perturba-

tion to the path γi after T k
i in a neighborhood of xk and xk+1 reduces T j

i by more than i−1
for each j > k, without increasing any other goal times. This contradicts the assumption of
globally Pareto optimal paths. ⋄

Corollary 5.6. There exists a finite bound on the number of globally Pareto optimal
classes on X between fixed endpoints which is independent of the endpoints.

Proof: For each fixed pair of endpoints in X ×X , there is a finite number of globally Pareto
optimal classes via Theorem 5.5. The bound extends to small open neighborhoods in X ×X
via the same argument. Thanks to the compactness of X , this open cover restricts to a
finite subcover. ⋄

This completes the proof of the Main Theorem.

6. Computing locally Pareto optima. The proof of the Main Theorem reveals a
technique for computing “canonical” representatives for the locally Pareto optimal classes.
One observes from the proof that passing to a sufficiently fine cubical discretization of the
coordination space and choosing a normal cube path between endpoints yields an approxi-
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mation to a locally Pareto optimal path. Normal cube paths are not difficult to compute,
given the cubical approximation — one simply cuts across as many diagonals as early as
possible in the path.

However, this procedure is not optimal as a means of generating representatives of a Pareto
equivalence class, since it involves a potentially large and expensive discretization step and
it yields only an approximation to the desired optimum. A less expensive approach that
yields the true locally Pareto optimal representative path comes from deriving a ‘continuous’
version of a normal cube path which does not rely on having a cubical structure at all. These
paths, called left-greedy normal paths, are well-defined, unique up to homotopy, and
locally Pareto optimal.

A companion paper to this [17] gives proper definitions of left-greedy normal paths, along
with algorithms for their computation, complexity bounds, and implementation in the con-
text of coordinating several irregular-shaped robots translated along planar tracks. It is
an interesting feature that the algorithms for computing these locally Pareto optimal paths
rely crucially on the nonpositive curvature of the underlying coordination space.

7. Moving obstacles. Assume that, as before, we have N robots which traverse
roadmaps {Γi}

N
1 . If, as will typically occur, the obstacle set O is defined by pairwise colli-

sions, then the resulting coordination space X will be cylindrical and the finiteness bounds
apply.

Assume now that there are additional objects which, like the robots, move through the
shared environment, but which, unlike the robots, are not controllable. These objects move
along pre-determined trajectories in the workspace. We make no assumptions about their
speed, shape, or motion.5 We assume only that the trajectory through the workspace is
a fixed function of time. Such a system gives rise to a roadmap coordination system with
moving obstacles.

We consider the problem of determining locally Pareto optimal coordinations of the N
robots through the workspace, where all admissible paths are those which avoid collision
with the moving obstacles. Our strategy is to augment the coordination space by adding
one dimension for time, similar to the methods used in [20, 30].

Theorem 7.1. Any roadmap coordination system with moving obstacles possesses a finite
number of globally Pareto optimal classes of paths.

Proof: Let X denote the coordination space of the N robots obtained by ignoring the
additional obstacles. We will build an augmented coordination space of the form X ⊂

[0, T ] ×
(

∏N
k=1 Γk

)

. Encode the positions of the moving objects as a time-parameterized

subset of the workspace (where, without a loss of generality, 0 ≤ t ≤ T for some T ). For
each 1 ≤ i ≤ N , denote by Oi ⊂ [0, T ] × Γi the set of points of the form (t, xi) where the
ith robot in configuration xi is in collision with the moving obstacles’ positions at time t.
We define X via the obstacle set:

O = ([0, T ]×O)
⋃

i

{

(t, x1, · · · , xN ) ∈ [0, T ]×

N
∏

k=1

Γk : (t, xi) ∈ Oi

}

. (7.1)

Claim 1: The augmented coordination space X is cylindrical.

5Indeed, the moving obstacles may, during their trajectory, change shape, speed, or even connectivity.
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To prove this, note that X is obtained from [0, T ] ×
∏

i Γi by removing sets defined either
from O or from Oi. These are all pairwise defined cylindrical subsets.

End of Claim 1.

We now apply the same proof to X with two key modifications. The first is that the time
direction [0, T ] in X is rigid: all admissible paths in X must travel with unit speed in the
t-direction. The second is that the endpoint is variable: paths start at the point (0, p) and
end at (T ′, q) for some fixed p, q ∈ X and for some variable T ′ ≤ T .

For the moment, assume that T ′ is fixed.

Claim 2: The number of admissible globally Pareto optimal paths from (0, p) to (T ′, q) is
finite.

To prove this, one shows that the proofs of Theorems 5.4 and 5.5 apply to admissible paths
(those with unit speed in the t-direction). Not all homotopy classes of X are represented,
but only those which have unit speed in the t-direction. The crucial observation for the
analogue of Theorem 5.4 is that Algorithm 1 applied to a path with unit speed in the t-
direction preserves this property. The analogue of Theorem 5.5 in this setting is unchanged.

End of Claim 2.

In the general case, the endpoint has t-coordinate T ′. For each such T ′ there is a finite set
of globally Pareto optimal paths in X .

Claim 3: The projections of these globally Pareto optimal paths in X to X is independent
of T ′, for T ′ sufficiently large.

To prove this, assume that C′ is a normal cube path from (0, p) to (T ′, q) in X . Let C denote
the cube path obtained by appending to C′ the straight line segment from (T ′, q) to (T, q).
Claim 3 follows if C is also a normal cube path.

Assume that C is not normal. Then, since both pieces of C are normal (C′ and the segment
(T ′, q)→ (T, q)), the normal condition must fail precisely at the vertex (T ′, q). This would
imply that the star of the last cube in C′ intersects the segment (T ′, q)→ (T, q); hence, the
last cube of C′ had no component in the t-direction. However, this is a contradiction, since
C′ is an admissible path with constant speed 1 in the t-direction.

End of Claim 3 and the Theorem. ⋄

The problem of computing locally Pareto optimal paths is no different in this case than
in the stationary obstacle case of the previous sections. The motion of the obstacles is
incorporated in the geometry of the coordination space in the time-dimension.

8. On positive curvature. We claim that the crucial reason for the finiteness bound is
that the cylindrical coordination spaces can be approximated by cubical complexes without
any vertices of positive curvature. For more general coordination spaces, all the steps of
the proof of the finiteness bound hold except the uniqueness of normal cube paths up to
homotopy.

For example, if one approximates the space of Example 3.2 by discretizations X (n), then,
as before, there are a finite number of normal cube paths. For example, in X (2), O is
approximated by a cube and there are exactly three normal cube paths. However, they
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are not unique up to homotopy, and the number of such paths grows exponentially in the
discretization step n, giving rise to the continuum of optima in the limit: see Fig. 8.1

Fig. 8.1. As one approximates the obstacle of Example 3.2 by finer and finer cubes, the number of
normal cube paths from one corner to its antipode grows exponentially.

The positive curvature in Example 3.2 is transparent: the obstacle set O clearly has a
positively curved boundary. But in Example 3.3, the positive curvature is more subtle
and arises from the fact that the obstacle set O is not axis-aligned. Consider first the
case in which the squares have full mobility in all directions. We discretize this X to a
cube complex by letting edges correspond to sliding a square in either the horizontal or
vertical direction. Higher dimensional cubes correspond to slides which “commute” (they
are compatible without causing a collision between the two squares).

We claim that positive curvature is created in the discretization. It suffices to demonstrate
the failure of the link condition: namely, to show that there exists a triple of edges which
pairwise commute but which together yield an illegal state. This is illustrated in Fig. 8.2.
Each pair of the three moves exhibited there commutes (with one pair generating a diagonal
slide), but all three performed simultaneously generates a collision.

Fig. 8.2. The link condition fails for cubical approximations to the coordination space of Example 3.3:
the three translations shown can be performed simultaneously pairwise, but performing all three at once
causes a collision.

There is one last type of failure on which we remark. If we modify Example 3.3 so that
squares are constrained to slide solely in the horizontal and vertical directions, then, indeed,
the discretized cube complex now has no positive curvature, since sliding the same square
horizontally and vertically are no longer commutative moves. Because of this, however, there
are nontrivial loops in π1(X ) generated by moving a single square north-east-south-west in

16



turn. There is one such loop for each vertex in X (n), and the length of the loop is four times
the discretized edge length. As n→∞, the number of such loops becomes arbitrarily large
while their lengths become arbitrarily small: there is a “froth” of π1. Even though normal
cube paths (and hence locally Pareto optimal representatives) are unique up to homotopy,
the number of such homotopy classes blows up exponentially. In this case, the argument
involving π1 begin finitely generated no longer holds and, indeed, there are an uncountably
infinite number of globally Pareto optimal paths in the limit.

———————————————————–

The techniques we have introduced here — cat(0) geometry and nonpositive curvature —
are very classical concepts. Yet their applications outside of geometry and algebra are in the
very beginning stages, and we are hopeful that other problems in robotics and optimization
will benefit from these perspectives. We end by noting that the problem of computing global
Pareto optima is not dissimilar to that of computing Euclidean geodesics. It is well-known
that computing shortest paths in 3-d is NP-hard in general [10] (see, e.g., [24] for an up-
to-date account of hardness results for geodesics). It is worth noting that every example
surveyed in [24] which has an NP-hard geodesic problem is not a cat(0) space. It would be
a good omen for the applicability of cat(0) techniques if the geodesic problem simplified
in the case of cat(0) spaces in general. In a parallel application, pursuit-evasion problems
on domains of dimension greater than two depend crucially on the geometry and topology
of the domain. For certain pursuit games, the existence of a successful pursuit strategy can
be guaranteed on a cat(0) space [4].
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